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Abstract

In the midst of an outbreak or sustained epidemic, reliable prediction of transmission risks

and patterns of spread is critical to inform public health programs. Projections of transmis-

sion growth or decline among specific risk groups can aid in optimizing interventions, partic-

ularly when resources are limited. Phylogenetic trees have been widely used in the

detection of transmission chains and high-risk populations. Moreover, tree topology and the

incorporation of population parameters (phylodynamics) can be useful in reconstructing the

evolutionary dynamics of an epidemic across space and time among individuals. We now

demonstrate the utility of phylodynamic trees for transmission modeling and forecasting,

developing a phylogeny-based deep learning system, referred to as DeepDynaForecast.

Our approach leverages a primal-dual graph learning structure with shortcut multi-layer

aggregation, which is suited for the early identification and prediction of transmission

dynamics in emerging high-risk groups. We demonstrate the accuracy of DeepDynaFore-

cast using simulated outbreak data and the utility of the learned model using empirical,

large-scale data from the human immunodeficiency virus epidemic in Florida between 2012

and 2020. Our framework is available as open-source software (MIT license) at github.com/

lab-smile/DeepDynaForcast.

Author summary

During an outbreak or sustained epidemic, accurate prediction of patterns in transmission

risk can reliably inform public health strategies. Projections indicating growth or decline

of transmission for specific risk groups can significantly enhance the optimization of

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011351 April 10, 2024 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sun C, Fang R, Salemi M, Prosperi M,

Rife Magalis B (2024) DeepDynaForecast:

Phylogenetic-informed graph deep learning for

epidemic transmission dynamic prediction. PLoS

Comput Biol 20(4): e1011351. https://doi.org/

10.1371/journal.pcbi.1011351

Editor: Roland R Regoes, ETH Zurich,

SWITZERLAND

Received: July 14, 2023

Accepted: March 11, 2024

Published: April 10, 2024

Copyright: © 2024 Sun et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The

DeepDynaForecast model code, along with all other

code written to generate the results shown in this

study, is available on Github under MIT Licence at:

https://github.com/lab-smile/DeepDynaForecast.

We received HIV sequence data and metadata

extracts from FDOH in a fully de-identified format

compliant to the Health Insurance Portability and

Accountability Act (HIPAA). For replication

purposes, data request to the FDOH

(Research@flhealth.gov) can be made according to

state, federal regulations and compliance with

https://orcid.org/0000-0003-0913-5668
https://orcid.org/0000-0003-0136-2102
https://orcid.org/0000-0001-6088-4651
https://doi.org/10.1371/journal.pcbi.1011351
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011351&domain=pdf&date_stamp=2024-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011351&domain=pdf&date_stamp=2024-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011351&domain=pdf&date_stamp=2024-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011351&domain=pdf&date_stamp=2024-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011351&domain=pdf&date_stamp=2024-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011351&domain=pdf&date_stamp=2024-04-22
https://doi.org/10.1371/journal.pcbi.1011351
https://doi.org/10.1371/journal.pcbi.1011351
http://creativecommons.org/licenses/by/4.0/
https://github.com/lab-smile/DeepDynaForecast
mailto:Research@flhealth.gov


interventions, especially when resources are limited. To address this, we present DeepDy-
naForecast, a cutting-edge deep learning algorithm designed for forecasting pathogen

transmission dynamics. Uniquely, DeepDynaForecast was trained on in-depth simulation

data, classifying samples according to their dynamics (growth, static, or decline) with

accuracy of 91.6%. We evaluated the model’s performance and application using simu-

lated outbreak data and empirical, large-scale data from the HIV epidemic in Florida

between 2012 and 2020. We conclude DeepDynaForecast represents a significant advance-

ment in genomics-mediated pathogen transmission characterization and has the potential

to catalyze new research directions within virology, molecular biology, and public health.

Introduction

Epidemiological modeling of the spread of a disease during an outbreak is critical in predicting

the devastation caused by the root pathogen and in designing specific public health interven-

tions to curb unfavorable outcomes. The vast majority of the models used, however, often

assume random mixing of the host population, which can affect parameter estimates used in

these predictions (e.g., [1–4]). Awareness of this limitation often exists, but incorporation of

the numerous relevant structures within a population requires a priori information regarding

not only population behavior but also transmission routes of the pathogen responsible for the

outbreak. For example, increased transmission of food-borne pathogens may be found among

individuals primarily relying on a local food vendor [5]. Moreover, the population structure

may be dynamic, as in the case of brief social gatherings wherein airborne pathogens are more

easily spread. Groups of infected individuals for which risk of pathogen transmission is height-

ened, regardless of their episodic nature, can be identified through case investigation and con-

tact tracing. The resources required in this endeavor are often not available or difficult to

expand in the time required during unexpected public health emergencies. Combined patho-

gen molecular data and patient information can be used to identify these groups, thereby nar-

rowing the scope of contact tracing efforts and providing invaluable insight into patterns of

spread for which targeted interventions can aid in curbing an outbreak.

Pathogen genomic data have become increasingly used in outbreak surveillance primarily

owing to the evolutionary information they provide for the development of therapeutic inter-

ventions, a primary recent example being SARS-CoV-2 [6]. The evolutionary trajectory of a

pathogen can be readily monitored owing to the rapid accumulation of mutations that result

from the short generation time and/or infidelity of the replication machinery characteristic of

micro-organisms. The rate of accumulation of mutations, particularly for viruses [7], is often

deterministic and so is proportional to the number of replication cycles. Assuming the replica-

tion rate is relatively constant for a particular pathogen during infection, the number of repli-

cation cycles, and thus mutations, can be estimated from the time of infection of one

individual and time of transmission from that individual to another. Fewer mutations are thus

expected to occur for shorter transmission times when transmission is more likely. This rela-

tionship of evolution and transmission is the principle for genetic clustering, wherein for a

population sample, transmission clusters are defined as groups of patient-derived pathogen

sequences characterized by minimal genetic variation, representing captured transmission

events.

Genetic clustering can be achieved using a variety of algorithms. Primarily distance-based

methods [8, 9] rely on a user-specified threshold during pairwise genetic distance estimation

among sequences, below which sequences are considered to be connected. These methods are
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fast and accurate, but not without limitations. Firstly, application is limited when a priori
mutation information required for threshold specification is unknown. I.e., a threshold of

three mutational differences can be set when prior contact tracing and sampling have demon-

strated at most three mutational differences between known transmission pairs. The use of

deep learning has been proposed by Kupperman et. al. [10] to overcome this limitation. How-

ever, the resolution of these clustering-based methods, regardless of the need for threshold

specification, is limited to the level of the group, as specific mutation information is not used

to resolve individual relationships within or among groups. Alternatively, a phylogenetic tree

reconstructed from the set of mutational information at genomic sites offers increased resolu-

tion for individual relationships.

Another benefit to phylogenetic inference is that branches within the tree can adopt gener-

alized shapes, or topological features, that can provide critical information as to the underlying

transmission contact dynamics [11, 12] (e.g., presence of “super-spreaders”) and population

dynamics over time [13]. Importantly, neighboring samples within a tree that share inferred

contact dynamics (e.g., high transmission rate) may provide critical risk group information,

removing the need for clustering algorithms entirely. This integration of population genetic

parameterization with phylogenetics is known as “phylodynamics” and is based on retroac-

tively tracing an epidemic backward in time. For this reason, phylodynamic methods have

been largely applied to large populations, rather than for real-time monitoring of smaller risk

groups during the early stages of an epidemic. There do exist phylogeny-based dynamic fore-

casting models, but they are 1) again assume a population structured into risk groups deter-

mined by clustering thresholds and 2) are limited to forecasting growth [9, 14–16]. Moreover,

growth in these models is defined in terms of number of infected individuals, rather than as a

function of transmission rate and so may not capture risk groups for which the transmission

rate itself has recently increased, owing to, for example, transient behavioral changes. As a

result, the question remains as to the predictive power of phylodynamic information for the

characterization of different risk group transmission dynamics, particularly when supplied at

the onset of an outbreak when samples are scarce.

Regardless of whether a distance-based or phylogeny-based cluster detection method is

being used, focus has been traditionally placed on clusters based on size (e.g., [17–19]), repre-

sented by the number of sampled individuals included in the cluster. This phenomenon may

be in part due to the Center for Disease Control (CDC) guidelines, which specify that, for

human immunodeficiency virus (HIV) outbreaks in most jurisdictions, clusters of� 5 individ-

uals should be considered clusters of priority, or concern. Specifically, once the larger of clus-

ters is identified, existing patient data (and additionally gathered data if necessary) are to be

used to identify which persons are out of care or lack viral suppression, for which targeted

interventions should be employed [20]. Hence, prioritization has been given to larger clusters,

despite acknowledgment of sampling bias and the lack of evidence linking cluster size to trans-

mission potential [21]. Moreover, a clear definition for what should be considered “larger”

clusters has not been established and is up to the researcher to decide.

In recent years, deep learning has been applied extensively in epidemiology, allowing for

increased information gained from large datasets comprising numerous multi-factorial risk

factors of infection and spread [22, 23]. Neural networks have also gained popularity among

sequencing endeavors, used in identifying connections between mutations within high-dimen-

sional genome sequence data and disease status [24]. Prior research has also explored the use

of convolutional neural networks (CNNs) to predict infection outbreaks based on sequencing

data [10]. However, this approach primarily focuses on identifying “active” or “inactive” indi-

viduals within risk groups and does not adequately capture individual relationships, nor the

dynamics of transmission. The deep learning approach developed by Voznica et. al. [4] utilizes
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instead phylogenetic trees, but the focus is on global transmission parameters (e.g., R0), rather

than dynamics among individual risk groups. To address these gaps, we developed the Deep-
DynaForecast graph neural network (GNN) model, designed to predict near-future transmis-

sion dynamics for individual samples within a phylogenetic tree. GNNs have been specifically

designed for data that could be represented as a graph structure connected via complex rela-

tionships [25–27], for which the phylogenetic tree is a prime candidate. Complex relationships

within outbreak phylogenies can range from simple community-based structures, with isolated

risk groups transmitting at constant rates, to risk group mixing with varying, non-determin-

istic transmission rates between groups and over time (Fig 1). We explored this complexity by

simulating phylogenies representing viral and bacterial outbreaks at varying times during the

epidemic and comprised of smaller risk groups with deterministic, yet varying transmission

rates relative to the background population. Using these data, we demonstrate the effectiveness

of our GNN method (DeepDynaForecast) in predicting future dynamics from limited, early

sampling and its promising capacity to improve public health efforts in preventing epidemic

spread. We then sought to apply the trained model to the HIV epidemic in Florida between

2012 and 2020, for which large-scale pathogen sequencing data and metadata is available, pre-

viously analyzed using traditional distance-based methods [19].

Results

DeepDynaForecast framework

Our DeepDynaForecast model was developed to predict near-future transmission dynamics

for individual samples within a phylogenetic tree, focusing on accurately classifying nodes as

indicative of growing, decaying, or static transmission. Fig 2 illustrates the resulting computa-

tional framework. The framework utilizes a phylogenetic tree, reconstructed from pathogen

genomic data collected during outbreak molecular surveillance. Subsequently, the DeepDyna-
Forecast model harnesses two primary components: a primal-dual graph learning architecture

Fig 1. Ranging complexity of tree topological features resulting from a structured infected population. n transmission clusters, distinct from the

background population (maroon), can vary in effective reproductive number (Re) over time (x-axis) and rate of infection (m) by or to individuals from

other groups. Variations in transmission dynamics are imprinted in branch patterns within the corresponding phylogeny and can aid in identifying

groups of interest.

https://doi.org/10.1371/journal.pcbi.1011351.g001
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and a cross-layer dynamics prediction module. The detailed methodology of the framework is

provided in the Methods section, while the ensuing sections provide succinct introductions to

each key component.

Primal-dual graph LSTM module (PDGLSTM). The PDGLSTM [28] was developed in

order to earn the node and edge representations simultaneously by applying two parallel

GLSTMs on nodes and edges. GLSTM incorporates LSTM to learn about the sequential repre-

sentations generated from multiple message-passing iterations. As shown in Fig 2, each edge/

node aggregates neighboring node/edge representations and encodes low-dimensional mes-

sages by the neural networks ϕE and ϕN. These node/edge messages are input into their corre-

sponding LSTM modules to facilitate the update of node and edge representations.

Cross-layer Prediction module (CLP). After sequentially N times of message-passing

iterations, the CLP module was/is applied to predict the dynamics of leaves and masks internal

nodes when predicting. A series of neural networks {ψL} are engaged in predicting the dynam-

ics of leaves using various levels of node representations {v}. This process is followed by drop-

out layers and summation operations to make the final result robust.

Fig 2. Our proposed DeepDynaForecast architecture. A: Pathogen genomic data collected during outbreak molecular surveillance. B: A phylogenetic

tree, reconstructed from the genomic data, which is used as input to trace the transmission among the populations. In this tree, nodes represent

individuals, while edges represented transmission or mutation events. The phylogenetic tree is modeled using a bi-directed graph, where initial node

representation vector vi is randomly generated for each node i, and edge representation vector eij for edge eij from node i to j is initialized from the

branch length with a neural network. C-D: Example of Primal-Dual Graph Long Short-Term Memory (PDGLSTM) learning architecture on a subtree

to update vi and eij at the l-th layer. Two parallel LSTM modules are utilized to update the node and edge representations in each message-passing

iteration. Within this process, each edge/node aggregates adjacent node/edge representations and encodes low-dimensional messages by the neural

networks ϕE and ϕN. These node/edge messages are input into their corresponding LSTM modules to facilitate the update of node and edge

representations E: This system sequentially applies N rounds of message-passing iterations, thus producing updated nodes and edges representations. F:

Cross-layer Prediction (CLP) module on each leaf node. A series of neural networks {ψL} are engaged in predicting the dynamics of leaf n using various

levels of node representations {vn}. This process is followed by dropout layers and summation operations to generate the final prediction. G: Predicted

dynamics for leaves on the phylogenetic tree.

https://doi.org/10.1371/journal.pcbi.1011351.g002
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DeepDynaForecast performance

DeepDynaForecast’s performance evaluation was based on the ability to predict the dynamic

transmission status of individual nodes within ground truth phylogenies. Simulated phyloge-

nies harbored risk groups categorized as exhibiting static transmission rates over time or linear

trends in transmission rate growth or decline (see Methods and Supplementary S1 Table).

Table 1 compares two baseline models—Graph Convolutional Network (GCN) [29] and

Graph Isomorphism Network (GIN) [25]—and DeepDynaForecast-based models for three

training scenarios: acute infectious respiratory virus (ARI) outbreak simulations (DDF_ARI),

Mycobacterium Tuberculosis (TB) and HIV co-infection simulations (DDF_TB), and the com-

bination of both dataset types (DDF_ARI_TB). Two baseline models were trained on the com-

bined simulations, and all five models were evaluated for ARI, TB, and their combination

(Table 1). The metrics included accuracy, F1-score, precision, area under the receiver operat-

ing characteristic (AUROC), Brier score (BS), and Cross-entropy (For further details, see per-

formance evaluation in the Methods section).

For model performance using combined ARI and TB datasets, DeepDynaForecast achieved

91.6% balanced accuracy and 0.977 macro AUROC, outperforming the best baseline model

(GIN) by 40.1% and 28.0%. Another significant improvement from GIN to DDF_ARI_TB is

observed in the “soft” evaluations of the model. For example, DDF_ARI_TB reduces the

weighted Brier score by 71.0% (from 0.442 to 0.128) and shows a similar trend for weight

Cross-entropy (from 0.736 to 0.237). Similar conclusions could be drawn considering all six

Table 1. Performance for two baseline models and DeepDynaForecast on transmission dynamic prediction of external nodes with three training scenarios.

Model Dataset Accuracy " F1 " Precision " AUROC " BS # CE #

GCN ARI 0.640 0.298 0.370 0.753 0.444 0.729

TB 0.556 0.240 0.350 0.676 0.537 0.899

ARI+TB 0.612 0.274 0.362 0.737 0.470 0.775

GIN ARI 0.668 0.308 0.377 0.767 0.421 0.696

TB 0.585 0.284 0.354 0.710 0.528 0.894

ARI+TB 0.654 0.299 0.368 0.763 0.442 0.736

DDF_ARI ARI 0.909 0.539 0.473 0.975 0.140 0.264

TB 0.687 0.257 0.379 0.875 0.492 0.948

ARI+TB 0.823 0.380 0.399 0.930 0.277 0.525

DDF_TB ARI 0.635 0.488 0.567 0.875 0.633 1.741

TB 0.768 0.461 0.419 0.950 0.339 0.608

ARI+TB 0.636 0.481 0.437 0.858 0.621 1.659

DDF_ARI_TB ARI 0.931 0.545 0.477 0.982 0.108 0.200

TB 0.816 0.433 0.401 0.954 0.271 0.492
ARI+TB 0.916 0.512 0.452 0.977 0.128 0.237

Baseline models comprised Graph Convolutional Network (GCN) and Graph Isomorphism Network (GIN). The training scenarios included the model trained with

Respiratory virus simulations only (DDF_ARI), the model trained on Mycobacterium tuberculosis simulations only (DDF_TB) and the model trained on the mixed type

of transmission patterns (DDF_ARI_TB). Baseline models were also trained on the combination of ARI and TB. To mitigate the impact of unbalanced label distribution,

metrics for multi-class node types—including accuracy, F1-score, precision, and area under the receiver operating characteristic (AUROC)—were uniformly aggregated

across the three classes. Weighted Brier score (BS) and weighted Cross-entropy (CE) were calculated based on predicted probabilities adjusted by the inverse prevalence

of classes, providing “soft” evaluations of the models. For each testing dataset, models were assessed on ARI trees, TB trees, and a combination of both. The best

performance for each evaluation metric among the five models is highlighted using underlining, italics, and bold for ARI, TB, and the combination, respectively.

https://doi.org/10.1371/journal.pcbi.1011351.t001
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metrics on either ARI testing or TB testing with GCN, GIN, and DDF_ARI_TB. This analysis

demonstrates that the DeepDynaForecast architecture can learn more comprehensive trans-

mission patterns compared to GCN and GIN.

To explore the impact of different training scenarios, we compared DeepDynaForecast’s
performance when trained on ARI only, TB only, and their combination. When tested on

combined ARI and TB datasets, DDF_ARI_TB improved balanced accuracy by 11.3% over

DDF_ARI and 44.0% over DDF_TB. For all six metrics, DDF_ARI_TB consistently outper-

formed DDF_ARI and DDF_TB. Considering DDF_ARI_TB was trained on a larger dataset

compared to DDF_ARI and DDF_TB, we explored how the size of the training data and the

diversity of training scenarios contributed to model performance. As detailed in Supplemen-

tary S6 Table, for the ARI data, we found that increasing the dataset size was as effective as

generalizing the training scenario. In contrast, for the TB data, an increase in dataset size

proved more beneficial. These observations imply that beyond the advantages gained from

larger training sets, DDF_ARI_TB also benefits from the varied nature of its training scenar-

ios. Notably, even in evaluations focused solely on ARI, DDF_ARI_TB surpassed DDF_ARI

in five of the six metrics, further supporting the generalization capabilities of a model trained

on mixed transmission types. In terms of performance on TB, although TB trees were not

part of DDF_ARI’s training, it still achieved a 68.7% balanced accuracy and a 0.875 AUROC,

with only a 15.8% and 7.9% decrease in balanced accuracy and AUROC, respectively, com-

pared to DDF_ARI_TB. These findings indicate that DeepDynaForecast can be used for both

acute and chronic pathogen transmission patterns and excels in learning mixed transmission

patterns.

While the TB-only model (DDF_TB) performed well when evaluated exclusively on TB

data (attaining a balanced accuracy of 76.8% and a macro AUROC of 0.950), it fell short in

predicting dynamic status for ARI nodes. This discrepancy suggests that the branch patterns

characteristic of chronic infection epidemics, such as TB, are distinct from those associated

with acute infections. The observed performance deficit could be ascribed to the reduced

representation of TB decaying transmission nodes (51,419) compared to those of ARI

(589,119)—for more details on node representation, refer to the Methods section. This

observation further elucidates why the GCN, GIN, and DDF_ARI_TB models yield less

effective performance on TB testing than ARI testing when trained in the combination of

ARI and TB.

In addition to comparing method performance for specific datasets, we also utilized the

resulting confusion matrices to summarize and illustrate detailed prediction distributions

across different risk group types. Fig 3A displays the confusion matrices of various approaches,

with each element normalized by the number of true labels summarized over each row for

intuitive comparison. Consistent with the conclusions drawn from the metrics, DDF_ARI_TB

achieved 93.0%, 89.8%, and 91.9% accuracy on nodes representing decaying, static, and grow-

ing transmission rate groups, respectively, outperforming all five models. Decay and static

leaves within the tree were often misclassified in GCN, GIN, and DDF_TB, but this issue was

mitigated in DDF_ARI and DDF_ARI_TB. Fig 3B demonstrates a one-versus-rest receiver

operator characteristic curve (ROC) for each class and a macro-averaged ROC curve.

DDF_ARI_TB attained > 0.96 AUROC for all four curves, exhibiting the best performance.

Fig 3C represents the UMAP [30] 2-dimensional (2D) feature space generated from an aggre-

gation of learned node representations. Decaying transmission nodes were less clustered in the

UMAP space than growth samples, explaining why static and decaying transmission samples

were more prone to misclassification. As expected, nodes with the same labels were better clus-

tered in DDF approaches.
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Model limitation analysis

In order to assess the limitations of the DeepDynaForecast model for future application to

structured datasets, we conducted a limitation analysis to determine the prediction accuracy

distribution over group size for each transmission dynamic category, wherein group size is

represented by the number of leaves within the phylogeny. The results demonstrate a consis-

tent reduction in accuracy across all risk groups with reduced group sizes. Specifically, the

DeepDynaForecast model requires a sample size� 30 individuals to achieve the proposed level

of accuracy across all three types of transmission dynamic (Fig 4A, left panel). We observed

that, while prediction of transmission growth was less sensitive to cluster size than prediction

of decay (� 20), accuracy dropped remarkably (< 20%) for sizes� 6 (Fig 4A, right panel).

Conversely, for decaying nodes, accuracy remained around 90% for group sizes > 6 and still

exceeded 60% in clusters of size� 6 or smaller (Fig 4A, middle panel), indicating a relative

robustness in prediction accuracy across different cluster sizes for prediction of transmission

decline.

Furthermore, we evaluated the model’s performance for individual risk group types, repre-

senting variations of the three categories of time-dependent transmission—static, growth, or

decay. Variations were derived from pre-defined transmission dynamic parameters during

data simulation (Supplementary S1 Table). In addition to linear growth and decline in

Fig 3. Figurative performance comparison of five models on combined ARI and TB test sets. A: Confusion matrices with row-wise

normalized elements. B: One-verse-rest receiver operator characteristic curve (ROC) for each class and a macro averaged ROC curve with

magenta dash lines. The corresponding AUCs are indicated for each curve. C: UMAP visualization of aggregation of learned node

representations in message-passing iterations. Plots were generated in randomly sampled 50 phylogenetic trees in ARI and TB test sets.

https://doi.org/10.1371/journal.pcbi.1011351.g003
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transmission rate (groups F and G), rates among static groups were allowed to vary by group

(ARI groups A-D, TB groups A-B) in order to determine the ability of the model to distinguish

high-rate static transmission from growing transmission over time and, conversely, low-rate

static transmission from decay. For the simulations, background nodes (nodes not assigned to

risk groups), which represented the majority of the infected population, were considered

group A and also exhibited static transmission. The model achieved optimal performance for

groups A, F, and G for ARI simulations but exhibited reduced performance for static transmis-

sion risk groups with rates varying from the background population (Fig 4B, left panel, and

Supplementary S4 Table). Evaluation of the TB/HIV co-infection data presented with similar

conclusions (Fig 4B, right panel), with optimal performance for groups A (background) and F

(growth) but poor performance for group B (static risk group), suggesting difficulties in distin-

guishing high-rate transmission from transmission rate growth and vice versa, regardless of

infection type (chronic, acute). Additionally, relatively poorer performance was observed for

group E (decay), consistent with the findings of the confusion matrix, though not below

(70%).

Transmission dynamics of the HIV epidemic in Florida

We next sought to apply the trained model to an HIV outbreak, for which both sequence and

patient data were available and for which distinct transmission dynamics were hypothesized to

be represented in the phylogeny. Persons living with HIV (PLWH), in general, are an ideal

example of a structured population with disproportionate transmission patterns across geo-

graphical regions and risk groups [31]. In 2017, rates of new HIV diagnoses in the United

States (U.S.) were highest in the southern region, where the state of Florida in particular

Fig 4. Sensitivity of the DeepDynaForecast model to cluster size and risk group transmission type. A: Balanced accuracy when predicting leaves

within groups of different external node sizes. Binned intervals for quantitative data were generated using eight quantiles. Left panel: model

performance among all groups. Middle panel: model performance on decaying clusters only. Right panel: model performance on growing clusters only.

B: Performance of varying risk groups in ARI and TB simulations (see Supplementary S1 Table).

https://doi.org/10.1371/journal.pcbi.1011351.g004
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exhibited the highest number of new diagnoses [31]. In 2019, the U.S. Department of Health

and Human Services released the federal plan for Ending the HIV Epidemic (EHE) within 10

years, identifying 48 counties with high incidences of HIV diagnoses, including seven urban

Florida counties as high-priority areas. Strategic interventions for these areas largely revolved

around building the capacity to detect and respond to ongoing and emerging clusters [32],

dependent on molecular epidemiology techniques. The Florida Department of Health

(FDOH) has been actively collecting partial HIV-1 polymerase (pol) genetic sequences from

surveillance laboratories since 2007 to attain an analyzable HIV nucleotide sequence within 12

months of diagnosis for>60% of persons diagnosed with HIV per year, culminating in a total

of 28, 098 partial HIV-1 pol sequences. Of these, 27, 115 (96.5%) were classified as subtype B

and used in previous clustering analysis by Rich et al. [19]. In the Rich et al. study, Microbe-

Trace [33] was used to identify potential clusters of transmission. For this clustering approach,

a pairwise genetic distance of 1.5% was used as a threshold, below which individuals were con-

sidered to be related via transmission chain or high-risk transmission group (Fig 5). Larger

transmission clusters, spanning 11–70 individuals, were prioritized and assessed for putative

risk factors using patient metadata provided from the FDOH. These data included year of HIV

genotype determination, year of birth, birth region, gender at birth, race/ethnicity, county of

Fig 5. Florida HIV-1 subtype B pol sequence phylogeny (2012–2017). The maximum likelihood phylogeny was generated as described in Rich et al.
[19] for 27, 115 partial pol sequences sampled from individuals across the state of Florida, for whom metadata were provided. County of residence,

categorized according to EHE prioritization, is shown in the corresponding heatmap. Cluster status for each external branch according to

MicrobeTrace [33] and dynamic prediction using the DeepDynaForecast are also shown. Branches are scaled in substitutions/site.

https://doi.org/10.1371/journal.pcbi.1011351.g005
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residence, and mode of transmission exposure. In this previous study, cluster size was inversely

associated with the age of cluster members, with a greater prevalence of younger PLWH

detected in the larger, prioritized clusters. Owing to the uncertainty surrounding the 1) thresh-

old values required for cluster identification and 2) cluster size cutoffs required to define larger

clusters, we sought to demonstrate the utility of DeepDynaForecast as an alternative, cluster-

agnostic tool that can clearly define transmission dynamics with anticipated risk group associ-

ations (in this case, age).

When DeepDynaForecast was applied to the Florida outbreak,� 40% of individuals were

classified as predictive of future growth or decline in transmission. It is important to note that,

similar to clustering methods, DeepDynaForecast assumes the majority of sampled individuals

within an infected population transmit at a constant, or static, rate, with a minority of individ-

uals demonstrating transmission growth or decay, relative to the majority (“background”)

population. In other words, DeepDynaForecast was trained on outbreak scenarios wherein

dynamic risk groups comprised the minority of the infected population. As a result,< 50% of

individuals were expected to contribute to non-static transmission. Among the previously

identified clustered sequences from this population, approximately 90.6% were considered to

be associated with future growth (Fig 6A), indicating the majority of the previously identified

clusters are associated with high-risk transmission. As DeepDynaForecast considers all leaves

for dynamic prediction, regardless of prior cluster assignment, we next sought to evaluate the

Fig 6. Relationship of predicted transmission dynamics with genetic clustering and patient risk factors. Transmission clusters were previously

identified in Rich et al. [19] using MicrobeTrace [33] and the corresponding information used herein to determine the percentage of clustered

sequences classified according to prediction category (A), as well as the percentage of predicted categories represented among clustered sequences (B).

A multivariate logistic regression model was used to identify predictors for each transmission category, regardless of clustering status (C). Only risk

factor categories with significant or marginally significant predictors are depicted, with the exception of the inclusion of county of origin, owing to its

importance in clustering [34]. A linear regression model, treating prediction categories as ordinal, was used to quantify the relationship between year of

birth of individuals and prediction status (D). Prediction categories refer to growth, decay, or static transmission relative to the background, or

majority, infected population and were determined using the trained PGLSTM model implemented in DeepDynaForecast.

https://doi.org/10.1371/journal.pcbi.1011351.g006
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converse—not surprisingly, < 38% of leaves within the tree predicted by DeepDynaForecast to

contribute to future growth were previously designated as clustered sequences (Fig 6B). These

results indicate the majority of sequences potentially contributing to increased transmission

have no clear epidemiological linkage that would result in clustering and would consequently

not be considered prioritized individuals using a clustering algorithm alone. An even lower

percentage (< 2%) of nodes predicted as declining in transmission rate correspond to previ-

ously identified clusters, suggesting transmission cluster identification may not be sufficient

for identifying dynamic transmission patterns and high-priority groups for public health

interventions.

We next applied a multivariate, logistic regression model to determine if transmission

dynamics could be explained by 1) cluster size and 2) available risk factors, regardless of cluster

affiliation. Cluster size was significantly associated (p< 5 × 10−8) with transmission dynamics

—individuals within previously identified larger clusters (median of 11 individuals, Supple-

mentary S5 Fig) tended to be predicted as contributing to transmission growth, whereas pre-

dicted static and decaying transmission were associated with smaller clusters (median of 5 for

both). Importantly, however, decaying clusters contained groups of individuals as large as 37,

indicating size alone is not an accurate predictor of transmission dynamics (Supplementary S5

Fig). Turning to the demographic data, despite EHE prioritization based on incidence, EHE

county status was highly mixed within the phylogeny (Fig 5) and not considered a significant

predictor for transmission dynamics (Fig 6C). Race/ethnicity was, however, considered a sig-

nificant predictor (p< 0.05) for all three dynamic statuses. Gender demonstrated similar asso-

ciation patterns, though was not considered significant. Lastly, as expected, date of birth

(DOB) was also considered a significant predictor (p< 0.05) for transmission growth and

decline, increasing in significance when considered in the context of all dynamic prediction

categories in an ordinal regression model (β = 0.78, p = 0) (Fig 6D). Individuals over 55 years

of age (median) were predicted to contribute to slowed transmission, whereas transmission

growth was prominent among individuals under the age of approximately 39 years (Fig 6D).

Discussion

DeepDynaForecast is a method based on graph neural network (GNN) principles capable of

learning subtle topological patterns within a phylogenetic tree and their association with

underlying transmission dynamics. When applied to outbreaks representing both acute and

chronic pathogenic infections, DeepDynaForecast predicted with 91.6% accuracy the dynamics

of transmission clusters within >15, 000 simulated outbreak phylogenies, where 91.9% and

93.0% of lineages contributing to transmission growth and decline, respectively, were identi-

fied successfully. Training of the model using stochastic transmission rates and mixed infec-

tion types enhanced not only overall performance in comprehensive scenarios but also

performance when applied to individual outbreaks separately.

Results of performance validation indicate that DeepDynaForecast is a promising tool for

transmission characterization in a complex outbreak scenario, though limitations notwith-

standing. Validation in this study was restricted to simulated data, which represents not only a

limitation to the study but, importantly, a limitation in the reaches of public health. Sequence

datasets such as the HIV outbreak in Florida described herein exist in abundance, for which

inferences regarding formation of transmission clusters and epidemiologically relevant param-

eters are made. At the opposite end of the spectrum, contact tracing provides ground truth

information regarding transmission chains and detailed information as to rates of secondary

infections for individuals within those chains. Integrated studies combining these two data cat-

egories—genetic sequences and secondary infections—especially at the level required for
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outbreak inference, do not exist owing to the extensive workforce and time required for case

investigation and tracing. Though an obvious limitation, the lack of existence of these data

reinforces the need for models such as DeepDynaForecast. Whereas empirical data will always

be encouraged, we have demonstrated improved performance of this model achieved with

increasing diversity and complexity of the simulations, representing other types of pathogen

infection and non-linear transmission dynamics among risk groups.

For sequencing and demographic data collected through molecular surveillance, cluster-

ing approaches are commonly used to identify groups at risk of continued transmission,

with a focus on larger clusters. Commonly used distance-based clustering approaches, such

as HIV-TRACE [8] and MicrobeTrace [33], rely on pre-determined genetic distance thresh-

olds and cannot discriminate groups that represent an increasing risk of transmission from

those that show signs of waning transmission. Previous studies have investigated the applica-

tion of CNNs to genetic distance matrices in predicting infection outbreaks without pre-

defined thresholds [10]. However, this approach was concentrated on determining whether

individuals are “active” or “inactive” in the context of transmission, falling short of effectively

capturing the dynamic changes in populations that can be inferred using phylogenies. Other

dynamic forecasting models have been applied specifically to phylogenies and demographic

information, which focus only on forecasting growth [9, 14–16] and, again, assume a popula-

tion structured according to risk groups identified via clustering thresholds. Moreover,

growth in these models is defined in terms of number of infected individuals, rather than as

a function of transmission rate and so may not capture risk groups for which the transmis-

sion rate itself has recently increased, owing to, for example, transient behavioral changes.

Alternatively, DeepDynaForecast relies solely on the data contained within the given phylog-

eny (i.e., no thresholds) and focuses on identification of individuals, rather than clusters,

that exhibit the potential for future transmission dynamics, inclusive of both growth and

decline.

As a result of the differences described above, when applied to an HIV outbreak in the

state of Florida from 2012–2017, DeepDynaForecast proved capable of corroborating funda-

mental findings of previous studies but also alluded to a more informative method compared

to previous risk group identification through genetic clustering alone. Classification of pre-

dicted transmission growth was prevalent among sequences previously identified as belong-

ing to transmission clusters by Rich et al. [19]. In particular, the statistical association of

predicted transmission growth with larger clusters (>11 individuals) suggests a reasonable

rationale for CDC prioritization of larger clusters and is indicative of groups for whom trans-

mission is largely uncontrolled through existing public health approaches. However, as the

majority of sequences classified as “growing” according to DeepDynaForecast had no clear

epidemiological links (i.e., were unclustered), the utility of transmission cluster identification

in identifying high-priority groups for public health interventions may be severely limited.

An even smaller percentage (< 2%) of nodes classified as decaying, or slowing, transmission

were defined as previously clustered individuals, suggesting that interventions may be work-

ing for certain populations, but our knowledge of these groups may again be limited by our

inability to detect them with existing clustering approaches. It is important to reiterate here

that variation may exist between performance of the model on simulated and empirical data,

potentially resulting in an unknown degree of false positive dynamic predictions. Addition-

ally, given the reduced accuracy for risk groups comprised of < 20–30 individuals, the poten-

tial for misclassification of high-rate, static transmission as growth and low-rate, static

transmission as decline is of significance. Lastly, whereas the model was trained on known

phylogenetic data, phylogenies reconstructed from genetic sequence data such as in this sce-

nario are considered estimates with varying uncertainty surrounding contextual placement
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within the tree, which can influence dynamic prediction. These misclassifications should

not, however, be discarded so easily. For example, high-rate transmission, even when static

over time, is a concern from a public health point of view.

Regardless of the true degree of uncertainty surrounding the Florida HIV outbreak, the

associations of age and racial/ethnic group with predicted transmission dynamics within the

HIV data are consistent with prior cluster-based prioritization. These findings once again

present a message of existence of disproportionate treatment allocation, potentially unrelated

to geographical residency within Florida, despite prioritization of specific counties according

to HIV incidence as part of the End HIV Epidemic program, as these counties collectively

were not considered a significant predictor for transmission dynamics. We elected not to pro-

vide the effect ratio among sociodemographic groups because it could be subject by confound-

ing or selection bias, which is not possible to determine within the current framework. We

recognize the importance of surveillance data for informing public health policy [35, 36], and

we believe that in the principle of beneficence there is a tangible public health benefit in per-

forming research using surveillance data, but we also believe that it is of utmost importance to

report results to avoid misinterpretation and risk of harm.

Methods

Ethics statement

The authors abide to the Declaration of Helsinki. The study protocol was approved by the Uni-

versity of Florida’s Institutional Review Board (IRB) and by FDOH’s IRB (protocol no.

IRB201901041 and 2020–069, respectively) as exempt.

Simulation of dynamic transmission risk groups

Simulation of early-midway epidemic outbreaks was performed using the nosoi [37] agent-

based stochastic simulation platform, which is designed to take into account the influence of

multiple variables on the transmission process (e.g., population structure and dynamics) to

create complex epidemiological simulations. The stochasticity of parameterization further dis-

courages over-fitting of the model to the simulated data. Beginning with a single infected indi-

vidual, rate of transmission of infection to susceptible individuals varied according to two

scenarios—1) transmission of an acute infectious respiratory virus (ARI) or 2) transmission of

Mycobacterium tuberculosis (TB) among populations of HIV-infected or HIV-uninfected indi-

viduals, as described in [38]. Specific paramaters for each outbreak scenario are described in

more depth below.

Simulation of a structured ARI outbreak. For the simulated ARI outbreak, rate of trans-

mission from an infected individual to a susceptible individual was dependent on the follow-

ing: 1) the time since initial infection, 2) time duration of infection, 3) number of contacts

with susceptible individuals, 4) probability of infection, and 5) the risk group to which the sus-

ceptible individual belongs (Supplementary S1 Table). Incubation periods were specified fol-

lowing infection, during which infected individuals were not permitted to transmit (i.e., zero

probability of infection transmission). Individuals were removed from the simulation after an

infectious period of * 14 days.

Individuals within the simulation were categorized as belonging to the majority, back-

ground population (A) or a minority, risk group subpopulation (B-G). Each simulation began

with a single infected, background individual and the subsequent infection of another back-

ground individual. Following this event, the probability of infection of a background individ-

ual was maintained at 1.8 × 10−3, relatively higher than that of the individual risk groups. This

rate was chosen to ensure risk groups did not exceed the background population in number.
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The probability of infection was allowed to vary according to risk group, with one stipulation

—the probability of infection of dynamic risk groups (growth and decline) was two-fold rela-

tive to static groups, owing to their lower representation (2:4, Supplementary S1 Table). Fol-

lowing initiation of infection of a single individual within a risk group, transmission was

isolated to the risk group (i.e., probability of zero for infecting an individual in another risk

group or background population).

The number of contacts per infected individual varied according to 1) risk group and 2)

number of individuals currently infected within that group so as to allow for varying transmis-

sion dynamics over time and across risk groups. The number of contacts for groups A-E were

picked from a normal distribution with group-specific means and standard deviation, repre-

senting groups for which the rate of secondary infection (Re) remained steady, or static. The

number of contacts for F and G, however, were derived from the following linear function:

N ¼ rhþ N0; ð1Þ

where N0 is the initial number of contacts, and r is the rate of change dependent on the current

number of actively infected hosts in the simulation (h). Group F was considered to be

experiencing an increasing rate of growth in transmission over time, whereas G was consid-

ered to be decaying over time (Supplementary S1 Table). Multiple static transmission risk

groups were also incorporated with varying contact parameters in order to determine the abil-

ity of the model to distinguish high-rate, static transmission from transmission growth and

vice versa. Each of a total of 10, 000 simulations was run for 365 days or until a total of 10, 000

hosts were infected.

Simulation of a structured TB/HIV outbreak. A previously described co-infection out-

break model describing the impacts of HIV infection on the spread of TB was adapted herein

from Goldstein et al. [39]. Briefly, the mean incubation period, though more appropriately

referred to as the latent period for TB, was 9 months among hosts that became infectious, and

the mean infectious period was 3 months.

Similar to ARI simulations, individuals within the simulation were categorized as belonging

to the majority, background population (A) or a minority, risk group subpopulation (B, F, and

G). Each simulation also began with a single infected, background individual and the subse-

quent infection of another background individual. Following this event, the probability of

infection of a background individual was 1.8 × 10−3. Infection probability was also allowed to

vary according to risk group; however, unlike the ARI outbreak, transmission to individuals

outside of each risk group was permitted. Two main risk groups were included, representing

TB-infected individuals living with or without HIV. These groups were further split into static

and dynamic transmitting groups. Based on a reported average of 53% percent of infection

recipients harboring HIV [39], infection rate for HIV risk groups A and D were 0.53/

2 = 26.5%. Remaining non-HIV-infected risk groups B and E comprised the remaining 47%

(equally represented).

Similar to ARI simulations, the number of contacts per infected individual varied according

to risk group and number of individuals infected within that group so as to allow for varying

transmission dynamics over time and across risk groups. The number of contacts for groups A

and B were picked from a normal distribution with group-specific means and standard devia-

tion, representing groups for which the rate of secondary infection (Re) remained steady, or

static. Group F was considered to be experiencing an increasing rate of growth in transmission

over time, whereas G was considered to be decaying over time (Supplementary S1 Table).

Group B was thus considered to exhibit static transmission. Each of a total of 10, 000 simula-

tions was run for 8 years or until a total of 10, 000 hosts were infected.
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Reconstruction of sampled transmission tree from simulated outbreaks. Recipients

were only sampled during their infectious periods, with the sampling time equally likely at

any point in this time frame. Only simulations where at least 50 individuals were infected

were accepted. Remaining risk groups were sampled randomly, ranging in frequency from

20- 100% of the original risk group population. The background population was also down-

sampled at a frequency of 20%, representing a more realistic surveillance scenario. Hosts not

included within this sample were pruned from the full tree to obtain the final set of simulated

trees used for tree statistic calculation and deep learning models. A relaxed molecular clock

(evolutionary rate in time) was assumed, and branch lengths were scaled in time (substitu-

tions/site/year) using a uniform distribution rate multiplier (� U 8� 10� 4; 0:001
� �

), allow-

ing for both genetic distance and time to be used as distinct weights in the neural network

models.

In this study, 10, 000 simulations beginning with a single infected individual were per-

formed on ARI and TB individually, resulting in 8, 574 and 7, 182 successful outbreaks, respec-

tively. In ARI simulations, phylogenetic trees include 33, 713, 775 nodes. Nodes are in three

main categories—static, growing, or decaying—based on pre-defined transmission dynamics

in the simulation (Supplementary S1 Table), resulting in 31, 920, 116 static, 589, 119 decay and

1, 204, 540 growth samples. For TB simulations, 7, 182 trees include 21, 417, 772 edges and 21,

424, 954 nodes with 20, 884, 036 static, 51, 419 decay, and 489, 499 growth samples. Tree files

can be downloaded from the Github repository (https://github.com/lab-smile/

DeepDynaForcast).

Simulation data pre-processing and augmentation

Due to the highly unbalanced input distribution among the three classification categories (see

Supplementary S2 and S4 Figs for details), the data represents a realistic scenario in which

sampling is biased according to prevalence within the population. Nevertheless, the data was

redistributed for model development using a tree-based random split method with a 60%-

20%- 20% ratio. This approach ensures that all nodes of a single phylogenetic tree are only

allowed to be split into either the training, validation, or test subset with the proposed proba-

bilities, preventing data leakage. Before feeding the data into the learning algorithms, we per-

formed data pre-processing for raw inputs. For edge features (See Supplementary S2 and S3

Tables), we first applied an inverse hyperbolic sine (ArcSinh) transformation, approximating

the natural logarithm of raw values while retaining zero-valued observations, followed by z-

score normalization. Due to the difference on the unit of ARI and TB trees, the normalization

was performed on each dataset individually. Node features were not available from the simula-

tions but are necessary for DeepDynaTree modeling. Therefore, we randomly initialized fea-

tures of size 16 during the training process to improve model robustness and used fixed zero

vectors when testing.

Graph neural network models are limited to emerged nodes in transmission risk groups.

To enhance the model’s performance in the early stages of outbreaks with small groups, we uti-

lized a data augmentation strategy for the training data. In each generated group, branches

were chopped at a random chopping rate ranging from 0–100%, prioritizing nodes close to the

simulation’s end. This downsizes the number of nodes in each cluster, allowing the model to

focus on forecasting small group dynamics. The distributions of edge features after pre-pro-

cessing and data augmentation are summarized in Supplementary S2 and S3 Tables and Sup-

plementary S1 and S3 Figs.
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DeepDynaForecast modeling

DeepDynaForecast is developed to utilize the topological information and branching patterns

within the phylogeny, including genetic distances, to predict the dynamics of external nodes

successfully. The phylogenetic tree is modeled as a bi-directed graph, and our model predicts

the dynamic status of leaves. The following sections introduce two major components—pri-

mal-dual learning structure and cross-layer predictions.

Primal-dual graph LSTM module (PDGLSTM). The PDGLSTM [28] constructs a dual

graph (i.e., line graph) of the phylogenetic tree, where the nodes and edges correspond to the

tree’s branches and nodes respectively. The PDGLSTM processes both the original (primal)

and dual graphs, learning node and edge representations concurrently by applying Graph

LSTM (GLSTM) models.

The GLSTM integrates a Long Short-Term Memory (LSTM) model to learn sequential rep-

resentations that emerge from several message-passing iterations. As depicted in Fig 2, each

edge and node aggregates the representations of adjacent nodes or edges. The neural networks

ϕE and ϕN encode these aggregates into low-dimensional messages. These messages are then

fed into their corresponding LSTM modules to facilitate the update of node and edge

representations.

Formally, given the node representation vli of node i at l-th layer and its aggregated message

mi, the node representation is updated according to the LSTM updating rule:

ili ¼ sðW
n
iim
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ii þWn
hiv
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In these equations, Wn
ix, b

n
ix, W

n
hx and bn

hx are model parameters for x 2 {i, f, g, o}. ili; f
l
i; g

l
i; o

l
i rep-

resent the outputs of input gate, forget gate, memory cell and output gate, and σ(�) denotes sig-

moid function. Both ci and vi are randomly initialized. Similarly, the edge representation elij at

layer l is updated via an Edge-LSTM model:

elþ1
ij ¼ LSTMedgeðml

ij; e
l
ijÞ; ð3Þ

where the mij represents the aggregated message for edge eij and the detailed computation of

LSTM is as same as Eq 2, except replacing the node inputs with the edge and its associated mes-

sage information. In our setting, both Node-LSTM and Edge-LSTM models are configured to

have hidden sizes of 128.

Low-dimensional messages are derived by aggregating the representations of adjacent

nodes and edges. For example, for node i, the aggregated message mi is created by applying the

neural network ϕN to the representations of inbound edges and the node itself:

ml
i ¼ LeakyReLU WN vl

i;
1

Ni

X

j:j!i

elji

" #

þ bN

 !

; ð4Þ

Here, j! i symbolizes all inbound edges to node vi, and [�, �] signifies vector concatenation.
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W and b are learnable parameters, mapping the concatenated vector from 2 � 128 = 256

dimensions to a 16-dimensional space.

Similarly, the message information mij for edge eij is generated by ϕE:

ml
ij ¼ LeakyReLUðWE½v

l
i; e

l
ij;v

l
j� þ bEÞ; ð5Þ

This is achieved by using the representations of edge eij and its neighboring nodes i and j.
Cross-layer Prediction module (CLP) and dynamic prediction. Upon completing L

message-passing iterations, the Cross-layer Prediction (CLP) module predicts the dynamics of

leaf nodes while masking the internal nodes during this prediction phase. A series of neural

networks, denoted as ψL, are utilized to predict the leaf node dynamics. These networks use

various levels of node representations, v. To enhance the robustness of the final result, this pro-

cess is accompanied by dropout layers and summation operations:

vi ¼
XL

l¼1

DropoutðWl
Lv

l
i þ b

l
LÞ; ð6Þ

In this equation, parameters Wl
L and bl

L are associated with the network c
l
L for the node repre-

sentation at the l-th layer. L represents the number of message-passing iterations.

The PDGLSTM accumulates extensive information from multi-hop neighboring nodes and

edges through iterative application of the primal-dual message passing and state updating

steps. This process results in an enhanced, highly informative node representation for the final

prediction. In our configuration, the message-passing steps were repeated 30 times. This

means the receptive field of each node spans up to 30-hop neighboring nodes and edges. The

consolidated node representation, vi, is subsequently processed by a softmax layer to produce

the final prediction. The performance of our model with various selections of L is detailed in

the Supplementary S5 Table. A noticeable performance gap is evident when L is set to< 30.

For models where L> 30, we observed comparable performance levels, albeit at the expense of

increased computational costs. Taking both performance and computational efficiency into

account, we have chosen L = 30 as the optimal setting for our final model. Additionally, this

table highlights the significant role of dropout layers in enhancing our model’s predictive

accuracy.

Model evaluation metrics

In this study, our proposed DeepDynaForecast was comprehensively evaluated on six perfor-

mance metrics, including balanced accuracy, precision, F1-score, area under the receiver oper-

ator characteristic curve (AUROC), Brier score (BS), and Cross-entropy (CE). Precision,

F1-score, and AUROC are broadly used measures of the discriminability of a pair of classes.

To deal with the multi-class case, we first generated the metric values for each class in a one-

vs-rest manner and then averaged them with equal weights to give the same importance to

each class. Considering the highly unbalanced label distribution in our data set, equally averag-

ing the metrics over all classes instead of weighted averaging by the reference class’s prevalence

in the data can effectively avoid overestimating the models that only perform well on the com-

mon classes while performing pooling on the rare classes. This equally averaging strategy is

also named macro-average. The balanced accuracy is defined as the average of recall obtained

on each class [40]. Besides the above metrics calculated based on the “hard” classification

results (i.e., final category information only), we also measured the BS and CE to evaluate the

models’ “soft” predictions, wherein the metrics were calculated on the prediction probabilities.
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Eq 7 illustrates the definition of weighted BS and weighted CE values,

BS ¼
XN

n¼1

1

K∗NCn

XK

k¼1

ðynk � ŷnkÞ
2
;

CE ¼ �
XN

n¼1

1

K∗NCn

XK

k¼1

ynklogðŷnkÞ;

ð7Þ

where ŷnk denotes the predicted probability of sample n for label k, and ynk is the ground truth

with binary value. Cn represents the class of sample n. N is the number of samples in the data

set and K is the number of classes where it equals to 3 in our case. Lower BS and CE values

thus indicate better prediction performance.

GCN and GIN baseline models

We selected Graph Convolutional Network (GCN) [29] and Graph Isomorphism Network

(GIN) [25] as two baseline models in the dynamic prediction task and trained them on combi-

nation of ARI and TB datasets. To ensure a fair comparison, we configured the number of lay-

ers to be 20 and set the hidden size at 128. These configurations align with the

hyperparameters used in the DeepDynaForecast. For GIN, we employed summation as the

aggregation type and initiated the � value at 0.

Visualizing node representations with UMAP Projection

We used the Uniform Manifold Approximation and Projection (UMAP) [30] 2D projection to

visualize the node representations learned from the DeepDynaForecast architecture. We

concatenated the hidden representation of nodes from each message-passing iteration into a

vector with a size of 20 � 128 = 2560 and selected the top-100 principal components to feed

into the UMAP calculation. For the GCN and GIN baseline models, we employed the node

representations from just before the last classification layer in the UMAP projection

calculations.

Implementation details

This section introduces the implementation details of DeepDynaForecast models. A weighted

Cross-entropy loss with inversely proportional to class frequency weights was applied for

model optimization. Hyper-parameters of all the methods were extensively optimized on the

same validation set for a fair comparison. The model took approximately 1 day to train for

around 100 epochs with mini-batch of size 4. An adam optimizer was used for training with an

initial learning rate 1 × 10−3, and 90% reduction was applied to the learning rate if the valida-

tion loss did not improve in the consecutive 50 epoches until reaching the the minimum value

1 × 10−4. We finetuned all the hyper-parameters on the validation data set. All experiments

were performed on a workstation with 12 Intel Core i7–5930K CPUs and a single Nvidia

GeForce GTX TITAN X GPU card.

Supporting information

S1 Fig. Distribution of the edge features on ARI simulations. a, and b, are distributions of

the raw edge features: time and genetic distance. c, and d, are distributions of the edge features

processed by an ArcSinh transformation and a z-score normalization.

(TIFF)
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S2 Fig. Label distribution on ARI simulations. a-c are histograms of the number of static,

decay, and growth nodes among the trees, and d-f show the distribution of classes’ ratio. Plot g

is the histogram of the number of nodes on the trees.

(TIFF)

S3 Fig. Distribution of the edge features on TB simulations. a, and b, are distributions of the

raw edge features: time and genetic distance. c, and d, are distributions of the edge features

processed by an ArcSinh transformation and a z-score normalization.

(TIFF)

S4 Fig. Label distribution on TB simulations. a-c are histograms of the number of static,

decay, and growth nodes among the trees, and d-f show the distribution of classes’ ratio. Plot g

is the histogram of the number of nodes on the trees.

(TIFF)

S5 Fig. Cluster sizes for clustered sequences identified as predictive of decaying, static, or

growing transmission according to DeepDynaForecast. Sequences were clustered previously

by Rich et. al. [19].

(TIFF)

S1 Table. Simulation information for each outbreak and risk group.

(PDF)

S2 Table. Summary statistics for edge features in ARI.

(PDF)

S3 Table. Summary statistics for edge features in TB.

(PDF)

S4 Table. Performance for DDF_ARI_TB. We evaluated the performance of DDF_ARI_TB

on different risk groups, including background leaves only (Background leaves), leaves identi-

fied as high-risk groups (Risk group leaves), and a combination of them (All leaves). For clus-

ter leaves and all leaves, to mitigate the impact of unbalanced label distribution, metrics—

including accuracy, F1-score, precision, and area under the receiver operating characteristic

(AUROC)—were uniformly aggregated across the three classes. Weighted Brier score (BS) and

weighted Cross-entropy (CE) were calculated based on predicted probabilities adjusted by the

inverse prevalence of classes, providing “soft” evaluations of the models. As all background

leaves are static, only accuracy, BS, and CE are shown here. For each testing dataset, models

were assessed on ARI trees, TB trees, and a combination of both.

(PDF)

S5 Table. Performance for DDF_ARI_TB with different recursive depth L and ablation

study on dropout layers for L = 30.

(PDF)

S6 Table. Performance for DDF with different training data composition. We assessed the

performance of the DDF model using six training datasets: half of the ARI dataset (2572 ARI),

the entire ARI dataset (5144 ARI), a combination of half of the ARI dataset and an equal num-

ber of TB data (2572 ARI + 2572 TB), half of the TB dataset (2154 TB), the full TB dataset

(4308 TB), and a mix of half of the TB dataset with an equivalent quantity of ARI data (2154

ARI + 2154 TB). The second column in our results indicates the specific testing dataset used

for evaluating the models.

(PDF)
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