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Abstract

Many therapies in clinical trials are based on single drug-single target relationships. To fur-

ther extend this concept to multi-target approaches using multi-targeted drugs, we devel-

oped a machine learning pipeline to unravel the target landscape of kinase inhibitors. This

pipeline, which we call 3D-KINEssence, uses a new type of protein fingerprints (3D FP)

based on the structure of kinases generated through a 3D convolutional neural network

(3D-CNN). These 3D-CNN kinase fingerprints were matched to molecular Morgan finger-

prints to predict the targets of each respective kinase inhibitor based on available bioactivity

data. The performance of the pipeline was evaluated on two test sets: a sparse drug-target

set where each drug is matched in most cases to a single target and also on a densely-cov-

ered drug-target set where each drug is matched to most if not all targets. This latter set is

more challenging to train, given its non-exclusive character. Our model’s root-mean-square

error (RMSE) based on the two datasets was 0.68 and 0.8, respectively. These results indi-

cate that 3D FP can predict the target landscape of kinase inhibitors at around 0.8 log units

of bioactivity. Our strategy can be utilized in proteochemometric or chemogenomic work-

flows by consolidating the target landscape of kinase inhibitors.

Author summary

In this publication we have set up a new method to predict the targets kinase inhibitors.

This information is important since it allows to understand how the inhibition of multiple

targets by an inhibitor translates to its potency. For this, we have used a convolutional

neural networks (CNN) strategy that is commonly used to classify images with common
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but also different elements, for instance to recognize classes (predicting which animal is

shown) or subtle changes (predicting which emotions are shown on a face). In this case

we have used CNN models to detect patterns in 3-dimensional information from kinase

structures and matched this to the bioactivity of their respective inhibitors. We show that

our method has a similar performance as benchmark methods in the field. However, since

recognized patterns can be made explicit, our method could help to make the underlying

artificial intelligence method explainable. In the future this could lead to more optimal

matching of multi-target drugs to diseases that have multiple vulnerabilities.

1 Introduction

The average cost of developing a new drug has increased by a factor of 9 in the last 50 years.[1]

And although personalized therapies are steadily showing their value in clinical trials, [2,3]

these trials can suffer from therapy resistance, [4–6] requiring adaptive treatment strategies.

Network-based and proteochemometrics approaches [7–9] introduced a decade ago offer a

paradigm shift from highly selective single-target drugs to multi-target drugs where the latter

is more likely to achieve desired clinical efficacy and potentially lower the research and devel-

opment (R&D) costs. [10,11] While kinase inhibitors are known to be promiscuous, [12,13]

currently, most of them have been tested on up to two kinases in publically available databases

and resources (Fig 1A). [14–18] A chemogenomics framework able to identify the target land-

scape of kinase inhibitors might facilitate the selection of highly tailored therapies and provide

opportunities for effective therapies by, e.g., determining the polypharmacological profile of

drugs. [12,19]

Currently, more than 70 small-molecule kinase inhibitors have been approved by Food and

Drug Administration (FDA). [20] Most approved drugs compete with adenosine 5’-triphos-

phate (ATP) to bind to the ATP binding site of the kinase fold to prevent downstream signal

transduction. [21] For comprehensive structural, sequence alterations, and inhibitor binding

comparison of the protein kinases, the reader is referred to Kanev et al. [22] Due to the highly

conserved kinase fold, most kinase inhibitors inhibit multiple targets, [20,23] commonly

between three (e.g., Selumetinib) and 60 kinase proteins (e.g., Staurosporine, Dovitinib, Van-

detanib, and Dasatinib). It is assumed that the activity profile across many protein kinases

determines the therapeutic efficacy and safety of kinase inhibitors. [10,24–27]

Virtual screening (VS) methods [28] provide a significant reduction in costs and improve-

ment of the hit rate to conventionally used high-throughput screenings (HTS) in the early

stage of drug discovery. [29] These methods screen (large) libraries of small molecules for

novel and diverse bioactive compounds. [30,31] Among the VS methods, machine learning

(including quantitative structure-activity relationship (QSAR)) models provide the ability to

learn patterns and use them to make predictions on unseen data. [32–35] Widely applied

machine learning algorithms include random forests, [35–39] support vector machines

(SVM), [9,40,41] and neural networks. [42–45] Neural networks [46] have a long history in

predicting binding affinity of small molecules [42,43,45,47,48] with ever increasing popularity

in drug discovery efforts. [49,50] In particular, their ability to handle data without the need for

feature selection, [46,51] easy hyper-parameter optimization to increase performance, and

good methods like dropout [52] to avoid overfitting proved useful in setting up machine learn-

ing workflows. [53]

More recently, convolutional neural networks (CNN) [46,54,55] have also been applied to

predict the binding affinity of small molecules, [47,56–64] learn molecular fingerprints,
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Fig 1. The small molecule, kinase and activity overview of the integrated data. (A) Piechart showing the percentage

of inhibitors experimentally tested for one or more kinases. 80.5% of the inhibitors in the data set are tested for a single

kinase, 11.8% for 2 kinases and ~8% for more than 2 kinases. In roughly 30% of the inhibitors tested for 2 kinases, the

kinases belong to the same family. (B) Plot showing the conservation rate of the 85 amino acids of the binding pocket

as defined in KLIFS. Examples of highly conserved motifs include the HRD motif (position 68–70) and the DFG motif

(positions 81–83). (C) The unbiased activity skewness of the 69 kinases used in the machine learning pipeline. Kinases

with lower skewness have more inhibitors with higher potency (-log[activity]) than kinases with higher skewness. The

formula used to calculate the unbiased skew for a given kinase: skew ¼ E X� m
s

� �3
h i

where X is each activity value, μ is

the mean, σ is the standard deviation, and E is the expectation operator. (D) Boxplots with properties of the small

molecules. From left to right: molecular weight (MW), LogP, hydrogen-bond acceptors (H ACC), hydrogen-bond

donors (H DON), and rotatable bonds (RBs). (E) t-SNE plot of the small molecules with activity (IC50, Ki, or Kd) less

than or equal to 100 nM. The plot was generated using the Morgan fingerprints of the compounds with a radius of 2

and bit length of 1024 and the tSNE package from scikit-learn 1.0.2 with parameters learning rate set to"auto" and PCA

initialization. Each kinase family was assigned a unique color.

https://doi.org/10.1371/journal.pcbi.1011301.g001
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[59,65,66] detect chemical motifs, [67] and predict properties of small molecules [68] among

others. This class of neural networks uses convolutional layers designed to take advantage of

the 2D or 3D arrangement of the data and provides the ability to learn and detect local motifs

across a predefined space. [46] In 2015, AtomNet was the first CNN to use 3D structural data

to predict the binding affinity of small molecules. [57] Further advances in the field resulted in

the application of 3D structural CNN to post-process molecular docking poses, [47,69,70] and

predicted binding affinity using (mainly) PDBbind [71] for training. [56,58]. In 2020, Jocelyn

Sunseri and David R. Koes released the libmolgrid library for gridding 3D structural data for

convolutional neural networks. [72]

Here, we developed the machine learning pipeline 3D-KINEssence that 1) generates a new

type of 3D structural fingerprints (3D FPs) using 3D convolutional neural network (3D-CNN)

and 2) uses random forest (RF) models to predict kinase-inhibitor bioactivities (potency).

3D-CNN is trained on 3D biomolecular structural data, and its learned features are used to

generate 3D FPs. The performance of the 3D FPs was estimated using large-scale protein

kinase activity data and compared to commonly used protein features like the z-scales and

ProtVec. Random forest models were utilized to evaluate the benefits of having protein fea-

tures (versus only inhibitor features) and the performance of the different protein features in

predicting potency. The evaluation was performed on two different test sets: a sparse and

mostly mutually exclusive test set versus a dense, almost entirely covered chemogenomic test

set (to evaluate better the performance of the protein features). We show that the newly gener-

ated 3D FPs outperform the commonly used z-scales and perform equally to the ProtVec pro-

tein features.

2 Results

The known inhibitor-kinase activity space is very sparse

To determine the experimental inhibitor-target activity space, we collected bioactivity data

from ChEMBL v31 [73] and Christmann-Franck et al. 2016 [38] for kinases with at least ten

solved crystal structures (see materials and methods for the exact filtering steps). The collected

set contained 169,723 activity data points comprising 69 unique protein kinases and 82,960

unique small molecules. The dataset is sparse, covering only 3.0% of all possible measure-

ments. The 69 protein kinases represent all nine major protein kinase groups (S1 Table).

Machine learning methods can be utilized to design drugs that achieve better clinical efficacy

by predicting the missing potencies in this 82,960 by 69 matrix (and beyond) and identifying

the targets and off-targets of drugs.

Sequence and structural alignments of the selected kinases reveal the highly conserved

amino acids and motifs (G-rich loop, KIII.17, EαC.24, Nc.l.75, HRD motif, DFG motif) and their

spatial positions in the binding site (Fig 1B). However, this plot also reveals that a large part of

the binding site is less conserved on the sequence level, allowing binding pockets to appear/

open or disappear/close. This information could be utilized by the convolutional neural net-

work when trained on the 3D biomolecular structural data and, as a result, ends in the newly

generated fingerprints (3D FP). The activity skewness plot of the kinases reveals that kinases

generally have a positive skew (distribution is skewed toward the lower potencies) while a few

are close to 0 (distribution is symmetrical) (Fig 1C). The median potency of BRAF (located to

the extreme right of the distribution) equals 7.0, while the median potency of EPHA3 (located

to the extreme left of the distribution) equals 5.0. The skewness differs significantly when cal-

culated per test sets rather than the entire data set (S1 Fig). The dense set is skewed to the left

(positive skew) as each compound is tested on at least 60 kinases. Selective compounds would

inhibit not more than a few kinases; thus, most of these compounds will show low to no
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activity on most kinases (low to no potency). The kurtosis plot (generated with Fisher’s defini-

tion) is close to 0 for most kinases, with five kinases having a kurtosis of higher than 5 (S2 Fig).

80.5% of the small molecules are tested on a single kinase, 11.8% on two kinases, and just ~8%

on more than two kinases (Fig 1A). Most (72.6%) of the two kinase profiles in the 11.8% subset

belong to two families. The small molecules covered a large chemical space, with molecular

weight (MW) ranging from 180 to 700, hydrogen bond acceptors (HB ACC) from 0 to 18,

hydrogen bond donors (HB DON) from 0 to 11, rotatable bonds (RB) from 0 to 27 and LogP

(using Crippen’s approach[74]) between -4 and 10 (Fig 1D).

Interestingly, the t-distributed stochastic neighbor embedding (t-SNE) plot generated with

Morgan fingerprints (radius 2, 1024 bits) reveals that some small molecule clusters preferen-

tially inhibit specific kinase families. Most of the small molecules are located in the middle of

the plot indicating a probable lack of distinctive features toward a specific family (Fig 1E). For

example, the inhibitors of EGFR, CAMKL, and CLK form their own clusters.

3D convolutional layers allow extracting features from the molecular

structures of protein kinases

Kinase structures were obtained from KLIFS [75,76] through the KNIME analytical platform.

[77] These structures were used in the 3D-KINEssence pipeline to train a 3D Convolutional

Neural Network (3D-CNN) capable of learning important structural features of individual

protein kinases directly from their structures (Fig 2). The objective of 3D-CNN is to use the

learned structural features to recognize the 69 kinases. In total, 3394 structures were used to

train and test the 3D-CNN model (S2 Table). Structures were carefully prepared with Maestro

before providing them as input to the libmolgrid library [72] for the generation of the 3D

grids. The model was trained on 3044 structures and tested on 350 structures. The output of

the flatten layer was used to generate the 3D convolutional fingerprints (3D FP) (Fig 2). This

flatten layer “flattens” the learned representations of the convolutional layers (from 3D to 1D)

while keeping spatial information. The cross-entropy loss of the CNN model was 0.02. The

results indicate that the 3D convolutional neural network can learn sufficient information

from the 3D structures of protein kinases, allowing it to separate the individual kinases

accurately.

In addition to the 3D convolutional fingerprints, one-hot-encoding, z-scales, [78] and Prot-

Vec [79] were also included in the analysis (Fig 3A). All of the protein features were tested in

combination with Morgan fingerprints (models 2 to 6) generated with RDKit. [80] The Mor-

gan fingerprints (compound features) were also tested independently (model 1) to evaluate the

contribution of the different protein features. The z-scales were tested in 2 settings—per resi-

due in the KLIFS binding site and the whole KLIFS binding site sequence (85 residues). In the

case per residue, for each of the residues in a sequence, five z values were generated and used

as input features (5 x 85 = 425), while in the case of a whole sequence, five z values were gener-

ated for the whole KLIFS binding site sequence.

Protein features contribute to better scoring of machine learning

workflows

Random forest (RF) models were built to evaluate the different protein features and their con-

tribution alongside Morgan fingerprints. The compound features were generated with RDKit’s

Morgan fingerprints using the simplified molecular input line entry specification (SMILES).

[81] The random forest models were tested on two test sets: sparse and densely-covered test

sets (Fig 3B). The train and test sparse and dense data sets are generated using different split

criteria from the collected bioactivity data from ChEMBL v31 [73] and Christmann-Franck
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et al. 2016 [38]. While the sparse set is only 15% bigger than the dense set, its small molecules

number is ~74 times more prominent (Fig 3B). The densely-covered test set represents a typi-

cal chemogenomics [1,82,83] or proteochemometrics [8,9] matrix where each small molecule

is experimentally validated on at least 60 kinases (out of 69 in total). The structures of the 278

inhibitors of the dense set can be found in S3 Table.

Models trained with the same features show root-mean-square error (RMSE) differences

that vary from 0.1 to ~0.7 depending on the test set they are evaluated on. For example, model

1 (only Morgan fingerprints) scored 1.46 on the dense and 0.8 on the sparse sets. Adding one-

hot-encoded kinases features (model 2) lowered the RMSE with ~0.1 to 0.71 on the sparse set.

The RMSE of model 3, evaluated on the sparse test set, was 0.7. Models 4, 5, and 6 (z-scales per

residue (425), ProtVec, and 3D FP, respectively) scored very similar RMSEs: ~0.69. (Fig 4A).

The R2 scores for models 1 to 6 trained on the sparse data set range from 0.64 (model 1) to

0.74 (models 5 and 6). The R2 scores of models 2, 3, and 4 were 0.719, 0.728, and 0.736, respec-

tively. We have also evaluated how the RMSE and R2 per kinase would change if the median

potency for each kinase in the training set were taken and used as the predicted value

Fig 2. Schematic representation of the 3D-KINEssence pipeline. The structures of the 69 chosen kinases were obtained from KLIFS [69,70], prepared with

Maestro, and gridded with libmolgrid before being provided to 3D convolutional neural networks to train. The features learned in the convolutional layers are

flattened and used as 3D convolutional fingerprints (3D FP) in the random forest workflow. The newly generated 3D FP, along with Morgan fingerprints, were

used as inputs to the random forest model to predict inhibitor-kinase potency. The representation of the voxels is adapted from Green et al. [85].

https://doi.org/10.1371/journal.pcbi.1011301.g002
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(constant) by the models for that kinase in the test sets (S4 Table). The median RMSE of all 69

RMSEs (one for each kinase) of the sparse test set is 2.287, indicating that using the median

potency of all inhibitors of a kinase from the train set as a constant to predict the potencies for

that kinase in the test set is not sufficient. The median R2 of all 69 R2 scores is -1.873

(S4 Table).

Fig 3. The input features and the test data sets used in the machine learning pipeline. (A) The input features used in the machine learning pipeline. Model 1

uses only the Morgan fingerprints from the rdkit package with a radius of 2 and length of 1024. In all other models, protein features and Morgan fingerprints

were used. The kinases were one-hot-encoded for model 2. In model 3, the five z-scales were calculated using the 85 amino acid sequences of the binding

pocket as defined in KLIFS. The z-scales in model 4 use the same sequences, but they were calculated per residue. The same sequences were used to generate

the ProtVec features for model 5. Model 6 utilizes the 3D FP generated using a 3D Convolutional Neural Network. (B) The test sets are used to evaluate the

machine learning pipelines. On the left is the sparse drug-target test set comprising 20645 small molecules and 69 kinases with a coverage of ~1.5%, and on the

right is the densely covered test set comprising 278 small molecules and 69 kinases with a coverage of ~95%.

https://doi.org/10.1371/journal.pcbi.1011301.g003
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As expected, the RF model 1 with only Morgan features scored poorly on the densely-cov-

ered test set (RMSE = 1.46). This model used only compound fingerprints; thus, it is impossi-

ble to differentiate between the kinases. This is crucial as each compound in the dense set is

tested on at least 60 kinases. Adding the one-hot-encoded kinase features showed improve-

ment by lowering the RMSE to 1.19 (model 2). This indicates that even simple feature like

one-hot-encoded provides some power to the algorithm to better associate chemical moieties

with particular kinase, thereby improving performance. Swapping the one-hot-encoded fea-

tures with more advanced features like z-scales lowered the RMSE further by 0.28 (model 3).

Z-scales per binding site residue (425), ProtVec, and 3D FP scored similarly (RMSE = ~0.79).

Fig 4. Advanced protein features enhance the model’s performance on top of drug fingerprints. (A) The root-

mean-square error (RMSE) performance of the six models on the 2 test sets. The table also includes the RMSE values

calculated per subset (5 subsets defined based on the Tanimoto similarity of the molecular fingerprints) and the

fraction of all data predicted accurately within 0–0.5 log unit, 0.5–1 log unit, 1–1.5, and higher than 1.5 log units.

Model 1 comprises only of Morgan fingerprints (without any protein features), model 2 comprises of Morgan

fingerprints (fp) and one-hot-encoded protein features, models 3 and 4 comprise of Morgan fp and z-scales, model 5

comprises of Morgan fp and ProtVec and model 6 comprises of Morgan fp and 3D convolutional fingerprints (3D FP).

(B) The models’ predictions for the densely-covered test set compared to the true labels. Black indicates matching true

negatives, and green indicates matching true positives.

https://doi.org/10.1371/journal.pcbi.1011301.g004
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Providing more detail in the protein features benefits the performance of the models. How-

ever, as the dense set is much more imbalanced with a high percentage of low potency values,

the medium RMSE of all 69 RMSEs is 0.815, which indicates that using the medium potency

in the train set for a kinase as a constant to predict the values for that kinase in the dense test

set would perform reasonably for most kinases (S4 Table).

Interestingly, on average, the RMSE values drop in the sparse drug-target test set when the

Tanimoto similarity (also known as Jaccard similarity) of the Morgan fingerprints (radius 2,

1024 bits) increases between the compounds of the train and test sets (Fig 4A). This is different

for the densely-covered test set. Testing model 1 (Morgan fp) on the Tanimoto 0.8–1.0 similar-

ity subset of the densely-covered test set shows increased RMSE compared to the other Tani-

moto similarity subsets. This is also observed in model 2 with one-hot-encoded kinases as

protein features. The differences between the Tanimoto similarity subsets decrease with z-

scales calculated for the whole protein and decrease even further with the more advanced fea-

tures like ProtVec and 3D FP (Fig 4A). Also notable are the differences between the sparse and

densely-covered test sets regarding percentage data points correctly predicted within a specific

log activity range. All models tested on the sparse test set show the same trend, i.e., most pre-

dictions fall within 0 and 0.5 log unit differences (between prediction and observation), and

the more this range increases, the lower the percentages. Models 1 and 2 show a uniform dis-

tribution in the densely-covered test set. Models 4, 5, and 6 can double the percentage of cor-

rectly predicted data points within 0–0.5 log units compared to model 1.

Analysis of the predictions of the models on the densely-covered test set reveals that the

models with more advanced protein features (z-scales, ProtVec, and 3D FP) are trying to mini-

mize the false positive (FP) rate (Fig 4B and S5 Table). The threshold for calculating true and

false positives was set at–log [activity] = 7. Models 1 and 2 show, in many cases, a high FP rate

compared to the rest of the models. Unfortunately, models 3–6 have difficulties with recogniz-

ing the true positives. The true positive rate (TPR) for models 3–6 on the densely-covered test

set is between 21% and 23% (S5 Table). The TPR slightly decreases (12–15%) when calculated

per kinase (S6 Table). Each inhibitor in the dense test set is tested on at least 60 kinases, and

typically among those, 2 to 5 kinases would show potency higher or equal to 7.0 (the defined

threshold for true positive). Furthermore, we analyzed the median error in predicting the

potency of each inhibitor (S7 Table). On the sparse drug-target test set, models 3–6 achieve

~15% TPR (S8 Table). The balanced accuracies and F1 scores using the same threshold of -log

[activity] = 7 are provided in S9 Table.

3 Discussion

The added value of protein features in predicting kinase activity profiles

The choice of test sets greatly influences the performances of the different models. The sparse

drug-target set indicates how well the models can predict the activity of small molecules on a

single protein kinase but falls short in accurately estimating model performance regarding

kinome-wide profiles of small molecules. In our analysis, the compound features alone per-

form well on the sparse test set. The RMSE of model 1 using only Morgan features was evalu-

ated at 0.8. One-hot-encoded targets lowered the RMSE to 0.71, and the advanced protein

features (z-scales, ProtVec, and 3D FP) lowered the RMSE further to 0.69. However, the differ-

ence between the best and worse models was less than 0.15.

We built a densely-covered test set to more accurately evaluate the performance of the dif-

ferent models in predicting the activity of small molecules on multiple kinases. All 278 small

molecules were tested on at least 60 kinases in this set. Here, model 1 scored poorly

(RMSE = 1.46) as compound features alone are not enough to predict the binding profiles of
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small molecules. Adding one-hot-encoded representations of the targets lowered the RMSE by

~0.3. The five z-scales generated with the KLIFS binding site sequences provided additional

information (compared to one-hot-encoding) and lowered the RMSE by another ~0.3.

Advanced features such as ProtVec and 3D FP lowered the RMSE by 0.66 compared to model

1. The difference between the best and worse models (1.46–0.79 = 0.67) was ~5.5 times higher

than in the sparse drug-target set (0.8–0.68 = 0.12). Also, the RMSEs among models with the

same features differed depending on the test set used. For example, model 6 tested on the

densely-covered test set scored better (RMSE = 0.68) than when tested on the sparse drug-tar-

get set (RMSE = 0.8).

Advantages and disadvantages of 3D convolutional fingerprints

The layers of 3D Convolutional Neural Networks can efficiently learn structural features from

the provided protein structures, enabling them to distinguish a given kinase from all of the

rest. This approach allows the algorithm to learn 3D features directly from the provided 3D

biomolecular structures encapsulating the essence of a kinase that makes it unique from the

rest. The authors believe the rapid increase of structural data would enable 3D convolutional

networks to outperform sequence-based methods. Also, molecular dynamics (MD) simula-

tions could contribute to the performance of the 3D CNN models as they can generate multi-

ple and diverse snapshots from a single (starting) structure and, by doing so, enlarge not only

the size of the data but also conformational space and flexibility. Moreover, advanced machine

learning approaches like AlphaFold, [84] capable of accurately predicting the 3D structure of

proteins from their amino acid sequences, could expand the coverage of 3D-KINEssences and

simultaneously improve performance. Of the 311 protein kinases with at least one solved

structure, 69 could be utilized in our workflow.

In this work, we propose a new type of protein fingerprints, 3D convolutional fingerprints

(3D FP), generated with 3D convolutional neural networks (3D CNN) using biomolecular

protein kinase structures from KLIFS. The performance of the 3D FP was estimated at RMSEs

equal to 0.68 and 0.8 for the sparse and densely-covered sets, respectively. Moreover, 3D FP

was compared to 2 other types of protein features: z-scales and ProtVec, where 3D FP outper-

formed z-scales and performed equally to ProtVec, indicating their applicability in machine

learning pipelines to predict bioactivities of small molecules.

4 Online Methods

Protein features

The kinases and their structural annotations were obtained from KLIFS through the KNIME

analytic platform v4.1.4 with the KLIFS nodes inside the 3D-e-Chem extension. Kinases with

at least ten solved crystal structures were selected. Structures that share identical orthosteric

ligands in the same DFG conformation for a given kinase were removed from the data (only

one representative structure was kept). This step ensures that the data provided to the convolu-

tional neural network (CNN) does not contain repeats, as different ligands will introduce

modifications in the structures. Structures with identical orthosteric ligands for a particular

kinase were kept in different DFG conformations (e.g., DFG-in and DFG-out(-like)). The total

number of selected kinases was 69. In total, 3400 structures were selected. The structures were

prepared with Maestro’s Protein Preparation wizard in combination with Prime to fill the

missing side chains and Epik to protonate the ligands. See the next section, 3D convolutional

fingerprints, for the exact steps to prepare the 3D FPs. The kinase sequences were obtained

from KLIFS [76] and UniProt, [85] respectively, and used as input for ProtVec and the

z-scales. In house python script was written to generate the ProtVec vectors. The z-scales
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(whole sequence and per residue) were prepared using the zScales from the CRAN Peptides

package [86].

The 69 chosen kinases ordered alphabetically: ABL1, ACVR1, AKT1, ALK, AURKA, BRAF,

BTK, CDK2, CDK8, CDK9, CHEK1, CHEK2, CLK1, CSNK1D, CSNK2A1, CSNK2A2,

DAPK1, DDR1, DYRK1A, DYRK2, EGFR, EPHA2, EPHA3, ERN1, FGFR1, FGFR2, FGFR4,

GSK3B, HCK, IGF1R, INSR, IRAK4, ITK, KDR, KIT, LCK, MAP2K1, MAP2K7, MAP3K5,

MAP3K7, MAPK1, MAPK10, MAPK14, MAPK8, MAPKAPK2, MELK, MERTK, MET,

NEK2, NTRK1, PAK1, PAK4, PDPK1, PIK3CA, PIK3CG, PIM1, PRKACA, PTK2, RET,

RIPK2, ROCK1, RPS6KB1, SRC, STK24, SYK, TBK1, TGFBR1, TTK, and WEE1.

3D convolutional fingerprints

The 3D convolutional neural network (3D CNN) aims to learn essential features directly from

the provided 3D biomolecular structures that distinguish the individual kinases. The 3D con-

volutional neural networks (3D CNN) were built using libmolgrid v 0.5.2 and PyTorch v1.13.1

[87]. Rather than training the model from scratch, we started with a pre-trained 3D CNN

model by Koes et al. 2018 (Default2018) and further trained it to recognize the chosen kinases

(transfer learning). 3D CNN consists of four 3D convolutional layers with kernel sizes (3, 3, 3),

two 3D convolutional layers with kernel sizes (1, 1, 1), four average pooling layers, flatten

layer, and an output layer (Box 1). The output layer has 69 units, equal to the number of cho-

sen kinases (see section protein features in the methods). Libmolgrid randomly rotates the

provided structures and generates the grids for the 3D convolutional and average pooling lay-

ers. The random rotation ensures that the model does not solely focus on a single location in

3D to learn features. The dimensions of the input grid for the first 3D layer were set at (14, 48,

48, 48). The network used the ReLU activation function. The 3D CNN used the stochastic gra-

dient descent (SGD) optimizer with a learning rate set to 0.01 and momentum set to 0.9. Cross

entropy loss was chosen to calculate the loss. The flatten layer “flattens” the learned representa-

tions of the convolutional layers (from 3D to 1D) while keeping the spatial information. This

flattened output represents the learned 3D FP, comprising 216 decimal numbers. Once the 3D

CNN model was trained and evaluated, the 3D FP features were generated by providing a sin-

gle structure per kinase from the test set to 3D CNN and saving the activation of flatten layer.

Box 1. The architecture of the 3D CNN used to generate the 3D FP

Sequential(

(unit1_pool): AvgPool3d(kernel_size = 2, stride = 2, padding = 0)

(unit1_conv): Conv3d(14, 32, kernel_size = (3, 3, 3), stride = (1, 1, 1), padding = (1, 1,

1))

(unit1_func): ReLU()

(unit2_conv): Conv3d(32, 32, kernel_size = (1, 1, 1), stride = (1, 1, 1))

(unit2_func): ReLU()

(unit3_pool): AvgPool3d(kernel_size = 2, stride = 2, padding = 0)

(unit3_conv): Conv3d(32, 64, kernel_size = (3, 3, 3), stride = (1, 1, 1), padding = (1, 1,

1))

(unit3_func): ReLU()
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Compound features

The inhibitors from ChEMBL v31[73] and Christmann-Franck et al. 2016[38] were collected

separately. In the case of Christmann-Franck et al., the smiles were extracted from the pro-

vided S3 Table. In the case of ChEMBL, the smiles were obtained by running an SQL query in

the downloaded SQLite version of the database. The tautomers for the two sets were prepared

using Ambit-Tautomer.[88] The two data sets were merged once prepared separately (see sec-

tion Bioactivity data). The InChi keys, generated with Ambit-Tautomer, were used to create a

kinase-inhibitor label for each activity value in the data sets to ensure duplicates were removed

when merging. Inhibitors with molecular weights smaller than 180 or bigger than 700 were

removed. Salts were stripped. The compound features consisted of 1024 bits of Morgan finger-

prints with a radius set to 2 and were prepared using rdkit v2020.09.1.0 and python v3.7.

Bioactivity labels

The bioactivity data of the following two resources were integrated and used as labels in the

machine learning pipelines: ChEMBL v31 (20M bioactivities) and Christmann-Franck et al.

2016 (357K bioactivities). The data from the two datasets were prepared in the same way

(Box 2). SQL queries were applied to filter the protein kinases from ChEMBL by using their

UniProt IDs.

(unit4_conv): Conv3d(64, 64, kernel_size = (1, 1, 1), stride = (1, 1, 1))

(unit4 func): ReLU()

(unit5_pool): AvgPool3d(kernel_size = 2, stride = 2, padding = 0)

(unit5_conv): Conv3d(64, 128, kernel_size = (3, 3, 3), stride = (1, 1, 1), padding = (1, 1,

1))

(unit5_func): ReLU()

(unit6_pool): AvgPool3d(kernel_size = 2, stride = 2, padding = 0)

(unit6_conv): Conv3d(128, 8, kernel_size = (3, 3, 3), stride = (1, 1, 1), padding = (1, 1,

1))

(flatten): Flatten(start_dim = 1, end_dim = -1)

(output): Linear(in_features = 216, out_features = 69, bias = True)

Box 2. Integration of ChEMBL v31 and Christmann-Franck
bioactivity datasets

1. The bioactivity data was filtered for the 69 kinases (see section protein features).

2. In ChEMBL, bioactivities with a confidence score< 7 were removed.

3. The following data types were selected: IC50, Ki, Kd, Potency, %inhibition and %

activity.
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After step 8, all data were merged. See the section Compound features for the steps to pre-

pare the compounds. The median log activity values were taken if a small molecule was mea-

sured on the same kinase multiple times. In total, 169,723 bioactivities and 69 unique kinases

were used in the machine learning pipelines.

3D-KINEssence—machine learning workflow

The generation of the kinase 3D convolutional fingerprints in combination with compound

fingerprints (Morgan fingerprints prepared with rdkit, radius equals two, and number of bits

equal 1024) comprise the 3D-KINEssence pipeline. The random forest was built with scikit-

learn v 0.22[89]. The data set consisted of 170K activity data. In the case of the sparse training

and test sets, the split was generated using train_test_split from scikit-learn with a test size

equal to 0.3 and stratify per kinase. In the case of the dense training and test sets, the split was

done based on the number of kinases per compound. If a compound was tested on more than

or equal to 60 kinases, it was included in the dense test set, otherwise, it was part of the dense

training set. For both dense and sparse workflows: a single compound (regardless of how

many kinases it was tested) can only be in the training or testing set (not both). On the other

hand, all 69 kinases are present in both sets. The number of trees for each model was set to

100, while the rest of the settings were kept at default.

Multi-stack visualization of performance

We created heatmaps showing the overlap between measured bioactivities (in blue) versus pre-

dicted values from the respective models 1–6 (shown in red). To distinguish true positives, the

light pink color (ff66cc) representative of a matching true and predicted value, was replaced by

a bright green (66ff66) color using photoshop (Adobe Photoshop Version: 19.0 20171103.

r.190). The green color was set to 100% saturation and +1 lightness.

Supporting information

S1 Fig. Skewness plots of both test sets. A) The sparse test set. B) The dense test set. The

dense test set is skewed to the left.

(TIF)

S2 Fig. Kurtosis plot of the 69 protein kinases used in the machine learning pipeline. The

plot was generated with the kurtosis function (using Fisher’s definition) of pandas 1.3.5.

(TIF)

4. Bioactivities without any value were removed.

5. The bioactivities with exact measures (i.e., relation “=“) and type nM were con-

verted to log activities.

6. The bioactivities with relation “> =“ and value 10,000 with type nM were con-

verted to -log[activity] = 5.

7. The bioactivities with relation “<” and type nM were removed.

8. The bioactivities of type %inhibition and %activity were converted to log activity

of 5 if inhibition < 10% or activity > 90%. The percentage inhibition or activity

was measured at 10,000 nM. The rest of the activities of these types were removed.
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S1 Table. The kinases used in the machine learning pipeline and their groups classification

(TK, TKL, STE, CK1, AGC, CAMK, CMGC, Other and Atypical).

(XLSX)

S2 Table. The PDB structures used to train and test the 3D Convolutional Neural Net-

works model and generate 3D FP.

(XLSX)

S3 Table. The 278 inhibitors of the dense set.

(XLSX)

S4 Table. Hypothetical RMSE and R2 values per kinase: the predicted potencies for a

kinase is constant value and equal to the median potency of that kinase in the training set.

(XLSX)

S5 Table. The true positives (TP), false positives (FP), true negatives (TN) and false nega-

tives (FN) for each compound in the densely-covered test set. The tabke also includes the

true positive rate (TPR) and false positive rate (FPR).

(XLSX)

S6 Table. The true positives (TP), false positives (FP), true negatives (TN) and false nega-

tives (FN) for each kinase in the densely-covered test set. The tabke also includes the true

positive rate (TPR) and false positive rate (FPR).

(XLSX)

S7 Table. Upper table: The median value of absolute predicted minus obseved log activity

for each of the 278 compounds in the densely-covered test set. The predictions of each com-

pound are generated with models 1 to 6. Lower table: the median of model 6 minus the medi-

ans of the other models.

(XLSX)

S8 Table. The true positives (TP), false positives (FP), true negatives (TN) and false nega-

tives (FN) for the sparse test set. The tabke also includes the true positive rate (TPR) and false

positive rate (FPR).

(XLSX)

S9 Table. The balanced accuracies and F1 scores for the sparse and densely-covered test

sets.

(XLSX)
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