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Abstract

Humans have the ability to craft abstract, temporally extended and hierarchically organized

plans. For instance, when considering how to make spaghetti for dinner, we typically con-

cern ourselves with useful “subgoals” in the task, such as cutting onions, boiling pasta, and

cooking a sauce, rather than particulars such as how many cuts to make to the onion, or

exactly which muscles to contract. A core question is how such decomposition of a more

abstract task into logical subtasks happens in the first place. Previous research has shown

that humans are sensitive to a form of higher-order statistical learning named “community

structure”. Community structure is a common feature of abstract tasks characterized by a

logical ordering of subtasks. This structure can be captured by a model where humans learn

predictions of upcoming events multiple steps into the future, discounting predictions of

events further away in time. One such model is the “successor representation”, which has

been argued to be useful for hierarchical abstraction. As of yet, no study has convincingly

shown that this hierarchical abstraction can be put to use for goal-directed behavior. Here,

we investigate whether participants utilize learned community structure to craft hierar-

chically informed action plans for goal-directed behavior. Participants were asked to search

for paintings in a virtual museum, where the paintings were grouped together in “wings” rep-

resenting community structure in the museum. We find that participants’ choices accord

with the hierarchical structure of the museum and that their response times are best pre-

dicted by a successor representation. The degree to which the response times reflect the

community structure of the museum correlates with several measures of performance,

including the ability to craft temporally abstract action plans. These results suggest that suc-

cessor representation learning subserves hierarchical abstractions relevant for goal-

directed behavior.

Author summary

Humans have the ability to achieve a diverse range of goals in a highly complex world.

Classic theories of decision making focus on simple tasks involving single goals. In the

current study, we test a recent theoretical proposal that aims to address the flexibility of
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human decision making. By learning to predict the upcoming events, humans can acquire

a ‘model’ of the world which they can then leverage to plan their behavior. However,

given the complexity of the world, planning directly over all possible events can be over-

whelming. We show that, by leveraging this predictive model, humans group similar

events together into simpler “hierarchical” representations, which makes planning over

these hierarchical representations markedly more efficient. Interestingly, humans seem to

learn and remember both the complex predictive model and the simplified hierarchical

model, using them for distinct purposes.

Introduction

Classically, research on decision making in humans and animals has focused on comparing

choices with differently valued outcomes occurring in the immediate future [1,2]. This prob-

lem can be formalized in the framework of reinforcement learning (RL; 3) and has led to a rich

understanding of the relationship between learning and dopaminergic responses in the mid-

brain [4]. However, naturalistic decision making often involves long-range dependencies

between multiple choices and temporally distal outcomes [5]. Recently, the interest in biologi-

cal mechanisms subserving such temporally extended decision making has surged [5–8]. Tem-

porally extended behaviors are problematic for standard RL models, which are highly sensitive

to the combinatorial explosion of possible states and actions available in real world sequential

decisions [9,10]. One approach to alleviate this combinatorial explosion is to generalize knowl-

edge over states or actions, which is called hierarchical reinforcement learning [6,11]. This

involves the learning of effective hierarchical representations that allow for meaningful gener-

alization, but the neurocomputational mechanisms underlying this remain to be determined

[12].

Previous accounts of hierarchical representation learning have mainly relied on graph-the-

oretic analysis of the structure of the task [13–16]. However, this requires a fully accurate

representation of this task structure to begin with, which in reality often has to be learned dur-

ing the task itself [17]. The successor representation (SR) [18] is a reinforcement learning algo-

rithm specifically concerned with learning task structure based on a biologically plausible

learning rule [19–21]. Notably, it has been suggested that the successor representation can be

leveraged to discover hierarchical representations [22,23]. The successor representation learns

a multi-step prediction of the task structure, which allows for fast and flexible behavior in the

face of changing goals [24]. Representing the task structure in this way balances fast computa-

tion commonly associated with so-called model-free reinforcement learning against the flexi-

bility commonly associated with so-called model-based algorithms which require more

computational time to adjust behavior flexibly [25]. Interestingly, it has been shown that the

behaviors of both humans and rats exhibit some of the limitations in decision making specifi-

cally associated with the successor representation [26,27], which can capture some human and

rat learning effects better than typical model-free or model-based RL algorithms do [28]. Addi-

tionally, the successor representation can explain how people segment events based on the

graph topology of the events, capturing higher-order structure in the environment [29–31].

However, to our knowledge no one has yet investigated whether the successor representation

is leveraged for the purpose of extracting hierarchies relevant for goal-directed behavior.

In the current study, we investigate whether the successor representation provides a basis

for hierarchical abstraction that is actually used for planning goal-directed behavior. We

designed a task that afforded a simplified choice policy based on community relationships

observable in the lower-order task structure. Participants played a computer game wherein
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they acted as a tour guide in a museum, leading visitors to rooms with specific paintings that

they requested to view. A new request was made every time a painting was located, which

encouraged the participants to learn an internal model of the museum in order to find the

paintings as efficiently as possible. Unbeknownst to the participants, the museum consisted of

three different wings, with each wing containing five highly interconnected rooms. The partic-

ipants made binary choices to navigate between the rooms of the museum, where each choice

was probabilistically mapped to two of the four possible neighboring rooms. These action-out-

come mappings afforded a simple policy to move between wings, as consistently selecting one

key yielded on average shorter paths to one of the two remaining wings, whereas the other key

yielded shorter paths to the other wing.

This task design allowed us to test two key predictions. First, we predicted that participants

would learn an internal model of upcoming rooms while they navigated through the museum

[23]. We predicted that aspects of this internal model would be reflected in response times, with

more expected rooms yielding faster response times [29], and expectations and prediction errors

about reward also influencing response times [32–36]. Second, we predicted that participants

would extract and utilize hierarchical information about the museum, which would be reflected

in their choice behaviors. In particular, we expected that their choices would be sensitive to the

higher-order structure of the museum wings rather than only to the lower-order structure of the

museum rooms, which would enable faster planning using less cognitive effort [6,37].

Following a series of preregistered analyses, we tested the nature of the learned internal

model separately for the response time and the choice data. We compared several candidate

models: An optimal “model-based” model that perfectly represented the lower-order structure

of the rooms of the museum, an “explicit hierarchical” model that perfectly represented the

higher-order structure of the wings of the museum, and a “successor representation” model

that learned multistep predictive representations of the rooms sensitive to higher-order com-

munity structure of the wings. We found that the successor representation model accounted

for the response times the best, whereas the explicit hierarchical model accounted for the

choice behavior the best. In an exploratory follow-up analysis, we examined the “discount fac-

tor” parameter of the successor representation, which arbitrates the degree to which the com-

munity structure is reflected in the learned predictions. We observed that individual

differences in the fit of the discount factor correlated with 1) effective hierarchical abstraction

as reflected in choice behavior, 2) accumulated reward compensation at the task, and 3) perfor-

mance on a secondary task where the participants were asked to reconstruct the rooms of the

museum from memory. In all cases, discount factors that reflected the higher-order structure

of the wings more strongly predicted better performance, including a more accurate recon-

struction of the lower-order structure of the rooms of the museum in the secondary task.

These results support the hypothesis that the successor representation subserves effective hier-

archical abstraction for goal-directed behavior.

Results

Experimental design

We initially ran a pilot study and preregistered a sample and analysis plan for the current

study (https://osf.io/n2jcz/). Based on the preregistration, we collected a total number of 141

participants on the online platform Prolific [38]. We excluded 21 participants based on prereg-

istered exclusion criteria that ensured that the participants sufficiently attended to the task (see

methods). The participants played an online game in which they would explore and navigate a

simulated museum consisting of multiple rooms. Because some of the rooms were clustered

into local groups or “wings” of the museum, the subjects could learn a useful hierarchical
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representation of the task. The participants were told to imagine that they were a tour guide in

this museum who was required to guide visitors to specific paintings that they requested to

see. In total there were 15 rooms in the museum, each containing a unique painting. Because

the requested paintings occurred in different rooms, the participants needed to plan their

route in order to reach the paintings in as few steps as possible. The 15 rooms were organized

according to a “ring-of-cliques” layout as shown in Fig 1A, which was originally used by [30].

In this graph, each room is connected to four other rooms via four different hallways. This lay-

out of the museum was never shown to the participants, nor did they receive any other hints

about the layout. During an initial “training phase” (see Methods), the participants were

required to learn the layout of the museum by engaging with the task. Then, during a subse-

quent “testing phase”, which constitutes the main focus of our analyses, the participants were

required to navigate the museum based on this learned knowledge.

The experimental task was divided into “miniblocks”. At the beginning of each miniblock,

the participant was cued with an image of a specific painting that they would be required to

find in that miniblock. The participant could navigate from room to room in the museum by

pressing either the<z> or the<m> key of their keyboard in order to select the direction that

they wished to move next. However, each key mapped to two possible rooms with equal proba-

bility (Fig 1B). The mappings were engineered to provide the participant agency at the level of

the wings of the museum: Each key consistently moved the participant out of the current wing

in only one direction, allowing them to choose a direction to “rotate” through the wings of the

museum. On reaching the goal painting for that miniblock, the participant was required to

press the <space> key. They were told that if they did so correctly, then they would receive a

small reward that would accumulate throughout the experiment as a bonus payment. How-

ever, if they failed to press <space> in the room with the goal painting, or if they pressed

<space> in a room that was not the current goal, then they would instead incur a small finan-

cial punishment. These requirements ensured that the participants would actively remember

the identity of the goal painting for that miniblock, in order to successfully find it and receive

the reward. The miniblock ended once the room with the goal painting was reached, irrespec-

tive of whether the subject pressed <space> or not, and the next miniblock started with a new

goal cue. The starting location for the subsequent miniblock was always the goal location of

the last miniblock, so the entire experiment consisted of a single continuous walk through the

museum. The new goal painting was always a room located in a wing different from the cur-

rent starting location. Fig 1D provides an overview of the timeline of a single miniblock.

Cognitive models

We fit multiple cognitive computational models (see below) to the response times and the

choices, which we predicted would be sensitive to lower-order task structure and simplified

hierarchical abstraction, respectively. We preregistered the exact structure of the models,

including the definition of all theoretically meaningful and all “nuisance” regressors (https://

osf.io/n2jcz/; with exceptions marked and justified in S2 Appendix). We simulated task perfor-

mance for each of the proposed models to confirm that they make different predictions about

behavior, and conducted a simulation study to validate the results for both our model compar-

ison and parameter estimation techniques (see S1 Appendix). These simulations lend confi-

dence that our main results reported here are meaningfully interpretable [39].

Null model

In order to provide a benchmark for the other cognitive models, we included “null models”

that capture behavioral predictions of no theoretical interest. For choice behavior, we
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Fig 1. Task design. (A) A graph showing the relationships between the rooms in the museum task. The museum is characterized by three different

communities or “wings”, each consisting of 5 rooms. Individual rooms are numbered 1–15. (B) “Balanced” action-outcome mappings for each room. Each set

of outcomes is randomly assigned to keys<z> and<m> (labelled “i” and “ii”). The same key mapped to the same set of outcomes across the three different

wings. Hence, if the participant intended to move out of the current wing into a specific different wing, they needed only to select repeatedly the key leading to

the desired wing (labeled as “intention”). Green arrows indicate transitions to the intended wing, orange arrows indicate transitions ending in nodes with green

arrows, and red arrows indicate transitions ending in nodes without any green arrows. Note that the probabilistic mappings ensure that, even when the subjects

select a response appropriate to their intended direction, the actual transition obtained might or might not be consistent with their intention (see S1 Appendix

for more details). (C) Illustration of “preference” in action-outcome contingencies (see Methods). Blue arrows indicate transitions that are present for both

actions (as shown in B). Red arrows indicate transitions that are not possible for either action. One room does not have any preferred or removed transitions.

This room is labeled with “W” for “wide”. (D) Illustration of an example miniblock. The first image is the goal cue (i). In this example, the participant begins

the miniblock in a room with a cactus painting (center; images from ref (112) but illustrations shown here were sourced from openclipart.org), and the goal cue

indicates that they must look for the “lamp” painting (top). The participant initiates the miniblock by pressing<space> (ii) (This “start state”, which the
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estimated response-coded logistic regressions where key <z> is coded as “0” and key <m> is

coded as “1”. The null model included only an intercept term and no regressors, accounting

for a bias to select either<z> or <m> preferentially. For the response times, we estimated a

linear model for the mean parameter of a log-normal distribution. The null model included six

nuisance regressors and an intercept term. These nuisance regressors were also included in all

of the other response time models. Firstly, we hypothesized that participants might get frus-

trated on longer miniblocks, causing them to speed up their response times. Hence, a nuisance

regressor was included that captured the (log-transformed) number of “steps” for the current

miniblock, indicating the number of button presses and transitions that were made that mini-

block. Secondly, we hypothesized that participants might better remember rooms that were

more recently encountered, causing them to speed up. Hence, a nuisance regressor was

included that captured the (log-transformed) number of trials previously that the current

room was last visited. Thirdly, we hypothesized that participants might be slower to execute

responses on different keys compared to repetitions of the same key. Hence, a binary nuisance

regressor was included that indicated whether the current key press was different from the pre-

vious key press.

The remaining three nuisance regressors were binary, each capturing an irregularity in the

action-outcome contingencies. The reasoning behind these irregularities is further elaborated

in the Methods section (section “action-outcome mapping”) and in S1 Appendix. Here, we

discuss how these irregularities might influence response times, and how the three nuisance

regressors aim to capture this influence. Firstly, four transitions per community were possible

regardless of which choice the participant made (Fig 1C, blue, “preferred”). Following a partic-

ular transition will elicit a prediction error, and larger prediction errors are hypothesized to

yield slower responses for choices made in the subsequent state. Note that this is the basis for

our prediction that participants should slow down following transitions between two different

communities. Consider a participant who would behave completely randomly in the Museum

task. In each room, they have a 50% chance of selecting either action, which yields a 50%

chance of following either of two transitions as shown in Fig 1B. A preferred transition could

be elicited by both actions with a 50% chance, and would thus be experienced more often.

Therefore, it is likely these preferred transitions yield lower prediction errors (i.e. they are pre-

dicted more strongly), yielding faster responses for the choices immediately following the tran-

sition. To capture this, we added a binary regressor that was 1 following a preferred transition,

and 0 otherwise.

Secondly, some transitions were not possible in our design (Fig 1C, red). Therefore, rooms

with an outgoing red arrow as shown in Fig 1C have only three unique possible outcomes in

total (each action has two outcomes, but one outcome is shared between the two actions as a

preferred transition). Notice that there is one room that does not have any removed or pre-

ferred transitions (labeled with “W” for “wide” in Fig 1C). Because this is the only room that

has 4 possible unique outcomes, participants might find it harder to decide on the most appro-

priate action in this room (as they have to consider more possible outcomes) predicting slower

responses in this room. For this reason, we included a binary regressor that was 1 when partici-

pants occupied this wide room, and 0 otherwise.

participants could anticipate based on the goal-cue (i) step, was excluded from the analyses). Subsequently, the participants were required to select either<z>

or<m> to move between rooms (iii, iv) and<space> to indicate that they reached the goal (v), after which they received a reward (points later translated into

a financial bonus) (vi). As illustrated, pressing<space> in a non-goal room results in a small penalty (“wrong goal”) (vii). Similarly, pressing<z> or<m> in

the goal room also leads to a small penalty (“goal miss”) (iix). The miniblock always ends with either a “goal miss” (iix) or a “reward” (vi) screen, after which the

next goal cue (i) is presented.

https://doi.org/10.1371/journal.pcbi.1011312.g001
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Thirdly, transitions out of this wide room might be harder for participants to predict, given

that each action has two unique outcomes as opposed to one unique outcome (with the other

outcome shared between the two actions as a preferred transition in all other rooms). Outcomes

that are harder to predict may yield larger prediction errors, and thus predict increased response

times for the choices that immediately follow these transitions. For this reason, we included a

binary regressor that was 1 following transitions out of this wide room, and 0 otherwise.

Model-based

Among the cognitive models, we first considered a canonical model-based reinforcement

learning agent. This agent was equipped with perfect knowledge of the action-outcome contin-

gencies and could compute the exact (temporally discounted) values of each room with respect

to the current goal. Parameter fitting included the discount factor, which is known to influence

community structure [29]. In particular, moderately high values for the discount factor

emphasize differences between the wings, increasing value inside the goal wing relative to val-

ues outside the goal wing. We hypothesized that participants might base their choices on the

difference in expected values (EVs) between choices <m> over<z>, making the choice with

the relatively higher value (corresponding to shorter paths to the goal) more likely to be

selected. Hence, to model choice behavior, the model-based model included the relative differ-

ence of EV for <m> over <z> as a regressor. To model response times, the model-based

model included three regressors besides the six nuisance regressors. Firstly, we hypothesized

that participants might slow their responding when they are closer to the goal, in order to not

accidentally trigger a “goal miss” (Fig 1D). Hence, the model-based response time model

included a regressor for the expected value of the current step. Secondly, we hypothesized par-

ticipants might slow their responses for unexpected progress toward or away from the goal.

Hence, the model-based response time model included a regressor for reward prediction error

(RPE), defined as the difference between the EV of the current step and the EV of the previous

step. Thirdly, we hypothesized participants might slow their responses when the value differ-

ence between the two choices is less salient. Hence, the model-based response time model

included a regressor capturing the (inverse) “conflict”, which was evaluated as the absolute dif-

ference between the EV of the two available choices.

Explicit hierarchical structure

Secondly, we considered a cognitive model that tested graph-theoretic predictions of hierar-

chical abstraction. This agent accessed a perfect representation of the mappings between the

lower-level rooms and the higher-level wings, but not of the exact locations of the rooms

within the wings (whereas the model-based agent represented the lower-level room locations,

without any explicit indication of the mappings with respect to the wings). We hypothesized

that the participants might repeatedly select the choice that directly “rotated” towards the cur-

rent goal wing. Hence, the explicit hierarchical model of choice behavior included a binary

regressor indicating whether or not <m> was the choice rotating toward the goal wing. This

rotation corresponds to the hierarchically informed policy where only one key allows for a

transition to one of the two other wings. To model response times, the explicit hierarchical

model included three regressors besides the six nuisance regressors. Firstly, we hypothesized

that participants might slow their responding when they are closer to the goal. Hence, the

explicit hierarchical response time model included a binary regressor indicating whether or

not the current room was in the same wing as the goal. This is analogous to the EV regressor

in the model-based model. Secondly, we hypothesized that participants might slow their

responding following a transition between two wings compared to transition within one wing.
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This effect has been observed in previous experiments and has been defined as a signature of

higher-order predictive learning [29,40,41]. Hence, the explicit hierarchical response time

model included a binary regressor indicating whether or not the previous transition mapped

between two wings. Thirdly, we hypothesized that the participants might slow their respond-

ing in rooms that allow for a transition between two wings, because here one choice will allow

for the transition between wings whereas the other choice excludes this transition. Participants

might deliberately seek out or avoid these transitions and thus take more time to consider an

optimal choice. Hence, the explicit hierarchical response time model included a binary regres-

sor indicating whether or not the current room allowed for a transition between two wings.

This is analogous to the measure of (inverse) conflict defined in the model-based model.

Successor representation

Finally, we considered an agent that learned a successor representation, which encodes for each

state the expected future (discounted) states that the agent will occupy. The discount factor

parameter determines the temporal horizon of the expected future state occupations. Moder-

ately high discount factors emphasize the higher-order wing structure of the museum, whereas

lower discount factors emphasize the lower-order room locations. Importantly, the successor

representation differs from optimal model-based decision making in two key respects. Firstly,

the successor representation holds a multi-step predictive model of future state occupations,

while the model-based model holds a one-step predictive model. This explains why the succes-

sor representation can predict slowing between communities. It also implies generalization of

value across different rooms in the same wing. Optimal model-based decision making requires

more intensive computation to deal with changing goals [18,25] and would predict perfect

adherence to the values of individual rooms in each wing. Secondly, the successor representa-

tions’ predictive model of states is dependent on the policy being followed. Because different

goal locations imply different optimal choices in our museum task, the internal model of the

task states will be in constant flux across successive task miniblocks, even after a training phase

in which the participants learned a good baseline model of the environment [42]. This differs

from the model-based model, which is provided a priori with an accurate model of the environ-

ment that can be used to compute an optimal policy for any possible goal location. After each

transition, the successor representation yields a “state prediction error” that corresponds to

whether the newly observed state was anticipated or not. This prediction error is used to update

the predictive model according to a temporal-difference learning rule (see Methods). The pre-

dictive representation can be used to compute expected values analogous to those computed by

the model-based model. To model choice behavior, the successor representation model

included a similar regressor as for the model-based model, reflecting the relative difference in

expected values between the two choices. To model response times, the successor representation

model included similar regressors reflecting the EV, the RPE, and the conflict. We additionally

hypothesized participants might slow their responding when encountering more surprising

rooms. Hence, in contrast to the model-based model, the successor representation model

included a regressor for state prediction error. Dependent on the discount factor, state predic-

tions are expected to be larger for transitions between two wings compared to transitions within

one wing. Therefore, this state prediction error regressor is analogous to the binary regressor

for transitions between wings in the explicit hierarchical model.

Choice behavior

All analyses with respect to choice behavior and response switching were preregistered

(https://osf.io/n2jcz/) and thus of confirmatory nature. Random-effects group-level Bayesian
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model selection of the computational models of choice behavior indicate a significant group

difference in model prevalence (BOR< 10−26) with a strong preference for the explicit graph-

theoretic hierarchical abstraction model (pxp = 1). This holds when considering binary model

comparisons between the explicit model and every other model (all BOR< 10−5, see Methods

for multiple comparison correction. All pxp = 1). Posterior model probabilities for every par-

ticipant are shown in Fig 2A.

We tested the group-level significance of the relevant rotation-choice parameter of the

explicit hierarchical model by fitting a hierarchical Bayesian logistic regression with separate

participant-level effects (Fig 2B). We find that participants are indeed significantly more likely

to choose the action that leads into the rotational direction of the goal wing (M = 1.172,

HDI95% = [0.992, 1.350], ER+ =1). Fig 2C shows the difference in proportion of<m> choices

when <m> is the correct rotational direction versus when <z> is the correct rotational direc-

tion. A clear effect can be seen in the data (blue) that is also well captured by the explicit

graph-theoretical abstraction model (red). It can also be seen that the effect of rotational direc-

tion appears smaller for <z> than for<m>. Indeed, the intercept in the hierarchical Bayesian

logistic regression is significantly above 0 (M = 0.311, HDI95% = [0.220, 0.401], ER+ =1) indi-

cating a bias in selecting <m>. This can be explained by the fact that<m> is placed on the

right side of the QWERTY-keyboard and participants might have a bias to interpret rightward

directions as progressive (i.e., reading in most western cultures happens from left to right), or

the fact that the majority of participants are likely to be right-handed (which we did not

assess).

Response switches

Given that participants preferentially selected the key corresponding to the rotational direction

of the goal wing, we examined whether participants also dynamically updated their responses

during task execution. We tested this by asking whether they were more likely to switch their

response immediately after moving out of the goal wing, indicating an intention to reverse

their direction of movement (i.e., go “backwards”). Similarly, we asked whether participants

were less likely to switch their response immediately after moving into the goal wing, indicat-

ing an intention to continue in the same direction. We modeled this with a hierarchical Bayes-

ian logistic regression, the coefficients of which are shown in Fig 2D. The model confirms

significant effects for goal wing entry indicating decreased switching (M = -0.722, HDI95% =

[-0.940, -0.509], ER− =1), goal wing leave indicating increased switching (M = 0.983, HDI95%

= [0.581, 1.349], ER+ =1), and a nuisance regressor for action repetitions (M = -0.724,

HDI95% = [-0.916, -0.532], ER− =1), which indicated that participant switched less often

when they had already repeated an action multiple times (i.e., action commitment). Fig 2E

illustrates the proportion of response switches relative to “baseline” for all trials with an entry

into the goal wing (“entry”), vs all trials with an exit from the goal wing (“leave”). The baseline

trials include all trials that are not classified as entry or leave. The empirical results (blue) indi-

cated that participants were less likely to switch when they entered the goal wing, and were

more likely to switch immediately after leaving the goal wing. Posterior predictions from the

hierarchical Bayesian logistic regression model match these data well (red).

Participants mix abstraction with detail

For each wing, given a goal in each other wing, there was always one room where the optimal

choice according to a model-based (and converged successor representation) model would

deviate from the explicit hierarchical model. This is because both the rotation and the antirota-

tion can lead to the same desired outcome, but the rotation has a chance of transitioning to a
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Fig 2. Choice data. (A) Horizontal stacked bar charts for every participant, illustrating the posterior model probability derived from random effects

Bayesian model comparison between four cognitive models, “Null” (orange), explicit hierarchical “Exp” (pink), model-based “MB” (yellow), and successor

representation “SR” (blue). Participants were sorted by posterior model probability for the “Exp” model for interpretability. (B) Regression coefficient of

the “rotation” variable in the explicit hierarchical logistic regression. Density plot shows the full posterior distribution of the population mean, with orange

lines indicating the 95% highest density interval. Dots represent posterior means of individual participant (random) effects. (C) Proportion of<m>
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room without connections towards the goal wing, whereas the antirotation does not (Fig 2F).

We set up an exploratory hierarchical Bayesian logistic regression to test whether participants

are indeed more likely to follow the rotation when it is the optimal decision (blue, Fig 2F) com-

pared to when it is not (orange, Fig 2F). Fig 2G shows that in both of these rooms, regardless

of which direction the rotation follows (<z> or<m>), participants select the correct rotation

on most of the trials, but they do so less often when the antirotation offers a better alternative.

A test of the intercept of the logistic regression confirms that participants are indeed overall

biased towards selecting the rotation, as predicted by the explicit hierarchical model

(M = 0.580, HDI95% = [0.489, 0.671], ER+ =1). In accordance with our earlier observations

(Fig 2C), participants are more likely to do so when the correct rotation is<m>, since they

have a bias towards selecting this response (M = 0.621, HDI95% = [0.435, 0.809], ER+ =1; Fig

2H, “rotation”). Crucially, when participants occupy the room where the rotation is the opti-

mal direction (blue, Fig 2F), they are more likely to select the rotation, compared to when the

antirotation is in fact optimal (orange, Fig 2F) (M = 0.097, HDI95% = [0.048, 0.145], ER+ =

9999.000; Fig 2H, “node type”). This effect is numerically, although not significantly, attenu-

ated when the correct rotation is<m> (M = -0.057, HDI95% = [-0.156, 0.040], ER- = 7.061; Fig

2H, “interaction”). Overall, this confirms that participants’ choice behavior is mostly explained

by an explicit hierarchical model in agreement with our model comparison, as evidenced by

the large influence of the rotation even when this action is not in fact optimal. However, small

influences of more precise (model-based or successor-like) knowledge is evident at the group

level, indicating that the best model might allow for a mixture of hierarchical abstraction and

fine-grained knowledge [43].

Response times

All analyses with respect to response times described here were preregistered and thus of con-

firmatory nature (https://osf.io/n2jcz/). Random-effects group-level Bayesian model selection

of the computational models of the response time data indicate a significant group difference

in model prevalence (BOR< 10−10) with a strong preference for the successor representation

model (pxp = 1). This holds when considering binary model comparisons between the succes-

sor representation and every other model (all BOR< 0.003, see Methods for multiple compari-

son correction. All pxp> 0.998). Posterior model probabilities for every participant are shown

in Fig 3A.

choices over the course of the testing phase, grouped for every participant by trials where<m> was the optimal rotation vs where<z> was the optimal

rotation. Empirical data are shown in blue. Posterior predictions from the explicit hierarchical logistic regression are shown in orange. (D) Regression

coefficients for the response switch analysis, describing the probability of switching response key upon “entry” of the goal wing, “leave” of the goal wing,

and the number of “repetitions” of pressing the current key. Colors similar to B. (E) Proportion of trials on which the participant switched their response

key, grouped by trials where the participant just entered the goal wing or just left the goal wing. Switch proportion of all other (“baseline”) trials is

subtracted, so values below 0 reflect a decreased tendency to switch, and values above 0 an increased tendency. Color coding as in C. (F) Given a particular

goal outside the current wing, one action corresponds to the correct “rotation” to follow for most of the rooms in the current wing. However, one room in

each community actually leads to better outcomes when the participants would follow the opposite action (antirotation, here colored in orange). In this

figure, possible outcomes of the rotational action are colored blue, and possible outcomes of the antirotational action are colored orange. As can be

observed, the orange room has a preferred transition in the direction of the goal wing (colored with an orange to blue gradient, indicating both choices can

lead to this outcome). Interestingly, when following the rotation action (blue transitions), one possible transition leads in the correct direction whereas the

other possible transition leads to a room for which the transition in the direction of the goal wing was removed (X in the figure). By contrast, when

following the antirotation (orange transitions), the other possible outcome leads to a state that still has a transition in the direction of the goal wing (blue

circle). For this reason, model-based and (converged) successor representation models predict participants would pick the antirotational action in this

orange room, and the rotational action in the blue room. (G) Proportion of rotational actions chosen in the orange (antirotation) and blue (rotation)

rooms (“Node type”, x-axis, colored as in F), considered separately when the correct rotation would be<z> (left panel) or<m> (right panel). Black dots

with error bars correspond to mean with 95% confidence interval. (H) Regression coefficients for the (anti)rotation selection analysis, describing the

probability of selecting the correct rotation when it is<m> (over<z>, left) and when occupying the blue room (as opposed to the orange room, see F;

middle). The interaction term is displayed on the right. Colors similar to B.

https://doi.org/10.1371/journal.pcbi.1011312.g002

PLOS COMPUTATIONAL BIOLOGY The successor representation subserves hierarchical abstraction for goal-directed behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011312 February 20, 2024 11 / 41

https://osf.io/n2jcz/
https://doi.org/10.1371/journal.pcbi.1011312.g002
https://doi.org/10.1371/journal.pcbi.1011312


We tested whether the estimates of the nuisance regressors included in the successor repre-

sentation model were indeed significantly related to response times (Fig 3B). We do not find

any evidence that participants speed up or slow down based on the (log-transformed) number

of trials on the current miniblock (“logsteps”) (M = -0.003, HDI95% = [-0.014, 0.007], ER− =

2.510). We do find a significant effect of response slowing for rooms based on (log-trans-

formed) recency (“logrecency”), indicating rooms that have not been encountered for longer

yield slower responses (M = 0.032, HDI95% = [0.026, 0.037], ER+ =1). We also find significant

slowing for trials where the participant switched their response key (“response switch”)

(M = 0.036, HDI95% = [0.014, 0.059], ER+ = 1378.310).

Further, we find trending effects for an influence of the action-outcome mapping (see

Methods) on response times (Fig 3B). In particular, we find a trend for participants to be faster

in rooms that have more possible outcomes (“wide node”, which have no “preferred” transi-

tions) (M = -0.008, HDI95% = [-0.016, 0.001], ER- = 28.390) and the transitions following these

rooms (“wide trans”) (M = -0.008, HDI95% = [-0.017, 0.001], ER- = 26.615). Meanwhile, we

find a trend for participants to be slower following more expected transitions, which occur

when both actions can transition to the same room (Fig 1C) (“preferred”) (M = 0.006, HDI95%

= [-0.001, 0.012], ER+ = 20.158). Parenthetically, these trends run opposite to our initial expec-

tations, although they are not statistically reliable according to our definition, and reverse

direction in a control model considering a state-based successor representation (see

S2 Appendix).

Fig 3. Response time data. (A) Horizontal stacked bar charts for every participant, illustrating the posterior model probability derived from random effects

Bayesian model comparison between four cognitive models, “Null” (orange), explicit hierarchical “Exp” (pink), model-based “MB” (yellow), and successor

representation “SR” (blue). Participant data were sorted by posterior model probability for the “SR” model for interpretability. (B) Regression coefficients of the

successor representation model. Density plots show the full posterior distributions of the population means, with orange lines indicating the 95% HDI. Dots

represent posterior means of individual participant (random) effects. SPE refers to the state prediction error, EV to expected value, and RPE to reward

prediction error. See text for definition of remaining terms.

https://doi.org/10.1371/journal.pcbi.1011312.g003
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With respect to the regressors of theoretical interest (Fig 3B), we find significant slowing

for transitions yielding higher state prediction error (“SPE”), indicating slowing after transi-

tions between wings compared to transitions within wings (M = 0.015, HDI95% = [0.007,

0.023], ER+ = 6152.846). We also find significant slowing for higher expected values (“EV”),

indicating that participants respond slower for rooms closer to the current goal (M = 0.033,

HDI95% = [0.025, 0.042], ER+ =1). We also find significant slowing for transitions with more

negative reward prediction errors (“RPE”), consistent with post-error slowing when partici-

pants move away from the goal, or conversely, speeding when participants move toward the

goal (yielding positive reward prediction errors) (M = -0.023, HDI95% = [-0.029, -0.016], ER− =

1). Finally, we find no conclusive evidence that the regressor for conflict, conceptualized as

the difference in expected value between the two different actions, influences response times

(“conflict”) (M = 0.002, HDI95% = [-0.004, 0.007], ER+ = 2.514).

Posterior predictive checks

We further explored the successor representation model by examining specific transition types

(Fig 4A). As illustrated in Fig 4B, which shows the regressor values assigned by the successor

representation model to these trial types (extracted from the maximum a-posteriori fit for each

participant), the three transition types that cross between wings (“between”, “outof”, and

“into”) yielded increased state prediction errors (“SPE”), as expected. Further, transitions that

end in the goal wing (“inside” and “into”) yield larger expected values (“EV”), transitions out

of the goal wing (“outof”) yield larger negative reward prediction errors (“RPE”), and transi-

tions into the goal wing (“into”) yield larger positive reward prediction errors. As a validation

of our task design, we also replicated previous accounts of response time slowing for between-

wing transitions [29,40,41] by conducting a paired t-test of “outside” (green) and “between”

(blue) transitions, which approximately controls for effects related to value (EV, RPE, and con-

flict). We find significant slowing for between-wing transitions (Mbetween>outside = 34.797ms,

SDbetween>outside = 85.459, t(118) = 4.442, p< 10−4), comparable to these previous reports.

Fig 4C plots the mean response times for participants separately for each trial type (left),

and matching mean response times for the full posterior predictive distribution (right). It can

be seen the model predicts response times in a very similar range as the real data, and mostly

preserves the order of different trial types. However, there appears to be a trade-off whereby

transitions “inside” the goal wing appear slightly overestimated, and transitions “into” the goal

wing appear slightly underestimated. Additional exploratory modeling reported in S2 Appen-

dix suggests this can be accounted for by modeling the absolute (unsigned) reward prediction

error, as opposed to the signed reward prediction error.

Even though the successor representation model accounts well for the response time effects

observed between the different transition types illustrated in Fig 4A, Fig 4B indicates substan-

tial variance in the regressor values between trials of the same transition type, including over-

lap between the trials of different transition types. To investigate whether this variance in

regressor values is also reflected in response times, we ordered all trials by regressor value (sep-

arately for each regressor) and binned them by intervals of 0.3. This yields a response time dis-

tribution for each bin; Fig 4D shows the mean (orange) and the 10th and 90th percentile (blue)

for each bin. This reveals a parametric relationship between response times and the regressors

derived from the successor representation, where for example the response times gradually

increase in association with increasing expected value. This fine-grained analysis provides

additional support that participants learn a detailed, predictive representation of the room

locations, beyond just a simplified (explicit hierarchical) representation of the relationships

between the three different wings.
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Fig 4. Posterior predictive checks of the response time successor representation model between communities. (A) Layout of the museum with transitions

colored according to type. The goal painting is colored black and labeled “G”. Green transitions stay within wings that do not contain the goal painting

(“outside”). Blue transitions move between non-goal wings (“between”). Orange transitions move from a non-goal wing into the goal wing (“into”). Pink

transitions move from a goal wing into a non-goal wing (“out of”). Yellow transitions stay within the goal wing (“inside”). (B) Distributions of regressor values

assigned to trials following the different transition types as defined in A. Regressor values were computed based on the discount factor value at the maximum a-

posteriori of the joint likelihood of the participant-level successor representation model fit. SPE: state prediction error, EV: expected value, RPE: reward

prediction error. (C) Mean (log-transformed) response times (left) and mean posterior predictions (right) for each participant for the different transition types

as defined in A. Population means with their 95% confidence interval are shown in black. (D) Mean (orange) and 10th and 90th percentile (blue) of the response

time distribution for trials binned by regressor values (as assigned in B) in intervals of 0.3. Binned separately for the different regressors (SPE, EV, RPE,

conflict). Conditional response time distributions are repeatedly plotted side by side for real data (left) and the full posterior predictive distribution (right).

https://doi.org/10.1371/journal.pcbi.1011312.g004
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To probe further how the successor representation might explain response times at a fine-

grained (i.e. within-wing) level, we partitioned the trials as shown in Fig 5A, indicating whether

the current room lies at a boundary allowing for a transition to a different community and spec-

ifying whether this transition would correspond to entering the goal community (orange), leav-

ing the goal community (yellow), or switching between non-goal communities (blue). These

trials can be compared against trials within the goal community (pink) or outside of it (green).

To ensure the variance in response times on these trials corresponds to knowledge of the

within-community structure of the museum, we excluded all trials that followed a between-

community transition. We conducted three paired t-tests to investigate sensitivity to the within-

community structure of the museum (corrected for multiple comparisons; see Methods). With

respect to rooms that are outside the goal community (Fig 5B), we found a significant increase

in response times in rooms at the boundary that allows for a transition between two non-goal

communities (blue), compared to non-boundary rooms outside the goal community (green)

(Mnon-goal>outside = 6.921ms, SDnon-goal>outside = 32.292, t(119) = 2.348, p = 0.041). We also find a

significant increase in response times for rooms at the boundary that allows for a transition

“toward” the goal community (orange) compared to rooms at the boundary that allow for a

transition between non-goal communities (blue) (Mtoward>non-goal = 10.714ms, SDtoward>non-goal

= 42.671, t(119) = 2.751, p = 0.021). Fig 5C shows posterior predictions from the successor

representation model. This reveals the model predicts a similar increase in response times for

boundary-rooms that allow for transitions into the goal community (orange), but not for

boundary-rooms that allow for transitions away from the goal community (blue; compared to

non-boundary rooms outside the goal community, green). Inspection of the boundary and

non-boundary rooms in the goal community (Fig 5D) did not reveal statistically significant dif-

ferences in response times (Moutof>within = 6.445ms, SDoutof>within = 79.123, t(119) = 0.892,

p = 0.374), nor does the model predict any such differences (Fig 5E).

Fig 5. Posterior predictive check of the response time successor representation model within communities. (A) Layout of the museum with rooms colored

according to type. The goal painting is colored black and labeled “G”. Green rooms lie within wings that do not contain the goal painting (“outside”). Blue

rooms lie at the boundary between two non-goal wings (“away”). Orange rooms lie at the boundary allowing for a transition into the goal wing (“toward”).

Pink rooms lie within the goal wing (“within”). Yellow rooms lie at the boundary allowing for a transition out of the goal wing (“out of”) (B) Mean response

times (standardized within participant) in different rooms outside the goal wing, as labeled in A. (C) Same as B, but drawn from posterior predictions of the

fitted successor representation for each participant. (D) Same as B, but for rooms inside the goal wing. (E) Same as D, but drawn from posterior predictions of

the fitted successor representation for each participant.

https://doi.org/10.1371/journal.pcbi.1011312.g005
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Control analyses and convergence

We conducted several control analyses to check the robustness of the above results, and repli-

cated all results in all cases (see S2 Appendix). Additionally, we explored an alternative formu-

lation of the successor representation that only tracked state-state predictions [23], rather than

state-action conjunctions [24,26]. We found that these two models both perform significantly

better than the other models (null, explicit-hierarchical, and model-based), but do not signifi-

cantly differ from each other (see S2 Appendix). Exploring the state-action successor represen-

tation further, S1 Appendix shows that the successor representation is gradually learned over

the course of the training phase, and has saturated by the time the testing phase starts. Addi-

tionally, S1 Appendix shows that the variance explained by the local surprise (as indexed by

the “log-recency” nuisance regressor) is independent from the variance explained by the global

surprise (as indexed by the successor representation prediction error).

Free sort post test

We investigated whether the participants learned an accessible representation of the structure

of the museum by asking the participants after the testing phase to reconstruct the layout of

the museum by arranging the paintings on a grid. The Euclidean distances between the posi-

tions of all possible painting pairs (105 per participant) were then computed and standardized

within participants. Fig 6A shows the individual distances and average distances for all paint-

ing pairs, classified according to four different categories. A hierarchical Bayesian linear

regression (preregistered; https://osf.io/n2jcz/) indicated that participants on average placed

paintings that were part of the same community closer together (M = -0.578, HDI95% =

[-0.699, -0.460], ER− =1) (Fig 6B), as reflected in low distances attributed to “community-

Fig 6. Free sort post-test results. (A) Euclidean distances (normalized) for different pairs of paintings, grouped by

whether they were part of the same community and directly connected (community-connected) or not (community-

boundary), or whether they were directly connected but not part of the same community (bridge), or not connected

and not part of the same community (unrelated). Orange dots with error bars represent mean with 95% standard

error. (B) Regression coefficients of the free sort regression. Density plot shows the full posterior distribution of the

population mean, with orange lines indicating the 95% highest density interval. Dots represent individual participant

posterior means. Note that the “community” effect captures both “community-connected” and “community-

boundary” effects as shown in A, and that the “boundary” effect captures their difference. (C) Effects that quantify bias

induced by community structure. The “community-direct” effect only investigated directly connected rooms, and

asked whether paintings of the same community (community-connected in A) were placed closer together than those

of different communities (bridge in A). The “community-indirect” effect is analogous, but investigating pairs of rooms

that had a minimal distance of one intermediate room. This corresponds to “community-boundary” paintings in A,

and a subset of “unrelated” paintings.

https://doi.org/10.1371/journal.pcbi.1011312.g006
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connected” paintings (Fig 6A). However, this effect was attenuated for paintings that were not

directly connected (i.e. between the two paintings that lie at the “boundary” of each commu-

nity, Fig 6B) (M = 0.183, HDI95% = [0.071, 0.295], ER+ = 1051.632), consistent with higher dis-

tances reported for these relationships (“community-boundary”, Fig 6A). The participants also

placed paintings that were directly connected but not part of the same community (i.e.

between-community transitions or “bridges”, Fig 6B) closer together (M = -0.489, HDI95% =

[-0.633, -0.349], ER− =1), as shown by the lower distances for “bridge” relationships (Fig 6A).

This pattern of results is suggestive of fully accurate reconstruction of the graph, since coeffi-

cients associated with all lower-order relationships indicate significant effects. To test for spe-

cific bias introduced by the community structure (as preregistered), we checked whether

participants placed paintings that are connected and part of the same community closer

together than paintings that are connected but not part of the same community (“bridges”).

Although this analysis yielded an effect indicative of bias, the result was not statistically reliable

(M = -0.089, HDI95% = [-0.191, 0.013], ER− = 12.387; Fig 6C, “community direct”).

We ran an additional exploratory test to isolate the effect of community structure from the

effect of direct connections [44]. A hierarchical Bayesian linear regression that included regres-

sors only for pairs of paintings with the shortest possible distance of 1 intermediate room

between them indicated that the participants placed paintings with a path distance of 1 closer

together if they were part of the same community (i.e. the two paintings at the boundaries of

one community) compared to when they were part of different communities (M = -0.238,

HDI95% = [-0.347, -0.131], ER− =1) (Fig 6C, “community-indirect”).

Successor representation modularity is associated with better hierarchical

structure learning

The degree that a successor representation accounts for community structure depends on the

discount factor parameter for that model. We quantified this by computing the ratio of the

state prediction error yielded by a transition between two wings, over the state prediction

error yielded by a transition within a wing (controlling for “preferred” transitions; see Meth-

ods). We called this measure the “modularity”. A modularity of 1 indicates similar state predic-

tion errors for transitions between wings and within wings, whereas modularities greater than

1 indicate larger state prediction errors for transitions between wings. For example, a modular-

ity of 2 would indicate the state prediction error for a transition between wings is twice as large

as for a transition within one wing. This modularity measure depends on the value of the dis-

count factor, but also on the experienced sequence of states. Fig 7A and 7B) plot the modular-

ity across a range of possible discount factors, after a sequence of states as experienced by two

representative participants in our dataset.

Fig 7C shows the recovered posterior mean discount factors for the response time successor

representation model. Although the distribution peaks around a value of 0.875, the density is

relatively dispersed, decreasing as it approaches 0. Peaks close to (but not exactly at 1) corre-

spond to successor representations that most strongly capture the community structure of the

museum environment (e.g. Fig 7A). We computed the expectation of our modularity measure

and tested whether it was significantly larger for the posterior distributions obtained for each

participant as compared to a null model (a uniform prior over discount factors) (Fig 7D). A

paired t-test confirmed a significant increase in modularity (Mfit>null = 0.132, SDfit>null =

0.182, t(119) = 7.977, p< 10−11). Note that the null model also predicts some degree of modu-

larity, since it reflects a uniform distribution over the discount factor, including values that

reflect higher modularity. An example of a modular successor representation as estimated for

one of our participants is shown in Fig 7E.
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A preregistered (https://osf.io/n2jcz/) analysis indicated that across participants, higher

estimated modularities were predicted by a higher posterior model probability for the succes-

sor representation model of response times (simple linear regression: β = 0.196, F(1,118) =

4.468, R2 = 0.036, p = 0.037; Fig 7F). Note that this is a test between two measures both derived

from the same fit of the successor representation model of response times. It thus provides

insight mainly into the patterns of participant behavior that are uniquely explained by the suc-

cessor representation model over the competing models (null, model-based, and explicit hier-

archical), but not into whether successor representation learning can be observed in

independent measures of task performance. By contrast, an additional preregistered regression

Fig 7. Modularity of the successor representation model of response times. (A,B) Relationship between possible discount factor values and “modularity” of

the successor matrix after a sequence of states as experienced by two representative participants. Modularity is measured as the ratio of state prediction error

for between-wing transitions over within-wing transitions (corrected for “preferred” transitions; see Methods). Notice that A shows a “peak” (orange line) just

before 1, whereas B linearly increases with a maximum at 1. These two patterns were ubiquitous in our data set. Not all discount factors lead to modular

successor representations (horizontal grey line at modularity = 1). For both these participants, only discount factors above about 0.25 show an effect of

community structure. (C) Posterior means of the recovered discount factor parameters for all participants (dots) and kernel density estimate over these. (D)

Modularity of the successor matrix for all participants (blue dots) under a null model and under the fitted successor representation model. (E) State prediction

errors for all state-action transitions (even those not possible in the actual experiment), based on the estimated successor matrix for an example participant in

our dataset (derived from the full posterior distribution; mean estimated discount factor of 0.978). Hotter colors indicate increased prediction error. Both axes

index state-action conjunctions, with states labeled 1–15 as in Fig 1A, and actions labeled as (i) or (ii) as in Fig 1B. The community structure is visible as

‘squares’ of decreased prediction error for states (rooms) that are part of the same community (wing). (F) Posterior model probabilities of the successor

representation response time model (x-axis) and the modularity measure (y-axis) for all participants (blue dots) with line of best fit (orange). (G) Similar to F

with total accumulated reward bonus on the y-axis.

https://doi.org/10.1371/journal.pcbi.1011312.g007
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analysis asked whether the successor representation fit significantly predicted the performance

of participants as expressed in terms of their total accumulated bonus payments. However, this

analysis did not show evidence for any such relationship (β = -0.073, F(1,118) = 0.007, R2 <

0.001, p = 0.935; Fig 7G).

Although there was strong evidence in favor of a successor representation model of

response times across most individuals (see Fig 3A), there were also large individual differ-

ences in the modularity of these successor representations. Note that the modularity is directly

derived from the state prediction error metric. Hence, the degree of modularity of the succes-

sor representation for a specific participant could be completely driven by the relative slowing

on between-community transitions (compared to within-community transitions). Addition-

ally, the estimated modularity of the successor representation could be informed by response

time variance within communities, such as the slowing for rooms at the boundaries of a com-

munity as reported in Fig 5. This implies that modularity is in fact a more informative measure

than response time slowing. We conducted a series of exploratory analyses that predicted inde-

pendent task performance metrics based on the modularity of the response time-fitted succes-

sor representation models. To control for pure between-community response time slowing,

we constructed hierarchical regression models where we first entered between-community

response time slowing as the sole independent variable, and compare this against a second

regression model including both response time slowing and modularity as independent vari-

ables. Between-community response time slowing was defined as the difference in mean

response times between “outside” (green) and “between” (blue) transitions as indicated in Fig

4A. The modularity of the successor representation is defined as the ratio of the state predic-

tion error elicited by between-wing transitions over within-wing transitions (corrected for

“preferred” transitions; see Methods). This tests whether the modularity of the successor repre-

sentation provides information above and beyond the between-community response time

slowing. In total, this exploratory analysis yielded 15 regression models (all individual panels

of Fig 8). When reporting the second-step model, we report the F and R2 statistics of the model

itself, the slope of the newly added modularity regressor, and the ΔF statistic corresponding to

the model comparison between the first- and second-step regression models. The reported p-

value corresponds to this ΔF statistic. We corrected p-values for multiple comparisons across

all first-step regression models and all comparisons with the second-step regression models

(15 tests in total; see Methods for multiple comparison correction).

Our exploratory analysis confirmed a significant positive relationship between response

time slowing and modularity (β = 0.001, F(1,117) = 7.472, R2 = 0.060, p = 0.044; Fig 8A). Con-

trary to the posterior model probability of the successor representation (Fig 7G), between-

community response time slowing significantly predicted total accumulated reward bonus (β
= 0.005, F(1,118) = 6.485, R2 = 0.052, p = 0.049; Fig 8B, top). Including the modularity of the

successor representation as a second independent variable leads to a significant improvement

in model fit (β = 3.433, F(2,117) = 12.435, R2 = 0.175, ΔF(1,117) = 17.478, p< 0.001; Fig 8B,

bottom). Note that the total bonus payment depended solely on the participant reaching a new

goal in the minimum number of steps possible. The time taken to generate these choices (the

response time) was not related to reward, as participants could perform the task entirely at

their own pace. Instead, this relationship is suggestive of a link between successor representa-

tion learning and task performance, where participants who are more sensitive to the commu-

nity structure of the museum generate more efficient paths to the goal.

In accordance with the positive relationship between response time slowing and reward, we

observed a significant positive relationship between response time slowing and the posterior

means for the explicit hierarchical “rotation” regressor of the choice data (β = 0.003, F(1,117) =

14.281, R2 = 0.109, p = 0.002; Fig 8C, top), indicating that participants whose response times
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were more affected by the community structure also reflected this community structure more

strongly in their choice behavior. Including the modularity of the successor representation as a

second independent variable leads to a significant improvement in model fit (β = 0.768, F
(2,116) = 10.694, R2 = 0.156, ΔF(1,116) = 6.443, p = 0.037; Fig 8C, bottom). In addition, the

data shows a positive relationship between response time slowing and the degree of response-

switching when participants left the goal wing (β = 0.003, F(1,117) = 14.642, R2 = 0.111,

Fig 8. Modularity correlations with task performance. (A) Response time slowing (x-axis) for transitions between communities (blue in Fig 4A) compared to

transitions within communities (green in Fig 4A), shows a positive relationship with Modularity (y-axis), defined as the ratio of the state prediction error

elicited by between-wing transitions over within-wing transitions (corrected for “preferred” transitions; see Methods). (B) Between-community response time

slowing (top) and modularity (bottom) show a positive trend and significant positive relationship with acquired total reward bonus respectively. (C) Between-

community response time slowing (top) and modularity (bottom) show a positive relationship with the explicit hierarchical “rotation” choice policy. (D)

Between-community response time slowing (top) and modularity (bottom) show a positive relationship with action-switching immediately upon leaving the

goal wing (“Leave”). (E) Between-community response time slowing (top) and modularity (bottom) do not show a relationship with action-repetition when

entering the goal wing (“Entry”). (F) Between-community response time slowing (top) and modularity (bottom) show a negative relationship with distance

between paintings of the same community (“Within”) (i.e., the paintings are placed closer together). (G) Between-community response time slowing (top) and

modularity (bottom) show a positive relationship with distance between paintings at the boundaries of the same community (“Boundary”). (H) Between-

community response time slowing (top) and modularity (bottom) show a negative relationship with distance between paintings connected across communities

(“Bridge”). Significance of regression models indicated as *: p< 0.05, **: p< 0.01, ***: p< 0.001. For RT slowing, this significance corresponds to a simple

linear regression. For SR modularity, the significance corresponds to a model comparison of a multiple regression model (including both RT slowing and SR

modularity as independent variables) against a simple linear regression (including only RT slowing as independent variable).

https://doi.org/10.1371/journal.pcbi.1011312.g008
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p = 0.002; Fig 8D, top). Including the modularity of the successor representation as a second

independent variable leads to a significant improvement in model fit (β = 0.995, F(2,116) =

11.810, R2 = 0.169, ΔF(1,116) = 8.090, p = 0.032; Fig 8D, bottom). By contrast, no relationship

is observed between response time slowing and response switching upon goal entry of the goal

wing (β = 0.000, F(1,117) = 0.061, R2 = 0.001, p = 1; Fig 8E, top). Including the modularity of

the successor representation does not yield any improvement in model fit (β = 0.005, F(2,116)

= 0.031, R2 = 0.001, ΔF(1,116) = 0.000, p = 0.979; Fig 8E, bottom).

Although response times and choices reflect independent dimensions of the museum task,

they are derived from the same behavioral unit (i.e. “the choice”). By contrast, the post-test

free sorting task is completely independent from the behavior used to estimate modularity.

Nevertheless, the data show a significant relationship between response time slowing and how

close participants would sort paintings from adjacent rooms in the same wing (β = -0.002, F
(1,116) = 18.926, R2 = 0.140, p< 0.001; Fig 8F, top). Including the modularity of the successor

representation as a second independent variable leads to a significant improvement in model

fit (β = -0.991, F(2,115) = 26.401, R2 = 0.315, ΔF(1,115) = 29.264, p< 10−5; Fig 8F, bottom).

Interestingly, the data also showed a relationship between response time slowing and how far

participants placed rooms that lie at the boundaries of the same wing, and are thus not con-

nected (β = 0.001, F(1,116) = 16.069, R2 = 0.122, p< 0.001; Fig 8G, top). Including the modu-

larity of the successor representation as a second independent variable leads to a significant

improvement in model fit (β = 0.377, F(2,115) = 26.851, R2 = 0.318, ΔF(1,115) = 33.177,

p< 10−5; Fig 8F, bottom). Higher values of both between-community slowing and successor

representation modularity thus correspond to participants who correctly placed these rooms

further apart, which in fact provides evidence against community structure and in favor of

them accurately learning the true adjacencies. Similarly, the data showed a relationship

between response time slowing and how closely participants would place two rooms that are

connected between different wings (β = -0.002, F(1,116) = 17.548, R2 = 0.131, p< 0.001; Fig

8H, top). Including the modularity of the successor representation as a second independent

variable leads to a significant improvement in model fit (β = -0.872, F(2,115) = 28.219, R2 =

0.329, ΔF(1,115) = 33.912, p< 10−6; Fig 8H, bottom). Higher values of both between-commu-

nity slowing and successor representation modularity thus correspond to participants who

correctly placed these rooms closer together, which is also in line with more accurate learning

of true adjacencies. Collectively, these results indicate that participants who learned commu-

nity structure using successor representations (as evidenced in response times), were better

able to reconstruct the museum layout later from memory, while doing so with less bias

towards reconstructing the underlying community structure.

Discussion

Human behavior in the real world is characterized by long-range dependencies between action

plans and outcomes [5,6]. Much of this information is high-dimensional and complex, but can

be compressed to yield more efficient, generalizable representations [9,10,45–48]. Although

how humans learn new behaviors according to such principles has remained elusive, previous

work has shown that the computational burden involved in naturalistic behavior can be allevi-

ated by setting “subgoals” that constrain planning over low-level actions [11,13–15,37,49]. It

has been suggested that predictive representations such as the successor representation can be

leveraged to identify such abstractions [17,23]. Predictive learning is ubiquitous in humans

[50–53] and individual differences in predictive learning have previously been linked to indi-

vidual differences in goal-directed decision making [54]. Specific evidence exists that humans

can learn predictive representations that are sensitive to higher-order aspects of tasks
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[29,30,40,41]. As far as we are aware, this study is the first to show that individual differences

in higher-order predictive learning ability predict individual differences in hierarchical

abstraction during goal-directed decision making.

In order to link predictive representation learning to hierarchically-informed decision mak-

ing, we adapted a task that has been previously leveraged to show higher-order influences on

predictive learning [30]. The museum task requires participants to navigate through a virtual

museum, where the connections between rooms were characterized by community structure.

Crucially, a navigational strategy based on a learned successor representation should differ

from a strategy based on abstract, hierarchically structured representations, the latter of which

are argued to be less cognitively demanding and faster to execute, even if otherwise sub-opti-

mal [6,37,55–58]. This allows for investigating the emergence of hierarchical abstraction on a

single task, and establishes a clear link with earlier work on predictive learning [23,29,59]. We

find participants follow such a hierarchically abstracted strategy, consistently selecting the

action that is guaranteed to reach the desired community (subgoal) and dynamically switching

their behavior immediately following undesired transitions out of this community.

It has been shown participants are generally slower to respond to more surprising events

[29,60,61]. Crucially, events that are part of separate communities are experienced as more

surprising, even though these events are not in fact less predictable [29,40,41]. Notably, we rep-

licated this effect in our novel goal-directed decision making task, and observed it to be signifi-

cantly related to the modularity associated with the successor representation model.

Although previous studies on predictive learning did not investigate goal-directed decision

making, recent work has shown that response times are influenced by the values of the differ-

ent options in a value-based decision making task [32–36]. Note that these studies investigate

decisions between stimuli leading to immediate outcomes instead of sequential decisions that

require planning. Interestingly, it has been observed that learned values can invigorate the

responses of rodents engaged in temporally extended behaviors, including by increasing their

speed [62–64]. In particular, it has been argued that gradually increasing vigor when approach-

ing a goal (i.e., a “goal gradient”) [65,66] may be a core feature of flexible, goal-directed behav-

ior [67–70]. We also observed a gradient in the response times in our task, indicating the use

of a learned cognitive map to flexibly compute values for changing goals. However, the partici-

pants slowed rather than sped up when they approached the goal. We posit that this occurred

because the task encouraged participants to slow their responses when nearing the goal loca-

tion in order to identify the target painting and obtain the financial reward. By contrast, unlike

higher positive values (which predicted slower responding), higher positive reward prediction
errors predicted faster responding. However, our data suggest that instead of a relationship

between response time and signed reward prediction errors (i.e., that distinguish between pos-

itive and negative outcomes), participants might instead slow down for larger absolute reward

prediction errors (i.e., that collapse across the valence of the outcome). Exploratory modeling

indeed suggested this relationship held more strongly (see S2 Appendix). This suggests that

the effect of reward prediction error on response times is most parsimoniously explained as

surprise-based slowing with respect to task progress.

Crucially, the museum task required participants to revise their value predictions in a flexi-

ble manner, as the goal locations were constantly changing. Tasks that involve changing goal

locations cannot be simulated using “model-free” algorithms that have been previously lever-

aged to investigate the relationship between response times and value predictions [32–36].

Although this process is consistent with a canonical “model-based” reinforcement learning

algorithm, model-based algorithms do not make specific predictions about the observed influ-

ence of community structure on response times. By contrast, a computationally simpler but

less flexible successor representation algorithm [18,25] can do all of this. Here, successor
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representation learning specifically accounted for the hierarchical abstraction observed in our

choice data [23]. Further, the degree to which individual participants learned the community

structure through the successor representation correlated with how effectively they applied a

hierarchically abstract choice policy, although we note that this result is derived from an

exploratory (i.e. not pre-registered) analysis. This pattern of results agrees with a theoretical

model wherein participants learn a predictive representation of the task by engaging with it (as

revealed by the successor representation model), and apply a secondary computational opera-

tion to this predictive representation in order to find an effective hierarchical representation

useful for choice behavior (as revealed by the explicit hierarchical model).

Several algorithms have been proposed that implement this secondary computation by tak-

ing an adjacency matrix as (part of) their input [13,15,16,23]. This work generally assumes that

the adjacency matrix has been accurately learned by the participants without considering how

the specifics of the primary learning process could influence the abstraction process. Instead,

we show that individual differences in learning a successor representation correlate directly

with the efficacy of hierarchical abstraction. This finding is contrary to algorithms that rely on

spectral graph theory wherein the relevant eigenvectors are constant over the entire range of

possible discount factors [23], thus predicting no relationship between the estimated discount

factors and the effectiveness of the hierarchical abstraction. Further, if abstractions rely on

graph-theoretic measures of betweenness-centrality as described elsewhere [16], then the

abstractions could be instantly computed from the successor representation as the “simple ran-

domized shortest paths” betweenness, where the “fundamental matrix” corresponds directly to

the successor representation [71] (algorithm 1). However, the quality of this abstraction

increases with smaller discount factors, which is the opposite of what we find. Additionally,

subgoal identification through betweenness-centrality does not explicitly assign lower-level

states to higher-level state abstractions, leaving open the question why people would apply a

simplified general “rotational” policy to all states in one community.

By contrast, our findings are more consistent with a Bayesian model of hierarchical abstrac-

tion as proposed by [15]. This model considers several factors for identifying efficient hierar-

chical representations, including dense connectivity within state abstractions, and sparse

connectivity between them. When relying on a successor representation as input, as opposed

to a ground-truth adjacency matrix, this density metric is by definition maximized when dis-

count factors are most sharply tuned to capture the modularity of the environment. Similarly,

(13, equation 7) propose an algorithm for computing the “entropic centrality” of different

nodes. This computation can be performed directly by using the successor representation—

which directly corresponds to the “fundamental tensor”—and substituting the degree of each

node by the summed entries in the successor representation corresponding to that node. They

observe that normative hierarchical abstractions often minimized differences in entropic cen-

trality within state abstractions, and maximized this between state abstractions. This difference

should be most sharply tuned in a successor representation when the discount factor empha-

sizes the modular structure most strongly, in line with our reported results.

Why would participants need to develop high-level (hierarchical) representations when the

low-level successor representations already get the job done? Notably, both [13] and [15]

explicitly assign lower-order states to higher-order state abstractions, and run separate plan-

ning algorithms at both levels. In each of these models, the lower-level planner should in prin-

ciple be able to find policies with more fine-grained detail than following the simplified

“rotational” policy. However, if we assume running the lower-level planner is computationally

[72] (or cognitively, [6,56]) costly, agents might learn to omit running this planner, specifically

when they can also learn that always executing the same action for every state in one state

abstraction reliably yields good results (as in the Museum task). Although it has previously
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been argued that policies can be directly computed by multiplying the successor representation

with a reward vector [24], which should not be computationally expensive, in more complex

domains or for longer timescales, generative sampling may still be required to reliably asses

the outcomes of the possible actions on a single trial based on a learned successor representa-

tion [73–75]. Note that we only observe evidence for value computations based on a successor

representation in the response times by fitting the model across many trials and many partici-

pants. Sampling from the successor representation would likely incur computational or cogni-

tive costs e.g. [76], which could be alleviated by hierarchical abstraction. We speculate that

participants follow the rotational policy in the Museum task mainly for this reason, despite the

fact that their response times reveal sensitivity to relatively detailed representations of the

underlying task structure. That participants’ choice behavior can access such details is also

illustrated by the significant decrease in the proportion of rotation choices when the rotation is

in fact suboptimal (Fig 2F–2H).

Note that the particular successor representation model implemented here is relatively sim-

ple, as more advanced methods that yield better generalization in the face of changing goals

have been suggested [77,78]. For example, [79] proposes a stable successor-like “default” repre-

sentation that (typically) corresponds to a random policy. This representation can instan-

taneously adapt to “skew” with respect to the appropriate policy for a newly presented goal,

unlike the typical successor representation which is updated through experience and thus

skews towards recently pursued (but no longer relevant) goals. Some evidence for more

advanced forms of successor-based generalization has been observed in human choice behav-

ior [80]. Other research has shown that graph-topological features such as community struc-

ture can be inferred based on prior learning [81]. The latter research has also shown that this

inference can lead to efficient navigation between task states by selecting the boundary nodes

when navigating between communities. However, this is not evidence for a simplified hierar-

chical representation of the task, because any non-hierarchical planning mechanism also

makes this same prediction. More generally, many prior studies investigating learning and

generalization only analyze choice behavior. Instead, the current study illustrates how exami-

nation of response times can reveal signatures of predictive learning that may underlie more

advanced forms of generalization in goal-directed learning.

In order to capture sensitivity to the probabilistic action-outcome contingencies in the task

design, we modeled participant behavior using successor representations that predicted state-

action conjunctions [24,26]. By contrast, the original formulation of the successor representa-

tion, later invoked as a model of hippocampal function, only predicts relationships between

task states [18,23]. The state-state formulation is well-suited for simulating decision making in

spatial contexts where the outcomes of specific actions are fixed (e.g., the action “go left”

always results in moving left). Interestingly, the prediction of state-action-outcome conjunc-

tions has been invoked as an explanation for several effects related to cognitive control and

flexible decision making in the medial prefrontal cortex [82–86]. Additionally, recent evidence

suggests that distinct dopaminergic populations may encode the prediction error associated

with executing specific actions (although not their actual identity) [87–90]. The museum task

was not specifically designed to disambiguate between predictive representations of states or

state-action conjunctions, and although we observed a numerical preference for a state-action

predictive model, we did not find any statistically reliable differences between these models

(see S2 Appendix). When inspecting posterior predictions of response times for various rooms

within a single community (Fig 5), we found that the state-action successor representation

does not predict slowing in the boundary room that allows for a transition between two non-

goal communities (blue). Because participants are prone to select the action that allows for

rotation towards the goal community, they typically select the action allowing for a transition
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between communities when in the boundary room that allows for a transition toward the goal

community (orange). Conversely, participants are not very likely to select the action allowing

for a transition between communities when occupying the boundary room that allows for a

transition between two non-goal communities (blue). This implies a smaller state prediction

error for the latter rooms for the state-action successor representation as compared to the

state-state successor representation, because outcomes that transition between communities

are excluded in the former but not the latter case. As a consequence, specifically the state-

action model incorrectly predicts less slowing for rooms at the boundary of two non-goal com-

munities. Additionally, the boundary room that allows for a transition towards the goal com-

munity is assigned a substantially higher expected value than the other two types of rooms,

further contributing to the model-predicted slower response times.

Besides various implementations of the successor representation, our data could be

explained by alternative sequence learning mechanisms, for example “free energy minimiza-

tion” [29] or (cloned) hidden Markov models [91], in so far as these can implement a mecha-

nism that is isomorphic to the discount factor of the successor representation. Note that the

prediction of action (sequences) can form an alternative basis for hierarchical reinforcement

learning [57,92–94], but this implies inflexible “open-loop” control. The museum task con-

tained probabilistic action-outcome mappings and required participants to search for a new

goal location on every miniblock, preventing against this strategy. The interaction between

action sequences and state based hierarchical learning could be an interesting direction for

future research.

Note also that the successor representation yields a vector error signal that indicates the

degree to which predictions of multiple possible upcoming events need to be adjusted. This

computation agrees with the distributed nature of the prediction error signals observed in the

medial prefrontal cortex [82,84,86,95] and in the midbrain dopamine system [20,96]. How-

ever, modeling of surprise-based slowing of response times requires that this error vector be

converted to a scalar signal. Toward this end, previous work has modeled response times using

a successor representation by normalizing the successor matrix to resemble a transition proba-

bility matrix. The scalar surprise signal was then obtained by looking at the transition probabil-

ity from the original to the outcome state [97]. In line with the intuition that the successor

representation estimates the “expected future discounted state occupations”, this work speci-

fied the target for the update as a one-hot vector of the outcome state [44,97]. However, it has

been noted that the correct target for the update is a one-hot vector of the original state

summed with the discounted successor vector of the outcome state [18,24]. Hence, the surprise

signal should reflect this latter component, which is vectorial. For this reason, we modeled the

response times with a formal distance metric (the angular distance) in order to yield a scalar

surprise signal.

Not only were the individuals who showed greater sensitivity to community structure in

their response times (as measured through the discount factor of the successor representation)

more sensitive to hierarchical abstractions in their choice behavior, they also reconstructed the

lower-order structure of the museum more accurately from memory. This included more

accurate separation of the “boundary” rooms within the same community, which counterintu-

itively indicates less bias with respect to community structure. We speculate that the individual

differences in the estimation of the discount factor reflect how engaged the participants were

with the task. In particular, we suggest that individuals who paid more attention to the task

learned more accurate successor representations of the environment, which simultaneously

provided more information about both low-level (room) and high-level (wing) task structure.

Interestingly, [29] proposed that the learning of community structure is mediated by “mental

errors”, which should be more prevalent for participants with lower task engagement. Our
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data instead suggest that the learning of community structure improves with higher task

engagement.

In addition to the behavioral evidence for successor representation learning [26,28], func-

tional magnetic resonance imaging of humans performing incidental learning tasks has

revealed successor-like representations in the hippocampus [98–101]. During decision making

behavior, the medial frontal cortex and specifically the anterior cingulate cortex show sensitiv-

ity to hierarchical features of tasks [102–104]. Our results can be interpreted within this con-

text, where the hippocampus might be involved in general statistical learning [105], whereas

the anterior cingulate cortex represents variables relevant for decision making, specifically

models that can be leveraged for hierarchical reinforcement learning [6,106]. These hierarchi-

cal models may be extracted from successor-like hippocampal representations as a form of

“schema” learning or meta-learning [107–109]. Future work can leverage neuroimaging tech-

niques to search for task representations and prediction errors associated with successor learn-

ing and hierarchical reasoning in the museum task, and whether these are represented in

distinct neural regions, potentially following a rostro-caudal abstraction gradient associated

with frontal cortical function [110].

Methods

Museum tour guide game

A preregistration of the museum task and our main analyses can be found at https://osf.io/

n2jcz/, including all of the relevant code and data. The task was programmed with JsPsych ver-

sion 7.1.0 [111] using stimuli provided by [112]. Data for 141 participants were collected on

the Prolific platform [38]. All participants gave their informed consent prior to participation

and the study was conducted according to the guidelines of the General Ethical Protocol of the

Faculty of Psychology and Educational Sciences (Ghent University) and the ethical standards

prescribed in the 1964 Declaration of Helsinki. The data of 21 of participants were excluded

based on preregistered criteria: 3 of these participants chose the same action on over 90% of

the trials, and 18 of these participants selected the wrong goal or missed the correct goal on

over half the miniblocks, both of which are indicative of task disengagement. Data of the free

sorting task was corrupted for 1 participant, meaning this participant was not included in the

analysis of the free sort distances (but still included in all other analyses).

Training and testing phase

We wanted participants to learn the structure of the environment from experience, including

the three communities or “wings” of the museum. The learning process can be captured with a

computational model as described below. Importantly, this means participants were not

instructed on any aspect of the layout of the rooms of the museum, so as not to bias their learn-

ing and decision making behavior prior to task experience. Instead, we designed a training

phase where participants would see every goal painting and possible distance between start

and goal location exactly the same number of times. This ensures an unbiased predictive repre-

sentation of the museum can be learned from experience. We designed a separate testing

phase where we could then investigate the final decision making behavior of the participants.

In the training phase, the participants were given exactly 75 goal paintings to search for (i.e.

75 “miniblocks”). They were provided an opportunity for a short rest every 25 miniblocks. By

contrast, the test phase did not limit the number of miniblocks to perform. Instead, the partici-

pants were given a “budget” of 1000 room transitions where each room they visited deducted 1

“step” from this budget. Importantly, efficient policies enabled participants to visit more goals

in a limited number of steps and thus accrue more reward (see S1 Appendix). The participants
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were given the opportunity for a short rest approximately midway through the test phase,

namely after completing the miniblock when their budget dropped below 500 steps. The test-

ing phase terminated after the miniblock on which their budget dropped below 0 steps. The

reward for finding each goal painting in the training phase was £0.10. This increased to £0.15

in each testing phase. The penalty for indicating the wrong goal or missing the correct goal

was always £0.02.

In the training phase, combinations of start and goal locations were exactly balanced, pre-

venting against the development of model-free preferences for specific rooms (see S1 Appen-

dix). In the testing phase, the start and goal locations, and the distances between them, were no

longer balanced on the assumption that the participants learned an unbiased representation of

the museum layout in the training phase. In the testing phase, the goal locations were sampled

with a uniform probability from the 10 rooms outside the starting wing. The previous goal

location was always the next starting location, just as in the training phase.

Action-outcome mapping

Participants were requested through Prolific to perform the task using a QWERTY-layout key-

board. On each trial, they were required to select between key<z> and key<m> on their per-

sonal keyboard. For each state, each key mapped at random with equal probability to two

possible outcome states (Fig 1B). Which key mapped to which set of outcomes was determined

randomly for each participant, but consistent across wings, meaning there were two possible

action-outcome mappings. A primary feature of this action-outcome mapping was that each

key consistently mapped the participant out of the current wing in only one direction (labeled

as “intention” in Fig 1B).

This consistent “rotational” mapping ensured that the participants could exercise direct

control over movement between the museum wings, but not between the individual rooms. In

fact, the action-outcome contingencies were specifically designed to be policy independent,

such that irrespective of whether the participant behaved completely randomly or they consis-

tently selected the same key over the entire course of the experiment, the expected number of

times each room was visited was equated for all of the rooms (see S1 Appendix), as imple-

mented previously in tasks relying on random walks [29,30,40,41]. In order to maintain the

possibility to dissociate hierarchically organized behavior from detailed model based behavior,

this required constraining the action-outcome contingencies by replacing 4 specific directed

(action-dependent) transitions with a transition that was also available for the other action

(Fig 1C). Extensive justification for these constraints, which were controlled for statistically,

are provided in S1 Appendix. Fig 9 illustrates further how these constraints affect the transition

types within a wing. In our analyses, we included binary regressors coded as 1 for the “pre-

ferred” transitions (orange), which are common to both <z> and<m> choices from the out-

going room, and for the “wide node” transitions (yellow), which end in the only room that

does not have preferred outgoing transitions (and is thus the only room that has 4 possible

direct outcomes instead of just 3). Finally, we included a binary regressor coded as 1 for “wide

trans” (pink), which are less predictable outgoing transitions from this wide node.

Computational modeling

As preregistered, miniblocks that contained a “goal miss” or “wrong goal” trial (see Fig 1D)

were excluded from the model fits. Computational models for the response times and choices

were estimated with Stan [113] using Hamiltonian Monte Carlo (HMC). All models had no

divergences and converged appropriately to a Gelman-Rubin R̂-statistic lower than 1.01. For

each model for each participant we computed the approximate leave-one-out cross-validation
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score using Pareto Smoothed Importance Sampling (PSIS-LOO) [114]. PSIS-LOO has been

shown to penalize complex models more appropriately than AIC and WAIC [115]. PSIS-LOO

yields an estimation for the “expected log pointwise predictive density” ^elpdk
loo for each model

k for every participant. We use this to compute the relative evidence for each model for every

participant as Akaike-like exponential weights wk ¼
expð ^elpdk

looÞPK

k¼1
expð ^elpdk

looÞ
and correct them for

Fig 9. Transition types with respect to preferred transitions. Arrows colored by transition type with respect to the

preferred and removed transitions as shown in Fig 1C. Here, preferred transitions are coded as orange (“preferred”)

(blue arrows in Fig 1C). These can be the outcomes of selecting both<z> and<m> in their outgoing states. These

transitions were included as nuisance regressors in our models, since we expect them to yield faster response times as

they are more predictable. It can be seen that only the top node does not have any outgoing preferred transitions, and

when referencing Fig 1B, it can be seen this is the only node with 4 possible immediate outcomes (2 distinct outcomes

for each action). Hence, this node is referred to as “wide node” and transitions into this node are labeled as such

(yellow). Transitions out of this node are labeled as “wide trans” (pink). Both these transitions can be expected to yield

slower response times, since the more diffuse nature of transitions out of this node makes them harder to anticipate.

Therefore, both these transition types are included as nuisance regressors in our models. It can be seen only one

within-wing transition is not preferred and not associated with the wide node (blue, “within”). This transition can be

contrasted with the “between” wing transition (green) to yield an unbiased estimate of higher-order surprise-based

slowing.

https://doi.org/10.1371/journal.pcbi.1011312.g009

PLOS COMPUTATIONAL BIOLOGY The successor representation subserves hierarchical abstraction for goal-directed behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011312 February 20, 2024 28 / 41

https://doi.org/10.1371/journal.pcbi.1011312.g009
https://doi.org/10.1371/journal.pcbi.1011312


estimation uncertainty, regularizing them further away from 0 and 1, using the Bayesian boot-

strap [116]. This is easily calculated from HMC chains sampled with Stan and referred to as

Pseudo-BMA+ weighting. Given enough data, Pseudo-BMA+ weighting should converge to 1

for the model that most closely resembles the true data generating process. It is therefore con-

sidered an M-closed model comparison procedure. It is important to validate that the win-

ning model is not only better than the other considered models, but also describes the data

adequately in the first place [117]. In order to show this, we used posterior predictive simula-

tions of the winning model and compared these to the real data.

Participant-level model evidences were submitted to random-effects group-level Bayesian

model selection (GroupBMS) [118]. This allowed us to compute a Bayesian omnibus risk

(BOR) value, which indicates whether any model among a set of models is more or less preva-

lent in the population than others. It also allowed us to compute a protected exceedance proba-

bility (pxp) for each model, which is an estimate of how likely that model is to be the most

prevalent. Lastly, it allowed us to get a participant-level estimate of the posterior model proba-

bility, indicating how likely the data from each participant are to be generated by each of the

considered computational models.

Response time model specification

Response times were modeled as a regression on the mean parameter of a shifted log-normal

distribution. We fitted 4 chains with 1000 warmup and 2000 post-warmup samples each, for a

total of 8000 post-warmup samples. We used a treedepth of 13 and a warmup-acceptance of

0.999. The structure of the model is

ðyij � ndtimÞ � lognormalðaim þ βimxim; simÞ

aim � N ð6; 1:5Þ

βim � N ð0; 0:1Þ

sim � half N ð0; 1Þ

gim � Betað1; 1Þ

ndtim � Uð0; uiÞ

Where i indexes the relevant participant, j the relevant trial, and m the relevant computa-

tional model. y represents the response time and α represents and intercept. β represents a vec-

tor of regression slopes and x a vector of independent variables. ndt represents the non-

decision time with ui representing the minimum response time for participant i, and σ repre-

sents a variance parameter of the log-normal distribution. Note that the discount factor γ is

only part of the model-based and the successor representation model, where it is used respec-

tively to discount expected value directly, or the expected future state occupations, which are

entered as independent variables into the model (see below) hence allowing for the estimation

of the discount factor.

Model-based model. In order to compute the expected value for the model-based agent, we

precomputed a value iteration [3] until convergence for each of the 15 possible rooms as the

goal room. The discount factor is part of the value iteration algorithm. Since we estimate the

discount factor, the value iteration was performed within the Stan program, again for every

new sample Stan would take. We assumed a completely accurate transition model of the envi-

ronment and a reward vector r where every entry was a small cost value (-0.08) except for the

relevant goal room, which was set to 1. This parameterization of the cost value is irrelevant for

our modeling, as all values below 0 yield exactly collinear regressors [119].
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In the regression model, we considered specifically the EV of the action that was selected on

that trial. The reward prediction error (RPE) was then computed as the EV of the current

room minus the EV of the previous room. The conflict was computed as the absolute differ-

ence in EV between the two available actions and referred to as EVdiff. Since both RPE and

EVdiff were derived from EV, there was moderate correlation between these regressors. To

control for this, we successively orthogonalized them using the Gram-Schmidt process before

fitting the model. The EV regressor was left intact. The RPE regressor was orthogonalized with

respect to the EV regressor RPE? ¼ RPE � <EV;RPE>
<EV;EV> EV where <v1, v2> denotes the dot prod-

uct of two vectors. The EVdiff regressor was then orthogonalized with respect to both the EV

and the orthogonalized RPE regressors EVdif f? ¼ EVdif f �
<EV ;EVdiff>

<EV;EV> EV � <RPE? ;EVdif f>

<RPE? ;RPE?>
RPE?.

Regressors were standardized after orthogonalization. This way, each regressor only captured

unique variance associated with it. Significant parameter estimates could then be directly inter-

preted as evidence that participants are sensitive to that independent variable. Note that shared

variance is attributed to the regressor that comes “earlier” in the order of orthogonalization.

Since these independent variables are dependent on the discount factor and the value iteration,

they were recomputed for every new sample Stan would take. Orthogonalization and standard-

ization thus happened within the Stan program.

Successor representation model. The successor representation agent learns a matrix M of

expected future (discounted) state visits. If there are A different actions and S different states

in the environment, M 2 RjSAj�jSAj
. Each entry Msa;sa0 ¼ E½

P1

t¼0
gtIsa¼sa0js0 ¼ s; a0 ¼ a� where sa

indicates the previous state-action pair, and sa’ indicated the next state-action pair. This can be

learned following a SARSA update rule. Starting M out as an identity matrix for each state-

action pair, updates follow:

M½sat; :�  M½sat; :� þ lð1sat
þ gM½satþ1; :� � M½sat; :�Þ

where 1i indicates a one-hot vector with a 1 at index i. The SR introduces two parameters to

estimate: The discount factor γ and the learning rate λ. For all our model fitting, we kept the

learning rate λ fixed at 0.1 [44,97].

The state prediction error (SPE) regressor for trial t was computed as the angular distance

1

p
arccos v1 �v2

jjv1 jjjjv2 jj

� �
between M[sat,:] and M[sat-1,:]. The angular distance is a formal distance

metric computed from the cosine similarity of two vectors. An angular distance metric is

useful in this case, as it is not sensitive to the magnitude of the successor representation vec-

tors, which grow larger for larger discount factors, but only to the relative difference in

which states are predicted more or less. We computed the EV as M[sat,:] r to model proxim-

ity to the goal, where r is defined similarly as for the model-based agent. RPE was the differ-

ence between EV of the current trial and the previous trial. Conflict was the difference

between EV for the two different available actions. Orthogonalization similar to the model-

based agent was applied to the EV, RPE, and conflict regressors, after which all regressors

were standardized. Note that the discount factor was part of the Stan program, and thus M

and the regressors derived from it are different for each new sample of γ that Stan would

take. Orthogonalization and standardization thus happened within the Stan program for

each new sample Stan would take.

Population-level estimate of parameters. Assuming there is a clear winner in the model com-

parison procedure (i.e BOR< 0.05), we wanted to test whether a particular independent vari-

able of that model m had a significant effect on the response time in the population. It is

reasonable to pool information across participants and fit a hierarchical model for the winning

model m if there is strong agreement on the optimal model in the sample [120]. A hierarchical
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model fits all participants simultaneously and combines information across participants to

acquire more accurate parameter estimates. However, the successor representation model is

too computationally demanding to fit simultaneously across all participants. For this reason,

we opted to first fit the models separately to each participant. We then combined the single-

participant estimates of the regression slopes into a population distribution and tested if this

was significantly different from 0. Note that this is not identical to fully hierarchically estimat-

ing the model: Different parameters cannot constrain each other in this approach (e.g. allow-

ing for population-level influences on the individual regression slopes might affect the

estimation of the discount factors, but this cannot be captured by our current approach). Sepa-

rately fitting models to each participant and then combining their estimates to test for an effect

is also called “two-stage regression” [121], and is also common in e.g. functional magnetic res-

onance imaging (fMRI) analysis [122].

Instead of testing point-estimates against 0 as typical in maximum-likelihood two-stage

regression, we wanted to maintain participant-level information of the width of the poste-

rior distribution, acknowledging the amount of uncertainty for each participant. We imple-

mented a model analogous to the one suggested by [123], where we summarized the

participant-level posterior distributions for each regression slope with a Gaussian paramet-

ric density estimation of the HMC samples. While this can omit information about co-

dependencies between parameters [124], it is not expected to yield false positive results,

since these (unmodeled) co-dependencies should widen the marginal posterior distribu-

tions, effectively reducing our power. We computed posterior means β̂i , and posterior stan-

dard deviations εi for each participant i, which are O-dimensional vectors with an entry o
for each independent variable. We wanted to estimate the population-level parameters μ
and S, where μ is an O-dimensional vector of population means μo for each independent

variable, and S is an O × O covariance matrix. We fitted 4 chains with 2000 warmup sam-

ples and 20000 post-warmup samples each. We used a treedepth of 13 and a warmup-accep-

tance of 0.999. The structure of the model is

μ � N ð0; 0:1Þ

Σ � diagðτÞ �Ω � diagðτÞ

τ � half N ð0; 0:1Þ

Ω � LKJð1Þ

βi � N ðμ;ΣÞ

β̂ i � N ðβi; diagðεiÞÞ

Where LKJ stands for the Lewandowski-Kurowicka-Joe distribution, a distribution over

correlation matrixO, and τ is a vector of population standard deviations for the O independent

variables. The model gives us regularized estimates of participant level regression slopes βi

and, of main interest, population level effects μ. The latter were tested for significance as

described in the section on Statistical analyses.

Choice model specification

Choices were modeled based on a response-coded logistic regression, where key <z> was

coded as “0” and key<m> is coded as “1”. We only considered trials outside the goal wing,

since this is where the explicit hierarchical model makes interpretable and differentiable pre-

dictions. We fitted 4 HMC chains with 1000 warmup and 2000 post-warmup samples each, for

a total of 8000 post-warmup samples. We used a treedepth of 13 and a warmup-acceptance of
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0.999. The structure of the model is

yij � bernoulliðaim þ bimxijmÞ

aim � N ð0; 2Þ

bim � N ð0; 2Þ

gim � Betað1; 1Þ

Where i indexes the participant, j the relevant trial, and m the relevant computational

model. Note that the discount factor γ is only part of the model-based and the successor repre-

sentation model. We only analyzed choices outside the goal wing, since the hierarchical struc-

ture of the task only informs choices leading to the goal wing, and not inside that wing. We

were specifically interested in whether participants use that hierarchical structure to guide

their choices.

For the logistic regression, the null-model only contains an intercept, so in actuality there

was no β parameter for this model. It only models bias to select either <z> or <m>. The

three cognitive models all contained one regressor (besides an intercept). For the model-based

agent, we computed the expected value of the action <m> minus the value of action <z>,

and standardized this within-participant. For the explicit hierarchical model, we computed an

effect-coded regressor which was -0.5 when <z> was the current “correct rotation” and 0.5

when <m> was the current correct rotation. For the successor representation agent, we com-

puted the expected value difference of<m> minus <z>, and standardized this within-

participant.

Population-level estimate of parameters. In case one model clearly wins the model compari-

son (i.e. BOR< 0.05), we tested whether the relevant regression slopes differ from 0 in the pop-

ulation. We tested this hypothesis with a hierarchical logistic regression implemented in brms
[125]. The prior for the population-level effect was left at the default, being a student-t distribu-

tion with 3 degrees of freedom, mean 0, and scale 2.5. The model included separate partici-

pant-level intercepts and slopes. We fitted 4 HMC chains each with 1000 warmup and 5000

post-warmup samples each, for a total of 20000 post-warmup samples.

Posterior predictive checks

For the posterior predictions of choice and response switches (Fig 2) and of the response times

(Figs 4 and 5), we draw one posterior prediction per trial for every sample accepted by HMC.

In every case, this leads to 8000 posterior predictions per trial. For the response times, the pos-

terior predictions were computed from the participant-level model estimation, again drawing

one posterior prediction per trial for every accepted sample. For each trial, we took the mean

of the 8000 posterior predictions as the mean posterior prediction for that trial. Separately, we

assigned each trial regressor values based on the successor representation model, based on the

discount factor of the maximum a-posteriori (MAP) estimate of the model. This means uncer-

tainty about the discount factor is not taken into account in our posterior predictive check.

This was necessary to overcome limitations in RAM.

Statistical analyses

Where we mention the use of multiple comparison correction, used in the binary model com-

parisons and in the exploratory individual difference analysis, we multiplied the reported

BOR- or p-values according to the Holm-Bonferroni procedure before reporting them [126].

For the significance testing of population-level parameters in hierarchical Bayesian linear

models fitted for the winning choice and response time computational models, we report the

PLOS COMPUTATIONAL BIOLOGY The successor representation subserves hierarchical abstraction for goal-directed behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011312 February 20, 2024 32 / 41

https://doi.org/10.1371/journal.pcbi.1011312


posterior mean (M), the 95% highest density interval (HDI95%), and the evidence ratio (ER) of

every parameter [127]. HDI95% corresponds to the smallest continuous interval that includes

95% of the total posterior density. If 0 is not included in this interval, this is suggestive of a

meaningful effect of that independent variable with respect to the dependent variable. Addition-

ally, we report the evidence ratio in the favored direction (for positive effects ER+, for negative

effects ER−). In the case of ER+, this is the ratio of the posterior density above 0 over the density

below 0. ER− is the inverse of this. If 95% of the posterior density lies exclusively above or below

0, the corresponding ER will be higher than 19. ER will be infinitely large if all HMC samples lie

either exclusively above or exclusively below 0. We consider an effect to be reliable when both

the HDI95% excludes 0, and the relevant ER is larger than 19. The computation of the ER and the

definition of a cutoff value provide a 1:1 correspondence with frequentist p-values [128].

Response switches

Response switching behavior was modeled with brms and the same prior structure as the pop-

ulation Choice model. The outcome variable was binary coded, with response repetitions

coded as “0” and response switches indicating the participant responded different on trial t
than on trial t-1 coded as “1”, only considering trials that are part of the same miniblock. Entry

and leave regressors were dummy coded with “1” indicating a trial immediately after the par-

ticipant entered or left the goal wing. We also included a nuisance regressor that counted the

(log-transformed) number of times an action has been repeated successively, which was stan-

dardized within-participant.

Rotation and antirotation

We modeled the probability of selecting the correct rotation with brms and the same prior struc-

ture as the population Choice model. The outcome variable was binary coded, with selection of

the correct rotation coded as “1” and selection of the antirotation coded as “0”. A regressor corre-

sponding to whether the correct rotation was currently<z> or<m> was added, coding<z>

as -0.5 and<m> as 0.5. A second regressor was added, considering whether the current room

implied the rotation was in fact optimal (blue, Fig 2F; coded as 0.5) or whether the antirotation

was in fact optimal (orange, Fig 2F; coded as -0.5). We also included their interaction, to investi-

gate whether the latter effect is especially present for either<z> or<m> rotations.

Free sort

We modeled the Euclidean distances between the 105 pairs of paintings sorted by the partici-

pants using brms and the same prior structure as the population Choice model. First we stan-

dardized the Euclidean distances within participant, to correct for individual differences in

participants who would use the available grid up to a different width (i.e. some place most

paintings near the center, some place paintings all the way out in the corners). We dummy-

coded three possible relationships between pairs of paintings. We defined a “community”

regressor which was 1 when two paintings were part of the same community, and 0 otherwise.

We also defined a “bridge” regressor which was 1 when two paintings were connected between

two communities (i.e. not part of the same community) and 0 otherwise. Additionally, we

defined a “boundary” regressor which was 1 for paintings that were part of the same commu-

nity but not connected (i.e. the two boundary paintings within the same wing) and 0 otherwise.

Note that for these paintings the “community” regressor is also 1, meaning this boundary

regressor models whether participants place the boundary paintings further apart than other

same-community paintings. Paintings that were neither part of the same community, nor had

any direct connection between them, were captured by the intercept of the model. In order to
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inspect bias induced by the community structure of the environment, we tested whether par-

ticipants placed connected paintings from the same wing (community) closer together than

connected paintings from different wings (bridge), by subtracting the “bridge” samples from

the “community” samples and testing whether the new chain was significantly below 0. We

ran an additional hierarchical Bayesian linear regression considering only pairs of paintings

that had a shortest path length of 1 intermediate room between them. This allowed us to test

whether the community-boundary paintings were placed closer together than other paintings

with the same distance between them. This model consisted of only the “community” regressor

and an intercept.

Modularity measure

The successor representation can represent the community structure present in the task more

or less strongly dependent on the value of the discount factor parameter. Our work differs

from previous modeling work on community structure [29] in three important ways. (i) We

do not standardize the successor matrix to a transition probability matrix after each new expe-

rience (see discussion), (ii) we model sequences of state-action conjunctions instead of states,

and (iii) some states can succeed specific states more often than others (“preferred” transitions,

Fig 9). We designed a measure analogous to the one reported by [29], but addresses the addi-

tional complexities of our task design. Our measure is based on the notion that, by definition

of modularity, the successor representation prediction error should be higher for transitions

between wings than for transitions within wings. However, since some transitions are “pre-

ferred” (see section “Action-outcome mapping”), these are expected to yield lower prediction

errors, thus inflating our measure of community structure (see S1 Appendix). We thus com-

pared specific non-preferred within-wing transitions (“within”, blue; Fig 9) to between-wing

transitions which are always non-preferred (“between”, green; Fig 9). These transitions are

topologically identical except for their distinction as between- or within-wing, and thus pro-

vide an unbiased estimate of the sensitivity to community structure. We defined the “modular-

ity” measurement as the ratio between the mean angular distance of the successor

representation vectors (the successor representation state prediction error) for all possible

between-wing transitions and these non-preferred within-wing transitions. Note that this

yields a “difference of distances” measurement analogous to representational similarity analy-

sis techniques [129].

We computed the modularity measurement for each participant using the successor repre-

sentation matrix after the testing phase. Note that we obtained a full posterior distribution

over the discount factor γ, and thus over successor matrices. We reduced this to a point-esti-

mate for the modularity by computing the expectation of modularity over the discount factor.

To test for evidence of modularity at the population level, we first computed the expected

modularity under the uniform prior distribution of the discount factor π(γ)~Beta(1,1).

Because each participant made different choices and experienced a different sequence of states,

there are variations in the relationship between the discount factor and the modularity (see Fig

7A and 7B), so this provides a proper “null hypothesis” for the modularity of each specific par-

ticipant. We then computed the expected modularity under the recovered posterior distribu-

tions p(γ|γ) for each participant. We compared these prior and posterior expectations using a

paired-samples t-test.

Supporting information

S1 Appendix. Validations of task and computational models. Discusses simulations of dif-

ferent agents on the task, details on model and parameter recovery, and details regarding
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