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Abstract

Environmental changes play a critical role in determining the evolution of social dilemmas in

many natural or social systems. Generally, the environmental changes include two promi-

nent aspects: the global time-dependent fluctuations and the local strategy-dependent feed-

backs. However, the impacts of these two types of environmental changes have only been

studied separately, a complete picture of the environmental effects exerted by the combina-

tion of these two aspects remains unclear. Here we develop a theoretical framework that

integrates group strategic behaviors with their general dynamic environments, where the

global environmental fluctuations are associated with a nonlinear factor in public goods

game and the local environmental feedbacks are described by the ‘eco-evolutionary game’.

We show how the coupled dynamics of local game-environment evolution differ in static and

dynamic global environments. In particular, we find the emergence of cyclic evolution of

group cooperation and local environment, which forms an interior irregular loop in the phase

plane, depending on the relative changing speed of both global and local environments com-

pared to the strategic change. Further, we observe that this cyclic evolution disappears and

transforms into an interior stable equilibrium when the global environment is frequency-

dependent. Our results provide important insights into how diverse evolutionary outcomes

could emerge from the nonlinear interactions between strategies and the changing

environments.

Author summary

The intricate interplay between strategic behavior and environment is ubiquitous in com-

plex systems of different scales. Previous works mainly focus on one aspect of the
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environmental changes: either global environment fluctuations that unidirectionally

decide the welfare of the evolutionary dynamics, or local environment feedbacks that

coevolve with the strategic behavior. Here we develop a theoretical framework that inte-

grates them both in order to obtain a more complete picture of how group cooperation

evolves in a general dynamic environment. We show that global environmental fluctua-

tions can fundamentally alter the dynamical predictions of local game-environment evo-

lution. The most interesting finding is the emergence of cyclic evolution of group

cooperation and local environment, which forms an interior irregular loop in the phase

plane, depending on the relative changing speed of both global and local environments

compared to the strategic change. Such irregular loop, however, is substituted by an inte-

rior stable fixed point when considering a more complicated situation where the global

environment is also frequency-dependent. Our results show how rich dynamical out-

comes arise from the interactions between strategic behaviors and their natural or social

environments, which has important practical value for solving social dilemmas in an ever-

changing world.

Introduction

Cooperation promotes the emergence of stronger adaptabilities and more abundant functions

in many species, forming the very basis of natural systems at different scales [1–4]. However,

the ‘selfish gene’ widely exists in all biosystems where individuals always make rational choices

based on their own benefits [5–7], giving rise to social dilemmas of non-cooperation [8]. Natu-

rally, understanding why persistent cooperation occurs ubiquitously, under what conditions

stable cooperation could be maintained or promoted, and how the cooperative behavior

evolves under natural selections has long been the core objective of evolutionary game theory

[9–12]. In particular, many different mechanisms have been proposed to address the well-

known Prisoner’s Dilemma and the Tragedy of the Commons [13, 14], for instance, kin selec-

tion [15], direct reciprocity and indirect reciprocity [16–18], punishment and reward [19–21],

spatial reciprocity [22–24] and group selection [25]. More realistically, the heterogeneity of

players is also taken into account, such as network topology [26], selective participation mech-

anism [10, 27], wealth-based selection [28], and the recently studied higher-order interactions

[29].

While the early evolutionary game approach typically focuses on the internal properties

of replicator dynamics [9], assuming that the strategic interactions happen in a fixed envi-

ronment, the impact of a dynamic environment is ignored. Therefore, coevolutionary

games incorporating an exogenous environment’s evolution process have been largely

studied [10, 30]. Coevolution rules introduce the environment-related characteristics into

the game, for instance, the interaction network, the size of the population, the mobility,

aging, and reputation of players, which also evolve in time and could affect the evolutionary

outcome of strategies [31]. Further, the ecological factors in microbial systems are

abstracted into a global time-dependent environment [32]. Such global environmental

changes, reflecting the periodic ecological fluctuations or the rapid ecological perturba-

tions, modify the payoffs of the game through a time-varying function and show highly

complex impacts on the evolution of group cooperation and the evolutionary balance of

phenotypes [32, 33].

Note that coevolutionary games only consider the feedback from the global environment,

the dynamics of which is independent of the strategic interactions. However, the bi-directional
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feedbacks between strategies and the environment are identified in a wide range of real-world

systems [34–36]. In microbial systems, cooperation often arises due to the secretion or the

release of extracellular enzymes, extracellular antibiotic compounds, and growth factors,

which modifies the local environmental state that will, in turn, alter the incentive for public

goods production [2, 4, 37, 38]. Likewise, in modern society, decision-making dynamics of

competitive cognitions can reshape the public opinion environment, especially with the rise of

large-scale social networks, and this shared media atmosphere in turn affects the benefit of

social discussion in the decision-making process [39]. In fact, the interactions between online

public discourse and the external political environment can lead to the emergence of polarized

echo chambers [40], which has aroused great concern in recent years [41]. Similar coupled

dynamics can also be obtained in psychological-economic systems, social-ecological systems,

and human-medicine systems [36, 38, 42, 43], relating to a number of big challenges such as

global climate change, overfishing, anti-vaccine problems, pandemic prevention and control,

cancer treatment [44–48].

To characterize such complex feedback loops, an emerging theory of ‘eco-evolutionary

games’ is proposed recently [49, 50]. In eco-evolutionary game, the strategic behaviors change

the state of the environment, while in turn, the environment alters the payoff structure of the

game, driving the replicator dynamics with a strategy-dependent feedback-evolving game [51].

Abundant evolutionary outcomes are observed under such framework. Beginning from the

simplest form, a two-player game coupled with linear environmental feedback can already

generate the persistent oscillation of both population cooperations and environmental states

[52]. Similar persistent cycles can also occur in asymmetric games with heterogeneous envi-

ronments [53–55]. As a meaningful extension, a multi-player game coupled with asymmetrical

environmental feedback identifies the threshold of the feedback speed that can yield oscillatory

convergence to persistent cooperation, highlighting the importance of time-scales [56]. An

innovative manifold control approach is further proposed to steer the eco-evolutionary

dynamics to a desired direction [57].

Despite the progress, current models consider only one aspect of the dynamic environ-

ments, either global environmental changes which are time-dependent or local environmental

feedbacks which are strategy-dependent. In real-world systems, however, these two aspects

often coexist and exert complex forces on strategic evolution. For example, in the context of

the COVID-19 pandemic, cooperation in public health measures has strong impacts on disease

spreading, and vice versa [47]. Beyond this eco-evolution, the seasonal fluctuations of the vir-

us’s transmissibility also alter the payoffs of the strategic behaviors [58]. In crowdsourcing

projects, cooperation can emerge from the asymmetric incentive feedback, resulting in a local

feedback loop [56, 59]. Meanwhile, the periodic fluctuations of the global economic environ-

ment [60], which obviously cannot be influenced by the strategic behaviors within the projects,

could affect the synergy and discounting of the group payoffs [61]. In microbial systems, the

feedback loop between bacterial evolution and the local environment could also arise due to

the existence of asymmetric preferential access to public goods, while the changes in culture

environment, serving as the exogenous global environment, could remarkably affect their stra-

tegic behavior [37, 62]. Understanding the evolution of cooperation in such complex systems

thus has profound practical significance, calling for a framework that could unveil the com-

plete picture of the environmental effects where both global and local environmental dynamics

are incorporated.

Here we develop a theoretical framework that integrates group strategic behaviors with

their general dynamic environments. In specific, the global environmental fluctuation that

influences the group benefit is characterized by a nonlinear factor in public goods game,

while the local environmental feedback driven by an asymmetric incentive mechanism is
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described by the ‘eco-evolutionary game’. Of particular interest, we show how global envi-

ronmental fluctuations alter the dynamical predictions of the group cooperation in local

feedback-evolving game. Different from the previous observation that local game-environ-

ment dynamics could eventually evolve to a stable interior fixed point where cooperation

and defection coexist, we find the emergence of cyclic evolution of group cooperation and

local environment under a periodically changing global environment. Surprisingly, such

eco-evolutionary dynamics could form an interior closed yet irregular orbit in the phase

plane, depending on the relative time-scale of both global and local environments versus

strategic changes. However, when the global environment is not only time-dependent but

also frequency-dependent, such interior closed orbit is substituted by an interior stable fixed

point. Our results provide novel insights toward how complex group behaviors emerge from

the nonlinear interactions between strategies and dynamic environments, especially in a

non-autonomous system, which is important for understanding the evolution of social

dilemmas in a changing world.

Methods

In order to study the evolution of group cooperation, which is ubiquitous in microbial systems

and in human society, we consider a modified nonlinear public goods game (PGG) among a

well-mixed infinitely large population. In every game, each of the N participants randomly

drawn from the infinite population can choose to be a cooperator contributing c to the public

pool, or a defector reaping without sowing. In classic PGG, after the total contribution is mul-

tiplied by the multiplication factor r, the total benefit is equally distributed to each participant.

However, it has been obtained that group cooperation often emerges due to the existence of

preferential access to the valuable common good or other extra incentives for cooperators [56,

57], which brings about asymmetric payoff structures for cooperators and defectors and fur-

ther drives the local feedback-evolving game. Here we distinguish multiplication factors of

cooperators and defectors as rc and rd, respectively. In addition, the actual benefits provided by

cooperators may depend nonlinearly on the number of cooperators and on the total invest-

ments, the former is common in biology and the latter has been largely revealed in economics

[63]. Hence, we adopt the modeling idea proposed in [61] and capture such nonlinearity by a

nonlinear factor w.

Accordingly, the payoffs for each defector and cooperator in a group with k cooperators,

Pd(k) and Pc(k), are

Pd kð Þ ¼
rdc
N

1þ wþ w2 þ � � � þ wk� 1
� �

¼
rdc
N

1 � wk

1 � w
; ð1Þ

Pc kð Þ ¼
rcc
N

1þ wþ w2 þ � � � þ wk� 1
� �

� c ¼
rcc
N

1 � wk

1 � w
� c; ð2Þ

such that the benefits created by each additional cooperator are rescaled, either synergistically

enhanced when w> 1, or discounted when w< 1. For instance, as the concentration of

enzymes produced by cooperators increases, the enzyme-mediated reaction exhibits a faster

rate than linearity, indicating that additional enzyme production has enhanced payoffs

(w> 1). On the contrary, the benefit provided by the first cooperator in foraging yeast cells

may be critical for survival, whereas the value of additional food decreases (w< 1) [61]. There-

fore, Pd(k) and Pc(k) are convex when w> 1 and are concave when w< 1. Finally, when w = 1,

the classic linear PGG can be recovered. In a population with a fraction x of cooperators, for
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any focal individual, the probability that k out of N − 1 other participants are cooperators is

N � 1

k

� �

xkð1 � xÞN� 1� k
; ð3Þ

The average fitness of defectors and cooperators, fd and fc, are thus given by

fd ¼
XN� 1

k¼0

�N � 1

k

�

xkð1 � xÞN� 1� kPdðkÞ

¼
rdc

Nð1 � wÞ
1 � ð1 � xþ wxÞN� 1
h i

;

ð4Þ

fc ¼
XN� 1

k¼0

�N � 1

k

�

xkð1 � xÞN� 1� kPcðkþ 1Þ

¼ c
rc

Nð1 � wÞ
1 � wð1 � xþ wxÞN� 1
h i

� 1

� �

:

ð5Þ

For simplicity and without loss of generality, we specify that the contribution of each coop-

erator is 1. The changes in the fraction of cooperation over time, namely the evolution of

group cooperation, is then described by the replicator dynamics:

_x ¼ xðfc � �f Þ ¼ xð1 � xÞðfc � fdÞ

¼ x 1 � xð Þ
rc
�
wðwx � xþ 1Þ

N� 1
� 1
�

Nðw � 1Þ
� 1 �

rd
�
ðwx � xþ 1Þ

N� 1
� 1
�

Nðw � 1Þ

0

@

1

A;
ð6Þ

where �f ¼ xfc þ ð1 � xÞfd is the average fitness of the population.

Further, we introduce two prominent aspects of the environmental influence into the

framework: the global environmental fluctuations and the local environmental feedbacks.

Generally, the global environment significantly affects the total and marginal benefits of group

cooperation. For instance, companies tend to increase the salary and recruit more employees

in bull markets, adopting aggressive expansion strategies as each additional staff could provide

much more returns, while on the contrary, they are more likely to cut salaries and reduce the

stuff in bear markets. Similarly, changes in nutrient concentration of culture medium or the

usage of drugs directly affect the fitness of the competing bacteria or cancer cells [37, 38, 62,

64]. Such global environmental fluctuations could naturally be reflected and characterized by

the nonlinear factor w: a large synergy effect of cooperation corresponds to a good global envi-

ronment where w> 1, while the discounting of cooperation is related to a bad global environ-

ment where w< 1. Therefore, we simply use a time-dependent function w = w(t) to depict

changes of the global environment over time.

In addition, the local environmental feedback arised from the asymmetric incentive mecha-

nism, which is strategy-dependent, is characterized by the dynamics of cooperator’s multipli-

cation factor rc following [56]:

_rc ¼ �ðrc � aÞðb � rcÞ f ðx; rcÞ; ð7Þ

where � > 0 denotes the relative changing speed of rc compared with x. Due to limited

resources in the local environment, rc is confined to the range [α, β] and we have 1< α< β<
N according to the social dilemma in PGG. Moreover, f (x, rc) describes the asymmetric feed-

back mechanism in the model, whose sign determines the increase or decrease in rc. To mimic
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the fact that in many microbial systems, the preferential access mechanism affects the welfare

distribution of cooperators and defectors and that cooperation is first favored and then con-

strained due to the limitation of total resources and the zero-sum feature of resource consump-

tion, we assume f (x, rc) is a linear function of cooperators’ and defectors’ payoffs following the

idea in [56]

f ðx; rcÞ ¼ � xfc þ yð1 � xÞ fd; ð8Þ

where xfc and (1 − x) fd are the expected payoffs for cooperators and defectors, respectively. θ
> 0 denotes the distribution ratio of the expected total payoff of the cooperators and defectors.

Such local feedback-evolving dynamics could facilitate cooperation by increasing rc when x is

small, while in turn, a relatively large x leads to the decrease of the cooperator’s rewards, sub-

jecting to the law of diminishing marginal utility. Besides, to reduce model complexity, the

defectors’ multiplication factor rd is set to be constant. We assume rd� rc to describe the wide-

spread phenomenon that cooperators have preferential access to the common good in micro-

bial and social systems [56, 57, 65, 66]. For the sake of simplicity, we set rd� α� rc
throughout the paper.

The complete modeling framework is illustrated by Fig 1. The dynamics of our nonlinear

eco-evolutionary game with global environmental fluctuations and local environmental feed-

backs, which describes the complex group strategic behaviors in general dynamic environ-

ments, can thus be written as

_x ¼ x 1 � xð Þ

 
rcðwðtÞðwðtÞx � xþ 1Þ

N� 1
� 1Þ

NðwðtÞ � 1Þ
� 1 �

rdððwðtÞx � xþ 1Þ
N� 1
� 1Þ

NðwðtÞ � 1Þ

!

_rc ¼ � rc � að Þ b � rcð Þ

 

� x

 
rcðwðtÞðwðtÞx � xþ 1Þ

N� 1
� 1Þ

NðwðtÞ � 1Þ
� 1

!

þ
rdyð1 � xÞððwðtÞx � xþ 1Þ

N� 1
� 1Þ

NðwðtÞ � 1Þ

!

:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð9Þ

Results

Nonlinear dynamics of local game-environment evolution in static global

environments

We first study the nonlinear dynamics of local game-environment evolution under static

global environments where w(t) is a fixed constant. Correspondingly, the eco-evolutionary

game described by Eq 9 degenerates into an autonomous system. There are totally seven possi-

ble fixed points in the system, six of which are on the boundary and the remaining one is an

interior equilibrium point (see detailed proof of the stability of all seven fixed points in S1

Appendix). Only two boundary fixed points are possible to be stable: (i) (x* = 0) is always sta-

ble, leading to a full defection among the population which also occurs in the classic PGG. (ii)

ðx∗ ¼ 1; r∗c ¼ aÞ is stable only if
aðwN � 1Þ

N ðw� 1Þ
> 1 and rd is smaller than the threshold

r∗d ¼
aðwN � 1Þ� Nðw� 1Þ

ðwN� 1 � 1Þ
. Under this circumstance, the system evolves to full cooperation with a mini-

mum value α of the cooperators’ multiplication factor. The phase diagram of the stability of

this fixed point with respect to w and rd is shown in Fig 2a. Not surprisingly, the full coopera-

tion situation tends to emerge from a healthy global environment with larger w and smaller rd.
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Of particular interest, we analyze under what condition the interior equilibrium point

x∗ ¼
y

yþ 1
; r∗c ¼

Nðw � 1Þ þ rd
�
ðwx∗ � x∗ þ 1Þ

N� 1
� 1
�

wðwx∗ � x∗ þ 1Þ
N� 1
� 1

 !

; ð10Þ

could be stable, bringing about the coexistence of cooperators and defectors with an interme-

diate local environmental state. Since a < r∗c < b, we first identify the existence condition of

Fig 1. Schematic of the eco-evolutionary games with general dynamic environments. (Top) The group strategic behaviors are described by a

nonlinear evolutionary public goods game. (Top, Bottom) The influence of environmental changes consists of two prominent aspects: the global

environmental fluctuations that directly affect the synergy and discounting of the group payoffs, characterized by the nonlinear factor w, and the

asymmetric environmental feedbacks that drive the local strategy-dependent feedback-evolving game, characterized by the multiplication factor of

cooperators rc.

https://doi.org/10.1371/journal.pcbi.1011269.g001
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this equilibrium point

max 0;

a w wyþ1

yþ1

� �N� 1

� 1

� �

� N w � 1ð Þ

wyþ1

yþ1

� �N� 1

� 1

8
>><

>>:

9
>>=

>>;

� rd

� min a;

b w wyþ1

yþ1

� �N� 1

� 1

� �

� N w � 1ð Þ

wyþ1

yþ1

� �N� 1

� 1

8
>><

>>:

9
>>=

>>;

:

ð11Þ

Furthermore, the existing interior fixed point is stable only if the relative feedback speed of the

local environment � exceeds a threshold �*, which can be written as follows:

�∗ ¼
ðr∗cw � rdÞðN � 1Þðwyþ 1Þ

N� 2
ðw � 1Þ

ðr∗c � aÞðb � r∗c Þ
h
wðwyþ 1Þ

N� 1
� ð1þ yÞ

N� 1
i : ð12Þ

Then, we show how the group size N influences the equilibrium states of local game-envi-

ronment evolution revealed by r∗c and �*, respectively (Fig 2b and 2c). To ensure that the inte-

rior fixed point always exists as N changes, we set w = 0.9 and 1.1, rd = 0.9 and 1.2, θ = 2. We

find that in a discounting global environment, r∗c is approximately in direct proportion to N,

while in the synergy condition, r∗c increases first and then decreases gradually as N increases

Fig 2. Effects of varying modeling parameters on equilibrium states of local game-environment evolution in static global environments. Panel (a)

shows the combined influence of w and rd on the stability of the boundary fixed point (1, α). Panel (b) and (c) show the detailed influence of group size

N on the equilibrium states revealed by r∗c and �*, respectively. Panel (d) presents the trends of the interior fixed point ðx∗; r∗c Þ as θ changes (the dashed

blue line indicates that the value of r∗c is out of parameter range [α, β]). Panel (e) and (f) show how the threshold of the relative feedback speed �*, which

is the minimum value leading to the interior stability, is affected by different parameters. Parameters: N = 4 in (a, d-f), α = 1.5, β = 3.5 in (a, c, e) and rd
= 0.8 in (f).

https://doi.org/10.1371/journal.pcbi.1011269.g002
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(Fig 2b). Interestingly, r∗c is always larger when w is smaller or rd is larger regardless of the

changes in N. This is intuitive: when the global environment is worse or the multiplication fac-

tor of defectors is larger, the payoff coefficient of cooperators should be increased in order to

maintain the stable coexistence of cooperators and defectors. We also find that �* increases as

N increases under all four sets of parameters, indicating that the emergence of the stable inte-

rior fixed point requires faster local environmental feedback when the group size becomes

larger (Fig 2c).

As shown by Eq 10, the final frequency of cooperator x* is solely determined by θ, the distri-

bution ratio of cooperator’s and defector’s total payoffs. As θ increases, x* also increases

whereas the stable multiplication factor of cooperators r∗c decreases (Fig 2d). Such changing

trends are intuitive in many teamworks: an unskilled project, which has a relatively larger θ,

often requires more participants with lower benefits. On the contrary, in a skilled project such

as scientific collaboration, the decrease of θ results in small research teams with higher rewards

for each member.

Further, Fig 2e shows how �* varies as w, rd and θ change. In a less optimistic global envi-

ronment where the group benefits are discounted (w = 0.8), �* gently decreases as θ increases.

In a booming global environment where the group benefits are synergistically enhanced

(w = 1.2), however, the trends become complicated, depending on the multiplication factor of

defectors rd. When rd becomes smaller, �* sharply increases as the interior fixed point tends to

disappear, the latter is shown by the dash line in Fig 2d. Similar trends can also be observed

under different combinations of α and β (Fig 2f).

In Fig 3, we show phase dynamics of the local game-environment evolution under differ-

ent static global environments. We set w = 0.8, 1, 1.2 to mimic the scenarios of discounting,

linear, and synergy PGG in each column, respectively. Throughout the paper, we fix N = 4, α
= 1.5, β = 3.5. Other parameters are θ = 2 and rd = 1. Accordingly, we can calculate the corre-

sponding threshold �* using Eq 12 and select parameters � that are smaller than, equal to or

larger than �*, respectively. Consistent with our theoretical predictions, the persistent coexis-

tence of cooperators and defectors only occurs when � > �* in all three scenarios, where the

system oscillatorily converges to the interior equilibrium state. In particular, group coopera-

tion may only arise from the local asymmetrical environmental feedbacks that are quick and

timely enough, especially when the global environment is relatively poor (Fig 3a, 3d and 3g

and Fig 3b, 3e and 3h). Moreover, we find that a good global environment significantly pro-

motes the emergence of full cooperation. An important insight is that a slower local environ-

mental feedback, though obstructs the emergence of interior equilibrium, could indeed

increase the basin of attraction of full cooperation (Fig 3c, 3f and 3i). In addition, as the ben-

efits brought by the global environment w increase, the stable coexistence of cooperation and

defection arise with less asymmetric incentive feedback r∗c , leading to a reduction in the basin

of attraction of the interior equilibrium. Our results show a non-negligible role and compli-

cated joint influence of global environmental state and local environmental feedback on

group strategy evolution.

Nonlinear dynamics of local game-environment evolution in dynamic

global environments

Further, we study how dynamic global environments affect the local game-environment evolu-

tion. Specifically, we focus on periodic global environmental fluctuations, which are typical

and widespread in various complex systems. For instance, the daily cycle of sunlight, the sea-

sonal fluctuations of ecological characteristics, the cyclical economic crisis, etc. Here we con-

sider one type of periodic change: discrete shifts modeled by a piecewise function w1(t), which
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is simply given by

w1 tð Þ ¼
1:3

t
T

� �

¼ 2n

0:7
t
T

� �

¼ 2nþ 1

; n ¼ 0; 1; 2; � � � � � � :

8
>>><

>>>:

ð13Þ

where T is half period of w1(t). For the convenience of comparison to the continuous case

where w = w3(t) = 1 − 0.5 sin (at + δ) as shown in S2 Appendix, we let T ¼ p

a and set w1(t)

change between 1

T

R T
0
ð1 � 0:5 sim atÞdt � 0:7 and 1

T

R 2T
T ð1 � 0:5 sim atÞdt � 1:3, where a

decides the time scales of global environmental fluctuations (see S2 Appendix).

Fig 3. Phase plane dynamics of local game-environment (x − rc) evolution with N = 4, α = 1.5, β = 3.5, θ = 2, rd = 1. We set w = 0.8, 1, 1.2 to describe

the scenarios of discounting, linear, and synergy PGG in each column, and the corresponding �* are 0.29, 0.44, 1.06, respectively. We therefore choose �

= 0.09, 0.24, 0.86 for the first row such that � < �*, and � = 0.79, 0.94, 1.56 for the third row such that � > �*. The blue, pink and gray areas represent the

basin of attraction of different fixed points ðx∗ ¼ 0Þ; ðx∗ ¼ 1; r∗c ¼ aÞ and (x∗ ¼ y

yþ1
; r∗c ¼

Nðw� 1Þþrdððwx∗ � x∗þ1ÞN� 1 � 1Þ

wðwx∗ � x∗þ1ÞN� 1 � 1
), respectively. The stable coexistence of

cooperators and defectors only occurs when � > �* (the third row), as predicted theoretically, while a synergistically enhanced global environment

significantly promotes the emergence of full cooperation (the third column).

https://doi.org/10.1371/journal.pcbi.1011269.g003
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In Fig 4, we show the dynamical trajectories of local game-environment evolution under a

discretely varying global environment w = w1(t). The initial points are uniformly selected on

the phase plane and the trajectories are calculated numerically by Eq 9. We fix θ = 0.5 and rd =

0.6. The thresholds of the local environmental feedback speed corresponding to the two values

in w1(t) thus can be obtained using Eq 12, which are �∗
1
¼ 1:45 and �∗

2
¼ 2:86. Therefore, we

choose � = 1, 2.5, 6, which satisfies 1 < �∗
1
< 2:5 < �∗

2
< 6, such that our analysis could contain

all the possible situations. Furthermore, considering the fact that the global environmental

changes are commonly much slower than the strategy evolution, we set the relative changing

speed a = 0.01, 0.1, 1 (see S2 Appendix) and the corresponding periods are 2T = 200π, 20π and

2π, respectively. We find that the global environmental fluctuations could fundamentally alter

the dynamical predictions of the group cooperation in local feedback-evolving games. When

� = 1, the local eco-evolutionary dynamics evolve either to full defection where x = 0 (blue

Fig 4. Local game-environment evolution in a discretely varying global environment. We use a periodic piecewise function, w1(t), to describe the

global environmental fluctuations. We uniformly select initial points on the x − rc plane and plot the corresponding dynamical trajectories by

numerically solving Eq 9. Trajectories that eventually evolve to (x* = 0), ðx∗ ¼ 1; r∗c ¼ aÞ or circulate along an interior closed orbit are distinguished by

blue, pink and orange, respectively. The emergence of cyclic evolution of group cooperation and local environment (orange areas), which cannot be

observed in static global environments, indicates that the global environmental fluctuations could fundamentally alter the evolutionary outcomes in

local feedback-evolving game. In all panels, N = 4, α = 1.5, β = 3.5, θ = 0.5, rd = 0.6.

https://doi.org/10.1371/journal.pcbi.1011269.g004
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trajectories) or to full cooperation where x = 1 and rc = α (pink trajectories). When � = 2.5,

however, a new evolutionary outcome emerges when the global environment changes fast: the

local game-environment dynamics will eventually circulate along an interior closed orbit

(orange trajectories). More specifically, different from the phenomenon that the system oscilla-

torily converges to the interior equilibrium as we observed in static global environments, here

we find that a periodically changing global environment could lead to the emergence of cyclic

evolution of group cooperation and the local environment. When � = 6, such cyclic evolution

can even emerge from various time-scales of global environmental changes. Similar evolution-

ary trends can also be observed in a continuously changing global environment (see S2

Appendix).

These results just show how diverse evolutionary group behaviors emerge from the complex

interactions between strategies and general dynamic environments, especially highlighting the

important role of relative time-scales of both global and local environments versus strategic

changes (T and �). Then, we concentrate on the newly discovered phenomenon that the local

game-environment dynamics can evolve cyclically (Fig 5). Due to the complexity of the non-

autonomous system and the lack of theoretical insight, we display in detail the phase plane

dynamics of local game-environment evolution, the typical dynamic trajectories with different

initial conditions, and the corresponding time evolution of the frequency of cooperators x and

the multiplication factor of cooperators rc, in order to provide a clear view of the cyclic evolu-

tion. We set θ = 1, rd = 1.2, T = 10π and choose � = 4 which is larger than the maximum thresh-

old of �* with regard to w1(t). Importantly, we find that the reason for the formation of cyclic

evolution under discrete global environment w1(t) is that the two fixed points are in the mutual

attraction domains (Fig 5b). In the shown cases, the initial points first evolve to the stable fixed

point ðx∗ ¼ 0:5; r∗c ¼ 1:87Þ where w = 1.3 within time T. Subsequently, the global environment

changes and fixed point 1 becomes a new initial point, which is captured by another stable

fixed point ðx∗ ¼ 0:5; r∗c ¼ 2:92Þ corresponding to w = 0.7. Similarly, in the next T time, the

evolution is directed to fixed point 1 again, resulting in the formation of an interior closed

orbit. The periodic fluctuations of group cooperation and the local environment are shown in

Fig 5c and 5d. Such periodic evolution is actually in line with the intuitions from the real

world in a way that the group cooperation will neither disappear completely nor always be

maintained at the highest level in many complex systems, for instance, the seasonal oscillating

dynamics of the COVID-19 infection [67–70], the dynamic adjustment of big companies in

the economic cycles and the oscillating abundance of bacteria or cancer cells in periodically

varying environments [37, 64].

In addition, we confirm whether the emergence of cyclic evolution is robust with regard to

the changes of group size N and the distribution ratio of the expected total payoffs of coopera-

tors and defectors θ. We find that the group size N could significantly affect the range of the

orange region. Specifically, larger group size may hinder the emergence of cyclic evolution

(Fig 6a and 6b), making it more difficult to reach the dynamic coexistence of cooperators and

defectors. We also explore the influence of θ. Fig 6c and 6d show that the final position of the

interior closed orbit moves as θ changes, owing to the influence of θ on the fixed points of

local game-environment evolution. The robustness of other parameters (such as the multipli-

cation factor of defectors rd and the range of cooperators’ multiplication factor [α, β]), and the

sensitivity analysis of the continuous model are also considered (see S3 Appendix).

For now, the global environment is only assumed to be time-dependent. In real-world com-

plex systems, the global environment could certainly exhibit more complicated manners. As a

heuristic case study, we further examine how the evolutionary outcomes are influenced when

the global environment is also frequency-dependent and is in a threshold-function manner,
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which is denoted by w2(t):

w2 tð Þ ¼
1:3; xðtÞ < K

0:7; xðtÞ � K
;

(

ð14Þ

where K is a threshold value between 0 and 1. When the frequency of cooperators x(t) is

smaller than the threshold K, the global environment becomes synergistically enhanced in

order to facilitate cooperation, while on the contrary, when x(t) is larger than K, the global

environment becomes discounted. Fig 7 shows local game-environment evolution under these

frequency-dependent global environments. Surprisingly, we find that unlike the time-depen-

dent cases, the internal periodic orbit disappears, instead, an interior stable equilibrium

Fig 5. Emergence of cyclic evolution of group cooperation and local environment under periodically changing global environments

given by w1(t). Panel (a) shows local game-environment evolution similar to Fig 4. Panel (b) displays four typical dynamic trajectories in

detail, particularly the interior closed yet irregular orbits. The last row presents time evolution of the frequency of cooperators x and the

multiplication factor of cooperators rc under different initial conditions, corresponding to the colored trajectories in panel (b). Results show

that the formation of cyclic evolution under discrete global environment is due to the fact that the two fixed points are in the mutual

attraction domains (b-d). Parameters: N = 4, α = 1.5, β = 3.5, θ = 1, rd = 1.2, T = 10π, � = 4.

https://doi.org/10.1371/journal.pcbi.1011269.g005
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(where the grey trajectories stabilize in Fig 7a–7c) emerges under different thresholds. We fur-

ther present the detailed evolutionary trajectories of several representative initial points in Fig

7d–7f. The phase plane is divided into two regions by the threshold K, with orange on the left

representing w(t) = 1.3 and blue on the right representing w(t) = 0.7. The triangles represent

the stable interior fixed points, and the vertical dotted lines indicate x ¼ y

yþ1
, which is also the

abscissa of the interior fixed points. Obviously x ¼ y

yþ1
can only fail into one of the two regions,

either orange or blue, and the corresponding w(t) decides the final position of the interior sta-

ble equilibrium. In other words, the system can only have one interior fixed point in our

threshold model. It is also worthy of note that a stable boundary equilibrium may emerge

when the threshold K is large (Fig 7c and 7f).

Fig 6. Game-environment evolution under different sizes of group N and distribution ratio of the expected total payoffs of the

cooperators and defectors θ. Trajectories on x − rc phase plane eventually evolve to x* = 0, ðx∗ ¼ 1; r∗c ¼ aÞ or circulate along an interior

closed orbit, which are distinguished by blue, pink and orange, respectively. Panels (a) and (b) correspond to N = 5 and 6 with θ = 0.5,

rd = 0.6, T = 2π and � = 9, while panels (c) and (d) correspond to θ = 1 and 1.5 with N = 4, rd = 1, T = 10π and � = 6. In all panels, α = 1.5,

β = 3.5.

https://doi.org/10.1371/journal.pcbi.1011269.g006
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Discussion

How rich dynamical outcomes arise from the interactions between strategic behaviors and

their natural or social environments is one of the fundamental questions in many complex sys-

tems across disciplines. On the one hand, the global environment unidirectionally changes the

total welfare of the evolutionary dynamics. On the other hand, the local environment provides

frequency-dependent feedback that modifies the payoff structure of the game dynamics, while

in turn the strategies taken by individuals can also reshape the state of the local environment

over time. Particularly, two important theoretical frameworks that describe the latter feedback

loop are proposed: the stochastic game [71, 72], and the eco-evolutionary game [52, 55–57].

Stochastic games introduce game transition mechanisms to depict the discrete changes of the

external environments, i.e., the cooperation behavior in the current game can affect the game

that individuals play in the next period. Meanwhile, eco-evolutionary game theory character-

izes the continuous environmental changes coupled with strategic interactions via a set of ordi-

nary differential equations. However, previous models exclusively focus on one aspect of

environmental changes. To obtain a more complete picture of the group behavioral evolution

in a general dynamic environment, we develop a modeling framework that integrates the more

Fig 7. Local game-environment evolution under frequency-dependent global environment. We assume the global environment is in a simple

threshold-function manner denoted by w4(t). In specific, when the frequency of cooperators x(t) is smaller than the threshold K, the global

environment becomes synergistically enhanced in order to facilitate cooperation, while on the contrary, when x(t) is larger than K, the global

environment becomes discounted. The first row shows the overall evolutionary trends. Trajectories that eventually evolve to full defection, the

stable interior fixed point and the boundary equilibrium point on the x-axis are distinguished by blue, grey and green, respectively. The second

row shows the detailed evolutionary trajectories of several representative initial points in the phase plane. The plane is divided into two regions by

the threshold K, with orange on the left representing w(t) = 1.3 and blue on the right representing w(t) = 0.7. The vertical dotted and solid lines

represent x ¼ y

yþ1
and x = K, respectively, and the triangle represents the stable interior fixed point. Unlike the time-dependent cases, the internal

periodic orbit disappears, instead, an interior stable equilibrium emerges under all thresholds. For comparison, the parameters are the same as in

Fig 4: N = 4, α = 1.5, β = 3.5, θ = 0.5, rd = 0.6, � = 6.

https://doi.org/10.1371/journal.pcbi.1011269.g007
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complicated influence exerted by both global environmental fluctuations and local environ-

mental feedbacks.

Real interactions between strategic behaviors and their environments are commonly non-

linear. Our analysis shows how this nonlinearity, relating to the state of the global environment

and the marginal benefits provided by the cooperators, affects the local game-environment

evolution. We find that in a static global environment, regardless of the scenarios of discount-

ing, linear, and synergy, the persistent coexistence of cooperation and defection only emerges

if the relative feedback speed of the local environment exceeds a certain threshold, breaking

the ‘Tragedy of the Commons’. The nonlinear factor, however, could determine the occur-

rence of full cooperation and influence the attraction basin of the stable interior equilibrium.

As the influence of global dynamic environments on the local eco-evolutionary game is the

primary focus of our model, our results emphatically show how the periodic global environ-

mental fluctuations fundamentally alter the evolutionary outcomes of group cooperation. The

most intriguing finding is the emergence of an interior closed yet irregular orbit in the local

game-environment phase plane, leading to the cyclic evolution of group cooperation and local

environment, which is firstly discovered in the multi-player situation and qualitatively in line

with the oscillating dynamics in two-player games [52, 55]. We unveil that this new dynamical

phenomenon can be intuitively understood as a limit of the continuously converging process

of the dynamical paths confined by the fixed points. Importantly, our theoretical framework

has shown the crucial role of relative time-scales of both global and local environments com-

pared to strategic interactions. Further, when examining a more intricate scenario where the

global environment is also frequency-dependent, we find an interior stable equilibrium instead

of cyclic evolution emerges, underscoring the significance of the nature of the global

environment.

To sum up, our model provides profound insight into how diverse group behaviors, espe-

cially oscillating convergence and cyclic evolution, can emerge from the nonlinear interactions

between strategies and dynamic environments. Our work helps understand the complexity of

social dilemmas in an ever-changing world. For instance, the game dynamics of the Labor and

Capital in the social-economic system can be easily translated into our frame: The companies

engaging staff can be mapped into the local environment, the state of which coevolves with

individual strategies [73]. Outside, the trends of the corresponding industry or the economic

state of the country, which can largely determine the marginal benefits of strategic behaviors,

can be modeled as the global environment. Such an approach allows us to examine how the

evolutionary stable state of the labor-capital game is jointly influenced by factors such as the

incentive mechanisms of the company and the development of the economies. Our results also

have important practical value in systems biology. Studies have shown that the global periodi-

cally varying environment associated with biotic (blood circulation, nutrients supply) or abi-

otic (periodical drug usage) variations could induce nonlinear competition between different

types of tumor cells in local environments, which drastically changes the evolutionary out-

comes and results in oscillating dynamics of tumor population, breaking the dominance of a

certain type of tumor cell [64]. Our model incorporating nonlinear local interactions as well as

general mechanisms of global environmental changes thus paves ways for a more confined

understanding on such dynamical processes of cancer evolution. For instance, the parameters

in global environmental changes could be exploited for designing milder control strategies for

tumor growth. Similarly, in microbial systems, the concentration of casein, corresponding to

the global environment, could lead to an oscillation coexistence of copiotroph (W04) and oli-

gotroph (Y09) in the local environment [37]. In microbial experiments, the dilution factor in

the growth medium significantly influences the local feedback loop between the laboratory

yeast population and the dynamics of cooperators, the SUC2 gene [62]. Our model can be
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used to describe these complex microbial systems and may help in establishing effective con-

trol methods that could tune the system evolution to a desired direction.

Though in this work we only consider the periodic fluctuations and a simple threshold-

function manner of the global environment which are widespread in natural systems, various

changing rules can be studied by simply giving different time-evolving functions w(t). Future

works may further consider the structured interactions with increasing complexity and the

control strategies in the framework of game-environment dynamics.
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