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Abstract

Tumor microenvironments (TMEs) contain vast amounts of information on patient’s cancer
through their cellular composition and the spatial distribution of tumor cells and immune cell
populations. Exploring variations in TMEs between patient groups, as well as determining
the extent to which this information can predict outcomes such as patient survival or treat-
ment success with emerging immunotherapies, is of great interest. Moreover, in the face of
a large number of cell interactions to consider, we often wish to identify specific interactions
that are useful in making such predictions. We present an approach to achieve these goals
based on summarizing spatial relationships in the TME using spatial K functions, and then
applying functional data analysis and random forest models to both predict outcomes of
interest and identify important spatial relationships. This approach is shown to be effective
in simulation experiments at both identifying important spatial interactions while also control-
ling the false discovery rate. We further used the proposed approach to interrogate two real
data sets of Multiplexed lon Beam Images of TMEs in triple negative breast cancer and lung
cancer patients. The methods proposed are publicly available in a companion R package
funkycells.

Author summary

Spatial data on the tumor microenvironment (TME) are becoming more prevalent. Exist-
ing methods to interrogate such data often have several limitations: (1) they can rely on
estimating the spatial relationships among cells by examining simple counts of cells within
a single radius, (2) they may not come with ways to evaluate the statistical significance of
any findings, or (3) they model individual interactions independently of other interac-
tions. Our approach leverages techniques in spatial statistics and uses a benchmark
ensemble machine learning method to address each of these deficiencies; it (1) uses K
functions to encode the relative densities of cells over all radii up to a user-selected
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maximum radius, (2) employs permutation and cross-validation to evaluate the statistical
significance of any findings on the spatial interactions in the TME, and (3) models multi-
ple interactions simultaneously. Our approach is freely available with an R implementa-
tion called funkycells. In the analysis of two real data sets, we have seen that the
method performs well, and gives the expected results. We think this will be a robust tool
for researchers looking to interrogate TME data.

Introduction

Recent advances in cancer treatment, such as immune checkpoint inhibition and other cancer
immunotherapies, have sparked a growing interest in studying the cellular composition and
spatial organization of the tumor microenvironment (TME). The latest innovations in imaging
technologies allow for single cell resolution of specific proteins, facilitating in-depth study of
the spatial arrangement of cell types within the TME. A wide variety of technologies are avail-
able for this purpose, each with different benefits and trade-offs [1-7]. For a review of the
available technologies see [8].

In comparing TME data, different spatial relationships between cell types, e.g. between
tumor cells and specific immune cell populations, and/or individual proteins, often appear
predictive of patient outcomes and may guide therapeutic interventions; see for example [9].
Comparisons between cancer subtypes, e.g. hormone-positive versus hormone-negative breast
cancers, or lung squamous cell carcinoma vs lung adenocarcinoma, may provide novel insight
into tumor biology and guide the development of treatments. A further goal is to identify spe-
cific spatial relationships observed in particular patient’s tumor that are useful in predicting an
outcome, such as patient survival or response to therapy. Recent results demonstrate that TME
data can be used for such prediction in a variety of tumor types [10, 11].

We consider such prediction problems for data sets generated from tumors imaged with
Multiplexed Ion Beam Imaging (MIBI) by means of the MIBIscope in this paper. The MIBI-
scope uses ion-beam ablation and time-of-flight mass spectrometry to detect up to approxi-
mately 40 protein markers on formalin-fixed, paraffin-embedded (FFPE) tissue. Thus, it
provides comprehensive data on cell characteristics and their localisation at a single-cell reso-
lution of around 250-400nm [12, 13]. Such data collected on the TME can be considered as
marked spatial point patterns [14-16]. The cell locations can be considered as points within
the pattern, with cell phenotypes and/or protein markers giving the “marks”. An example of
such a point process generated from a tumor imaged using MIBIscope is shown in Fig 1a [12].

Existing methods developed to study cellular interactions in the TME have exploited cell
neighborhood analysis in which the spatial relationship between a cell of interest and its neigh-
boring cells can reveal particular cell-cell interactions associated with a disease state or changes
associated with response to therapy; see e.g. [17]. Pairwise cell-to-cell distance calculations
over iterations of randomized permutations has also been used to identify relevant cell-cell
interactions [18]. However, the substantial number of cell types present in the TME leads to a
very large number of potential pairwise interactions creating a major challenge in finding
interactions that may be meaningful and statistically significant in predicting outcomes of
interest. There is ongoing interest in applying spatial statistics methods to similar biological
data sets, e.g. [19-21].

A common method of analysing spatial point patterns, such as those that arise in TME
imaging, is to consider Ripley’s K function [22-24]. The K function describes the distribution
of inter-point distances in a given point pattern, giving an indication as to whether points in
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Fig 1. An example of point pattern data and an associated K function. (a) Point pattern data associated with a tumor imaged using MIBIscope
from a triple negative breast cancer patient with multiple identified phenotypes. The x- and y-axes represent the spatial dimensions, with the points
giving individual cell locations, and the colour of the points indicating one of 15 unique phenotypes, e.g. tumor (red), NK cells (purple), and
monocytes/neutrophils (cyan). (b) The associated cross K function (black) for two cell types in the image: tumor and monocytes/neutrophils. The x-
axis indicates the radius, 7, and the y-axis gives the value of the K function. The estimated K function can be compared to 77> (red dashed line),
which is the theoretical K function associated with complete spatial randomness.

https://doi.org/10.1371/journal.pcbi.1011361.g001

the pattern (e.g. cells) are clustered or dispersed with respect to one another. The K function,
along with other summary functions from spatial statistics, has previously been employed in
the analysis of the TME [25-31]. An example of a K function showing the relative distribution
of a specific immune cell type around tumor cells within a MIBIscope image from a triple neg-
ative breast cancer patient is shown in Fig 1b.

In this paper, we present a general framework for analyzing and identifying useful spatial
relationships in the TME through predicting an outcome of interest. The method we propose
uses a novel combination of spatial statistics and functional data analysis, in conjunction with
methods in ensemble machine learning. The application of functional data analysis to spatial
point pattern data is a recent development [31-35].

Our approach begins by producing K functions for the different cell-cell, (or alternatively
marker-marker), interactions within images. After performing dimension reduction using
functional principal components analysis [36], these data are combined with non-functional
patient meta-data, such as age or sex, and a modified random forest model is used to predict
the patient outcome. Motivated by [37], in order to evaluate the predictive power of the spatial
interactions, “knock-off” point patterns that mimic the spatial data in the TME are generated,
via permutation, independently of the responses. The importance of specific spatial interac-
tions in predicting the response are evaluated by comparison to the predictive power of the
knock-off spatial patterns. This approach overcomes the challenge of distinguishing important
spatial interactions among many potential interactions of interest, i.e. it controls the false dis-
covery rate. It also lends itself to the generation of easy-to-interpret plots showing which inter-
actions are useful in predicting the response. Moreover, it grants high power for even a
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relatively few number of cells due to the robustness of the K functions, and high power even
with small sample sizes. Small sample sizes are a relatively common obstacle for this type of
data.

To our knowledge the method we propose is the first to evaluate for the importance of spa-
tial interactions in the TME that may vary over distance with a large number of potential cell
interactions. Many statistical methods proposed to date rely on simple summaries of the
images, such as the average number of cells observed, or otherwise simplify the data by, for
example, initially clustering cells into groups (e.g. [10, 18, 38-41]). In other comparable meth-
ods available in the literature, a single distance of interest is considered (e.g. [12, 26, 42]). [30]
provides an approach for detecting differences across multiple images between cell-cell inter-
actions by comparing the integrated difference between a spatial summary function similar to
the K function and its expected value under complete spatial randomness. However, this
approach only considers individual spatial interactions, while we wish to consider all interac-
tions in a single model. Additionally, a possible drawback of the approach in [30] is that inte-
gration over the summary statistic may lose valuable information relating to differences in the
shape of the functions, since differently shaped spatial summary functions may still have the
same integral. [31] uses a related functional linear model based on interaction distance func-
tions, although this approach is not tailored to examine a large number of interactions
simultaneously.

Some methods may predict well, but do not lead to interpretable results that allow for the
importance of individual spatial characteristics to be compared. Other methods consider only
a single image or an equal number of images per patient. This is further complicated by the
fact that some images do not contain all cell types. However, our approach is interpretable and
able to be used to analyse data with multiple, possibly differing, numbers of observations per
patient. Additionally, images may have different shapes or sizes. In that sense, our approach
allows for the complete use of the data.

We apply the proposed methods to two MIBIscope data sets; a data set of triple negative
breast cancer (TNBC) patients, and a data set consisting of both lung squamous cell carcino-
mas (LUSC) and lung adenocarcinomas (LUAD). Regarding the TNBC data, our method was
accurately able to identify clustered versus dispersed tumors when compared to [12], and was
additionally able to identify important cell spatial interactions in making that determination.
Our method also indicated that there did not appear to be measurable differences in the spatial
arrangement of tumor and immune cell types, as measured by homogeneous K functions,
between the LUSC and LUAD groups.

Whilst the methodology presented here is motivated by, and applied to, MIBIscope data, it
can be applied to similar data generated by other technologies, e.g. OPAL, Phenocycler Fusion,
Merscope, Xenium and Cosmx [43-49]. Furthermore, the methodology can easily extend
beyond two-dimensions to higher-dimensional images, another area of active research [50].

The rest of the paper is organized as follows. In the section Materials and methods, we give
a detailed description of the data we consider and the methods to analyze them, including sub-
sections on how we fit a modified random forest in this setting, and how we evaluate the statis-
tical significance and uncertainty in measuring the variable importance of spatial interactions
of cell types as encoded by K functions. We also introduce the R package funkycells
(shortened version of functional data analysis of K functions for multiplexed images of cells),
an open-source implementation of our approach in that section. The Simulation study section
details the results of simulation experiments in which we found that the proposed method per-
formed well when applied to synthetic data built to mimic the TNBC data. We report the
results when this approach was applied to the TNBC and LUSC vs. LUAD data sets in the
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section Applications to MIBIscope data. Some concluding remarks and directions for future
work are collected in Discussion.

Materials and methods

The raw spatial data that we consider take the form of 2-dimensional point patterns, as gener-
ated using MIBIscope. We denote the cell spatial data, as

C= {8 al"),p=1,....N,i=1,.... I, t=1,..T,c=1,...,n,,}, (1)

where (x| y&” a%") denotes the x and y coordinates and the associated cell properties a of a
given cell. Specifically, the term refers to the the ¢™ cell of type t (of which there are T total
types), for the ™ image of the p™ patient, with 1, giving the number of cells of type ¢ in
image i of patient p. The properties in a%;” may (typically) simply give the cell’s phenotype
(and is therefore redundant due to the term f), or may be more general, such as a vector
describing individual protein expression-allowing use of this method for processed or raw
data. For example, the vector could be composed of binary indicators as to whether a protein
is expressed or not. For notational clarity, and since we here only consider data consisting of
cells and their associated phenotype, we drop the a term throughout the paper.

Since the applicability of our method extends beyond this example, we designate several
general terms for use throughout the paper. We refer to point patterns such as in Fig la as
“images”. We interchangeably use the terms cell phenotype and cell type. We also interchange-
ably use the terms cross-over K function and K function. We assume a single response variable,
Z;, for each of the N patients (e.g. tumor type, response to therapy, etc.). The set of outcomes
for the N patients is denoted Z = (Zy, . . ., Zy). In the real data examples we consider below, Z;
is a binary response, e.g. “compartmentalized” versus “mixed” tumors for the TNBC data, or
LUSC versus LUAD for the lung cancer data, in which case we can encode the outcomes as
taking the values 0 and 1. These methods may easily be adapted for more general class
responses, e.g. different types of tumors, or numeric responses, e.g. survival time.

In addition to the spatial data, we assume that we may have access to non-spatial data on
the patients. We refer to this data as patient “meta-data”, and we assume that it takes the form
M = (m,,...,m,), where each m, is a vector of patient attributes, for example age or sex.

With both the cell spatial data C and meta-data M, our goals are to (1) investigate to what
extent these data are useful in predicting the outcomes Z, and (2) to identify which specific
spatial relationships and/or components of the meta-data from the full data set are useful in
predicting Z. We deem data on a spatial relationship or component of the meta-data “useful” if
their importance in predicting the outcome exceeds, to a statistically significant degree, that of
similar variables that are known to be unrelated to the outcome. For reference throughout the
paper, high-level schematics of our proposed method are presented in Figs 2 and 3. Fig 2 over-
views the major steps for processing data in our model while Fig 3 focuses on the steps of the
statistical analysis of the model.

Towards answering these questions, we build a model of the outcomes Z in terms of the
image spatial information C and meta-data M. In doing so, we must address how we incorpo-
rate the complex image data into such a model. Motivated by the expectation that patient out-
comes are influenced by the relative distribution of various immune cells or protein markers
around each other, we begin by computing spatial “cross-over” K functions from the image
data, which summarize the spatial distribution of cells with respect to one another as in Fig 1b.

We provide an open source implementation of our approach in R [51] on CRAN, in the
package, funkycells, or at the site github.com/jrvanderdoes/funkycells. This
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Fig 2. Flow chart for data processing. The methods presented here begin with tabular data obtained after pre-
processing multiplex images (steps that include cell segmentation, phenotyping, etc.). For a given image the tabular
data consists of rows for each imaged cell, giving the associated x-y position, marker intensities, and cell phenotype.
Next, the tabular data are converted into spatial K functions for each interaction of interest (this can be exhaustive, and
include all possible interactions between phenotypes, or selective, with only a subset of interactions analysed). Next, K
functions are converted into functional principal component scores. Patient meta-variables are added at this stage. The
resulting data is then used in the statistical model, as described in Fig 3.

https://doi.org/10.1371/journal.pcbi.1011361.9002

implementation is runnable on personal computers, and includes the code and data used in
the presented simulations and data analyses.

Summarizing the image data using K functions

The cross-over K function for image i of person p and cell types t and ¢ is defined as

; 1
Kfﬁ;’)(r) = X—E(Number of cells of type t' within distance r of a cell of type t), (2)

t

where E denotes mathematical expectation, the radius r ranges from 0 < r < R, with the max
radius R being a user specified parameter that we discuss below, and A, gives the density of
cells of type ¢’ [14-16].

By examining this function for varying radii, we may infer how cell types are distributed
around each other. For example, if cell types are distributed around each other entirely at ran-

dom, then Kff;,’i) (r) is equal to the area of a circle of radius 7, 7r°. Regularity or dispersion of the

cells around each other tends to reduce Kff;}i) (r) while clustering tends to increase it. An exam-
ple of a K function computed between the tumor and monocytes/neutrophils phenotypes for a
given tumor in the TNBC data set is presented in Fig 1b, which indicates a degree of dispersion
with respect to monocytes/neutrophils around tumor cells across the given r values compared
to that expected for cells distributed around tumor cells with complete spatial randomness.
Cross-over K functions can be used to summarize all two-way interactions between cell types
for a given image.

In practice, estimation is based on an empirical average replacing the expectation. The esti-
mated cross-over K function for image i of person p is given by

Npit Mpit

i ‘l| K) i K) i
KE() =3 () = 2807 + 8 -7 <) (3)
it =1 =1

0 < r < R, where indicator 1 (A) takes the value one if the condition A is satisfied, and is zero
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Fig 3. Flow chart of model. When modeling using funkycel1ls, there are several major steps: organizing data, generating synthetic data,
and modeling using random forests. The spatial data is organized into functional summaries (K functions) that are projected into finite
dimensions (FPCA) and used with meta-variables to predict the outcome variable. The spatial data and meta-variables are permuted to create
synthetic variables with similar properties but independent of the outcome. These synthetic variables are then added to the model, and used
to quantify the strength of the relationships between the spatial and meta-data with the response. The model processes the data, employing
cross-validation and permutation to return a variable importance plot (with predictive accuracy estimates) indicating spatial interactions
and/or meta-variables which are significant in predicting the outcome Z.

https://doi.org/10.1371/journal.pchi.1011361.9003

otherwise, and |i| indicates the area of the image. When patients have multiple images, we
combine their cross-over K functions by computing a weighted average,

T
Moit o (pi
KR =) K, 0<r<R, (4)
i=1 Pyt

with I, giving the number of images for a given patient p. In other words, the K functions from
each image are weighted according to the prevalence of the cells of the type under consider-

ation. We note that if there is one image per patient (so that I, = 1), then K®)(r) = Kff;;l) (r),
and further that the weights in Eq (4) vanish if the cell types t and ¢ are missing in an image.
We use a standard isotropic edge correction in this paper (see Appendix A).

In computing these K functions for each cell type, we can transform the spatial data C into
a collection of T different K functions for each patient, {K*)(r), t,# = 1,..., T, 0 < r < R}.

Lt
The K functions are then treated as functional data objects; see e.g. [36]. Since even moderate
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values of T lead to a large number of K functions to consider, user input is often helpful in
determining a smaller subset of interactions (and hence K functions) of particular interest for
analysis.

Although informative, these K functions are unwieldy to directly use in a model, and we
further transform the functions using the dimension reduction technique of functional princi-
pal component analysis (FPCA). FPCA is a common technique in functional data analysis that

decomposes the leading sources of variability among the curves Kf};,) (r) into a set of finite-
dimensional, approximately uncorrelated principal components (PCs); see [36]. To do so, for

each pair of cell types t and ', we define the empirical covariance kernel as

Coulro) =2 O[KE() = Ky (0] [KE) = Koo(5)] (5)

1

Z| =

N
p=

_ N
where K, ,(r) =32, K,Q:f)(”)

N
The eigenvalues and eigenfunctions of the kernel CM, are then computed to satisfy the func-
tional equation

R
xi,u’qsi.t,t’ (T) = / C[,t’(r7 S)¢i.t,t’ (S)dS . (6)
0
The K function K,(ﬁ) is summarized using the d coefficients (PCs)

K = ([ K000 e, [ K0 00 ) ?)

0 0

The d coefficients comprising k" describe the projection of the K function K\?’ onto the
finite dimensional linear space spanned by ¢1 ; ¢, . . ., ¢4, which are optimal in terms of cap-
turing the variability among the curves K?', p = 1, . . ., N, with a d-dimensional summary. An

advantage of summarizing the curves in this way is that, when differences in the K functions
across the population are present due to differences in the outcome(s) of interest, the PCs are
expected to capture these differences.

As such, we summarize the spatial data using the principal components
Cc = {ki‘;’,d),p =1,...,N, t,¢ =1,..., T}, which we then incorporate with the meta-data M

into a model for Z of the form

Z = f(C,M). (8)

Since our ultimate goal includes evaluating which spatial interactions or elements of the
meta-data are useful in predicting the outcomes, we use a random forest model for f. Random
forest models are tree-based ensemble machine learning methods in which decision trees are
built, after sampling with replacement the patient data and discarding some covariates at ran-
dom, by sequentially splitting on variables to minimize a metric for predicting Z [52]. The
main reasons for the sampling procedures for the patient data and covariates in building each
tree is to build nearly independent trees and also address overfitting, common in many
machine learning applications. When the trees are combined to create a forest, increased sta-
tistical power is observed. Additionally, the computational complexity is similar to a tradi-
tional random forest model, see Results.
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Variable importance

Random forest models are useful in achieving our goals since they have strong predictive
power while still allowing for a quantification of the usefulness of individual covariates in pre-
dicting the response through various “variable importance” measures. We now describe the
computation of variable importance metrics for the random forest models introduced [52].
There are multiple methods for calculating variable importance values, such as permuting vari-
ables in data and comparing the difference in loss metrics, or measuring node purity. We
tested several methods and found similar results regardless of the variable importance metric
used. Due to computational considerations, we implement a node purity metric, sometimes
called recursive partitioning, as described in [53, 54].

In the following explanations for node purity variable importance, it is perhaps useful to
imagine the scenario where the outcomes Z; take the values 0 and 1. When each constituent
decision tree is formed in producing the random forest model, nodes are split based on some
impurity metric relating to the outcomes Z; [53]. For a given node, A, node impurity is defined
as

A) = Zg(.pi.A) ) 9)

i€O

where g is an “impurity” function, O is the set of possible outcomes, e.g. 0 or 1, and p; 4 is the
proportion of data in A which belong to outcome class i of Z, i.e. 0 or 1. Typical choices for g
are the information index (g(p) = —p log(p)) or the Gini index (g(p) = p(1 — p)). At a given
stage of the decision tree, the splitting variable, and its value, is chosen to maximize the impu-
rity reduction

Al = p(A)I(A) — p(A)I(A;) — p(AR)I(Ag) (10)

where A; and Ay, are respectively the left and right resulting nodes and p(A) is the probability
of A (for future observations) [54]. A variable v’s importance in a single tree can be computed
as

> AL (11)

icP,

where P, is the set of splits for (i.e. nodes that split on) the variable.

Variable importance (for the entire forest) can similarly be calculated by considering nodes
across all decision trees, typically standardized by the number of trees fit or the number of
trees where the split was present,

VI(v) =

|Number of Trees| 5 Z (12)

Additional modifications, such as the use of surrogates, can also be added to improve vari-
able importance metrics. The technical details are left to more complete works on random for-
ests, e.g. see [53], and Appendix B.

Variable importance comparison

Although the computed variable importance is a helpful summary statistic for ordering vari-
ables in terms of their expected usefulness in predicting the outcome, there are several chal-
lenges in using these values to determine which variables are significantly more useful than
others. One is that the variables in C' are d-dimensional proxies of the information derived
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from the spatial image data. When multiple components are used to describe a single function,
i.e. d > 1, we must take into account that each individual component in C’ describes only a
portion of the associated K function. Therefore, the importance of each component must be
combined to describe the importance of each spatial interaction. Yet this importance must be
made comparable to that of the meta-variables. Also, we wish to identify spatial interactions
and meta-variables that are of “significant importance”, which we take to mean that their
importance exceeds to a statistically significant degree that of similar variables that are unre-
lated to the response. This task is complicated by the fact that we are often faced with such a
large number of spatial interactions. Given the large number of variables, we expect some to
have anomalously large variable importance even when they are independent from the
response.

To allow for such comparisons, we standardize the variable importance metrics by adding
matched synthetic variables. These synthetic variables are generated by permuting the true
data in order to maintain identical distributions, but are independent from the outcome. We
denote the synthetic spatial components as C and the synthetic meta-variables M.

A random forest model is fit using both the true and synthetic variables,

~

Z=f(C,MC.M,). (13)

To build C,, a random functional variable is selected for each b’th iteration, 1 < b < B,
where B is a user specified parameter. The d principal components associated with each patient
are permuted across patients, resulting in assignment of the d components to a random patient
and hence outcome. Note that in doing so, the d components are kept together.

One could use B synthetic variables for each functional variable. However, investigations
into the model through extensive simulations has shown that a single group of B synthetics is
generally sufficient for the K functions, and additional synthetic K variables do not improve
power to identify important variables beyond this.

Although one synthetic group for meta-variables could be used, previous work has shown a
tendency for random forests to favor continuous predictors over discrete predictors [55]. The
model accounts for this tendency through unique synthetic meta-variable groups. Therefore,
M; is created by permuting each meta-variable across patients B times.

We use these synthetic variables, C, and M, to standardize the variable importance values
of the true data and build noise thresholds. In doing so we are able to infer which spatial inter-
actions and meta-variables lead to significant improvements in the model accuracy. The details
of this are left to Comparing variable importance of spatial interactions and meta-variables to
noise.

Due to the innate randomness in the models, the variable importance values fluctuate
between runs and model fits of the random forests. To quantify this, we employ cross-valida-

tion (CV).
Let the data be randomly assigned to the F folds such that an indexing function x: {1, - - -,
N} +— {1, - - -, F} indicates the partition to which each pth patient’s data are allocated. Denote

the fitted model, using the true variables as in the model from Eq (13), with the j* fold

removed Z(7)(C', C\, M, M,). The estimated CV variable importance for each functional vari-
able ¢ (in both C’ and C)), which are described by the previously discussed d dimensional prin-
cipal components k¥, is computed as

VI (¢) = - ZZVI}C”(k@) : (14)
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where VI;CV) (k") denotes the variable importance estimate from the ™ fold-removed model

Z)(C',C,,M, M,) for component k%, which is the i component relating to the ¢ function.
For meta-variable m, the variable importance is computed as

1< !
VI (m) = 2> VI (m). (15)
=1

We quantify the uncertainty in the estimate of the variable importance measure for each
variable v, both functional and meta, by calculating its standard deviation across the F folds.

1 F
_ (cv) _ y1ev) 2
SD(v) =\ | 7 1;(\71]. (v) — VI (v))*. (16)

This uncertainty estimate is used with variable importance estimates created from the mean
of non-cross-validated models. Let VI;(x) indicate the variable importance metric from the
model in Eq (13), iterate j (Where we take 1 < j < F for ease, but each run is on the full data
set), then the estimates are computed respectively for functional and meta-variables as

VI(c) = %iivg(kf)) , and VI(m) = %Z_F;Vlj(m) . (17)

j=1 i=1

Comparing variable importance of spatial interactions and meta-variables
to noise

As mentioned above, due to the use of d > 1 principal component summaries, we expect that for
spatial interactions and meta variables that are independent of the outcome the variable impor-
tance of the spatial interactions will typically be larger. As such we use the estimated variable
importance values for the synthetic variables to calibrate the variable importance between the
spatial interactions and meta-variables. We compute for each of the spatial and meta-variables,
respectively ¢ and m, the empirical o quantiles of the variable importance values of the synthetic
variables. If C) indicates the set of synthetic functions, i.e. the combined synthetic components,
and M®™ indicates the set of synthetic meta-variables matched to meta-variable 1, then we set

Q. :inf{q : % Z 1(VI(c,,) < q) > ac}, and

Con€CE)
: (18)
) 1
Qum = 1nf{q ‘g Z 1(VI(mg,) < q) > oc} .
msyneM(s.m)
Let Qur = (Qur1s - - - Qura) where [M] is the total number of meta-variables. Below we

always set a = 0.95. Letting Q,0ise = max{Qc, Qas}, we calibrate the variable importance of each
true variable computed from the model in Eq (13) that includes synthetic variables, denoted

Vtrue,(13)> as
Qnuise
QC]]‘(Vtrue,(IS) €C)+ ZmeMQM.m]]‘(Vtrue‘(l'S) € m)

VIudj(Vtrue,(13)) = VI(VtrueA(IS)) . (19)
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The cross-validated standard deviations of the variable importance values are similarly
adjusted based on the model from Eq (8) as

— Qnoise
QC]]'(Vtrue.(S) € C) + ZmeMQMAm]]'(Vtrue.(S) € m)

SDadj(vtrue‘(S)) SD(Vtrue,(S)) . (20)

These adjusted variable importance values may then be compared to Q,,.;s. Estimates that
go below the threshold Qs have variable importance values that appear to show no statisti-
cally significant relationship with the outcome. Plotting Qs> the adjusted variable impor-
tance values, VI,4(v), along with their adjusted standard deviations gives a simple way to
evaluate at a glance which variables appear to be important in predicting the response. An
example plot of this is shown in the right hand panel of Fig 3, where Q,is is plotted as a verti-
cal, red-dotted line, and the variable importance values are plotted (black dots) along with
their adjusted standard deviations (surrounding bands).

While Q,0ise estimates the & percentile of the variable importance values corresponding to
outcomes that are unrelated the outcome, the variable importance values themselves can be
distorted due to overfitting. In essence as more variables are observed, it is increasingly likely
to find a variable that seems to have high importance, despite no true relationship to the
response.

To account for this potential effect, we employ an additional variable permutation. In this
step we permute the true variables in addition to the synthetic variables, H times. In each forest
the synthetic variables are again used to align the variables (using the previously computed
Qnoise)> but the aligned “true” variables do not have any relation to the outcome. In each of
these forests based on variables that are independent from the response, 1 < h < H, the result-
ing, adjusted variable importance estimates are ordered,

Ve = {¢™ largest adjusted variable importance value in forest h}, (21)

ensuring Vg1 > Vlggina > - - - > Vg, v where V denotes the total number of variables
between the spatial interactions, C, and the meta-variables, M. When the number of variables
Vis large, especially in relation to the number of patients N, we might expect even when the
spatial variables and meta-variables are independent of Z that the largest variable importance
values will (far) exceed Q,ise- As such, we also compute the o quantile of the variable impor-
tance values in each ordered position € for the random forests fit to the permuted data,

. 1 &
Qe = inf{q : ﬁhzzﬂ(VIadj,h,f <q)>oa}. (22)
=1

Welet Qine = (Qine1s - - - Qine,v)> and call it the “interpolation threshold”.

We include Qj, with Qyise in order to quantify overfitting and thereby evaluate the signifi-
cance of values of the variable importance values VI,4(v); this is the orange-dotted line in the
right hand panel of Fig 3.

In summary, variables with adjusted importance values, VI,4(v), that are larger than both
Qnoise and Qiye o exhibit importance that significantly exceeds (at the 1 — o level) what we
might expect from similar variables that are unrelated to the outcome. This holds taking into
account the inflation in the variable importance values that arise from fitting the random forest
to a large number of spatial interactions and meta-variables.
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Choice of parameters B and H

The parameters B and H must be selected by the user. In constructing Q,oise and Q0> these
values define the number of synthetic variables used to approximate the quantiles in Eqs (18)
and (22), respectively. We have explored several choices of B and H in our simulation experi-
ments, and found that when the level of the thresholds is set at o = 0.95, the values B = H = 100
give satisfactory results for the up to 16 cell types considered. Further details of these simula-
tions are shown in Appendix C. In summary, we have observed that for up to 16 cell pheno-
types and with & = 0.95, values of B and H exceeding 50 behaved almost identically in terms of
their false positive and false negative rates for identifying important variables. There was no
apparent advantage, or apparent disadvantage other than additional computational burden,
for choosing larger values of B and H for the number of cell interactions considered. We note
that we only considered up to 16 cell phenotypes. We recommend using larger values of B and
H for a larger number of cell phenotypes.

Predictive accuracy estimates

In weighing the significance of the computed variable importance values, one should also con-
sider the overall predictive accuracy of the final model for the outcomes. For example, a vari-
able may have a large variable importance value within a model that does not lead to improved
predictions of the outcome over naive models.
We consider out-of-bag accuracy (OOB) to estimates how well our final random model
works on unseen data, and compare it to the naive approaches that we label GUESS, and BIAS.
OOB is computed by predicting the data left out during each CV iteration,

1 - : Z(—K —K —K
OOB:NZlef(Z( ) (X0 M @))),Zp)7 (23)
p=1

for the N patients and where Diff indicates a difference function. For classification problems
such as with the TNBC or LUSC versus LUAD data, this may be defined using an indicator
function, Diff (x, y) = 1(x = y).

GUESS is defined as the probability of correctly guessing a patients outcome by randomly
selecting the outcome based on the outcome’s observed frequency in the original data. If for
the observed frequencies of outcomes 1, . . ., n in the data are py, . . ., p,,, this is computed as

GUESS =Y p? (24)
i=1

For example, in the TNBC data in which we wish to predict the “compartmentalised” versus
“mixed” result with a proportion p of “compartmentalised” patients, this amounts to comput-
ing the rate at which we would accurately guess the outcome by flipping a coin independently
for each patient with probability p of heads, and guessing the outcome is “compartmentalised”
for heads, and is “mixed” otherwise. The GUESS value would therefore have a success proba-
bility of p* + (1 - p)*.

BIAS is built by always guessing the patients outcome that is the most prevalent outcome in
the sample. For classification problems, the most likely outcome can naturally be defined by
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the data mode. We compute

BIAS = I%ZDiff(mode(Z) - zp)). (25)

p=1

For two outcome data sets like the TNBC or lung cancer examples, this will have success
probability for a random patient drawn from the sample of max{p, 1 — p}.

When no signal is in the data, we expect OOB to perform similarly to GUESS or BIAS.
However, if the covariate information available is useful in predicting the response, we expect
OOB to far exceed the naive estimates. The variability of OOB estimates is further analyzed
and discussed in Appendix D.

Variable importance plot

The variable importance plot summarizes the variable importance values of both the spatial
interactions and meta-variables. It shows how they compare to what we might expect from
similar noise variables which are unrelated to the outcomes, and also summarizes the overall
efficacy in predicting the outcomes using the random forest model. Fig 4 is the variable impor-
tance plot created from simulated data with two cell types, A and B, and two meta-variables
with differing distributions, age and sex. Variables are displayed according to their adjusted
variable importance estimates (black dots), standardised with respect to the variable with the

B_B P
ae| £/
age '|H
A_A v
sex ﬂ:
0.00 0.25 0.50 075 1.00

Standardized Variable Importance
OOB (0.93), Guess (0.50), Bias (0.50)

Fig 4. Sample variance importance plot. This sample variable importance plot uses simulated data with a binary
outcome, two cell types, and two meta-variables. The data was simulated with significant differences between the
outcomes in the B_B, A_B spatial interactions, and age meta-variable, but no significant difference across sex and the
A_A spatial interaction. The point estimates of the variable importance values are the black dots, with accompanying
intervals indicating the uncertainty. The red dotted straight line is the noise threshold and the orange dashed curved
line is the interpolation threshold. Both thresholds are used to indicate if a variable is predictive of the outcome beyond
that of random noise. The variable importance values of the known significant variables are shown to exceed that of
the noise and interpolation thresholds.

https://doi.org/10.1371/journal.pcbi.1011361.9004
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largest variable importance (such that the standardised variable importance values range from
0 to 1). The variables are listed on the y-axis in order of decreasing variable importance with
the largest values being at the top.

The plot visualizes uncertainty in computing the VIs through (gray) intervals representing
one standard deviation on either side of the estimate. These intervals are the adjusted standard
deviations estimated through CV, as given in Eq (20).

The noise threshold Qs as well as the interpolation threshold Qy,, at 95% levels (¢ = 0.05)
are also shown. Fig 4 presents the noise threshold as a red, dotted, vertical line and the interpo-
lation threshold as a orange, dashed, curved line.

Estimates for predictive accuracy are given at the bottom of the figure. The estimates
include OOB, GUESS, and BIAS, respectively defined in Eqs (23), (24) and (25).

Further interpretation of the variable importance plots are given in the sections Simulation
study and Applications to MIBIscope data. These sections consider simulations for which
there is a known solution and real data examples that can be interpreted.

Results

In this section we present results on simulation experiments and analyses of two real experi-
mental data sets using the proposed methodology. All investigations were completed on a stan-
dard personal laptop (with an Intel i7 processor), and did not require high-end computational
resources. In fact, the computational complexity can be readily shown to be

O(N log(N)[dc + m|[F + H|BT) , (26)

and notably increases only linearly in each variable aside from the sample size, which includes
an additional logarithmic factor. Additional details on the computational complexity of ran-
dom forests models can be found in e.g. [53].

Many additional (unreported) simulations were also conducted to test the robustness of the
method against various patterns, image shapes, sample sizes, and parameter choices. We
found robustness to sample size and variable count (See Appendix E), informative and non-
informative patterns, image shape and size (provided images are large enough to capture the
desired relationships), and parameter choices (See Appendix C).

Simulation study

We present the results here of simulation experiments in which we applied the proposed meth-
ods to simulated spatial point patterns. In particular, we produced simulated point patterns
with properties, such as cell counts, numbers of phenotypes, etc., similar to that of the TNBC
data set in [12]. The real data motivating this simulation experiment are analysed in the follow-
ing section. The primary goals of the simulation experiment were to demonstrate that the pro-
posed method is effective at controlling the false discovery rate, i.e. the rate at which we
mistakenly identify spatial interactions or meta-variables with no relationship to the response
of interest as being informative or important, and also that it has the power to detect important
spatial interactions.

We considered simulated data from 34 “patients”. These patients were defined as being neg-
ative or positive for a binary outcome Z (note that positive/negative here refers to the arbitrary
outcome Z, and is not related to hormone receptor status as it does in the term TNBC). We let
there be 17 positive and 17 negative patients and simulate one image per patient. Each image
consists of a point pattern with 16 cell phenotypes. Patients were also ascribed a single meta-
variable, which we call age. We developed a random forest model as described in Materials
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and methods to predict patient outcome using interactions between the 16 different cell types
in the images and the additional meta-variable.

We considered two main settings: (1) a simulation with only non-informative variable-out-
come relations and (2) a simulation with both informative and non-informative variable-out-
come relations.

To generate the images, the cells were placed according to multiple, potentially nested,
(modified) Thomas processes, which are constructed iteratively [56]. For a given image, a
Thomas process first places cells (of a given type, say c1) at random, according to a Poisson
process. As such the number of cells to place, 7.y, is determined at random based on a Poisson
distribution, where the distributional parameter is user selected. For our simulation study,
these are selected to correspond to the mean number of cells in the TNBC dataset. We stan-
dardize the images to unit length in both the x and y directions.

Around each cell ¢, ., a € {1.. .n.}, cells of a different type, say ¢2 may be placed. Again the
number of ¢2 cells are randomly selected based on a Poisson distribution with a user selected
parameter. The coordinates of the c2 cells are placed according to another distribution in such
a way that they either cluster or disperse around the cl1 cells. In our experiments, a bivariate
Normal distribution is used to place the ¢2 points, so that the mean coincides with the location
of a randomly selected cl cell, and the covariance matrix is a scalar multiple o” times the iden-
tity matrix. By varying o” in the outcome groups, clustering or repulsion in the cell interactions
can be introduced.

Additional cells can be simulated around the points of c1 or ¢2, and so on. Moreover, the
original cells can be removed such that the new cells appear to exhibit self-clustering. Compila-
tions of such placement patterns, with use of potentially different distributions, can achieve
images with varying degrees of clustering or regularity.

In our simulations, 16 cells were iteratively placed according to this modified Thomas pat-
tern. Some cells were placed completely at random (c1, ¢4, ¢5, ¢6, c7, c13, c14, c15), some were
placed exhibiting self-clustering (¢8, ¢9, c10, c11, c12), and some were placed exhibiting cluster-
ing around c1 (c2, ¢3, c16). In what we call the “no-relation” simulation, the cells locations
were simulated in the same way for both the positive and negative patients. However in the
“relation” simulation, c2 exhibited increased clustering around c1 while ¢3 exhibited repulsion
from cl, for positive outcomes. Similar to the true data, some cell types were present hundreds
of times per image while others only rarely appeared. Each of the synthetic cell types were gen-
erated to mimic behaviors and frequencies seen in the TNBC data. Fig 5 presents two images,
an image from the TNBC data set and a simulated image.

In this way a single image for each of the 17 positive and 17 negative patients were simu-
lated. The meta-variable age was simulated as a Normal random variable with unit variance.
While in the no-relation case the mean age was constant, 25 for both outcomes, in the rela-
tion-case the mean age was set to be 25 for negative outcome patients and 27 for positive out-
come patients. Moreover, in the relation-case, 2 of the 17 positive patients were given no-
relation to the outcome as additional “noisy” images.

When modeling both cases, there were several tuning parameters selected. We used the
standard choices of 500 trees for each random forest, each tree using 80% variable selection
and full data bootstrap, 10 folds in cross-validation, and a standard significance level of & =
0.05. We used 100 interactions for the permuted random forest in creation of the interpolation
cut-off. Appendix C highlights several numerical investigations of these values, showing
robustness in the results for these choices. Creation of the K functions also required selection
of the maximum radius, R. Although we investigated the effect of the choice, we saw little vari-
ation in the results and used a traditionally recommended 25% of the side length of the image,
along with the previously discussed isotropic edge corrections for the simulations. Moreover,
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Fig 5. Comparison of TNBC and simulated data. (a) An image from the TNBC data and (b) an image from the simulated data. Different colors
indicate one of the 16 different cell phenotypes, showing the comparability of the simulations and true data.

https://doi.org/10.1371/journal.pchi.1011361.g005

the K functions were summarized using 3 principal components, which were selected to match
the TNBC analysis. In the TNBC case 3 components explain at least 95% of the total variance
explanation for each K function.

Fig 6a shows representative variable importance for all variables and Fig 6b shows the top
25 in the “no-relation” case. One may see from the plot that some variable importance esti-
mates exceeded the red noise threshold, but they all were observed to be below the orange
interpolation threshold. This may be interpreted that the observed variable importance values
did not exceed, to a significant degree, what we would expect to see from similar variables that

are known to be independent of the response. Moreover, the prediction accuracy estimate
(OOB) indicates the model performs similarly to a naive guessing approach. Taken together,
the plot indicates that none of the spatial interactions appeared to be important in predicting
the outcome, as was expected in this case.

On the other hand, Fig 7 shows a representative variable importance plot computed from a
single simulation run in the “relation” simulation. All variables are shown in Fig 7a, and only
top 25 are shown in Fig 7b. Although many variables are still below the noise and interpolation
thresholds, the known related variables are found to have a significant relationship with the
outcome variable. Moreover, the OOB estimate far exceeds that of the GUESS or BIAS esti-
mates. This plot indicates that interactions between the c1, ¢2, ¢3 cell types, and the age vari-
able, appeared to be useful, to a statistically significant degree, in predicting the outcome, once
again as expected. We note that since ¢2 and ¢3 cells are distributed around c1 cells, any change
in these distributions will necessarily lead to differences in the cross K functions between these
two cell types as well, as observed.

In order to verify that each of the orange and red lines appeared to be appropriately cali-
brated, we performed an additional simulation experiment. We considered two cases (1) with
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Fig 6. No relationship simulation. Simulation of 16 cell types for 34 patients with meta-variable age. (a) Figure with the variable importance values for
all variables. (b) Figure with only the top 25 largest variable importance values. All variables were generated with no-relationship to the outcome and all
were determined to have no relation to the outcome beyond noise as the variable importance estimates are below noise and interpolation thresholds.

https://doi.org/10.1371/journal.pcbi.1011361.9g006

4 cell types and (2) with 16 cell types. Each cell type other than cells c1 and c2 are generated
such that they have no relationship to outcome. We modify the clustering of ¢2 around c1 in
the positive group, and examine the rate at which the variable importance estimated for the
cl_c2 spatial interaction exceeded the various thresholds (red/orange lines). By changing the
standard deviation in the Thomas process for placing ¢2 points around c1 points, we were able
to investigate whether the approach is able to detect the presence of a relationship when the
cells either cluster or are more dispersed across the binary outcomes. The resulting power
curves, based on 100 simulations for each setting, are shown in Fig 8. These show the rate at
which the variable importance estimates exceed the 95% noise threshold, interpolation thresh-
old, and both the noise and interpolation thresholds. In reference to Fig 8, the underlying stan-
dard deviation in the Thomas process relating c1 and c2 takes the value of 0.025 in the “no
relation” case. As such, for this value it is desired that the noise and interpolation thresholds
are exceeded no more than a = 0.05 proportion of the time. Otherwise, detecting that standard
deviation values smaller/larger than 0.025 lead to increased/reduced clustering of c1_c2 in the
positive groups is desired.

We saw that each threshold appeared to be effective in detecting clustering or dispersion
relationships, such that even relatively small changes were detected with high frequency, even
when considering many variables, see also Appendix E.

Table 1 further shows the empirical false discovery rate computed from 100 independent
simulations for 4 and 16 cell types with a simulated population of 34 patients evenly split
between positive and negative response groups. In this case all spatial interactions and meta
variables were simulated independently of the response. The false discovery rate is computed
as the percentage of simulations for which any VI exceeded the corresponding threshold or
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Fig 7. Relationship simulation. Simulation of 16 cell types for 34 patients with meta-variable age. (a) Figure with the variable importance values for all
variables. (b) Figure with only the top 25 largest variable importance values. Most cell types were generated with no relationship to the outcome.
However, age, c1_c2, and c1_c3 were designed to have a relationship with the outcome (which naturally means c2_c2 and ¢2_c3 would also have
relationships to the outcomes). These variables are seen with significantly larger variable importance values than the thresholds and other variable

importance values.

https://doi.org/10.1371/journal.pcbi.1011361.9007

both thresholds. We also considered “Variable importance—1 SDCV”, in which the false dis-
covery rate is computed as the percentage of simulations in which any of the cross-validated
one-standard-error intervals for the VI lies to the right of the corresponding threshold, and
“Largest Variable Importance”, in which we only considered whether the largest VI computed
exceeded the corresponding threshold.

These results suggest that while either of the two thresholds alone are not suitable to control
the false discovery rate, comparing the VI along with the one standard error cross-validation
interval to both thresholds (red and orange lines) yielded a false discovery rate very close to the
nominal rate. Moreover, comparing the largest VI to both thresholds controlled the rate of
falsely identifying the spatial interaction or meta-variable associated with that as being statisti-
cally important.

In Appendix E, we provide additional simulation evidence illuminating the effect of
increasing the number of cells considered. These results suggested that the the false discovery
rate is not influenced by the number of cells considered, and remains controlled. The power to
detect a single, important interaction was observed to decrease as the number of cells consid-

ered increased, as expected.

Applications to MIBIscope data

In this section we present two applications of the proposed methods to MIBIscope data sets.
The first investigates known clusters in tumors related to triple negative breast cancer tumors,
while the second investigates unknown relations in tumors related to lung cancer. Unless
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Fig 8. Power curves. Power curves showing the empirical rate, from 100 simulations, that the variable importance for the spatial interaction c1_c2
exceeded the 95% noise threshold, interpolation threshold and both the noise and interpolation thresholds, indicating a significant spatial interaction is
detected. The curves indicate the threshold method: above both thresholds (teal), above the curved interpolation threshold (orange), and straight noise
threshold (red) (the colours correspond with the noise curves used in the variable importance plots). The x axis gives the standard deviation parameter
controlling the distribution of ¢2 cells around c1 cells. The vertical black dotted line is the base case, when both classes exhibit the same interactions
across all cell types, including the c1_c2 interaction. To the right of this line, c2 cells are less densely clustered around c1 cells, and to the left of the line
there is increased clustering around c1 cells. The light horizontal, dotted gray line indicates the desired mis-classification rate when no signal is present
(i.e. 0.05). (a) Spatial data with 4 cell types is used to create the curves. (b) Spatial data with 16 cell types is used to create the curves. Both images show
the method is effective at correctly detecting when the important interaction does and does not differ between the patient outcomes. This is seen as all
lines quickly climb to 1 (perfect detection of a signal) as the standard deviation parameter moves further from the no effect case (vertical line). The size
and power is similar between the simulations despite the large increase in total interactions considered.

https://doi.org/10.1371/journal.pchi.1011361.g008

Table 1. Table showing empirical false discovery rate based on 100 independent simulations for both T' =4 and

T = 16 cell types with 34 patients split into positive and negative groups. The false discovery rate is computed as the
percentage of simulations for which any VI exceeded the corresponding threshold or both thresholds (Variable Impor-
tance Only), any of the cross-validated one standard error intervals for the VI lies to the right of the corresponding
threshold (Variable Importance-1 CVSD), and whether the largest VI computed exceeded the corresponding threshold
(Largest Variable Importance).

Empirical False Discovery Rate:

Nominal Rate 5%

Threshold: ‘ Noise Interpolation Both
VARIABLE IMPORTANCE ONLY
T=4 0.35 0.15 0.07
T=16 1.00 0.74 0.09
VARIABLE IMPORTANCE- 1 CVSD
T=4 0.23 0.06 0.04
T=16 0.99 0.05 0.04
LARGEST VARIABLE IMPORTANCE
T=4 0.35 0.05 0.05
T=16 1.00 0.03 0.03

https://doi.org/10.1371/journal.pcbi.1011361.t001
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otherwise stated, all parameter values for the model discussed previously remain the same, see
Simulation study.

Triple negative breast cancer. We investigate the TNBC data set in [12]. This data was
obtained via a MIBIscope, and the authors employ a mixing score to categorise tumors based
on their TME. Although we focus on their mixing score, additional information is also avail-
able in [12]. The mixing score they use was defined as the proportion of immune cells touching
tumor cells, and was calculated as the number of immune-tumor interactions divided by the
number of immune-immune interactions for an image. They separate tumors into “compart-
mentalised” and “mixed” groups (and a “cold” group that we ignore), such that compartmen-
talised tumors tend to have tumor cells aggregated together with immune cells located around
or away from the tumor cells, and mixed tumors tend to have tumor cells and immune cells
mixed together. This makes a useful test data set on which to employ our method, as it pro-
vides two tumor groups that explicitly have different TMEs. The data set contains 33 patients
with a single image per patient, 18 mixed tumors and 15 compartmentalised tumors. We
define the outcome Z as 0 for mixed and 1 for compartmentalised, and we wish to predict the
outcome using interactions between 16 cell phenotypes in the images and an additional meta-
variable, age.

One tuning parameter with K functions is the maximum radius R. For this data we investi-
gated using several options; 25, 50, 100, 500, and 1000 micrometers. In all cases the conclusions
were comparable, illustrating a robustness to the choice. The only (expected) difference is that
as R increases, additional principal components, d, are recommended to capture the variations
in the functions. With this observation and domain knowledge, K functions up to a maximum
radius of 50 micrometers were used.

The results of this analysis are shown in Fig 9. As expected, many interactions are shown to
be non-significant. However, there are a reasonable number above both thresholds and the
predictive accuracy estimates agree that there are some important relationships in the data.
Specifically, tumor cell-tumor cell interactions came as the top interaction, consistent with the
characteristics of the “compartmentalised” tumors where few immune cells infiltrate the
tumors and tumor cells are densely packed.

We also applied the method introduced in [31], which is comparable to fitting a functional
generalized linear model (logistic regression) to the data and evaluating for the parameter sig-
nificance corresponding to each interaction. When all interactions are included in such a
model, no significant variables at 5% level were identified. After sequentially removing the
least important variables based on the variable importance ranking supplied by
funkycells, this approach was only able to detect the significance of the Tumor_Tumor
interaction when it was the only variable included in the model.

Although the method we present here can indicate important relationships, it does not
quantify the type of differences. While meta-variables can be easily compared using traditional
statistical methods, the K functions are more difficult to analyze. To this end, we can also con-
sider plots of the K functions. Fig 10 examines the Tumor_Tumor interaction, which is found
to be significant, and the CD4T_Endothelial interaction, which was found to be insignificant.
The significant K functions seem to be well separable (i.e. K functions are clustered with K
functions having the same outcome), while the insignificant K functions are not easily separa-
ble between outcome groups, and have high variability in individual K functions of the same
group.

Lung adenocarcinoma versus lung squamous cell carcinoma. We also applied our
approach to attempt to predict different pathological subtypes of non-small cell lung cancer.
In this section, we aim to measure to what degree the TME of two of the most common sub-
types of lung cancer, LUAD and LUSC, can be differentiated using the spatial relationships
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Fig 9. TNBC variable importance. Variable importance plot and random forest model summary for predicting “compartmentalized” versus “mixed”
tumor types with the TNBC data. (a) Figure with the variable importance values for all variables. (b) Figure with only the top 25 largest variable
importance values. The OOB far exceeds those of naive models, and many of the spatial interactions between tumor cells and immune cell populations
exhibited significant variable importance values, suggesting important interactions in the data (such as Tumor_Tumor).

https://doi.org/10.1371/journal.pcbi.1011361.9g009

between phenotyped cells as characterised by K functions. Our dataset contained 44 LUAD
and 20 LUSC samples stained with antibodies against 35 proteins to enable the phenotyping of
tumor cells, fibroblasts, and 10 immune cell subsets after scanning on the MIBIScope. The
cells were pre-processed and classified and a summary of this data is given in SI Table. K func-
tions were computed between each cell type with again a maximum radius of 50 micrometers.

The variable importance plot and model summary when using our method to predict
LUAD versus LUSC are shown in Fig 11. The results suggest that no spatial interactions are
significantly useful in distinguishing LUAD versus LUSC. The OOB accuracy was observed to
be on-par with a naive method, and none of the variable importance measurements exceeded
the 95% quantile of what we would expect from independent point patterns. This indicates our
method using homogeneous K functions applied to these specific cell phenotypes is unable to
differentiate between the TME of LUAD and LUSC cancer types using this data.

For the purpose of comparison, we also fit functional linear models akin to those proposed
in [31] to this data. When all interactions were included, none of the linear model parameters
were significant at the 5% level. After sequentially removing the least important variables
down to the top 10 based on the variable importance ranking supplied by funkycells, we
interestingly observed a, apparently spurious, significant interaction associated to spatial dis-
tribution of CD8TCcells. In an apparent contradiction, such models based on reducing the
number interactions further, including examining a model with only the CD8Tcells_CD8T-
cells interaction, all suggested no significant interactions.

This analysis is presented to demonstrate the application of the above methods to real data,
and emphasize that while naive or repeated applications of existing methods might lead to
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Fig 10. Example TNBC K functions. The K functions from the different outcomes are compared in these two plots. In both plots, the x-axis indicates the
radial distance, r, in micrometers and the y-axis is the value of the K function. The lightly colored lines are the K functions for each patient, while the bold
lines indicates the average (point-wise mean). In the figures, red indicates the mixed tumors while blue indicates the compartmentalized tumors. The black
dashed line indicates the curve of a totally spatially random process for reference. (a) Plots the K functions for the Tumor_Tumor interaction, which was
found to have significant differences in the outcomes. (b) Plots the K functions for the CD4T_Endothelial interaction, which was found have no significant
differences between the outcomes. In (a), as expected, the compartmentalized group has relatively larger K functions-indicating increased clustering-and
the functions are well grouped together. Conversely, (b) shows no clear differences between the K functions of the two groups and K functions are
generally surrounded by K functions from patients of an assortment of the groups. That is, K function patterns vary widely even within the same outcome
groups.

https://doi.org/10.1371/journal.pchi.1011361.g010

spurious findings, our approach is built to control the rate of false discovery of important spa-
tial interactions in the TME. The lack of significance in this example suggests though the need
to consider a variety of new methodological approaches when analysing complex TME data. It
also highlights the potential limitation of modeling cell interactions through K-functions,
which intrinsically assume a degree of spatial homogeneity in the spatial distribution of cells.
These issues are discussed further in the following section.

Discussion

In this paper, we present a novel method for the analysis of data-rich TME spatial data. We
consider the case in which we compare TME and meta data or clinical data from two different
patient groups, and develop a model to identify significant differences between these groups in
the distribution of cell phenotypes, protein antigens, or a mixture thereof. In addition, the
model aims to predict which group a new patient is in using their TME and meta data. Our
model employs a combination of spatial statistics and functional data analysis and is applicable
to marked point processes in general. Benefits of the model include general applicability, with
few tuning parameters, and easily visualised and interpreted output. We find our model to be
robust to the choice of the tuning parameters. The model demonstrates a powerful ability to
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Fig 11. Lung cancer variable importances. Variable importance plot and random forest model summary for predicting LUAD versus LUSC tumor
types. (a) Figure with the variable importance values for all variables. (b) Figure with only the top 25 largest variable importance values. The OOB is
similar to a naive model, and none of the measured variable importance value were statistically significant, indicating no significant variable
interactions or meta-variables.

https://doi.org/10.1371/journal.pcbi.1011361.9011

identify important variables while maintaining good predictive power. It is also resistant to
overfitting and manages false discovery rate.

We evaluate our approach on simulated data, demonstrating the effectiveness of our
method for marked spatial point patterns with known interactions. Our approach is then
applied to TNBC and lung cancer data obtained from multiplexed ion beam imaging. For the
TNBC data, we compare two groups of tumors that are separated into “compartmentalised”
and “mixed” groups based on the degree of tumor-immune cell interactions. This separation
of tumors gives two groups with explicit differences in their TMEs, making a useful data set for
the demonstration of our model. The model demonstrates good predictive accuracy, and iden-
tifies expected specific cell relationships, and interactions of interest. The lung cancer data
shows our model can also detect lack of differences in cell relationships.

Throughout this paper we have assumed homogeneity of the underlying spatial point pro-
cesses in defining the K functions used in the model. Spatial homogeneity is defined such that
the intensity of a given mark is independent of spatial location [14-16]. Whilst such an
assumption may be reasonable in some cases, given the complexity of the TME, homogeneity
may not always apply. We note, however, that since our approach compares K functions
between different groups, rather than against the theoretical K functions associated with com-
plete spatial randomness (as is typical in other circumstances), the lack of underlying spatial
homogeneity in the TME for a data set may not be overly problematic. Statistical tests for
homogeneity exist [14-16]. Inhomogenous K functions can be used in an attempt to mitigate
the issue of inhomogeneity [14-16, 57]. Regardless of how K functions are defined they are
amenable to being used in our methodology. Furthermore, whilst we have focused throughout
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this paper on K functions, we note that the methods presented here can be applied to any sum-
mary functions from spatial statistics, or indeed any functions in general. See, for example,
suggestions in [24, 58, 59].

In addition, we note that a’” in Eq (1), may consist of the raw measured protein expression
level for each protein, and may also include other cell information (e.g. cell size). Our approach
could potentially be adapted for analyzing raw protein expression levels via the use of mark-
weighted K functions [14, 60]. Consequently, the approach may be useful in methods applied
to cell phenotypes based on proteins (OPAL, MIBI, Phenocycler Fusion) or transcripts
(Xenium, Cosmx, MERscope) expression [43-49]. Usage in non-cellular contexts is also
possible.

We have also assumed in this paper outcomes which are categorical, or classes in a group.
In this way, we say the model performed classification. Although we considered two classes, a
larger number of classes is directly possible. Further extension of this method to real-valued
data, e.g. survival time, is likewise natural. Random forest models designed for continuous or
survival time analysis exist, e.g. [52, 61, 62], and metrics such as L, error can be used in place
of the difference function of the OOB and naive estimates.
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