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Abstract

The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical

microorganism in the nitrogen and carbon cycle and one of the most common members in

wastewater treatment communities. This bacterium is metabolically extremely versatile. It is

capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to

grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to

multiple environments and establish commensal relationships with other organisms,

expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleo-

tides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants

under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate,

enabling it to thrive in chemically contaminated environments. However, many metabolic

mechanisms employed by R. palustris to breakdown and assimilate different carbon and

nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain

unknown. Systems biology approaches, such as metabolic modeling, have been employed

extensively to unravel complex mechanisms of metabolism. Previously, metabolic models

have been reconstructed to study selected capabilities of R. palustris under limited experi-

mental conditions. Here, we developed a comprehensive metabolic model (M-model) for R.

palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and compris-

ing 1,294 genes. We validated the model using high-throughput phenotypic, physiological,

and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction
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accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for

assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic

changes of growth and substrate consumption rates over time under nine chemohetero-

trophic conditions and demonstrated high precision in predicting metabolic changes

between photoheterotrophic and photoautotrophic conditions. This comprehensive M-

model will help to elucidate metabolic processes associated with the assimilation of multiple

carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation,

as well as production of molecular hydrogen and polyhydroxybutyrate.

Author summary

Rhodopseudomonas palustris actively participates in the carbon and nitrogen cycles by fix-

ing carbon dioxide (CO2) and molecular nitrogen (N2), as well as transforming nitrate

into N2. This photosynthetic bacterium has been extensively studied and is considered a

model microorganism for elucidating carbon and nitrogen fixation, H2 production, deni-

trification, aromatic compounds degradation, anoxygenic photosynthesis and the produc-

tion of complex polymers like polyhydroxyalkanoates. Constraint-based metabolic

models are systems biology tools capable of predicting an organism’s phenotype under

several growth conditions. The metabolic model of R. palustris Bis A53, iDT1294, accu-

rately predicts growth rates of over 350 carbon and nitrogen sources (e.g. amino acids,

aromatic compounds, organic acids, nucleotides, etc.) under different oxygen and light

conditions. Furthermore, iDT1294 precisely simulates how R. palustris switches between

photoheterotrophic and photoautotrophic metabolic modes over time, depending on

nutrient availability and light conditions. The model represents the most comprehensive

M-model for a purple non-sulfur bacterium to date, thus aiding the elucidation of R.

palustris’ metabolic roles in different environments.

1. Introduction

Rhodopseudomonas palustris is a photosynthetic Gram-negative purple non-sulfur bacterium

(PNSB) of the family Bradyhizobiaceae. It can attain a wide range of metabolic states and is

considered one of the most versatile microorganisms [1]. R. palustris’ "Swiss army knife metab-

olism" renders it capable of utilizing a broad range of substrates [2]. This facultative PNSB can

grow under aerobic or anaerobic conditions [3,4], activating oxygen-sensitive regulation strat-

egies related to nitrogen fixation, denitrification, aromatic compound degradation and polyhy-

droxybutyrate (PHB) metabolism [5,6]. In addition to its flexibility in regard to oxygen levels,

it can utilize various carbon and nitrogen sources [1,3,4,7] and is capable of assimilating both

organic (heterotrophy metabolism) as well as inorganic (autotrophy metabolism) compounds

[4,8–11]. The list of organic compounds assimilated by R. palustris includes amino acids,

organic acids, carbohydrates, aromatic compounds, and highly complex polymers like plant-

derived biomass [12–18]. At the same time, this bacterium possesses highly specialized

enzymes for autotrophic growth, encoding genes for form I and form II of the rubisco enzyme

[19–24]. R. palustris is also a diazotroph, capable of fixing molecular nitrogen (N2) using three

highly specialized metal- (iron, vanadium, and molybdenum) dependent nitrogenases [8,25].

The activity of these nitrogenases is highly susceptible to mineral and molecular oxygen (O2)

concentrations and expression of these enzymes is thus highly regulated based on O2
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availability [26]. Nitrogen fixation to ammonium in R. palustris is linked to the production of

molecular hydrogen (H2), an aspect of interest to the alternative fuel sector [14,15,27,28].

Additional to nitrogen fixation, R. palustris’ nitrogen metabolism capabilities include the

transformation of nitrate into N2 [29,30]. Under stress conditions R. palustris not only pro-

duces N2 from this reaction but also byproducts such as nitrite, as well as nitric and nitrous

oxides [2]. Besides the metabolic flexibility for carbon and nitrogen consumption, R. palustris
generates energy (ATP) under anoxic conditions by either anoxygenic photosynthesis or by

denitrification using nitrate as electron acceptor [29–31]. Hence, this extremely versatile bacte-

rium can grow in four distinct modes, i.e., chemoheterotrophy, chemoautotrophy, photoauto-

trophy, and photoheterotrophy [32–35].

The metabolic flexibility of R. palustris has rendered this bacterium a prime candidate for

the production of high-value compounds [6,36,37]. Specifically, the potential of R. palustris for

the degradation of pollutants have spurred interest in wastewater recycling and soil bioremedi-

ation [38–40]. Additionally, the production of different polyhydroxyalkanoates and PHBs by

this PNSB is of interest to the bioplastic industry [28,41,42] The production of H2 by R. palus-
tris has been explored in the past as bioenergy alternative [4,43]. Due to these diverse meta-

bolic features, it is not surprising that R. palustris can be found in various ecosystems and

microbial communities [44–46]. R. palustris is present in aquatic sediments, wastewater micro-

bial communities, contaminated soils, and can interact and form relationships with plants

[44,47,48] and other microorganisms [35,49,50]. Several metabolic strategies of R. palustris Bis

A53 have been previously unraveled, but there are still unknown metabolic features and mech-

anisms related to the carbon and nitrogen assimilation employed by bacterium.

Previous studies in which metabolic models for R. palustris were successfully employed pro-

vided new knowledge about the metabolic mechanisms and fluxes of its growth under anoxic

conditions in the light [51,52]. However, these studies focused mainly on phototrophic pheno-

types of R. palustris, omitting a wide range of this bacteria’s possible lifestyles. Here we applied

a systems biology approach to predict R. palustris Bis A53 metabolic fluxes under a variety of

different experimental conditions at the genome-scale. A whole-genome perspective of the

metabolism provides a complete picture of active pathways as well as metabolic fluxes.

Genome-scale metabolic models (GEMs) present high-quality predictive performances when

semi-automated tools are utilized for the reconstruction process [26,53–55]. The resulting

draft model of R. palustris Bis A53 was manually curated using available data from several bio-

informatics databases. We utilized experimental data from the literature and performed addi-

tional experiments to fine-tune metabolic constraints under the four metabolic modes of R.

palustris. We compiled all data and validated the model’s growth rate predictions from Flux

Balance Analysis (FBA) under different conditions. A wide range of varied carbon and nitro-

gen sources were evaluated and the precision of the model to predict the vast metabolism of R.

palustris was determined. The model accuracy was compared to other automatic and curated

models. Ultimately, the model was validated using kinetic experiments from literature evi-

dence to determine iDT1294 robustness using dynamic Flux Balance Analysis (dFBA) [56].

The M-model accurately predicted the metabolic changes between photoheterotrophic and

photoautotrophic conditions over time.

2. Results

2.1. Metabolic network reconstruction of R. palustris Bis A53

We used semiautomatic strategies to reconstruct the M-model of R. palustris Bis A53. This

approach has been successfully applied in the past to reconstruct bacterial M-models [53].

First, an initial draft model of R. palustris Bis A53 was created using the genome annotation of
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the NCBI Reference Sequence database: GCF_000014825.1. Four manually curated and previ-

ously validated M-Models were used as protein homology templates: Synechocystis sp. PCC

6803 (iJN678) [57], Synechococcus elongatus PCC 7942 (iJB785) [58], Escherichia coli K-12

substr. MG1655 (iML1515) [59], and Azotobacter vinelandii DJ (iDT1278) [26]. The reference

models were employed in different stages of the reconstruction process to carefully identify

homology of the subsystems and properly distribute metabolites across the compartments.

The M-models of the photosynthetic microorganisms (Synechocystis sp. PCC 6803 and Syne-
chococcus elongatus PCC 7942) and iML1515 (E. coli) were utilized to determine the optimal

cut-off parameters (e-value, query length, and percentage of identity) for the BLAST algorithm

to reconstruct the initial draft M-model (Fig 1A). The RAVEN and COBRA Toolboxes [56,60]

were used to generate the semiautomatic draft reconstruction. A total of 384 draft models were

generated varying the three BLAST parameter criteria (S1 Material) to evaluate the effect of

each BLAST parameter and their interaction in the model reconstruction phase. The range of

values tested for the three variables was: e-value (1x10-30-1 x10-5), query length (50–150

amino acids), and percentage of identity (20–40%). A set of 391 reactions and their gene-pro-

tein-reaction (GPR) associations were manually curated to use as a quality control check of the

GPR associations automatically determined by the metabolic modeling toolboxes. Five princi-

pal variables were calculated based on the results of the quality of each resulting model: (1)

incorrect homology calls included in GPR associations of the draft model (false positive accu-

mulative); (2) sum of genes not assigned (missing genes) in the GPR associations (false nega-

tive accumulative); (3) unique genes incorrectly contained in the rules of draft models

determined from false positive accumulative (unique false positives); (4) unique missing genes

involved in rules of resulting models (unique false negatives); and (5) the entirety of genes cor-

rectly assigned in GPR associations (true positive accumulative). As expected, relaxed values of

the three BLAST parameters increased the number of true positive calls in GPR associations.

For instance, one of the draft models generated (using e-value = 1x10-5, query length = 50 aa,

and identity percentage = 20%) contained almost 350 genes correctly assigned across the 391

reactions (higher amount of hits than 99% of the draft models reconstructed). However, incor-

rect homology calls dramatically increased under this criterion (false positive accumula-

tive = 1650 and unique false positives = 623). More restricted values decreased the number of

false positive calls, sacrificing the total of true positive calls (correlated to the number of false

negative calls). Based on these preliminary results, we focused on draft models with average

criteria (specifically for query length and identity percentage) since most of these initial models

contain a considerable number of hits (close to 300) and significantly fewer unique false posi-

tive and negatives (50% less than draft models with relaxed criteria). From a second stage of

BLAST parameters screening, 10 models were chosen as suitable draft models based on false

positive and negative calls. The GPR associations of these draft models were carefully reviewed

to identify which kind of reactions and associations were wrongly assigned. A final draft

model was selected with the following parameters: e-value = 1x10-5, query length = 100 aa,

and identity percentage = 30%. Similar values have been successfully employed in semiauto-

matic reconstruction strategies for other template microorganisms [26,54,55,61]. However, the

resultant optimal BLAST cut-offs have never been estimated for photosynthetic bacteria. Each

reaction of the optimized draft model was evaluated for free energy production (ATP, NADH,

and NADPH accumulation) and mass balances as part of the quality control tests to guarantee

model functionality and chemical accuracy. Reactions associated with template genes were

maintained in the draft model to guarantee model connectivity across compartments and the

capability of the model to perform growth simulations. The resulting optimized draft model

from three core templates contained 1,732 metabolic reactions and 1,569 metabolites divided

into five compartments (cytoplasm, periplasm, carboxysome, thylakoid, and extracellular
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Fig 1. Workflow to build a metabolic model of R. palustris BisA53 using a semiautomatic approach. A A draft model was

reconstructed using optimized BLAST parameters (e-value, query length, and identity percentage) from three template models

present in BiGG (Escherichia coli K-12 substr. MG1655, Synechocystis sp. PCC 6803, and Synechococcus elongatus PCC 7942).

NCBI reference sequence annotation was employed in GPR associations. The RAVEN and COBRA packages for MATLAB were

deployed in the reconstruction stage. B The resulting optimized draft model and constituents of the Biomass Objective Function

(BOF) were manually curated. Protein, RNA and DNA metabolites of the BOF were calculated based on genomic and proteomic

data, meanwhile the rest of the metabolic requirements were estimated based on experimental evidence previously published.

Disconnected metabolites were properly integrated into metabolic pathways using bioinformatics databases. The iDT1278

model (A. vinelandii) worked as a template for nitrogen fixation, hydrogen production, and PHB biosynthesis reactions using

BLASTp homology. The resulting draft model of the BOF and dead-ends curation contained 2,298 reactions, 1,918 metabolites,

and 1,515 genes (200 exogenous genes). C Four detailed subsystems were manually added to the model to reflect specific

metabolic capabilities of R. palustris BisA53: aromatic compound degradation under anaerobic conditions, nitrogen fixation and

denitrification (with partial denitrification), PHB production and pigment metabolism (including carotenoid and

bacteriochlorophyll of PNSB). For the aromatic compounds biosynthesis pathways, the reactions and metabolites involved were

carefully added based on enough experimental evidence and curated information of the pathways from the bioinformatics

databases (See Methods). D The resulting model was validated using experimental data retrieved from the literature and growth

experiments performed in this study. The iterative model refinement process included manual curation, gap-filling, and

curation under chemoheterotrophic, chemoautotrophic, photoautotrophic, and photoheterotrophic conditions changing the

oxygen requirements depending on the experimental environments. Ultimately, the model was validated using kinetics data to

compare the prediction capabilities of the M-model using growth rates and substrate concentrations for specific time points.

The final model, containing 2,721 reactions, 2,123 metabolites, and 1,294 genes, predicted growth with 90% accuracy for carbon

and nitrogen substrates.

https://doi.org/10.1371/journal.pcbi.1011371.g001
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space) with a total of 1,398 genes (208 exogenous genes from the templates). Nitrogen fixation,

H2 consumption, and PHB biosynthesis reactions were imported from iDT1278 (A. vinelandii)
in the model refinement stage with the GPR adjustment using R. palustris homologous

proteins.

2.1.1. Model refinement. The model refinement was executed following manual curation

and gap filling. Every GPR association created during the draft model stage was investigated

and validated by comparing the predicted GPR association based on BLAST to the annotation

of the genes from different bioinformatic databases (e.g., KEGG[62], BioCyc[63], BRENDA

[64], UniProt[65], and MetaNetX[66]) as well as available biochemical information from the

literature (See Methods). Manual curation was based on protein sequence homology and EC

number annotations. Additionally, the new validated GPR associations were cross-checked

using a secondary assessment based on NCBI and PATRIC annotations. For GPR associations

with exogenous proteins, multiple protein sequences were aligned using R. palustris Bis A53

proteome and proteins from the BiGG database [67] associated with those reactions. R. palus-
tris amino acid sequences (RPE) aligned under the selected BLASTp parameters (see Methods)

were manually verified based on the information in the databases and assigned to the corre-

sponding reactions. Reactions without associations to R. palustris were identified and evalu-

ated using sink metabolite algorithms [56]. Reactions with exogenous GPR associations were

classified according to their flux contribution to the BOF and their biological relevance. The

tested reactions with no contribution to the BOF and without biological relevance were

removed from the model. Reactions involved in the production of BOF components or with

biological significance were kept in the M-model and designated as orphan reactions

(S6 Material).

The preliminary draft model with optimized BLASTp parameters (only containing iJB785

and iJN678 as references) consisted of 956 reactions, 802 metabolites, and 725 RPE genes. The

draft model increased to 1,732 reactions, 1,569 metabolites, and 1,398 genes (1,198 of which

had amino acid sequence information, i.e., RPE genes) after adding the homologous metabolic

properties from iML1515 using the RAVEN toolbox [60]. Subsequently, the R. palustris GEM

from the first manual curation stage was complemented using another metabolic model from

the CarveMe prokaryotic modeling database [68]. Both metabolic models were compared

based on reactions, metabolites, and genes involved in each model. The reactions only present

in the CarveMe version were manually verified (GPR associations) and added to the draft

model, checking energy and mass balances. A total of 566 reactions, 349 metabolites, and 117

genes were added to the semi-curated M-model (Fig 2). Prior to the gap-filling stage, all trans-

port reactions of the draft model were curated using TransportDB [69] and metabolites were

assigned to three compartments (cytosol, periplasm, and extracellular space). Reactions and

metabolites that were originally located in the thylakoid and carboxysome compartment of the

template models (neither of them is present in R. palustris) were reassigned to the cytosol and

periplasm to maintain the biological relevance of the model. Carboxysome and thylakoid reac-

tions were reallocated based on KEGG and BioCyc annotations regarding R. palustris’ photo-

synthetic pathway distribution. This step resulted in a model comprised of 2,349 reactions,

1,955 metabolites, and 1,275 genes distributed across three compartments.

2.1.2. Gap filling. Gap filling was executed in two separate steps: (1) gap filling of discon-

nected metabolites already present in the model and (2) gap filling based on experimental

results, which consisted of (2a) phenotyping using Biolog plates and (2b) previously published

studies. Initially, disconnected metabolites of the manually curated draft model were deter-

mined using COBRA Toolbox algorithms [56]. The disconnected metabolites were classified

into three groups (see Methods) and reconnected depending on available information in bio-

informatics databases. Metabolites remaining from template models but without evidence
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being present in R. palustris were removed together with their associated reactions. During the

second step of gap filling, we used experimental data from Biolog experiments (PM1 and PM2

plates for carbon sources and PM3 for nitrogen sources) and modified reactions in the model

accordingly. Each reaction added to the model in this step was manually reviewed to maintain

concordance in the GPR associations, and energy and mass balance curation was performed to

preserve the quality of the model. Transport reactions involved in the assimilation of carbon

and nitrogen sources from Biolog results were associated with RPE genes using specific trans-

porter information of the NCBI and PATRIC annotations. Unspecific transporting proteins

were assigned to carbon and nitrogen sources without detailed information on the proteins

implicated in inter- or intracelluar transport (e.g., general ABC amino acids transporters, gen-

eral symporters, antiporters, porins, etc.). Furthermore, metabolic reactions involved in the

catabolism of carbon and nitrogen sources revealed by Biolog experiments were added to the

model with the corresponding RPE genes in GPR associations. Reactions employed in the suit-

able assimilation of the tested compounds without RPE evidence were kept in the model as

orphan reactions. The resultant gap filled model contained 2,655 reactions, 2,081 metabolites

and 1,282 RPE genes. In the second subsection of the final gap filling stage, literature informa-

tion was deployed using an iterative approach to determine which reactions were missing in

Fig 2. Model properties and prediction capabilities of iDT1294. A A general comparison was executed among the three principal template models (Escherichia
coli K-12 substr. MG1655, iML1515, Synechocystis sp. PCC 6803, iJN678 and Synechococcus elongatus PCC 7942, iJB785) and iDT1294 reactions. The four models

share 341 core metabolic reactions. B Six principal model versions were generated from the initial reconstruction process to the final validated model. Across the

different stages, the model increased the number of reactions, metabolites, and RPE genes, while the number of exogenous genes was reduced to zero. C iDT1294

accuracy and phenotypic predictions capabilities were evaluated under the four main metabolic states of this versatile organism, testing over 350 experimental

conditions. D R. palustris Bis A53 model contains 549 unique reactions related to aromatic compounds metabolism, PHB production, carotenoids, pigments and

bacteriochlorophylls biosynthesis specifically synthetized by PNSB as well as nitrogen fixation and denitrification. Reactions (2,721 in total) were distributed in 17

subsystems representing the entire metabolism of R. palustris Bis A53.

https://doi.org/10.1371/journal.pcbi.1011371.g002
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the model for their proper consumption. The model was modified by adding pathways for aro-

matic compound degradation and their use as carbon source under photoheterotrophic condi-

tions. Further additions included pathways for nitrogen fixation and denitrification (nitrate

and nitrite). In Fig 1C, the new relevant pathways added to the model are summarized and

classified according to the pathways, reactions, and metabolites involved. Overall, a total of

372 reactions and 168 metabolites across all compartments were added to the final model dur-

ing the gap-filling process.

2.1.3. Model properties. The R. palustris Bis A53 metabolic model (iDT1294) consists of

2,721 metabolites, 2,123 reactions, and 1,294 genes, representing ~27% of all annotated coding

genes in the NCBI genome reference sequence. Specific details about the reactions and metab-

olites from the model are summarized in Fig 2. iDT1294 was validated using over 350 experi-

mental growth results under photoheterotrophic, photoautotrophic, nitrogen fixing

(diazotroph), and heterotrophic conditions (both aerobically and anaerobically). iDT1294

contains all reactions, metabolites, and genes involved in nitrogen fixation and denitrification

(nitrogen metabolism), PHB production, carotenoid and bacteriochlorophyll biosynthesis (S4

Material), anoxygenic photosynthesis, and aromatic compound degradation (Fig 2B). The

entirety of the metabolic pathways present in the M-model is organized in 17 subsystems

(including transport and exchange reactions) depending on the biological role of the reactions

and metabolites utilized (Fig 2).

Most of the reactions (80%) in iDT1294 belong to lipid metabolism, amino acid metabo-

lism, transport and exchange of metabolites, alternate carbon and cofactor, and vitamin

metabolism. Specific metabolic capabilities of R. palustris Bis A53, such as nitrogen fixation

and denitrification (nitrogen metabolism), PHB production (others), carotenoids metabolism

(including pigments and bacteriochlorophylls biosynthesis), anoxygenic photosynthesis and

aromatics compound degradation represent less than 6% of the metabolic reactions. Through

this metabolic pathways’ distribution, iDT1294 can predict all four metabolic modes of R.

palustris accurately (Figs 3 and 4). The three principal template models used during the opti-

mization and reconstruction steps share 341 reactions with iDT1294. Most of the reactions

present in the four models are related to core metabolic pathways (TCA cycle, glycolysis, glu-

coneogenesis, amino acids, lipids, carbohydrates and cofactor metabolism). Photosynthesis,

carotenoid and pigments biosynthesis, and some alternate carbon pathways were taken from

the two photosynthetic reference models (S. sp. PCC 6803, iJN678 and S. elongatus PCC 7942,

iJB785). Gram-negative properties and metabolic pathways were obtained from the template

E. coli K-12 substr. MG1655 (iML1515). iDT1294 shares 1,100 reactions with iML1515 (Fig 2),

which are related to transport reactions, lipid metabolism, and the production of BOF constit-

uents. Table 1 compares the properties of the different metabolic models reconstructed for R.

palustris. To our knowledge, iDT1294 represents the most comprehensive M-model of R.

palustris available to date.

2.1.4. Biomass objective function. The BOF contains the principal constituents and the

stoichiometry values of each metabolite involved in biomass production. The fraction of each

metabolite participating in the BOF composition is defined per gram of biomass. iDT1294

BOF was designed employing three different sources: (1) constituents of iML1515 and iJN678

based on their physiological similarity (Gram-negative bacteria or photosynthetic organisms),

(2) estimations based on the proteomic and genomic data of R. palustris Bis A53, and (3) litera-

ture evidence of the BOF composition obtained under different experimental conditions [21].

The stoichiometric coefficients of amino acids, DNA, and RNA precursors present in the BOF

were calculated based on the theoretical amino acid abundance obtained from proteomic and

genomic references. The mineral fractions were determined based on mineral requirements

from the literature (see Methods). Additionally, the carotenoid composition and their
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Fig 3. Comparison of the high-throughput growth phenotypic experimental and simulated results across the three

principal metabolic models. R. palustris Bis A53 was cultivated in 190 carbon and 95 nitrogen sources under

monoculture conditions for 96 hours. Subsequently, the three GEMs (iDT1294, iRpa940, and iAN1128) were properly

constrained to simulate all the Biolog conditions. Each heat map compares every carbon (PM1 and PM2) and nitrogen

(PM3) source’s experimental result against the simulation growth output per metabolic model. Growth results were

classified into two possible results: Growth (purple) and No Growth (light pink). Additionally, we determined growth by

measuring optical density (OD600, see methods) after 96 hrs, as indicated in blue to the right of each Biolog plate set. The

substrates studied were sorted in descending order based on growth values. Statistical parameters to determine the global

accuracy and prediction capabilities of the three models were calculated.

https://doi.org/10.1371/journal.pcbi.1011371.g003

Fig 4. Comparison of dynamic flux balance analysis with experimental data. The set of plots shows the dynamic prediction capabilities of

iDT1294 using nine different growth conditions. For each plot, the experimental time points (blue dots) were adjusted to the exponential phase,

and time points in the stationary phase were removed. Later, dFBA was executed for iDT1294 to determine the growth rates and consumption of

substrates across time. R2 and log10P parameters were determined for iDT1294 (orange and star) to identify how the model predictions fit to the

experimental results.

https://doi.org/10.1371/journal.pcbi.1011371.g004
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stoichiometric representations in the BOF were estimated assuming the presence of these

metabolites in dark and light conditions [71]. The remaining constituents were estimated

based on requirements of the Gram-negative model iML1515. The metabolites involved in bio-

mass production were grouped into nine principal clusters (i.e. amino acids, cell wall, pig-

ments, cofactors, RNA, DNA, carbohydrates, minerals, and miscellaneous). iDT1294’s final

BOF composition contains 98 constituents (excluding the theoretical metabolites representing

the BOF clusters). The BOF was employed as the primary optimization objective to perform

metabolic predicitions of growth and internal fluxes for the four different modes of metabo-

lism in R. palustris.

2.2. Accurate growth and metabolic fluxes predictions under different

experimental conditions

iDT1294 was validated extensively against experimental data using various carbon and nitro-

gen sources under different growth conditions representing the four metabolic modes (chemo-

heterotrophic, chemoautotrophic, photoautotrophic, and photoheterotrophic environments).

2.2.1. Growth validation. R. palustris Bis A53 was grown under aerobic chemohetero-

troph conditions in the dark using Biolog plates with 190 carbon (PM1 and PM2) and 95 nitro-

gen (PM3) sources. Growth was evaluated for 96 hours to determine which substrates were

suitable nutrients for this PSNB. The growth values were normalized according to the average

growth over triplicates per Biolog plate and reduced to qualitative data (growth or non-growth

values). From this high-throughput phenotypic data, carbon and nitrogen compounds were

mapped to iDT1294. Out of 190 carbon sources, 143 metabolites were identified in the M-

model; carbon substrates without defined pathways for assimilation or catabolism were not

mapped. Model simulations of these conditions were performed under heterotrophic aerobic

conditions with ammonium and N2 as the preferred nitrogen sources. Mineral and O2 con-

straints were adjusted to -1000 and the final fluxes were calculated according to the carbon

source limitations and BOF requirements. The carbon and nitrogen substrates employed dur-

ing the phenotypic experiments are displayed in S2 Material. The Biolog plate validation

results were classified and analyzed in two specific groups: carbon (PM1 and PM2) and nitro-

gen (PM3) compounds. For the group of carbon sources, a total of 143 compounds were

mapped and analyzed using the R. palustris Bis A53 metabolic model. Carbon sources with lit-

tle metabolic evidence (e.g., laminarin, 3-0-b-D-galactopyranosyl-D-arabinose, b-methyl-D-

xyloside, etc.) were not included in the validation of the model. Before the gap-filling stage, the

manually curated model version had 51% accuracy and Mathews Correlation Coefficient

(MCC) of = 0.34 predicting carbon compound utilization. Most of the erroneous growth pre-

dictions were related to false negatives (70) since the model could not consume or metabolize

different amino acids, carbohydrates, and organic acids. After the gap-filling stage, iDT1294

increased the accuracy to 85% and MCC to 0.68 (close to 35% more for both statistical parame-

ters) regarding the carbon compounds. However, the growth estimations of the model were

Table 1. Comparison of the principal model properties (reactions, metabolites, and genes) available for R. palustris.

Model Reactions Metabolites Genes Reference

iDT1294 2721 2123 1294 this study

Model SEED 1312 1451 980 [70]

CarveMe 1717 1260 898 [68]

Navid (iAN1128) 1173 1028 1128 [51]

Alsiyabi (iRpa940) 1449 1541 563 [52]

https://doi.org/10.1371/journal.pcbi.1011371.t001
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still affected by false negative predictions (19), mainly distributed in amino acids (8) and

amino-containing compounds (8). The same procedure employed for the carbon set was fol-

lowed in PM3 experiments to estimate the growth with 89 different nitrogen compounds. In

this case, simulations were performed using sucrose as the sole carbon source. Statistical

parameters (accuracy, sensitivity, specificity, positive predicted, negative predicted, and MCC)

were calculated for chemoheterotrophic non-diazotrophic conditions with O2 uptake adjusted

to nitrogen requirements. Based on the PM3 simulation results, iDT1294 showed the highest

accuracy and modeling precision across all Biolog conditions (Table 2). Predicting the qualita-

tive growth of nitrogen compounds, iDT1294 achieves an accuracy of 94%, with 100% positive

predictions and MCC close to 90%. The number of false negative predictions decreased to 6

compounds distributed in amino acids (3) and amino compounds (3).

To accurately determine how iDT1294 modeling capabilities compare to previously pub-

lished models, the same procedure was applied to the four existing GEMs (Table 1) calculating

the model simulation statistical parameters. Models distinct from BiGG naming nomencla-

tures (ModelSEED automatic reconstruction, iRpa940, and iAN1128) were translated to BiGG

IDs to map carbon and nitrogen sources previously tested in iDT1294. However, from the

four presented M-models, only two (iRpa940 and iAN1128) were suitable to perform Biolog

simulations under the experimental conditions employed (aerobic heterotroph dark environ-

ments). The ModelSEED and CarveMe versions did not contain the required pathways and

metabolic features to grow using a sole carbon or nitrogen source under oxic, dark conditions

(chemoheterotrophic). Table 2 summarizes the results for the three metabolic models.

Based on Biolog validation for carbon and nitrogen sources, iDT1294 demonstrated better

prediction capabilities for growth and substrates assimilation: a global accuracy close to 90%

(50% more than iRpa940, and 40% above iAN1128), sensitivity above 82% (almost 60% more)

and MCC achieving 0.75. Most of the incorrect predictions of the previously published GEMs

are based on the lack of transport reactions (S7 Material). For instance, at least 50% of the sub-

strates from the Biolog sets were present only in the cytosolic compartment of iRpa940.

Regarding iAN1128, the M-model contains significantly more transport reactions than

iRpa940, although it lacks the metabolic pathways needed to employ these carbon or nitrogen

sources as nutrients. Both previously published M-models contain specific information about

the metabolites employed in the carbon and nitrogen validation but in the cytosol compart-

ment. Further steps of manual refinement of the reactions transporting metabolites across the

compartments and connecting the substrates to core metabolism can significantly improve the

Table 2. Comparative table with the statistical parameters of the three principal R. palustris metabolic models for carbon and nitrogen sources from the Biolog

plates experiments (PM1, PM2, and PM3).

iDT1294

PM1

iRpa940

PM1

iAN1128

PM1

iDT1294

PM2

iRpa940

PM2

iAN1128

PM2

iDT1294

PM3

iRpa940

PM3

iAN1128

PM3

True positive 55 4 22 35 0 5 27 4 14

True negative 12 13 13 20 20 17 56 51 44

False positive 1 0 0 1 2 3 0 1 8

False negative 11 62 44 8 42 39 6 33 23

Accuracy 0.85 0.22 0.45 0.86 0.32 0.35 0.94 0.62 0.65

Sensitivity 0.84 0.06 0.34 0.82 0 0.12 0.82 0.11 0.38

Specificity 0.93 1 1 0.96 0.91 0.85 1 0.98 0.85

Positive predicted 0.85 1 1 0.98 0 0.63 1 0.8 0.64

Negative predicted 0.52 0.17 0.23 0.72 0.32 0.31 0.91 0.61 0.66

MCC 0.62 0.1 0.28 0.73 -0.25 -0.05 0.86 0.19 0.26

https://doi.org/10.1371/journal.pcbi.1011371.t002
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accuracy of the two metabolic models. Fig 3 displays the complete comparison of the perfor-

mance of each model and the experimental results obtained from phenotyping.

2.2.2. iDT1294 metabolic trade-offs in steady state and dynamic scenarios. Next, we

tested iDT1294’s performance using steady state and dynamic data from the literature for

diverse carbon and nitrogen sources. For steady-state data, two different sets of conditions

were employed to determine the accuracy of the simulations: (1) aromatic compound degrada-

tion under anaerobic conditions in light (photoheterotroph conditions) with soluble nitrogen

sources in the medium and N2 in the environment [7,72], and (2) consumption of organic

acids and glycerol under anoxygenic photosynthesis [17].

R. palustris Bis A53 contains high-specialized enzymes capable of degrading complex aro-

matic compounds under anaerobic growth [2]. To exploit the growth precision of iDT1294 we

evaluated 14 aromatic compounds (with two lignin precursors) commonly found in wastewa-

ter from chemical and food industries [7,72]. Based on the experimental growth conditions of

the reference studies [7,72], the model was constraint using a single organic carbon source

(i.e., aromatic substrate) for each experiment, ammonium and N2, and all minerals required

for BOF optimization under anaerobic conditions in the light. The growth condition details

employed for all experiments and simulations from the literature are summarized in S3 Mate-

rial. iDT1294 accurately predicted the growth for 14 aromatic compounds under anoxygenic

photosynthesis with 12 true positives (benzoate, benzoylformate, caffeate, cinnamate, ferulate,

3-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxybenzoylformate, DL-Mandelate, p-couma-

ric acid, p-coumaroyl-CoA, and vanillin) and two true negatives (protocatechuate and vanil-

late). For most of the carbon sources analyzed, the mechanism employed by the M-model for

anaerobic catabolism of the aromatic substrates uses oxidoreductase reactions with different

electron acceptors (NADH, NADPH, and FMN). The resulting metabolites from the oxidore-

ductases’ activity are transformed into common intermediates and integrated into core meta-

bolic pathways (e.g., benzoate, pyruvate, and fumarate). Once iDT1294 was tested with the

aromatic compounds using qualitative growth results, the quantitative growth rates were cal-

culated for 1 mM substrate concentration. The predicted growth rates were compared with

experimental evidence obtained from Harwood [1988] [7], shown in Table 3. The M-model

predicted with an average accuracy of 84% the growth rates for all the carbon sources using

ammonium or N2 as nitrogen sources, achieving a minimum accuracy of 74% and a maximum

value above 98%.

iDT1294 was further validated using growth with organic acids and glycerol under anaero-

bic conditions in the light, employing experimental data from Govindaraju (2019) [17] to eval-

uate the model’s accuracy for predicting steady state and dynamic growth. Initially, the model

was tested using nine different conditions with one or two carbon sources since the study was

performed to establish the effect of co-substrate utilization in lactate assimilation (S3 Material).

After the metabolic model was proven to successfully consume these metabolites, growth and

concentration timepoint datasets from the nine experimental conditions were normalized to

growth rates and consumption percentages, respectively. Subsequently, dFBA [56] was applied

Table 3. Predicted and experimental growth rates reported by Harwood [1988] [7] for R. palustris using aromatic carbon sources under anaerobic light conditions.

Compound Experimental growth (h-1) predicted growth (h-1) Accuracy (%)

benzoylformate 0.0075 0.0088 83

cinnamate 0.0251 0.0310 76

4-hydroxybenzoate 0.0188 0.0140 75

4-hydoxybenzoylformate 0.0050 0.0058 84

DL-mandelate 0.0055 0.0054 99

https://doi.org/10.1371/journal.pcbi.1011371.t003
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constraining the model with the initial biomass and substrate concentrations established by

Govindaraju (2019) [17]. To calibrate the dFBA algorithm, we used the final growth rate and

time point as reference data for each experiment. For the experiments with co-substrate utili-

zation, the uptake rates for the two carbon compounds were estimated based on the exponen-

tial rate consumption of the dFBA. Regulation and inhibition features were not included in the

dynamic simulation constraints. Ultimately, the correlation coefficient and exponential loga-

rithmic parameters (R2 and log10P) were calculated comparing the experimental growth and

consumption rates against the model estimations across the time.

iDT1294 demonstrates a strong correlation R2 coefficient (98.6%) for the growth rate sam-

ples. For most of the conditions analyzed, the model accurately predicted lag and exponential

phase trends with clear mismatches of the starting point of the stationary phase. Additionally,

substrate consumption across the conditions was predicted correctly according to the dynamic

simulation time points generated through dFBA model analyses (R2>97%). In some specific

cases (acetate-glycerol, butyrate and butyrate-lactate), the consumption of carbon sources was

incorrectly estimated since the COBRA Toolbox algorithms assume constant uptake fluxes,

ignoring the biological regulation and uptake restrictions of the organism. Surprisingly,

iDT1294 was capable of accurately predicting growth rates after depletion of the available car-

bon sources. When the carbon source is depleted, R. palustris utilizes CO2 as the carbon source

(carbon fixation). For instance, under malate and malate-lactate conditions nutrients were

depleted after 100 hours and CO2 became the sole carbon source available; iDT1294 accurately

predicted the change in growth rates for these scenarios. Based on the statistical correlation

parameters for growth rate and substrate consumption values, our comprehensive model is

established as a suitable tool to estimate and analyze the dynamic metabolic behaviors of R.

palustris Bis A53 under photoheterotrophic conditions.

3. Discussion

3.1. Model reconstruction and BLASTp parameters optimization

We have reconstructed a comprehensive genome-scale metabolic model for a well-studied

PNSB using semiautomatic strategies. This work represents a systems biology modeling

approach to elucidate the metabolic capabilities of R. palustris under four distinct metabolic

modes. We generated a high-quality, manually curated, meticulously validated metabolic

model of R. palustris Bis A53. Initially, the R. palustris model was reconstructed based on three

principal model references from BiGG [67] selected according to their metabolic and physio-

logical similarities, in particular two photosynthetic organisms (Synechocystis sp. PCC 6803

and Synechococcus elongatus PCC 7942) and a well-known Gram-negative bacterium (Escheri-
chia coli K-12 substr. MG1655). BLASTp parameter values were optimized by reconstructing

multiple draft models employing the three template models. While there is no clear consensus

on which BLASTp criteria optimize the metabolic reconstruction process, previous studies

have reported similar BLASTp cut-offs to reduce the amount of false positive (wrong gene

assignations) and false negative (missing genes) calls in the GPR associations [26,54,55]. How-

ever, false positive calls are negatively correlated to the number of reactions included in the

draft model, leading to the dilemma of increasing the number of reactions and true positive

calls along with false positive calls or reducing the number of false positive genes in the GPR

associations sacrificing the total of genes correctly designated. We found the number of reac-

tions correctly predicted as a key variable in the BLASTp parameters optimization. For select-

ing reactions from the template models using the RAVEN toolbox [61], the correct addition of

a reaction in the model provides a higher value than a correct gene assignation in the GPR

associations. This can be explained by the fact that GPR manual curation takes considerably
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less time than adding new reactions and properly applying quality control for each metabolic

reaction. Based on the high quality of the draft model obtained using the BLASTp optimized

parameters, we suggest these variables must be determined and analyzed for every draft model

reconstruction due to the wide variability of the template models quality employed and the

phylogenetic distance of the reference organisms. Even though there are different automatic

tools capable for reconstructing draft models for bacteria, such as ModelSEED [70], KBase

[73] and CarveMe [68], the resulting draft models usually contain several deficiencies and, in

some cases, more than 50% of the growth metabolic predictions are inaccurate, as we

highlighted in the present study.

3.2. Model details

Our R. palustris Bis A53 M-model contains 2,721 reactions and 2,123 metabolites associated

with 1,294 genes. The resulting model was highly curated using semiautomatic and manual

strategies, including GPR-specific compartment associations. iDT1294 was successfully vali-

dated using over 350 different carbon and nitrogen sources under several growth conditions

varying O2 content (aerobic and anaerobic) and presence of light (light and dark), achieving

the highest growth phenotype accuracy (Table 2) compared with previously published R.

palustris GEMs. The validation process was performed using steady state and dynamic experi-

mental data (Fig 4), demonstrating iDT1294’s capability to predict growth, consumption, and

production rates under stationary conditions over time. The final M-model contains detailed

metabolic pathways and features to study the most relevant subsystems of R. palustris: nitrogen

fixation, denitrification, anoxygenic photosynthesis, PHB biosynthesis, H2 production, and

aromatic compound degradation. To our knowledge, the metabolic model reconstructed,

curated, and validated in the present study (iDT1294), is the first M-model capable to predict

steady state and dynamic phenotypic data utilizing a wide range of carbon and nitrogen

sources under the four R. palustris metabolic modes in three cellular compartments.

3.3. Model validation: Scope of the model and future aspects

iDT1294 accurately predicts the growth rate values of R. palustris Bis A53 using 190 carbon

and 95 nitrogen sources under aerobic chemoheterotrophic dark conditions (almost 300

experimental conditions). The model contains all required reactions and constraints to simu-

late the BOF representing the growth of the organisms successfully. We have designed an R.

palustris-specific BOF, which includes the principal metabolic constituents of a PNSB, employ-

ing experimental and theoretical calculations based on genomic and proteomic annotations.

BOF optimization was tested under the four metabolic modes of this organism, demonstrating

the model elasticity to precisely predict the metabolic mechanisms using the available nutrients

in the environment. The resulting predictions were confirmed by experimental validation

using Biolog plates (PM1, PM2, and PM3) and aromatic compounds assimilation for steady-

state conditions and organic acid substrate consumption to validate dynamic growth and

metabolites assimilation datasets. We estimated statistical parameters from the high-through-

put phenotypic data validation, achieving values higher than 90% regarding phenotype growth

accuracy. Compared to other R. palustris metabolic models, iDT1294 showed higher precision

in true positive and negative predictions for both carbon and nitrogen sources. With this infor-

mation, we identified metabolic pathways employed by this bacterium to consume different

types of carbon and nitrogen compounds. Despite the "Swiss army knife metabolism", R. palus-
tris could not metabolize several amino acids as carbon and nitrogen sources; almost 50% of

the true negative growth estimations were amino acids. While the organism contains general

ABC branch-amino acid transporters to transfer these amino acids inside the cell, it lacks the
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required enzymes to transform these amino acids into core metabolic intermediates and

thereby utilize them as an energy source. In some cases (e.g., serine), the necessary enzymes

and transporters can be produced by the model. The discrepancy can be explained by non-

metabolic mechanisms (regulation, expression, and signaling), which are out of the scope of

the metabolic model capabilities. Compared to other prokaryotic metabolic models’ accuracy,

iDT1294 displays similar statistical parameter values for both carbon and nitrogen analyses

with a global accuracy of 90% and MCC maximum value of 0.86 [26,54,59]. Furthermore, R.

palustris Bis A53 M-model was curated to consume aromatic compounds under anoxygenic

photosynthesis. Most of the resulting simulations achieved a quantitative accuracy close to

80%, demonstrating quantitative and qualitative precision using uncommon carbon sources.

These estimations are of particular interest since R. palustris can be found in many wastewater

and bioremediation consortia which contain such varied metabolites. While the M-model

accurately predicted utilization of several carbon and nitrogen sources under changing O2

concentrations and light conditions, it still possesses some inherent limitations due to the

composition behind the metabolic model. For instance, metabolic models cannot predict the

partial expression of the nitrogenase complex and changes in enzyme activity due to O2 con-

centrations. These tightly regulated processes, e.g., transcriptionally, translationally, or alloste-

rically regulated, are out of the scope of GEMs but could be partially recapitulated by

including all the expression and allocation features in a subsequent model of metabolism and

gene expression (ME-model) of the organism [74,75]. Finally, kinetic datasets for growth and

substrate consumption are suitable for metabolic model prediction under anaerobic photohe-

terotrophic conditions. We determined highly correlated values for all the experimental data-

sets, suggesting that iDT1294 can be employed to understand how R. palustris Bis A53

metabolism varies over time under several different conditions.

iDT1294 successfully predicts qualitative and quantitative growth behavior of R. palustris
under a wide range of conditions, such as with or without oxygen present, in the presence or

absence of light, under molecular nitrogen-fixing conditions, in the presence of aromatic com-

pounds, and metabolizing a variety of different carbon and nitrogen sources. Moreover, the

model predicts combinations of these conditions to determine possible metabolic fluxes and

pathways employed by the bacterium. Thus, iDT1294 represents a valuable computational tool

to elucidate how R. palustris can successfully establish itself in so many different environments,

such as wastewater or plant roots, and manages to metabolize varies carbon and nitrogen

sources, as well as aromatic compounds, in the presence or absence of light.

4. Methods

4.1. Draft model generation

The genomic sequence of R. palustris Bis A53 was obtained from The NCBI Reference

Sequence database (Refseq code: GCF_000014825.1, total proteins: 4889). Protein sequences

were aligned to build the initial draft model using the BLAST algorithm for protein homology.

This first draft was reconstructed using The COBRA [56] and The RAVEN [60] Toolboxes.

Due to the high complexity and versatility of R. palustris Bis A53 metabolism, four reference

models were selected according to the proteome comparison and metabolic capabilities from

the BiGG Database [67]. Template models were divided into two groups. The first included

the photosynthetic template microorganisms Synechocystis sp. PCC 6803, model iJN678 [57]

and Synechococcus elongatus PCC 7942, model iJB785 [58]. The second group was integrated

by Gram-negative bacteria, including template models Escherichia coli K-12 substr. MG1655,

model iML1515 [59], and Azotobacter vinelandii DJ, model iDT1278 [26]. iDT1278 was

mainly employed as a template model to obtain the nitrogen metabolism. The initial draft
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model from the photosynthetic organisms and iML1515 was built using optimized BLAST

parameters (e-value, query length, and percentage of identity). A sensitivity analysis was per-

formed to determine which specific BLAST parameters’ values maximize the number of true

positive homology calls and minimize the number of false negative and positive calls in the

Gene-Protein-Reaction (GPR) associations. The determination of the optimal values involved

the assessment of each BLAST parameter and the effect of the three parameters interactions.

The resulting optimal BLAST parameter values were employed to determine the GPR associa-

tions of the Gram-negative template models. Template models contained reactions associated

with carbon and nitrogen fixation, photosynthesis, amino acid catabolism, lipid metabolism,

nucleotide pathways, and sugar degradation. The generated draft model also contained genes

from the template models, which were later removed during the model refinement stages.

4.2. Model refinement

Model refinement included manual curation of the GPR associations using bioinformatics

databases and experimental information followed by gap-filling of new metabolic reactions

not found in the BIGG Database based on genomic associations and experimental evidence.

4.2.1. Manual curation. In the first step of the manual curation process, reactions in the

initial draft model with exogenous proteins in the GPR associations were identified and veri-

fied in R. palustris metabolism using data from bioinformatics databases (KEGG, BioCyc,

BRENDA, UniProt, and MetaNetX). Exogenous proteins assigned during the reconstruction

stage were replaced with homologous sequences of R. palustris Bis A53 using the Enzyme

Commission (EC) number as a reference to identify the metabolic function of the protein. For

every subsystem of the model with exogenous proteins, the GPR associations were manually

reviewed using KEGG, BioCyc, NCBI and PATRIC. When the sources disagreed about which

protein should be associated to a reaction, a unique GPR was chosen by following the consen-

sus among the databases and annotations. Additionally, reactions lacking any R. palustris Bis

A53 proteins were checked through BLASTp. Candidate proteins from the R. palustris prote-

ome were identified via BLAST against the proteins assigned to the GPR associations for the

reaction in other microorganisms in the BiGG database. The BLASTp criteria were an e-

value� 1e-10, query coverage� 80% and identity percentage� 40%. A second step of manual

curation was executed to confirm the correct assignation of the GPR associations [26,54,55].

The proteins for each reaction of the semi-curated draft model were manually reviewed based

on the type of metabolic reaction, protein function, and cell compartment. Protein complexes

were adjusted correctly from the GPR associations of the template organisms to the specific

protein complex conformations in R. palustris. All validated reactions, metabolites, and GPR

associations were distributed in three different compartments (periplasm, cytoplasm, and

extracellular compartment). Metabolites were labeled according to the corresponding position

in the cell. Metabolites obtained from the photosynthetic model references were carefully

renamed and properly allocated to the corresponding compartment of R. palustris Bis A53.

Duplicated metabolites generated during the renaming and reallocation of photosynthetic

metabolites were merged and integrated into a unique metabolite identifier. Transport reac-

tions were added using the TransportDB database [71]. Metabolite transport between com-

partments was curated using BLASTp. Hypothetical and putative proteins were not included

in the GPR associations of the curated model to avoid false positive calls. The remaining reac-

tions with exogenous genes in the GPR associations of the model were identified and analyzed

through Flux Balance Analysis (FBA) using the COBRA Toolbox [56]. Reactions with no flux

and exogenous GPR associations were removed from the M-model. Reactions with exogenous

proteins carrying fluxes were maintained in the model as orphan reactions.
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4.2.2. Gap filling. Gap filling was performed in two steps, (1) gap filling of metabolic

pathways already present in the manually curated draft model, and (2) gap filling by adding

new metabolic pathways into the model obtained from different bioinformatic databases or

experimental evidence from the literature.

Gap analysis was performed to recognize which compounds were disconnected in the M-

model and which reactions were lacking in the analyzed pathways. Initially, disconnected metabo-

lites were determined through dead-end analysis algorithms. The dead-end metabolites were clas-

sified according to their disconnection motive (present in one reaction, present only as a substrate

or as a product). Subsequently, the involved reactions were identified to establish suitable connec-

tions of dead-end metabolites. Disconnected reactions were manually added using different bioin-

formatic databases (e.g., KEGG, Biocyc). After these analyses, gap filling was employed to connect

pathways (lipid metabolism, gluconeogenesis, TCA cycle, etc.) through the data retrieved. Finally,

dead-ends were identified through KEGG and BioCyc pathway modules and synthesized using

COBRA gap filling algorithms [56]. A final test was performed to verify the correct production of

each dead-end metabolite using sink reaction algorithms from the COBRA Toolbox. Subse-

quently, the second round of gap filling was performed to connect metabolites from the medium

retrieved using literature information [17,76–79] and experimental data generated in the present

study. Gap filling algorithms identified the reactions involved in the assimilation of carbon and

nitrogen sources under photoautotrophic, photoheterotrophic, diazotrophic, non-diazotrophic,

and heterotrophic conditions. Both aerobic and anaerobic conditions were considered to perform

these simulations and the second round of gap filling. The reactions added in the gap filling pro-

cess with no GPR associations were annotated as orphan reactions. Ultimately, reaction fluxes

were validated using FBA to verify the predicted internal fluxes to identify the production of each

metabolite present in the model.

In the second step of gap filling, new pathways were added to the refined model using semi-

automatic algorithms. Specifically, carbon (aerobic and anaerobic degradation of aromatic

compounds and PHB production), nitrogen (denitrification and partial denitrification), and

photosynthetic (carotenoids, bacteriochlorophylls, and bacterial pigments) metabolisms and

their annotation. The names of new reactions and metabolites were assigned according to the

BIGG database; reactions and metabolites with no information in BiGG were added to the

model according to the EC Number information (through BRENDA [64]) and bioinformatic

databases (KEGG, Biocyc, etc.). Detailed information for reactions and metabolites (charge,

formula, reversibility, direction, etc.) were extracted from well-reviewed biochemical databases

(PubChem, UniProt, ModelSEED, KBase [73], and MetaCyc) or from the metabolic models of

R. palustris Bis A53 from Machado et al 2018 and Navid et al., 2019 [51,68]. For R. palustris Bis

A53-specific features, like bacteriochlorophyll biosynthesis and pathways for aromatic com-

pound degradation, literature information using experimental evidence was employed to

reconstruct these specific metabolic subsystems. Pseudoreactions with unspecific intermedi-

ates or used to represent transformations with no known pathway were not included in the M-

model to avoid inaccurate predictions. All pathways of aromatic compound utilization were

curated based on experimental evidence from Harwood and Ma [7,72]. A detailed list of reac-

tions, metabolites, and genes added to the model for these pathways is presented in S5 Mate-

rial. The functionalities of all reactions were validated using FBA through the model to predict

biomass production. Reactions added in the second step of gap filling were tested by adding

specific constraints in the model and performing simulations to measure the reaction flux dis-

tributions. Sink reaction algorithms were employed to assess the production of the new metab-

olites in the manually curated model.

4.2.3. Final quality control and quality analysis. The final quality check was accom-

plished to guarantee correct GPR associations and suitably balanced reactions and metabolites.
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We performed in-silico single gene-deletion simulations (in-silico gene knockouts) to verify if

the GPR associations are properly assigned using the COBRA and RAVEN Toolboxes. Next,

we performed Mass and Charge Balance simulations of the COBRA Toolbox on the model to

check for unbalanced reactions added during the model refinement. Unbalanced reactions

were fixed by adding the correct formula and charge of each metabolite. Stoichiometric values

assigned in every reaction were carefully reviewed and corrected for unbalanced reactions.

Ultimately, the final model was analyzed by looking for ATP, NADH, and NADPH free energy

production, by removing media nutrients (exchange reactions) and checking that they had

zero flux.

4.3. Growth conditions and experimental validation

4.3.1. R. palustris Bis A53 culturing and growth conditions. R. palustris Bis A53 was

purchased from the American Type Culture Collection (ATCC BAA-1125). R. palustris Bis

A53 was grown in mineral medium [80] in light conditions for 14 days at 26˚C. Purple cultures

were transferred to an aerobic medium with the following composition: yeast extract, 0.1 g;

NH4Cl, 2.7 g; KH2PO4, 0.5 g; MgCl2 � 6H2O, 0.33 g; CaCl2 � 2H2O, 0.05 g; NaCl, 0.4 g; 9.5 ml

Pfennig and Lippert’s mineral solution; and 8.5 ml vitamin solution [81]. R. palustris was cul-

tured in aerobic medium for 3 days at 30˚C under dark conditions. Optical density (OD) mea-

surements were taken at 600 nm (OD600). A solution based on OD600 readings was prepared

for the Biolog plates experiments. After the inoculation, Biolog plates were incubated aerobi-

cally at 30˚C in the dark (chemoheterotrophic condition).

4.3.2. Carbon source utilization assays. Bacterial suspensions of R. palustris were tested

for growth on 190 different carbon sources using Phenotypic Microarray (PM) plates 1 and 2A

from Biolog, Inc. (Biolog, Inc., Hayward, California) following the company’s instructions.

Briefly, cell suspensions from a 10-day old culture (see above) were washed and resuspended

in Biolog’s IF-0a GN/GP Base (1.2X) inoculating fluid (#72268) up to an optical density of

0.025 at 600 nm (OD600, Molecular Devices SpectraMax M3 Multi-Mode Microplate Reader

(VWR, cat # 89429–536)). The suspentions were further supplemented with ATCC trace min-

erals and vitamin supplements (ATCC-MDTMS and ATCC-MDVS). 100 uL of these washed

cell suspensions were inoculated into each well of the Biolog plates PM1 and 2A (a full list of

compounds including a blank well with no carbon source (negative control) can be found

here). Plates were incubated at 30˚C without shaking with lids coated with an aqueous solution

of 20% ethanol and 0.01% Triton X-100 (Sigma) to prevent condensation [82]. We defined

substrate utilization by R. palustris as an OD600 increase > 0.02 (readout of total cell biomass

from substrate use) over a 96 hour incubation period.

4.3.3. Nitrogen source utilization assays. The bacterial suspensions for the nitrogen use

assays were prepared in the same way as for the carbon source but were washed in IF-0a GN/

GP Base (1.2X) inoculating fluid (#72268) containing 5 mM potassium phosphate monohy-

drate, pH 6 (Millipore-Sigma), 2 mM sodium sulfate (Millipore-Sigma) and 20 mM sucrose as

the carbon source. The rest of the steps and determination of substrate utilization as a nitrogen

source were similar to the ones described above for the carbon source assay.

4.4. Constraints and growth simulations

Experimental conditions from the literature were employed to determine specific medium

constraints of the M-model. For all heterotrophic growth conditions, carbon and nitrogen

uptake rates were calculated depending on the values obtained from results in the literature.

For phototrophic (photoautotrophic and photoheterotrophic) conditions, photon fluxes were

set to a maximum uptake rate value of 1000 and limited based on the CO2 exchange flux. The
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constraints related to mineral requirements were set according to the BOF estimations.

Growth and internal fluxes simulations were performed in the COBRA Toolbox for MATLAB

[56,83] using the flux balance analysis procedure [84]. The stoichiometric coefficients of the

amino acids, RNA, and DNA requirements in the BOFs were set according to the genome and

proteome sequences of R. palustris Bis A53 [85]. Mineral concentrations and coefficients in

the BOF of the model were set according to literature information [4,80,81]. Ammonium was

used as the main nitrogen source for initial heterotrophic model estimations. Acetate was set

as the principal carbon source based on the experimental reports [11,17,30]. Subsequently, 24

experimental growth conditions from the literature were evaluated using FBA to identify the

model accuracy and active pathways in all the conditions. Besides ammonium, other nitrogen

sources were tested in the previous conditions, and N2 was tested as the nitrogen source (dia-

zotrophic capabilities) in combination with other soluble nitrogen compounds for 14 anaero-

bic conditions [86]. The reactions involved in carbon assimilation for autotrophic and

heterotrophic conditions were identified and mapped in the model. Fluxes of the reactions

involved were used to build possible pathways employed by R. palustris Bis A53 under autot-

rophy and heterotrophy. Reaction flux distributions were analyzed to identify how pathways

participate according to the medium conditions. Specifically, pathways involved in energy pro-

duction, amino acid, nucleotide and lipid metabolism, pollutants degradation (aromatic com-

pounds), photosynthesis, polymer production (PHB), carbon fixation, and cofactor and

vitamin synthesis were analyzed according to the participation of each subsystem in all the dif-

ferent conditions. For experimental conditions with no specific uptake rates or experiments

with only qualitative results (growth or non-growth), the validation process was reduced to

true positive, true negative, false positive, and false negative calls. Additionally, the model was

validated through experimental data generated in this study, with a total of 190 carbon sources

(Biolog plates PM1 and PM2) and 95 nitrogen sources (Biolog plates PM3). For carbon source

assessment, ammonium assimilation was not fixed to a specific value (non-diazotroph condi-

tions). The experimental results from Biolog plates were matched with data retrieved from the

literature to determine and evaluate model precision during the simulations. During nitrogen

condition simulations, sucrose was used as the main carbon source. Statistical parameters were

calculated according to the comparison between the M-model predictions and the experimen-

tal values. All Biolog plates conditions were tested and simulated in the model under chemohe-

terotrophic conditions (photons and CO2 assimilation constrain set to 0). Carbon and

nitrogen sources without available or well-defined metabolic pathways for assimilation and

metabolic integration were not mapped into the metabolic model. Additionally, nitrogen fixa-

tion metabolism and N2 assimilation constraints were fixed to 0 since the experiments were

performed under aerobic conditions. The model accuracy from the Biolog plates results was

compared with the in-silico predictions of other R. palustris’ models to determine the quality

of model simulations. Statistical parameters were calculated for each model to determine

model precision, accuracy, sensitivity, positive and negative predictions, and MCC. These sta-

tistical parameters were calculated using the formulas employed in the confusion matrices to

evaluate model performance previously described [87].

4.5. M-Model validation using physiological data

For in-depth validation of the R. palustris M-model, kinetic studies were employed to deter-

mine the prediction capabilities of the metabolic model. Carbon source consumption and

growth rate values were obtained from the literature [17]. A total of nine growth conditions

using organic carbon sources under anaerobic conditions in the light. The experimental condi-

tions included three conditions with a single carbon source and six with two organic carbon
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sources. The M-model built and curated in the present work was constrained according to the

initial conditions of each experiment, and growth rate values were calculated using specific

step times to achieve well-defined exponential plots based on the exponential growth equation.

Initial biomass concentrations were used as starting point for growth rate estimations. The

dFBA algorithm was used to calculate new growth values and substrate consumptions over

time. Furthermore, the metabolic model by Alsiyabi et al. (iRpa940) [52] was modified to

assimilate carbon sources employed in these experiments. dFBA was performed in iRpa940 for

all nine experimental conditions and the results were compared to our M-model predictions.

Statistical parameters and correlation values were calculated for growth rates and substrate

consumption data using experimental time points as a reference. Correlation values were esti-

mated employing the Pearson correlation algorithm of Python based on the experimental

observations and predicted values.
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