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Abstract

A pedestrian crossing a street during rush hour often looks and listens for potential danger.
When they hear several different horns, they localize the cars that are honking and decide
whether or not they need to modify their motor plan. How does the pedestrian use this audi-
tory information to pick out the corresponding cars in visual space? The integration of distrib-
uted representations like these is called the assignment problem, and it must be solved to
integrate distinct representations across but also within sensory modalities. Here, we iden-
tify and analyze a solution to the assignment problem: the representation of one or more
common stimulus features in pairs of relevant brain regions—for example, estimates of the
spatial position of cars are represented in both the visual and auditory systems. We charac-
terize how the reliability of this solution depends on different features of the stimulus set
(e.g., the size of the set and the complexity of the stimuli) and the details of the split repre-
sentations (e.g., the precision of each stimulus representation and the amount of overlap-
ping information). Next, we implement this solution in a biologically plausible receptive field
code and show how constraints on the number of neurons and spikes used by the code
force the brain to navigate a tradeoff between local and catastrophic errors. We show that,
when many spikes and neurons are available, representing stimuli from a single sensory
modality can be done more reliably across multiple brain regions, despite the risk of assign-
ment errors. Finally, we show that a feedforward neural network can learn the optimal solu-
tion to the assignment problem, even when it receives inputs in two distinct representational
formats. We also discuss relevant results on assignment errors from the human working
memory literature and show that several key predictions of our theory already have support.

Author summary

Human and animal behavior relies on the integration of distinct sources of information
about the same objects in the world—for instance, social behavior requires the correct
integration of people with their words, even when multiple people are talking over each
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other. We formalize this integration process and show that it relies on at least partial
redundancy between these different sources of information. In the case of integrating
vocalizations with their source, this redundancy could be provided by the distinct repre-
sentations of spatial position in the visual and auditory systems. Then, we show that the
necessity of this integration process produces a trade-off between the representation of
redundant information (for reliable integration) and the representation of non-redundant
information (which is to be integrated), with implications for modular organization in the
brain. Finally, we show that a simple feedforward neural network can integrate as reliably
as predicted by our theory—as well as make predictions from our theory that can be tested
in neural data. Overall, this work provides insight into how the brain makes sense of its
distributed and sometimes distinct representations of the world.

1 Introduction

Coherent behavior in complex natural environments requires extensive and reliable integra-
tion of different forms of information about the world. For instance, a pedestrian crossing a
crosswalk during rush hour attends to the flow of traffic around the intersection—if they hear
honking, it is important to quickly localize that honking to cars in visual space and decide
whether they need to change their motor plan. While navigating cluttered multisensory envi-
ronments like this one often appears effortless for humans and other animals, it requires two
highly non-trivial computations: Object segmentation and representation assignment. For
object segmentation, the continuous sensory world must be segmented into distinct objects—
that is, each car has to be recognized as a distinct entity, separated from both the other cars
and background objects, such as buildings. The primitive rules that humans and other animals
use to segment objects have been studied extensively as part of gestalt psychology [1] and
related subfields [2, 3], as well as in machine learning [4, 5]. In the brain, this segmentation
process is thought to be represented by border ownership cells, such as those observed in the
primate visual system [6, 7]. However, even once this difficult object segmentation problem is
solved, the resulting object representations are often still incomplete: An object representation
in one brain region contains only a part of all the information about that object that is present
in the entire brain. The integration of these distributed representations is referred to as repre-
sentation assignment [8]—and is analogous to the extensively studied assignment problem
from combinatorial optimization [9]. In the example above, the representations of the cars
from the visual system need to be integrated with the representations of the cars from the audi-
tory system, as both sensory systems provide information that is necessary to guide the pedes-
trian’s motor plan.

The integration of these distinct, parallel representations of the world has been previously
studied in three principle ways. First, the integration of distinct features within the visual sys-
tem has been studied in the context of feature integration theory [10, 11]. In feature integra-
tion theory, spatial attention is used to bind features together due to their spatial proximity.
Spatial attention is deployed to different locations in sequence and only a single object is
bound at a time. However, experimental work has shown that errors can occur in this inte-
gration process [12, 13], in which some of the features from two different locations are
assigned to each other. We refer to these kinds of errors as an assignment errors, though they
are also referred to as illusory conjunctions, swap errors, and misbinding errors. Assignment
errors produce representations—such as a barking cat and meowing dog, see Fig 1 A—that
can be particularly catastrophic for coherent behavior. While feature integration theory
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Fig 1. The assignment problem arises from distributed representations of multiple stimuli. A A schematic of the assignment problem. The
brain receives both visual and auditory information about a dog and a cat, this information is initially separated in the brain. When combining
the two sets of representations (auditory and visual), there are two possible integrations, one that correctly reconstructs a barking dog and
meowing cat (left) and the other that incorrectly constructs a barking cat and meowing dog (right). The right is an example of an assignment
error. B Schematic of the assignment process as selecting a mapping between two sets of representations. C (left) The assignment problem can
be solved by the representation of a common stimulus feature in both brain regions. In our example, the auditory (top) and visual (bottom)
representations can be integrated through a shared representation of azimuthal position (the shared x-axis). (right) The N x N cost matrix (here,
each element is given by the distance in the shared feature space across representations from the two regions) for the correct (top) and incorrect
(middle) mappings. The most likely assignment minimizes the trace of the matrix (bottom). D Assignment errors occur when the estimate of
the common feature value for two stimuli cross over each other in one region, but not the other (middle, red arrow). The distribution around
each point is the local MSE (Dx and Dy). E (left) The probability that this crossing over occurs is high for nearby stimuli and low for distant
stimuli, and increasing estimator variance makes assignment errors more likely at all distances. (right) For stimuli that are uniformly distributed
in the full feature space, the distance between pairs of stimuli follows a triangular distribution with one commonly represented feature (C =1). F
The overall assignment error rate is the product of the two functions on the left—the assignment error probability at each distance weighted by
the probability that there is a pair of stimuli at that distance. Dashed line: theory from Eq 3; solid line: simulations.

https://doi.org/10.1371/journal.pchi.1011327.9001

provides a qualitative description of the assignment process using a common representation
of spatial position to link different feature representations together, it does not provide a
mechanistic explanation of how assignment errors depend on the qualities of the underlying
neural representations.
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Second, related to feature integration theory, the assignment problem has been studied as
part of the literature on working memory capacity. Here, participants are asked to remember
an array of multi-feature stimuli (e.g., oriented and colored bars at different spatial locations)
across a delay period, before being cued by a single feature (e.g., position) to report one of the
other features (e.g., color) [14-17]. In this setting, the cue must be assigned to the correct
representation from the set of remembered stimuli. Here, the assignment problem is solved
across two distinct time points rather than two distinct brain regions, but the underlying prin-
ciples are the same. This literature shows that assignment errors increase with the number of
stimuli that need to be remembered [15, 16] and that they become more likely when remem-
bered stimuli are close together in the feature that is used to cue a stimulus for report (from
above, spatial position) [16, 17]. The assignment error rate also depends on the precision of
the representation of the cued feature [17]. Further, a neural model has been developed to
explain these behavioral findings, which links the assignment error rate to neural population
codes [16]. Our work builds on the theoretical work from the time-assignment setting by con-
sidering multiple common (i.e., cue) features [18] (but see [19]), as well as through its focus on
assignment across (and within, as in feature integration theory) distinct brain regions at a sin-
gle time point.

Third, representation assignment has also been studied in the context of multisensory inte-
gration [8, 20-23]. In this literature, both experiment and theory have primarily focused on
the integration of multisensory representations of a single stimulus. This work has demon-
strated that shared information is crucial to reliable integration. In particular, integration of
auditory and visual information appears to rely on the shared representation of azimuthal
position derived from both sensory systems [21]. That is, whether or not an auditory and visual
stimulus are integrated depends on the variance in estimates of azimuthal position from both
sensory systems [21]. We refer to the variance of estimates from these individual representa-
tions as the local variance.

Here, we extend this analysis to sets of multiple objects and develop a general framework
that demonstrates how the likelihood of assignment errors depends on the number of com-
mon features that are represented across multiple brain regions (such as azimuthal position)
and the local variance of those feature representations. We show that there is a tradeoff
between highly redundant representations that produce low assignment error rates, but higher
local variance, and less redundant representations that risk more assignment errors but have
generally lower local variance. To make this tradeoff concrete, we analyze a receptive field
model of neural representations, similar to those found in many sensory areas [24-28] and
related to models explored in the working memory literature [16]. With this model and when
keeping constant the total metabolic resources (i.e., number of neurons and spikes) used by
the model, we show that the lowest total error (combined local variance and assignment
errors) can sometimes be achieved by systems that split into distinct modules, despite the fact
that such systems risk assignment errors. Thus, our framework provides a potential explana-
tion for the extensive modularity and parallel processing thought to exist in the primate visual
system [29-32] and other sensory systems [33-36]. Finally, we demonstrate that the assign-
ment problem can be solved optimally by a feedforward neural network. In the feedforward
network, we also show how the integrated stimuli can be reliably represented: through nonli-
nearly mixed representations of the integrated features, which follows from previous work on
representations of multiple stimuli [16, 37, 38]. Finally, we discuss predictions for neural data,
and link our results in more detail to behavioral results from the human working memory lit-
erature. Overall, this work demonstrates a general solution to the representation assignment
problem, which arises whenever a distributed neural system represents multiple stimuli—
within single brain regions, across parallel brain regions, and across different time points.
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2 Results
2.1 Redundant information is necessary to solve the assignment problem

Here, we investigate the assignment problem that arises when each of N stimuli have represen-
tations that are split across two brain regions, Ry and Ry—in combinatorial optimization, this
is referred to as the balanced assignment problem [9]. We want to correctly integrate the dis-
tributed representations of these N stimuli, which we formalize as finding the correct one-to-
one mapping between the representations in Ry and the representations in Ry. To give an
example: a dog and a cat will be represented in at least two distinct regions of the brain, an
auditory region Ry and a visual region Ry (Fig 1a). The set of representations in Ry, referred to
as X, will consist of representations of each of the animals’ vocalizations—similarly, ¥ in Ry
consists of representations of each animals’ visual features (see Methods in Definition of the
representations for more details). Many behaviors rely on integrated information about both
the visual features and vocalizations of the animals (for instance, when deciding which animal
to approach, it is useful to know whether they are barking or meowing).

So, we want to choose the correct one-to-one map M between X and Y (Fig 1b). We show
that if X and Y are independent, then all maps are equally likely (see Methods in Definition of
assignment errors). In this case, assignment errors will occur with probability 1 — 1/N!. Thus,
redundancy between the representations in Ry and Ry is necessary to reliably solve the assign-
ment problem. More concretely, the case where X and ¥ are independent would be like the
case where, in a working memory study similar to the ones discussed in the Introduction, we
ask the participant to remember the color and orientation of a collection of bars, then cue
them with a spatial frequency. Without additional instruction or extensive learning, the partic-
ipant could do no better than chance—just as our system here could solve the assignment
problem no more reliably than by guessing.

The required redundancy can take many forms. We will focus on the case where the redun-
dancy manifests as a linear dependence between some of the features represented in Ry and
some of the features represented in Ry. In the working memory task example, this is similar to
remembering both the color and orientation of each stimulus in an array. Then, being asked to
report the color of the stimulus that had a particular orientation. Our analysis can also be
extended to some kinds of nonlinear mappings between between the features in Ry and Ry
(see Fig B in S1 Text).

One specific kind of nonlinear redundancy between the two regions is prior information
about which stimuli are more or less likely. For example, someone familiar with cats and dogs
could infer that a meowing noise likely belongs to the cat they see in front of them, while the
barking likely belongs to the dog. While such inferences are likely extremely important for
behavior, they require the prior information to be learned over experience with these particu-
lar stimuli. We focus our analyses here on solving the assignment problem without this learn-
ing process (as for novel stimuli) and where such differences in prior likelihood are not
available (e.g., assigning two different barks to two different novel dogs).

Finally, throughout this work we organize our discussion using the concept of distinct
brain regions, by which we mean distinct populations of neurons that may share information
with each other through anatomical connections. We primarily use this concept for simplic-
ity of exposition. In general, all of the same principles apply when different features (or com-
binations of features) are represented in distinct subspaces of the same neural population
activity. That is, the assignment problem will also need to be solved to integrate across these
distinct subspaces, even though the subspaces do not correspond to distinct populations of
neurons.
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2.2 The assignment error rate depends on the precision of the common
feature representation

Here, we study redundancy between Ry and Ry that results from the representation of one or
more of the same stimulus features (e.g., azimuthal position in both the visual and auditory
systems, Fig 1c, left). These C common, or linearly related, features define a C-dimensional
common feature space. Importantly, we do not yet make any assumptions about the represen-
tational format of these features—and while the common features are assumed to be the same
(or, at least, correlated) across the two regions, the format of their representation need not be.
Then, following the combinatorial assignment problem, we show that the most likely map-
ping is the one that minimizes the sum squared distance between integrated pairs in this com-
mon feature space (Fig 1c, right: top matrix is the the correct mapping, Mc, bottom matrix is
the incorrect mapping Mg, the sum of distances between integrated pairs in the two map-
pings are shown below). If the estimates of the common features in both regions are exactly
correct, then this sum will be zero—an exact matching (Fig 1c). However, in general, we
assume that each feature represented in Ry is decoded with Gaussian-distributed local variance
Dy (Fig 1d). Further, we show that assignment errors occur precisely when the representation
of one object crosses over the representation of another object in one region but not the other
(Fig 1d, red lines). For two objects at distance 8 from each other in the common feature space
space, the probability of an assignment error between those two stimuli is approximated by

F(0) ~ Q (—_2_51) ) + Q<—_T5D ) (1)

where Q(x) is the cumulative density function for the standard normal distribution (Fig 1le,
left)—for the full expression and derivation, see Methods in Probability of assignment errors.

The overall probability of an assignment error also relies on the probability that two objects
are at distance 6 from each other in the common space Pc(6) (Fig le, right for C=1) and on
the number of stimuli N. Incorporating these, we show that the overall probability of an assign-
ment error is upper bounded by,

AE, < (1;]) / 45 P_(5) () 2)

For one overlapping stimulus feature (C = 1) and for stimuli that are uniformly distributed in
feature space, we show that,
N\ 2,/Dy +D
AE, ~ ( ) 2V Dy + Dy (3)
2 V4

where s is the size of the feature space for the commonly represented feature. This approxima-
tion (dashed lines, Fig 1f) closely matches the empirical assignment error rate (solid lines)
across different numbers of stimuli (different colors; see Methods in Assignment error rate
approximation for C = 1 for a full derivation of this expression). Now, using this formalization,
we show that the assignment error rate decreases with additional commonly represented fea-
tures C > 1 in the next section. We also show that the assignment error rate increases if the fea-
tures are represented with asymmetric variance across the two brain regions—i.e., if Dx # Dy
(see Fig A in S1 Text).
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2.3 Additional commonly represented features decrease the assignment
error rate

While distinct sensory systems tend to have fixed amounts of overlapping information, such as
a common estimate of azimuthal position across the auditory and visual systems (which has
been shown to be crucial for single stimulus integration [21]), within a single sensory system
information is distributed across multiple brain regions, and those brain regions can represent
variable amounts of overlapping information about the stimuli. In our framework, we show
that increasing the number of commonly represented stimulus features across the two brain
regions C decreases the assignment error rate.

In particular, increasing the number of commonly represented features C increases the
average distance between pairs of points in the common feature space (Fig 2a). This change is
captured by changes in the pc(6) term in Eq 2. Increasing the number of commonly repre-
sented features moves the probability mass of this distribution away from zero (Fig 2b). The
increase in the number of overlapping features from C to C + 1 leads to an orders of magnitude
decrease of the assignment error rate at the mean distance (Fig 2¢). As a result of this shift to
the right in p(6) and the fact that Eq 1 is strictly (and exponentially) decreasing in 6, the inte-
gral in Eq 2 will also be strictly decreasing as C is increased. Thus, increasing C decreases the
overall probability of assignment errors when holding local variance constant (Fig 2d).

However, increasing C while holding local variance constant comes with a significant cost.
In particular, increasing the number of commonly represented stimulus features also increases
the redundancy in information represented by the two brain regions. As discussed above, it is
precisely this redundancy that allows the assignment problem to be solved (and solved more
reliably for more overlapping features). Yet, in neural systems with limited metabolic
resources, this redundancy reduces the efficiency of neural representations. We show that the
redundancy between the two regions depends on both the number of overlapping features and
the local variance (Fig 2e),

R =I(X;Y) = H(X)— HX|Y)

C1 §?
= — 10 _—
2 °®D 1D,

where I(.; .) is the mutual information and H(.) is the Shannon entropy, and s is the extent of
the overlapping features (see Methods in Calculating the redundancy between representations
for more details). Thus, as the assignment error rate is reduced by increased C, the redundancy
of the representation is increased—we make the consequences of this explicit below.

Further, we show that a similar tradeoff holds for asymmetric feature representations (Fig
A in S1 Text). On one hand, the common features can be represented with the same precision
in both regions. This is the maximally redundant representation for a given C, and therefore
leads to the lowest assignment error rate. On the other hand, the common feature can be rep-
resented asymmetrically (with high variance in one region and low variance in the other). This
is a less redundant representation, and is associated with a higher assignment error rate.

2.4 Redundancy reduces the precision of the neural code

Now, we make our theory more concrete by making an assumption about the format of the
neural representations in Rx and Ry. This assumption allows us to quantify how the assign-
ment error rate and local variance both depend on the metabolic energy available to the code,
in the form of spikes and neurons. To begin, we analyze the errors made by a population of
neurons with randomly positioned Gaussian receptive field (RF) responses (Fig 3a, top). This
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Fig 2. Increasing the number of commonly represented features decreases the assignment error rate, but increases
the level of redundancy between the representations. The color legend is the same throughout the plot, and provided
in D. A Schematic showing that the distance between two points increases with the dimensionality of the space that
they are in. B The distribution of distances between two uniformly distributed points in a space of one, two, and three
dimensions. The distribution shifts to the right (toward larger distances) as the dimensionality of the space increases.
This is true for points with any distribution that has non-zero variance. C At the average distance between two points
(dashed lines), the probability of an assignment error decreases by orders of magnitude as the dimensionality of the
commonly represented space increases, without changing the estimator variance for the representations Dxy = 10. D
The overall assignment error rate also decreases by orders of magnitude as the dimensionality of the commonly
represented feature space increases, while holding Dxy constant. The difference becomes even larger as the precision
ratio increases. E The redundancy between representations X and Y also increases as the dimensionality of the
commonly represented feature space increases—again, the difference is increased at larger precision ratios. Thus, the
assignment error rate is driven down at the cost of additional redundancy.

https://doi.org/10.1371/journal.pchi.1011327.9002

kind of neural code is thought to be used for a variety of different sensory features [24-28],
including spatial position in the visual system (but, interestingly, not in the mammalian audi-
tory system [39-42]). While we assume that Ry and Ry both use the same representational for-
mat, this is not required by our theory of assignment errors—and we explore the case in which
Ry and Ry have different representational formats below.

Recent work has shown that RF codes make two kinds of errors [43]. The first kind of error
is local, and is equivalent to the local variance we have discussed so far. In this case, the
decoder maps the noisy response to a nearby position on the stimulus representation manifold
(Fig 3a, bottom, “local error”). This local variance is captured by the Fisher information of the
code [43-49]. The second kind of error is non-local, and is referred to as a threshold (or cata-
strophic) error [43, 50]. Catastrophic errors occur when the noisy response is mapped to a dis-
tant region on the stimulus manifold, due to large noise that points toward one of these
regions of response space (Fig 3a, bottom, “threshold error”). In a noisy system, every response
will give rise to some local variance (Fig 3b, “local”); threshold errors only occur for a subset of
responses, but their magnitude has the same order as the size of the stimulus space (Fig 3b,
“threshold”).

These two kinds of error are in tension with each other. To see this, we begin by deriving
the average Fisher information of a random RF code with a particular number of neurons and
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dominate elsewhere. We choose the RF size for our codes based on the combined error rate. D The dependence of total
MSE on population SNR for fixed population size. The solid line is from simulations, the dashed line is the prediction
of our theory, and the dotted line is local MSE only. E The dependence of total MSE on population size for fixed
population SNR. The different line types are the same as D. F (above) Schematic of the situation being investigated. A
K = 4 dimensional stimulus is represented across two distinct populations of neurons Ry and Ry. Each population of
neurons has 10, 000 units and an SNR varying between 5 and 10. (left) The average local MSE across the two codes and
the redundancy across the two regions of the code schematized above, shown for different numbers of overlapping
features C. The grey lines connect points with the same SNR across the different overlap levels. (right) The same as on
the left, but for the assignment error rate.

https://doi.org/10.1371/journal.pcbi.1011327.9003
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a particular average level of activity across the whole population (i.e., a budget of metabolic
energy to be used for spiking),
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where Vis the sum squared activity across the population (i.e., the average response energy),
oy is the standard deviation of the Gaussian noise added to the responses, SNR* = V' /g2, is the
population signal-to-noise ratio, and w is the width of the receptive fields, which is assumed to
be small (see Methods in Random gaussian receptive field codes for the full derivation). We
can see that the Fisher information increases when V increases or when w decreases (Fig 3c,
local). However, the total error of the code is given by,

1 1
Err =~ (]‘ _pthr)ﬁ—’_pthré

where py,, is the probability of a threshold error, and this probability increases as w decreases
(Fig 3¢, threshold). All else held equal, decreasing the width of the RFs in the code will reduce
the local variance of the code (Fig 3c, local), while simultaneously increasing the probability of
threshold errors (Fig 3c, threshold). In the following, we choose the RF width that minimizes
the total error of the code (Fig 3¢, combined; see Methods in Random gaussian receptive field
codes for more details).

Using this framework, we show how this total error scales with both population signal-to-
noise ratio (SNR = v/V /) and population size. In particular, we show that, for high SNRs,
the total error is explained primarily by the local variance (Fig 3d, solid vs dotted line). This
results from the fact that the threshold error rate decreases exponentially with SNR (Methods
in Random gaussian receptive field codes). Second, we show that increasing the population
size while holding the SNR constant leads to a smaller decrease in total error (Fig 3e). That is,
while increasing the population size pushes smaller RFs to be optimal, thereby decreasing the
local variance, the tension between local and threshold errors causes the decrease in optimal
RF size to be small. We also show that, as expected, requiring the code to represent K = 2
instead of K = 1 features causes higher error rates (Fig 3d and 3E, different lines).

Next, we link these RF codes to our theory of assignment errors. The local variance of the
RF code is equivalent to the local variance in our framework. However, the threshold errors
have no clear analogue in our current theory. Since the inferred stimulus produced from a
threshold error is uniformly distributed across the whole stimulus space, they are extremely
disruptive to assignment: The optimal strategy is not to integrate the threshold error represen-
tation during the assignment process at all. This unbalanced version of the assignment prob-
lem has been studied in combinatorics [9], but is beyond the scope of the current work.
However, threshold errors are typically unlikely once the optimal RF width has been chosen.
In particular, we find that codes with non-negligible threshold error rates also tend to have
high total error. To proceed, we exclude codes with high total error, both due to the issues
described for threshold errors and because our analytic calculation for the assignment error
rate assumes local variance that is small relative to the size of the stimulus space.

Finally, we analyze the case of K = 4 total features represented across two different brain
regions, with C = 1, 2, and 3 overlapping features. We show that the increase in overlapping
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features leads to an increase in both the redundancy between the two representations and the
local variance of the code (Fig 3f, left, purple lines show constant SNR). Then, we show that, as
anticipated, the increase in the number of overlapping features also leads to a decrease in the
assignment error rate at these higher redundancy levels (Fig 3f, right). Thus, this modeling
approach allows us to quantify the consequences of different levels of redundancy in a biologi-
cally plausible neural code.

2.5 Modularity has benefits for encoding high-dimensional stimuli

So far, to motivate the importance of the assignment problem, we have focused on the case of
stimulus features that are encoded by separate brain regions as a consequence of being
received by distinct sensory systems—such as the pitch of a sound and the spatial frequency of
an image. In this case, modularity is unavoidable and the assignment problem must be solved
to integrate the disparate percepts. However, there is extensive evidence for modularity in the
brain even within single sensory systems (e.g., [30], though these modules are at least partially
redundant [51]). In our framework, this comes with a clear drawback when decisions have to
be made based on combinations of features represented in different regions: Making those
decisions reliably requires the assignment problem to be solved (e.g., identifying which of sev-
eral cats just hissed or the car in a line of traffic that just honked), and this means that those
brain regions must have some redundancy with each other.

Here, we contrast receptive field (RF) codes for relatively high-dimensional stimuli (K = 8)
that are distributed across one, two, or three brain regions (Fig 4a). For example, a two-region
code for the K = 8-dimensional stimulus could encode K y = 4 features in each region. How-
ever, such a code would make assignment errors at chance levels when presented with multiple
stimuli. Thus, we consider codes which represent at least one redundant feature for every two
brain regions (e.g., one region could represent four features and the other five, as in Fig 4a,
middle). In every case where we compare multi-region codes to each other, the total code (that
is, summing across brain regions) is constrained to have the same number of neurons and the
same total population power.

Within each region, we use the random RF codes described in the previous section. We use
the local variance of each region code (Fig 4b, top) to compute the assignment error rate when
integrating across regions (Fig 4b, middle), as developed earlier in the paper. Together, these
lead to a total error that accounts for local variance and catastrophic assignment errors (Fig 4b,
bottom). Codes with total error that exceeds half the size of the stimulus space are excluded
from this analysis for the reasons discussed above.

We show that representing the K-dimensional stimuli in multiple brain regions can pro-
duce representations with lower total error, even when accounting for assignment errors. As a
result, this work provides a justification for the modularity observed in the brain from the per-
spective of reliable and efficient neural codes. For stimuli with K = 8 features and smaller neu-
ral population sizes or population SNRs, then the lowest total error is achieved by a single
region code (Fig 4c, bottom and left). In this case, avoiding catastrophic assignment errors is
crucial. However, for larger neural population sizes and population SNRs, codes that distribute
the representation over two or even three regions can provide lower total error than the single
region code (Fig 4f, top right).

This results from a combination of two factors: First, the multi-region codes must represent
redundant information to reliably solve the assignment problem. Thus, they have a disadvan-
tage compared to the single region code, which need not represent any redundant informa-
tion. However, second, lower-dimensional RF codes tend to produce smaller errors than
higher-dimensional codes, especially very high-dimensional codes. In particular, the local
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Fig 4. Multiple-region representations minimize error in many conditions. A Schematic of three different
possibilities for representing a K = 8-dimensional stimulus. The features can all be represented in a single population
(left); they can be distributed across two populations (middle); they can be distributed across three populations (right).
The two and three population codes must represent some features redundantly to avoid assignment errors. B (top) The
scaling of local MSE for the three codes above with population SNR (left) and the total number of units (right). The
colors are the same as in A and C. (middle) The same as top but showing the scaling of the assignment error rate.
(bottom) The same as top but showing the scaling of the total MSE. C The number of regions that minimizes the total
distortion of the representation of K = 8 features for different numbers of neural units and population SNR. The white
parts of the plot are when no representational scheme achieved total MSE < .5.

https://doi.org/10.1371/journal.pcbi.1011327.9004

variance of an RF code depends on RF width, and not directly on dimensionality (Eq 4). Thus,
if low- and high-dimensional codes have the same RF width, then they could, in principle,
have the same local variance. In practice, though, the high-dimensional code will require expo-
nentially more neurons than the low-dimensional code to achieve full coverage of the stimulus
space at that width (and to control threshold errors). In our setting, the single region, higher-
dimensional codes do have more neurons, but only by a factor of two or three—not enough to
achieve equivalent local variance to the lower-dimensional RF codes. Thus, multi-region codes
begin to outperform single-region codes when the gains from their inherent efficiency become
larger than the losses from their required redundancy.

We also observe that the difference in total error between these different coding strategies is
relatively small (Fig 4b, bottom). While our current theory does not provide a guarantee of this
in all cases, it points to an interesting potential invariance: The increase in redundancy
required to represent a set of stimuli across multiple regions appears to be largely compensated
for by the increase in efficiency of the constituent codes. Thus, many different coding strategies
appear to provide similar performance.
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Finally, while we assume that the features are interchangeable with each other, this is often
not the case. In general, we believe that the assignment problem is solved to make decisions
that require the linking of two or more stimulus features (e.g., asking what the value of feature
X is for stimuli with a particular value of feature Y, as in the human working memory studies
discussed above). So, one structural way to reduce the likelihood of assignment errors is to
instead represent features X and Y in the same region, while representing the features that are
relevant to a different decision in another region. The primate dorsal and ventral visual
streams have been argued to follow this form: where the dorsal stream is thought to underly
the planning of visually guided actions and the ventral stream is thought to underly perceptual
decisions [31, 52]. However, a single division is unlikely to work for all decisions—and, in
some cases, this simply shifts the need of solving the assignment problem to an earlier stage of
processing. Thus, we believe that the simplified scenario we have analyzed here still provides a
useful intuition.

2.6 Feedforward neural networks can solve the assignment problem

In the previous section, we analyzed the best-case assignment error rate for populations of
neurons with randomly positioned RFs. However, there is no guarantee that a readout from
the neural population will be able to achieve this best-case error rate without extensive and
potentially metabolically expensive computations. In particular, solutions to the assignment
problem used in combinatorial optimization are often framed as linear programming prob-
lems and require operations that have no clear neural analog [9].

Here, we focus on the case with two stimuli that are described by three total features
(K = 3). The stimuli are initially represented by two distinct populations Ry and Ry—each of
which encode two features (Fig 5a, left). For both populations, one feature is unique to that
population and the other is common across both populations (C = 1). We train a feedforward
neural network model (Fig 5b) to take noisy input representations (Fig 5a, right) from Ry and
Ry and produce a representation of the two unique features from Ry and Ry in an output pop-
ulation, which is also structured as a random RF code (Fig 5a, right). To do this reliably, the
network must solve the assignment problem.

First, we train networks to perform this integration (of the two inputs) and marginalization
(of the common feature) directly, without a hidden layer (Fig 5b, only Ry, Ry, and “output”).
Then, we quantify whether the activity in the output network is more similar to the correctly
or incorrectly assigned representation (Fig 5d). The network without any hidden layers does
not learn to assign the stimuli correctly (Fig 5d, end-to-end learning with no integration
layer).

This implies that representations of features from multiple sensory modalities (e.g., the
expression of a speaker and their words) may need to be derived from higher-dimensional rep-
resentations that also incorporate the linking, common feature (e.g., estimates of spatial posi-
tions in the previous case). However, this does not imply that all of the features of an object
must be represented at once: only those that need to combined, along with however many
common features are required to achieve reliable assignment. This two-stage computation (a
dimensionality expansion followed by a dimensionality reduction) has been shown to useful
for other computations, such as representation frame-of-reference recoding [20].

Second, we show that networks trained to first reconstruct the three dimensional stimulus
representations (Fig 5¢) and then marginalize out the common feature achieve the minimal
assignment error rate, while networks trained directly to construct the marginalized represen-
tations achieve low, but not minimal assignment error rates (Fig 5e, end-to-end learning com-
pared to integration learning). While full understanding of this performance difference would
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Fig 5. The assignment problem can be solved with one feedforward layer. A Example of the input, first without (left) and then with (right)
additive noise. The visualization shows the activity level of units in the random RF population. Each point is one unit, and the point is
positioned at the unit’s RF location. The color shows the level of activity. The two inputs share one common feature (x-axis, C = 1) and each
have one unique feature (y-axis). B Schematic of the feedforward integration, then marginalization network. In the full network, the input layers
are followed by two hidden layers, then an integration layer, then the output layer. The output layer constructs a representation of only the two
originally unique features of the stimuli, marginalizing out the common feature. C Example of target activity in the integration layer. The three
features of the stimuli are represented together. The visualization is the same as A. D Example of a correct output (top) and an output with an
assignment error (bottom). The output produced by an example network is shown on the left; the right shows the target output (top) or the
prototypical assignment error (bottom). E (left) Both Rx and Ry use the random Gaussian receptive field input developed in the previous
sections. (right) The assignment error rates for stimuli with different distances in the common feature, using several variations on the network
described in B. The end-to-end learning models are trained to reconstruct the marginalized representation from the inputs, either with or
without intervening hidden and integration layers. The integration learning models are trained to construct both the integrated representation
and the output target, with or without intervening hidden layers. F The same as E except Ry uses an auditory-like input format, where the
common feature (putatively, position) is encoded through a linear ramp.

https://doi.org/10.1371/journal.pcbi.1011327.9g005
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require extensive investigation of the representations in the integration layer that are outside
of the scope of this paper, this result emphasizes the importance of the integration step. Fur-
ther, it demonstrates that random RF codes can be used to solve the assignment problem in an
optimally reliable way and that they outperform representations learned through
backpropagation.

Finally, while assignment between two representations that both use Gaussian receptive
fields is analogous to assignment between parallel regions in visual cortex, there is evidence
that neurons in the auditory system primarily represent spatial position using ramp-like rather
than Gaussian-like tuning functions [39-42] (and see Methods in Random ramp codes).
While our theory does not depend on the assumption of a specific representational format, it
is possible that solving the assignment problem may be more difficult for a simple neural net-
work when the formats of the involved representations are different. To test this, we studied
the case where Ry had the same receptive field tuning as before, while Ry was composed of
neurons that had a linear response to the common feature and Gaussian tuning to the unique
feature (Fig 5, left Rx). This mirrors that ramp-like position and restricted pitch tuning
observed in auditory cortex. Despite this difference in format between the two inputs, the
results were qualitatively similar to before, with the best networks nearly saturating the bound
on performance provided by our theory (Fig 5f, right). However, average performance was fur-
ther from the bound in this case, indicating that the difference in format does increase the dif-
ficulty of the task.

3 Discussion

We have described a neural instantiation of the assignment problem, which must be solved
when the brain integrates distributed representations of multiple stimuli. We showed that
assignment errors depend on the distance between stimuli in the shared representation space,
and that increasing the dimensionality of that shared space will—on average—decrease their
probability. However, this shared space comes at the cost of redundancy between the distrib-
uted representations. To make this cost more concrete, we studied assignment errors in ran-
dom receptive field codes. In these codes, we showed an advantage for modular
representations of high-dimensional stimuli in some conditions, which is consistent with
modularity observed in cortex [29-36] (e.g., in the primate ventral and dorsal visual streams).
Further, we showed that a simple neural network can reliably (and optimally) solve the assign-
ment problem.

This work extends previous work on the assignment problem in several ways. First, previ-
ous studies have considered either a single stimulus in both modalities (one auditory and one
visual stimulus in [21]) or a single stimulus that must be assigned to one stimulus from a larger
array (using a cue to select a single stimulus from a remembered array in [16, 37]). Here, we
have shown how the rate of assignment errors scales as more stimuli need to be integrated.
Second, previous work used a single common feature for binding [16, 21, 37], while we have
shown how assignment error rates scale for additional common features. Third, the formula-
tion of the neural code that we use is similar to that used in [16]; however, we have derived
novel closed form expressions for the total, local, and threshold error rates of these codes—
using these expressions we investigate a wider variety of different neural architectures (e.g.,
splitting representations across different regions) than have been considered in previous work.
Finally, we believe that our neural network approach to producing assigned representations is
novel, as previous work only characterized the error rates that would be expected from an
ideal observer [16, 21, 37]. Thus, we believe that this work contributes to our understanding of
the assignment problem, building on top of this foundational work.
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Our work produces several predictions for experimental data. First, efficient coding dictates
that the redundancy in representations of the sensory world should be reduced as much as
possible [53, 54]. However, our work shows that redundancy between the stimulus representa-
tions present in different brain regions is necessary to disambiguating multiple stimuli—other
potentialy benefits of redundancy across and within brain regions are robustness to noise [50],
damage, and interference [55]. As a result, we predict that brain regions that commonly repre-
sent multiple stimuli (e.g., sensory regions) will all have some redundancy with other brain
regions. In some cases, the redundant information between two regions may be clear due to
experimental design. However, in cases where redundant features are not readily identifiable,
population analyses can be used to discover redundant information directly by building mod-
els that explain the activity in one region in terms of the activity in the other. Then the activity
explained by this approach can be modeled in terms of known experimental variables. For
instance, in this way, common features across the parallel ventral and dorsal visual streams in
the primate visual system can be discovered (though some features, such as spatial position,
have already been shown to be redundant across the two streams [51]).

Second, our work shows that explicit bound representations of the integrated and common
features may be a necessary step in solving the assignment problem. Following previous work
[16, 37, 38] and our neural network results, we believe that these bound representations will be
instantiated through a conjunctive population geometry for the bound features—similar to the
multi-dimensional receptive fields used above (though the representation need not have
exactly this form). Thus, for a multi-sensory classification task, we expect to find these bound
representations in multi-sensory association areas (such as posterior parietal cortex [56, 57],
ventrolateral prefrontal cortex [58], and polysensory areas in the superior temporal sulcus
[59]; also see [60]). For complex visual decision-making tasks where integration across the
dorsal and ventral visual streams is required, we expect to find bound representations in brain
regions receiving input from both streams (such as prefrontal and posterior parietal cortex
[61, 62]) as well as regions within each stream that receive information from the other stream.
For instance, recent work has shown combined representations of visual form and motion in
the inferotemporal cortex [63], though their geometry was not characterized (i.e., it is
unknown whether the representations are bound). Similar integrated representation of visual
form and motion have also been found in the superior temporal polysensory area [64] (and in
the middle [65] and body-selective patches within [66] the superior temporal sulcus).

In general, we expect that these intermediate representations will emerge prior to a pure
representation of the decision variable—both in brain regions that are earlier in an established
processing hierarchy as well as temporally earlier within brain regions that ultimately express
representations of the decision variable. While the results from our neural network study
underline the importance of this bound representation for computing the decision variable
(Fig 5), a single neural population could simultaneously represent these distinct forms of infor-
mation in separate subspaces of activity. These bound representations have also been identified
as important for representation recoding [20]. Future work could identify whether these
recoding and assignment operations can be performed simultaneously in the same integrated
representation.

Third, our framework also makes predictions that can be tested with population recordings
from uni-sensory brain regions, during the performance of a multi-sensory task (or, at least, a
task that is believed to involve assignment). Our work predicts that behavioral assignment
errors—i.e., a swap error [15-17], described above—will be correlated with errors in the repre-
sentation of the common features specifically in the direction of other stimuli. For instance, in
a visual-auditory integration task with multiple stimuli, we expect that trials in which a posi-
tion decoder for one of the stimuli makes errors toward another stimulus will also be
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associated with a greater probability of behavioral assignment errors. We do not expect errors
in the representation of non-common features to have this same correlation with assignment
errors—instead, we expect that they will be associated with local variance in the animal’s report
and would be detectable in continuous report tasks, such as [67].

Fourth, our work makes several predictions for what kinds of assignment errors will be
more or less likely, many of which already have behavioral support in the time-assignment
context from working memory experiments in humans. In particular, our framework predicts
that the assignment error rate will increase for stimuli that are nearby in the common feature
space, which is validated in [16, 17] (and see the related theoretical work in [16]). It also pre-
dicts that assignment error rates will decrease with the inclusion of additional features in the
common feature space, which is validated here [18] (but see [19]). Finally, our framework pre-
dicts that the assignment error rate will increase with the number of stimuli, which is validated
here [15, 16]. While this support is qualitative rather than quantitative, we believe that it lends
strength to our predictions for neural data. Further, we believe that a strength of our frame-
work is that it unifies several different types of assignment, including integration across dis-
tinct time points—as in the behavioral work here—and integration across distinct brain
regions. However, these forms of integration are likely to differ to some degree in practice,
even if only due to the kinds of redundant information available. Future work will be necessary
to characterize what these potential differences mean for patterns of errors in different assign-
ment contexts.

The simultaneous representation of multiple stimuli in neural activity is not fully under-
stood. In particular, while we have provided a solution to the assignment problem, which must
be solved when integrating representations of multiple stimuli that are distributed across dif-
ferent brain regions, distinct neural population subspaces within a single brain region, or even
time points. However, the assignment problem is only one of several difficulties that arise
when multiple stimuli are represented simultaneously. One additional problem is the segmen-
tation, or clustering, of sensory information into a discrete set of causes (i.e., stimuli or
objects). While there is extensive work on this process in psychology [1-3] and in machine
learning [4, 5], the neural mechanisms are not fully understood (but see [6, 68]). A second
additional problem that we have already mentioned is the representation of bound stimulus
features in a single population of neurons; in this work, we have assumed that this representa-
tional problem has already been solved, perhaps by the conjunctive feature representations
posited by other work [16, 37, 38] (but see [69-72] for alternatives). In the real brain, each of
these problems is likely solved at many different stages of sensory processing (or even simulta-
neously), where lower-level components are clustered into higher-level features (e.g., combin-
ing points into an edge), a correct binding of those features is inferred (e.g., that edge is
combined with a representation of its motion), then that bound set of features is represented
(and can become a new, higher-level feature itself—e.g., perhaps the edge is part of a running
dog). While we have focused on one part of this process, future work can integrate these parts
and more fully explore how they interact—both with each other, and with other concerns
(such as how multiple representations in a single neural population interact with each other,
see [73]). This unifying work will be necessary to develop a full understanding of the rich ways
that simultaneously representing multiple stimuli constrains the neural code.

We have also discussed the case of balanced assignment between two brain regions, where
each region represents the same number of stimuli and there is a correct one-to-one mapping
between those stimuli. However, this is a simplification: in many cases, there may be more rep-
resentations in one region than the other (e.g., speakers who are not visible). Or, even when
there are the same number of representations, a one-to-one mapping may not be correct (e.g.,
a speaker behind the subject and another person in view who is not speaking). This latter
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situation has been studied for a single auditory and single visual stimulus [21, 74, 75]. This
work found evidence that human observers infer a single cause for the two percepts only when
they are nearby in space; otherwise, they infer independent causes—and further shows that
this process is well-modeled by Bayesian inference, depending on the local variance of auditory
and visual position estimates as well as the prior rate of common relative to distinct causes
[21]. Future work can combine our approach to the assignment problem with this inference of
the number of distinct causes in the environment. This could be achieved by considering more
potential mappings between the sets of representations, along with a prior giving the strength
of the expectation that each representation will be integrated. This generalization of our frame-
work would lead to additional predictions for experimental data with unbalanced numbers of
stimuli across distinct sensory modalities.

In summary, we have developed a general framework for understanding how the brain
makes sense of distributed representations of multiple objects—that is, how the brain solves
the representation assignment problem. This framework also points to several new directions
in the study of neural codes: directions that explicitly contextualize neural representations in a
distributed network of brain regions as well as move toward understanding how neural codes
can be made suitable for encoding heterogeneous, multi-object environments.

4 Methods
4.1 Definition of the objects

An object set S of size N is N independent samples from the multidimensional probability dis-
tribution p(s)—thus, p(S) = [ p(s,). Each s; is a vector of length K, so p(s) is a probability dis-
tribution over a K-dimensional space. Each of these dimensions represents a feature of the
object, such as color, spatial frequency, pitch, or orientation. In the majority of the paper, we
assume that the objects are uniformly distributed in the space—that is, each point in the K-
dimensional volume is equally likely to occur.

4.2 Definition of the representations

We focus on the representation of our K-dimensional objects in two brain regions, Ry and Ry-
We assume that both regions have some common and some unique information. That is, nei-
ther region encodes all K object features. This is guaranteed to be the case when Ry and Ry rep-
resent early sensory areas from different sensory modalities—and there is evidence that a
balance of unique and common information is preserved across hierarchies of sensory brain
regions even within single modalities, such as in the primate visual system [29-32].

Formally, Rx encodes a subset of the K total object features, denoted as Fy—and similarly
for Ry. Each of the features can be identified by their index from 1 to K, and region Ry is said
to encode feature i € {1, 2, . . ., K} with local distortion D, which is the variance of an optimal
estimator for the value of feature i from the neural activity in region Ry—and, again, similarly
for Ry.

Thus, the subset of features represented in Ry that are not represented in Ry are the unique
information from Ry—that is, Fx \ Fy. When Ry is an auditory region and Ry is a visual region,
then these unique features might include representations of pitch and timbre. Further, the sub-
set of features represented in both Ry and Ry are the common information, which is essential
for solutions to the assignment problem. The size of this intersection |Fx N Fy| = Cxy = Chas
important consequences for the assignment error rate, and the achievable local distortion
when the representation capacity is constrained.
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Here, we study the reliability of inferences about the original set of N objects S, each of
which are described by K feature dimensions, from the neural activity in two distinct regions,
Rx and Ry, which both encode some common and some unique information about the objects.
Inferring the original object set from two distinct representations requires the two sets of rep-
resentations to be combined with each other, which we refer to as assignment.

4.3 Definition of assignment errors

As mentioned above, to make inferences about the whole object set from two distinct sources
of information (i.e., Ry and Ry), the two sets of representations must be integrated with each
other. When there is only one object (N = 1), then this integration is trivial as there is only one
possible one-to-one mapping between the two sets of representations, and this mapping is cor-
rect. However, when there is more than one object (N > 1), then assignment errors become
possible. In particular, for N objects, there are N! possible one-to-one mappings (i.e., assign-
ments) between the two sets of representations, X and Y. Thus, if there is no information
about which mapping to select, assignment errors have the probability 1 — 1/N!, which is near
1 for even relatively small N.

Formally, we can frame the mapping selection problem as an inference about which of
the possible maps M is most likely to account for the observed representations X and Y in
Rx and Ry, respectively. This can be written as,

) A (M1)

where we proceed by first assuming that the prior probability of each map is the same (i.e.,
p(M) is uniform) and that the representations in one region do not depend on the map (i.e.,
p(Y|M) = p(Y), and similarly for X). Thus, we are left with a single term, p(X|Y, M), that
gives the likelihood of the representations observed in one region (here, X, but X and Y are
interchangeable) conditioned on a particular map M and the representations observed in
the other region (Y). If X and Y are independent of each other, then p(X|Y, M) = p(X), as
above, and all maps are equally likely. So, it is dependence between the representations in
Rx and Ry that enables the correct assignment to be selected at a rate better than chance.
Thus, dependence between those representations is necessary for a reliable solution to the
assignment problem. In general, this observation already indicates to us that we should
expect pairs of brain regions to encode some common information—so that the assignment
problem can be solved—and some unique information—due to both distinct sensory sys-
tems, but also due to considerations related to efficient coding, which we make explicit
below.

4.3.1 Probability of assignment errors. Given the above inference process, we can now
characterize the likelihood that an assignment error occurs given different levels of common
information shared between X and Y. From our formalization of the representations above,
we know that each object feature i is estimated from the activity of neurons in region Ry with
variance D!, and similarly for Ry. Here, we assume that these estimates are unbiased and
Gaussian distributed, with mean equal to the true value of the object feature and variance as
given. The Gaussian distribution is the maximum entropy distribution for fixed mean and var-
iance, which means that these estimates will contain less information about the true value of
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the object feature than any other distribution with the same mean and variance—thus, this
assumption represents an upper bound on the difficulty of the integration task.
Using this formalization, we can write an explicit form for Eq M1,

p(MIX,Y) HH exp ( (& - f’é))>
log(p(MIX, V) o< ~> > (5 -

where &/ and ) are the values of feature j for object i from the N x C estimation matrix of the C
commonly represented features for each of the N objects. The common features are ordered
consistently across X and y, while the N different objects are not. The map M is an N x N per-
mutation matrix. Thus, in finding the most likely map, we would search over the (2’ ) possible
permutation matrices to find the one that maximizes Eq M2. This is equivalent to finding the
permutation matrix that minimizes the sum squared distance between integrated object repre-
sentation pairs in the C-dimensional shared feature space.

From the above, it follows that an assignment error occurs precisely when the representa-
tion of two objects cross over each other in one of the two brain regions, but not in both—as
schematized in Fig 1C, red arrow and assignment lines. For the commonly represented feature
values of two objects, x{ and x5, the probability that this crossover happens in Rx depends on
the distribution of the distances between their estimates,

R — &5~ N(5,2Dy)

where § is the distance between the true values of x{ and x5 (i.e,, d = x; — x{) and we assume,
without loss of generality, that x{ < xg. Since J is still Gaussian distributed, we write the proba-
bility that the estimate of the first object becomes greater than the estimate of the second object
(i.e., that X{ > X3) as

—0
P(crossinRy) = Q(
)

where Q(.) is the cumulative distribution function for the standard Gaussian distribution.

Following this, the full probability of an assignment error incorporates the probability that
the cross occurs in Ry or Ry as well as that it occurs in both (which would not result in an
assignment error). We write this probability as,

0 0 —0 —0

0= of 7)ol am) ~o{ 7))
where the final term is the probability that a cross occurs in both regions. While we have dis-
cussed a single common feature here, this expression is general, and applies for any value of C,
so long as the local distortion Dy and Dy for all of the common features is the same within
each region, which we assume in the majority of the text. This expression already gives us
insight into how assignment errors depend on Dy and Dy for stimuli at some distance d in a
common feature space. However, in general, assignment errors also depend on how likely it is
that two stimuli at a particular distance will be observed—that is, on pc(8). In the main text,

we develop this dependence, as well as a dependence on the number of objects, which results
in Eq 2.
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4.3.2 Assignment error rate approximation for C=1. For one overlapping object feature
(C =1), we derive an approximate closed form for Eq 2. The derivation is as follows,

(v ) (i)l
()

2 [ =) -0
2/0d5(s—5) < _2Dx>+(5—5)Q< 2Dy>

since the two terms in this sum are analogous to each other, we deal with them separately
before combining.
So, for the first part of each term,

/Osd(SSQ(\/TéE) =—s 2D,.<— ZD,.Q<_\/2§5;>+¢<_ ij>>

s s s D,
- 2D"<¢<_ 2D,.> /2D, Q( 2D, >+5\/;

N

0

where ¢ is the standard normal density function and the approximation in the last line holds
when s >> D;, which is the regime we focus on for the main text.
Now, for the second part of each term,

fool) -l )
(o))

~ —2D.

1

“» n)|
E
~——
\
“» )|
E
<
/‘—\

where, again, the approximation in the last line holds when s > D,.
Then, combining the two expressions above,

2 [ b 2 D, 4
< d‘s““S)Q(‘—frD,.) ~3yE-gn
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Before, finally, combining the terms corresponding to Dx and Dy gives,

AE, = <N> {2,/_DX 4Dy | 2y/Dy @}

syn syn 8
(s
(V)2

2

sV

This final form is given as Eq 3 in the main text.

4.3.3 Assignment error simulations. We compare the theory developed above to simula-
tions from a generative process that follows many of the assumptions made above. In particu-
lar, we sample N stimuli as described above. Then, we add normally distributed noise, with
variance Dy and Dy, to the features represented in each of the two regions (including common
teatures). Then, we build a distance matrix from the pairwise distances in the common feature
space between all stimuli. Finally, we solve the balanced assignment problem for this distance
matrix using a standard algorithm (implemented in scipy [76]). A sample is counted as an
error if there is at least one incorrect assignment.

4.4 Random Gaussian receptive field codes

We consider codes for a uniformly distributed K-dimensional stimulus. Without loss of gener-
ality, we take the features of the stimulus to be between 0 and 1. The code consists of N units
with Gaussian receptive fields. We assume that all units have the same field widths w and
height P, but random centers y'. In particular, the response of a neuron i is given by
(g — )’
r(x)=Pexp |-y ———| +v
w=rep |32

where v ~ N(0, ) and, here, we assume that w = w;Vj.
We model the response to multiple stimuli as the sum of responses to each individual stim-
ulus, so that

= Zri(x) +v

xeX

where X is a set of stimuli. Note that the noise v is only added once.

4.4.1 The spiking energy of the code. First, we compute the average squared L,-norm of
the code response across all stimuli, which we will refer to as V and which we use as a measure
of the spiking metabolic energy used by the code,

)] _ZI\::/dxl.../Uldx,dﬁ(x)r(x)2
—Z/ dx, .. /dep Pexp[ Z( M’)l

L o]
S Q_WXP{ A

i

vV =E, ZN:rz(x

(M3)
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where Eq M3 changes 7 = (x; — ,u].)Z. Because both x; and y; are uniformly distributed ran-
dom variables, we know that |x; — y;| = y; ~ T(0, 1, 0) where T(a, b, c) is a triangular
distribution.

We then split the above into two terms. For the first,

1 >
D/ - AV
/0 dx;2 exp { W2:| V/rwerf (b)|0

o)

and the second,

So, together,
vV = PQEN:ﬁ\/Ewerf (l) —w <1 — exp {— i})
% w w?
= NPQﬁ\/%werf (1> —w (1 — exp [— 1])
; w w?

=y (1) (1o [ )]

and, further, we will tend to deal with w < .5, so,

V ~ NP? [\/aw — w?]*

po |V
N[yaw — v

4.5 The Fisher information of the code

and

We will use the Fisher information as a measure of the magnitude of local errors via the Cra-
mer-Rao bound. In our framework, the Fisher information along a particular dimension j is

given by
a 2
(5 Tosptri) ]

(ot ory]

We want to use the Fisher information to understand the average code performance across
the whole stimulus space, rather than only for single points in the stimulus space. There is a
complication here: the Fisher information is related to the MSE of an optimal, unbiased

I(x) =E

r

:]Er
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estimator by the Cramer-Rao bound, which states:

MSE(x,) > >

L(x)

so, we would really like to evaluate

E,[MSE(x)] > E, LH

However, we were not able to evaluate this analytically. Instead, we evaluate

E, [MSE(x)] > E,[I,(x)]

which provides a good approximation of the former quantity so long as the variance of I; (x)
over x is small relative to the mean.
So,

I —Ex[fj(xﬂ—;;zfjlf[/oldykp(yk)exp[_vyﬂ / %P(y)iz [ ﬁ]

gt} <l 2]
5 (vaver (1) 2 | =] ) (w0 e [ ) )|

following a similar sequence as above for V. For small relatively small w (roughly, w < .5), we
can approximate this expression as

NP? g1k-1] 1 4
6§]W4[\/-W—W] [§w T—W
NP2 k-1 1

:—2 K ZI:\/‘—W] |:—\/‘_W:|
o3 2

4.5.1 The threshold error rate of the code. We compute the rate of threshold errors by
following the derivations from [43, 50]. In particular, threshold errors occur when the
response in the neural population is closer to a non-stimulus representation than the current
stimulus representation. To proceed, we discretize the population response, such that there are
1/8(w, K) distinct subpopulations, only one of which is active for a given stimulus, where S(w,
K) is the volume of a K-dimensional sphere with radius 2w. Importantly, this ratio increases

both as K increases and w decreases. Since we know the L,-norm of the code is v/V, we know
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that the distance between the representation of the correct stimulus and the representation of a

random, distant stimulus is v/2V. So, we need to find the probability that the noise crosses half
that distance, to become closer to the representation of the distant stimulus. This is given by

o Y

Pswitch - 261\]
eV
2erc 20_N

where the third line follows from an approximation of the error function for large argument.
Then, by a union bound, we find that,

L ey B
pthrNS(W7K) /_VTC p 40?\]

However, we find in simulations that this underestimates the probability of threshold
errors. The reason is simple: \/V represents the average L,-norm. However, in the random RF
code, there is significant variance around this average for different stimuli. As a consequence,
stimuli with low L,-norms will be exponentially more likely to have threshold errors, but this
is not accounted for by our equation. To incorporate this, we replace V with V;, where,

V, = max(V — Ag,(w),0)
where 0, (w) is the standard deviation of V across stimuli for a random RF code, and it depends
on w. This quantity is approximated analytically in the supplement (see S1 Text).

Given this correction and setting A = 2, we find good agreement between the resulting total
predicted MSE and the empircal MSE (Fig 3D and 3E).

4.5.2 Total MSE of the code. Finally, we can write the total approximate MSE for small w
as follows,

2 -2

2wo
MSE ~ % Yt p(w,V,a,)

—_

6

where the  is the average squared size of a threshold error, calculated from the triangle distri-
bution. We find that this expression has good agreement with the MSE estimated from simula-
tions (Fig 3D and 3E).

4.5.3 RF code simulations. To generate the simulation traces for the RF codes, we sam-
pled stimuli from a uniform distribution over K dimensions, then obtained the representations
of those stimuli in a particular instantiations of random RF codes (depending on the number
of regions in the code). Then, within each code, we used maximum likelihood decoding to
obtain an estimated stimulus and compared that estimate with the true stimulus.
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4.6 Random ramp codes

To explore a situation more similar to representations in the mammalian auditory system, we
also use neural representations with the following form:

1 Ko (xg, — 1)’
r(x) = 2P <xR - 5) * Up €Xp [_Z GJQWQ -
f

j

+v

where the stimulus x is now divided into dimensions that are encoded with ramp-like tuning
xg and receptive field-like tuning x. The neuron is also assumed to have a preferred axis uy in
the space of features encoded with ramp-like tuning. In our simulations, uy, is chosen to be a
random unit vector.

In the case of the auditory system, single neurons are thought to respond to a specific fre-
quency band (i.e., a receptive field-like representation) while having the intensity of their
response modulated by the position of the sound (i.e., a ramp-like representation) [39-42].

4.7 Calculating the redundancy between representations
We quantify the redundancy between Ry and Ry as the mutual information between X and Y,
R =I(X;Y)=H(X) - HX|Y)

1 ; 1 . 1
= K3 log 2ns* — (K — C) 3 log 27s” — c5 log 2n(Dy + Dy)

1 1
= C§ log 2nts® — Ci log 2n(Dy + Dy)
s
D, + D,
s*(1 — AD?)
AD?

C
2510g

¢ 1
where R is the redundancy between the representations in region X and Y (in nats). As dis-
cussed throughout this work, this redundancy is crucial for solving the assignment problem.
The redundancy is proportional to the number of commonly represented features C—so,
increasing C will produce relatively large increases in redundancy, and, as we have seen, can be
expected to effectively reduce assignment errors. Further, increasing the asymmetry of feature
representations AD reduces the level of redundancy between the Rx and Ry—so, as anticipated,
increasing this asymmetry will increase the assignment error rate.

This redundancy represents the cost of our solution to the assignment problem. Thus, we
desire a solution to the assignment problem that achieves a particular assignment error rate
and local distortion magnitude while using as few bits—and, in particular, as few redundant
bits—as possible.

4.8 The random RF integration model

The stimuli for the integration model are described by K = 3 dimensions. On each “trial,” we
sample two uniformly distributed, random stimuli. Two features are represented in each of the
two input populations. The two populations each represent C = 1 overlapping and one unique
feature, with N = 400 units. Each population is noisy and has SNR = +/20.

When present, the integration layer has N = 2000 units. The training targets are generated
by obtaining representations from a K = 3-dimensional random RF code. When present, the
hidden layers are two layers of 500 units, with no specific training target. The output
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population is N = 400 units, and the training target is given by samples from a random RF
code for the two unique features in the input representation.

4.8.1 End-to-end learning. The network is trained to produce the output population
directly. The different network architectures (integration or no integration, hidden layers or
no hidden layers) indicate how many and what kind of intervening layers are present; the
training objective does not change.

4.8.2 Integration learning. The network is trained to produce the activity from a random
RF code in the integration layer (i.e., the full K = 3-dimensional representation). The output is
learned as a second objective for backpropagation.

4.8.3 Training procedure. The nonlinear layers are learned by backpropagation with sto-
chastic gradient descent, using the Keras Tensorflow [77] environment and the Adam opti-
mizer. The batch size is set to 200 and the network is trained for a maximum of 200 epochs on
50000 input samples with early stopping (if performance on a validation set stops improving
for 2 epochs). In practice, the early stopping is often triggered after around 20 epochs.

Supporting information

S1 Text. Additional results and derivations, including two supplementary figures. In the
supplementary text, we include additional detail on several points discussed in the main text as
well as explore several related topics. In particular, we

1. Consider the case of asymmetric feature representations.
2. Consider the case of nonlinear mappings between the two feature representations.

3. Derive an expression for the variance of spiking energy of the RF codes.
(PDF)
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