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Abstract

Single-cell approaches are revealing a high degree of heterogeneity, or noise, in gene

expression in isogenic bacteria. How gene circuits modulate this noise in gene expression

to generate robust output dynamics is unclear. Here we use the Bacillus subtilis alternative

sigma factor σB as a model system for understanding the role of noise in generating circuit

output dynamics. σB controls the general stress response in B. subtilis and is activated by a

range of energy and environmental stresses. Recent single-cell studies have revealed that

the circuit can generate two distinct outputs, stochastic pulsing and a single pulse response,

but the conditions under which each response is generated are under debate. We imple-

ment a stochastic mathematical model of the σB circuit to investigate this and find that the

system’s core circuit can generate both response types. This is despite one response (sto-

chastic pulsing) being stochastic in nature, and the other (single response pulse) being

deterministic. We demonstrate that the main determinant for whichever response is gener-

ated is the degree with which the input pathway activates the core circuit, although the noise

properties of the input pathway also biases the system towards one or the other type of out-

put. Thus, our work shows how stochastic modelling can reveal the mechanisms behind

non-intuitive gene circuit output dynamics.

Author summary

Experimental advances have enabled the measurement of the dynamics of gene regulatory

networks at the single-cell level. This has revealed surprising heterogeneity, or noise, in

gene expression between genetically identical cells. This noise can be beneficial, for exam-

ple by allowing a bacterial population to ‘bet-hedge’ against future environmental change

by having a few cells randomly enter a stress prepared state. Here, we use mathematical

modelling to investigate a noisy gene regulatory circuit, the σB mediated general stress

response of the bacterium Bacillus subtilis. By creating a stochastic model of the σB net-

work, we can replicate the two different response behaviours the system has previously

been shown to produce. Interestingly, the first of these behaviours (a single response

pulse) is non-stochastic in nature, while the other (stochastic pulsing) is distinctly stochas-

tic. We scan system parameters (properties) to determine how these affect which
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behaviour the system produces. We show that relatively minor perturbations can push the

system from a single pulse response to a stochastic pulsing regime, helping explain previ-

ous contradictory experimental results. Our work furthers understanding of how noise in

gene expression can enable novel gene circuit dynamics.

1 Introduction

As we gain more detailed knowledge of the composition of biochemical systems, the use of

mathematical chemical reaction network (CRN) models is not only becoming increasingly fea-

sible, but also an important tool to discern how these networks process information. CRN

models have been used for such wide applications as the study of animal development [1, 2],

plant circadian rhythms [3, 4], and bacterial stress response [5, 6]. In addition, they are an

important tool in synthetic biology, where they can be used to design circuits with desired reg-

ulatory properties [7]. Traditionally such models have been deterministic in nature. However,

stochastic modelling techniques are now often used to capture noisy system dynamics [8].

Such noise can both be caused by low molecule numbers of system components (intrinsic

noise) and external quasi-random effects such as cell cycle stage and variability in cellular

energy supply (extrinsic noise) [9–11]. Noise in gene expression has been shown to be impor-

tant to the dynamics of many systems, enabling new and sometimes even beneficial biological

phenotypes [12–16]. In this article, we use the general stress response alternative sigma factor

of Bacillus subtilis, σB, as a model system to study the influence of noise on the output of a cel-

lular network.

Sigma factors are an essential component of bacterial RNA polymerase, allowing it to recog-

nise and bind to genomic promoter regions. Under standard environmental conditions, a so-

called housekeeping sigma factor is used. However, in response to environmental cues, an

alternative sigma factor can be activated, replacing the housekeeping sigma factor in RNA

polymerase and redirecting the bacterium’s transcriptional program [17–21]. σB of B. subtilis
is one of the most well-studied alternative sigma factors. It responds to two classes of stress:

energy stress (caused by ATP depletion) and environmental stress (caused by factors such as

ethanol, heat, or salt). In response to these stresses, it activates approximately 200 genes

involved in the general stress response [22–24]. σB activity is controlled by a core circuit,

which can be activated by two distinct upstream pathways (which are triggered by energy and

environmental stress, respectively) (Fig 1) [22, 24, 25].

The core σB circuit consists of σB, its anti-sigma factor (RsbW), and its anti-anti-sigma fac-

tor (RsbV). In the absence of stress, σB is bound to, and kept inactive by, RsbW. Meanwhile,

RsbV is kept inactivated by a phosphate group. The energy and environmental stress sensing

pathways each activate a phosphatase (RsbP and RsbTU, respectively) [26, 27]. These dephos-

phorylate RsbV, activating it. Active RsbV binds RsbW in a partner switching mechanism that

also releases (and thus activates) σB [28–31]. Active σB will not only activate the general stress

response, but also activate an operon containing itself, RsbW, and RsbV, creating a mixed pos-

itive/negative feedback loop [32, 33]. RsbW also acts as a kinase, rephosphorylating RsbV, thus

resetting the system in the absence of stress [30].

Advances in single-cell fluorescent microscopy have enabled the study of dynamic gene

expression at the single-cell level [34, 35]. These techniques have been deployed on alternative

sigma factor systems, with reporters for alternative sigma factor activity often displaying het-

erogeneous activation dynamics (even across isogenic populations experiencing homogeneous

inputs) [36–42]. It has been suggested that this heterogeneity can be generated by the
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amplification of intrinsic cellular noise, and that it may create beneficial, variable, phenotypes

through bet-hedging behaviours [43]. Investigations of σB using single-cell fluorescent micros-

copy have shown that the two stress types (energy and environmental stress) can produce two

distinct response behaviours. In response to energy stress, σB displays a persistent stochastic

pulsing behaviour. It has been observed that σB is activated in short (* 1 hour) activity pulses,

randomly and independently distributed across the population and time [36, 38]. The environ-

mental stress response is instead a single response pulse, where the population displays a syn-

chronised pulse (* 1 hour long) at the time of stress onset, but the system thereafter remains

OFF as stress persists [44]. A model of a simplified σB network was implemented in [36]. Later,

a model based on the full network CRN was implemented in [45]. Using this model, the

authors showed how the relative stoichiometery of the synthesis rates of σB, RsbW, and RsbV

Fig 1. The σB regulatory network consists of a core circuit, which is activated by two distinct upstream pathways. Under non-stress conditions, σB

is bound, and held inactive by, its anti-sigma factor (RsbW, W in the figure). An anti-anti-sigma factor (RsbV, V in the figure) is inactivated by a

phosphate group. The upstream pathways are triggered by two distinct types of stress (environmental and energy stress), each activating their respective

phosphatase (RsbTU and RsbP, respectively). These will dephosphorylate, and thus activate, RsbV. Once activated, RsbV binds RsbW, which

simultaneously releases σB in a partner switching mechanism. This permits σB to activate the general stress response of B. subtilis. RsbW is a kinase that

re-phosphorylates RsbV, allowing RsbW to re-bind σB and shut the activation off. In addition, σB activates the production of itself, RsbW, and RsbV,

creating a mixed positive/negative feedback loop. The environmental stress response phosphatase complex, RsbTU, consists of the co-factor RsbT and

the phosphatase RsbU (T and U, respectively, in the figure). The availability of RsbT is controlled by a multi-protein complex called the stressosome and

the phosphatase RsbX (both not depicted in the figure for simplicity). The energy stress response phosphatase, RsbP (P in the figure), also depends on a

second protein, RsbQ (not depicted in this figure).

https://doi.org/10.1371/journal.pcbi.1011265.g001
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can cause the network to function as an ultrasensitive negative feedback loop, generating

pulses. The model can explain the two pathways’ different responses by assuming that environ-

mental stress produces a tightly controlled supply of phosphatase (triggering the core circuit

on stress onset only), while energy stress instead produces a naturally fluctuating phosphatase

supply (repeatedly triggering the core circuit).

Further experiments, however, have demonstrated that the two response behaviours are not

unique to their respective pathways. In [37] it was shown that energy stress could produce a

single response pulse, without following stochastic pulses. In addition, it was shown that the

environmental stress response, in backgrounds where the stressosome (a multi-protein com-

plex that controls the availability of the RsbT component of RsbTU) was mutated, could also

produce a stochastic pulsing-type behaviour. The system’s ability to generate both behaviours

from both pathways suggests that it is the core σB circuit that is able to produce both a single

response pulse and stochastic pulsing. It is possible that minor perturbations in the two stress

sensing pathways could bias the core circuit towards either behaviour.

In this article, we develop a stochastic model of the σB network, based on a previous deter-

ministic model of σB regulation [45] (hereafter referred to as the Narula model). By consider-

ing noise in all system components we confirm that the core circuit can generate both

stochastic pulsing and single pulse dynamics without requiring different assumptions about

the noise properties of upstream energy and environmental stress pathways. Next, we find a

minimal set of parameters that tune the system’s response behaviour, and investigate how the

tuning of these parameters modulates which behaviour is displayed. We show how a single sys-

tem parameter (the effective dephosphorylation rate of RsbV) is the primary determinant of

which behaviour is produced. Furthermore, we show how the system transitions from a single

pulse response, to stochastic pulsing, to oscillations as this parameter is increased. This pro-

vides an explanation for recent data showing that the energy stress pathway and the environ-

mental stress pathway can display both stochastic pulsing and single pulse response dynamics.

Finally, we demonstrate how properties of noise in the system’s upstream pathways may still

bias it towards either response behaviour.

2 Results

2.1 The core σB circuit can produce both the stochastic pulsing and the

single response pulse behaviour

The Narula model recreates the energy and environmental stress response behaviours (sto-

chastic pulsing and a single response pulse, respectively) by assuming that the two upstream

pathways present qualitatively different input processes to the core σB circuit [45]. Since then,

it has been shown experimentally that both pathways can generate both responses under spe-

cific environmental or genetic perturbations [37]. This suggests that the core circuit can gener-

ate both behaviours. The Narula model relies on a stochastic input process (to a deterministic

model) to generate noisy behaviours. By instead using a stochastic CRN interpretation of this

model, we investigated the core circuit’s ability to generate both response behaviours from

constant stress inputs.

To implement a stochastic CRN, we used the chemical Langevin equation (CLE) [46].

The CLE, which is an established technique for modelling noise in gene regulatory networks

[47–50], is an approximation of the Gillespie algorithm [51, 52]. The Gillespie algorithm

permits accurate simulations of the actual reaction events of a CRN, correctly taking into

account the inherent randomness of the reactions to create stochastic simulations. Gillespie

simulations, however, have long simulation runtimes. By approximating the system as a sto-

chastic differential equation (SDE), the CLE permits fast stochastic simulations. While the
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exactness of this approximation is reduced with increasing noise levels, it is more accurate

than other approximations such as the linear noise approximation [53]. For our application,

the faster simulation times the CLE permits were important for performing the parameter

sweeps carried out later in the paper. The CLE also allows independent tuning of the sys-

tem’s noise amplitude through the introduction of a system size parameter O. Using an

equivalent formulation, our noise term in the CLE contains a noise scaling parameter

(where η = 0 means no noise and η = 1 means unscaled noise), and we use this to investigate

the noise amplitude’s effect on the system. To enforce non-negativity in our CLE simula-

tions, we used absolute values of any negative numbers in the noise terms [54]. To confirm

that our conclusions are not due to the assumptions of the CLE, throughout the paper we

verify that key results can be reproduced using the Gillespie algorithm [51, 52]. We note

that the CLE and Gillespie algorithm both model intrinsic noise only, and not extrinsic

noise. While sources of extrinsic noise (such as cell cycle variations) could be added to the

model [55], we omitted these as current experimental evidence points to transcriptional

noise driving alternative sigma factor pulse initiation and not extrinsic factors such as the

cell cycle [36, 38].

We first simulated our CLE adaptation of the Narula model under a range of conditions to

test what output dynamics are generated. By subjecting the model, at various noise levels, to

various degrees of stress, we noted that modulation of η (the degree of noise) tunes the ampli-

tude of the transient response pulse (Fig 2A and 2B). However, while such modulations created

increased fluctuations in the asymptotic state, they were unable to produce stochastic pulsing

(S1 Fig). It is known that pulses are related to oscillations [56] (a phenomenon that can also be

further emphasised by noise [57, 58]). By screening bifurcation diagrams of all parameters we

identified kK2 (the re-phosphorylation rate of the anti-anti-sigma factor RsbV) as the only

parameter that can induce oscillations under non-absurd tunings (S2 and S3 Figs). Tuning of a

combination of parameters can also induce pulsing. However, we wished to minimise the

number of model parameter values we modified. By modifying a smaller set of parameters we

reduce the dimensionality of the parameter space we need to explore, reducing computational

complexity and enabling more complete scans. We thus selected kK2 only as our proxy for the

system’s proneness to pulsing.

We wished to determine to what degree the system can generate the single response pulse

and stochastic pulsing behaviours. To do this, we developed an automatic measure that takes a

parameter set as input, and returns the magnitude of both behaviours (Fig 2C and 2D). An

extensive description of the measure can be found in Section 4.5.1, while this paragraph con-

tains a briefer description. First; we utilise that σB pulse durations rarely exceed 1 hour to

divide σB stress response simulations (with stress added at time t = 0) into two different time

phases: a transient phase (0 − 5 hours after stress addition) and an asymptotic phase (> 5

hours after stress addition). Next, we find the maximum σB activity in the transient and asymp-

totic phases, as well as the mean σB activity in the asymptotic phase. The degree of the single

response pulse behaviour, in a single simulation, is measured as the maximum σB activity in

the transient phase divided by the maximum activity in the asymptotic phase. Similarly, for

stochastic pulsing, the definition is the maximum activity in the asymptotic state divided by

the mean activity in the asymptotic state. In both cases, to gain a more precise measure for a

given parameter set, we take each behaviour’s mean magnitude across a large number of simu-

lations (between 50 and 200).

Using these measures, we evaluated the system’s proneness to both behaviours across η
− kK2 space (Fig 2E and 2F). This revealed how, in addition to the single pulse response

behaviour, as intrinsic noise is added to the ODE model (by increasing η), the stochastic

pulsing behaviour emerges (but only when kK2 is small enough). Through sample
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simulations, we demonstrated that the core circuit can generate both response behaviours,

and that this holds even when the phosphatase concentration in the upstream pathways

remains constant (Fig 2G and 2H, and S4 Fig). We also confirmed that these behaviours

can be recreated using the Gillespie algorithm (Fig 2I and 2J). For the Gillespie algorithm

simulations, as we could not tune a noise parameter η, instead we modified a larger set of

parameters to generate the different dynamics (S3 Table). Finally, we investigated the initi-

ation of the stochastic pulses, noting that these typically are preceded by a drop in RsbW

concentration (S5 Fig).

2.2 The primary determinant of the system’s response behaviour is the total

RsbV dephosphorylation rate

We have shown that through modulation of η and kK2, the system can reproduce both stochas-

tic pulsing and single response pulse behaviours. However, η and kK2 are properties of the core

circuit, and these are identical for the energy and environmental stress responses. Thus, the

system must be able to generate both a single response pulse and stochastic pulsing while

Fig 2. The core σB circuit is capable of generating both response behaviours. (A,B) For various noise amplitudes (η), the CLE adaptation of the

Narula model is exposed to a stress step (at t = 0, red dashed line). (A) Mean [σB] in response to the input (average over n = 150 simulations). The

amplitude of the single response pulse increases with noise. (B) For each value of η, four different simulations are shown. There is little variation

between the individual trajectories. (C,D) Illustration of our measures for the degree with which the system exhibits the single response pulse (C) and

stochastic pulsing (D) behaviours. A simulation is divided into a transient phase (t 2 [0.0, 5.0]) and an asymptotic phase (t 2 [5.0, 200.0], but we note

that in this figure the x-axis is cut to t = 50 to better display both phases). Next, we find the maximum activity in the transient phase, the maximum
activity in the asymptotic phase, and the mean activity in the asymptotic phase. The single response pulse measure (C) is defined as the maximum

transient activity (orange line) divided by the maximum asymptotic activity (magenta line). The stochastic pulsing measure (D) is defined as the

maximum asymptotic activity (orange line) divided by the mean asymptotic activity (magenta line). In practice, a mean measure over several (n> 50)

simulations is always used. (E,F) The parameters η (noise amplitude) and kK2 (a proxy for the system’s proneness to oscillations) are varied. For each

parameter combination, the maximum magnitude of the single response pulse (E) and stochastic pulsing (F) behaviours that can be achieved by varying

the parameter pstress (20.0 μM< pstress< 200.0 μM) is found and plotted. (G) The single response pulse behaviour is maximised at (kK2, η) = (15.0hr−1,

0.04). For these values, four simulations are shown. (H) The stochastic pulsing behaviour is maximised at (kK2, η) = (9.0hr−1, 0.06). For these values,

four simulations are shown. (G,H) These simulations demonstrate that the CRN of the Narula model can generate both behaviours while exposed to

intrinsic noise only. (I,J) It is possible to recreate both response behaviours, single pulse response (I) and stochastic pulsing (J), using the Gillespie

algorithm. This demonstrates that the responses are not dependent on the modelling approach used. Parameter values and other details on simulation

conditions for this figure are described in S1–S3 Tables.

https://doi.org/10.1371/journal.pcbi.1011265.g002
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keeping η and kK2 fixed and varying the properties of the upstream pathway only. In the Nar-

ula model, this pathway is determined by the parameters pstress, kB5, kD5, and kP. These denote

the total amount of phosphatase (pstress), and the rates at which it binds (kB5), dissociates from

(kD5), and dephosphorylates RsbV (kP), according to these reactions:

P þ RsbVP !
kD5

kB5

P� RsbVP �!
kP P þ RsbV

Here, kB5, kD5, and kP, are fixed throughout a simulation, while pstress denotes the post-stress

amount of phosphatase (with the phosphatase amount changed from pinit to pstress at the time

of stress onset).

We first wanted to determine for which set of parameters the core circuit can generate

both response behaviours as the upstream parameters alone are varied. To do this, we

defined a measure of the system’s ability to robustly generate both response behaviours (sto-

chastic pulsing and single response pulse) while varying only the upstream parameters (S6

Fig). By scanning this measure across η − kK2 space, we found that (η, kK2) = (0.025, 7.0hr−1)

optimises this measure (S7 Fig), meaning that this parameter combination allows the core

circuit to generate both behaviours, with the behaviour that is generated being dependent

on the values of upstream parameters (S8 Fig). We next fixed η and kK2 at this optimum,

and then proceeded to investigate how the parameters pstress, kB5, kD5, and kP modulate the

system’s response.

To determine which parameters governing the upstream pathways are most important

for determining the response behaviours, we next scanned the two behaviours’ magnitudes

across pstress-kB5-kD5-kP space (S9 Fig). Our scans show that both behaviours occur in

regions along the curve pstress � kP = C, for various values of C (Fig 3A and 3B). This suggests

that the total RsbV dephosphorylation efficiency (the amount of phosphatase, pstress, times

its dephosphorylation efficiency, kP) is an important determinant for the system’s response.

We next performed parameter substitutions pprod = pstress � kP (pprod = total RsbV dephos-

phorylation efficiency) and pfrac = pstress/kP. By redoing the magnitude scans using this sub-

stitution, we confirmed that the total dephosphorylation efficiency, pprod, is important for

determining the response behaviour (Fig 3C and 3D, and S10–S15 Figs). Finally, we evalu-

ated the behavioural magnitudes’ sensitivity to change in the four parameters pprod, pfrac,
kB5, and kD5 (Fig 3E and 3F). This showed that both behaviours are robust as the values of

pfrac, kB5, and kD5 change, but are sensitive to the value of pprod. This suggested that the

dynamics encoded by the upstream pathway are primarily defined by the value of pprod.

Thus, for further analysis, we set kB5 = 3600μM−1hr−1, kD5 = 18hr−1 (their original values)

and pfrac = 100Mhr1 (an intermediate value), and let the upstream pathway be defined by the

value of pprod only (greatly reducing the dimensionality of the parameter space we need to

consider for further analysis).

Next, we investigated how the system’s response is modulated by the upstream pathway’s

critical parameter pprod (the total RsbV dephosphorylation efficiency). We simulated the

system for pprod values ranging from small (where the response is absent) to large (where

the response saturates) (as pprod = pstress�kP, this increase corresponds to an increase in stress

input) (Fig 4). For small values of pprod the system exhibits no response and σB concentra-

tions are low as stress is added. As pprod is increased, the system exhibits the single response

pulse behaviour. Here, the amplitude of the pulse increases with the stress (Fig 4D and 4E).

This is in agreement with previous experiments claiming the σB environmental stress

response to be amplitude modulated [44]. For larger values of pprod, the system displays sto-

chastic pulsing (Fig 4F and 4G). The model predicts that the pulse frequency increases with

the stress, again similar to experimental data for the energy stress response [36]. Next, the
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Fig 3. The effective dephosphorylation rate is the main determinant of which behaviour is produced. (A,B) The magnitude of the single pulse

response (A) and stochastic pulsing (B) behaviours across kP-pstress-space. The regions where either behaviour occurs are similar to that of the kP � pstress
= C curve (show for various values, green dashed lines). (C,D) Parameter substitutions generate a parameter pprod = pstress � kP, to which both behaviours

are sensitive, and a parameter pfrac = pstress/kP, to which both behaviours are insensitive. While the regions corresponding to either behaviour are

adjacent, they do not overlap. The stochastic pulsing behaviour exists for slightly larger values of pprod, as compared to the single response pulse

behaviour. (E,F) For 4096 different parameter sets, we characterise both behaviours’ sensitivity to change (Csrpðp; �pÞ, E, and Cspðp; �pÞ, F) in the

parameters pprod, pfrac, kB5, and kD5 (Section 4.5.4). We do this by evaluating Csrpðp; �pÞ and Cspðp; �pÞ for the four different parameters across all 4096

parameter sets. We then put each set of 4096 evaluations in ascending order and plot them in E and F. For a few parameter sets, the behaviours show

some sensitivity to kB5. However, pprod has the far largest effect on either behaviour. In both cases, changes to pfrac and kD5 have little effect on the
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system transitions into a region of oscillation (Fig 4H–4J). For strong stresses, the system

exhibits a single pulse, followed by an elevated level of σB activity. The activity in this

asymptotic state increases with the magnitude of the stress, however, this increase saturates

for large enough stresses (Fig 4K–4M). These last two behaviours have not yet been

observed experimentally. A bifurcation-stability analysis of the system revealed that oscil-

latory behaviours appear for lower values of pprod in stochastic simulations compared to

deterministic ones (S16 Fig). This further demonstrates how noise can influence σB dynam-

ics. Finally, we demonstrate that a similar transition between single pulse, stochastic puls-

ing, and oscillatory dynamics can be recreated using the Gillespie algorithm (S17 Fig).

Since Gillespie simulations cannot be performed using the substituted parameter pprod, we

instead used pstress (however, since pprod scales linearly with pstress their transitions are

equivalent).

2.3 Properties of noise in the upstream pathway can bias the network

towards either response behaviour

Next, we investigated how noise in the upstream pathway affects the system’s response. We

noted that relatively minor perturbations in the stress magnitude can push the system between

system. Hence, these lines coincide (both following the x-axis closely). Parameter values and other details on simulation conditions for this figure are

described in S2 and S5 Tables.

https://doi.org/10.1371/journal.pcbi.1011265.g003

Fig 4. The system transitions through a range of behaviours as the effective dephosphorylation rate is varied. (A) The magnitude of the two

behaviours for our selected parameter set (kK2, η, pfrac, kB5, kD5) = (7.0 h-1, 0.025, 100.0 μM h-1, 3600.0 μM-1h-1, 18.0 h-1). 12 different selected values of

pprod (used in B-M) are marked with grey lines. (B-M) For 12 different values of pprod a single simulation is displayed (stress added at t = 0, red dashed

line). (B) For pprod small, the system does not respond. (C,D) As pprod is increased, the system exhibits a single response pulse. The amplitude increase

with pprod. (E,F) For larger values of pprod, stochastic pulsing is exhibited. The frequency of the pulses increases with pprod. (G-I) As the stress is increased

further, the system enters a limit cycle. (J-L) For large pprod, the system exhibits a single response pulse, and then enters a persistent state of elevated σB

activity. The activity in this state increases with pprod. (M) For large enough stresses, the system saturates at some maximum activity. An expanded

version of this figure, including bifurcation analysis of system steady state properties, can be found in S16 Fig. A similar transition, but generated

through Gillespie algorithm simulations, can be found in S17 Fig. Parameter values and other details on simulation conditions for this figure are

described in S4 and S5 Tables.

https://doi.org/10.1371/journal.pcbi.1011265.g004
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the two behaviours (Fig 4E and 4F). However, experiments have shown that the two response

types are robust under large variations in stress levels. It is possible that the structure of the

upstream pathways makes their respective response behaviours more stable. Previously we

have assumed an absence of noise in the availability of the phosphatase. By letting the phospha-

tase switch between an active and an inactive state, we added intrinsic upstream noise through

the CLE. This introduced the parameters ηamp and ηfreq, denoting the amplitude and the fre-

quency of the upstream noise, respectively (S18 Fig and Section 4.2). We next proceeded to

investigate how the values of ηamp and ηfreq affect the system’s ability to robustly generate the

two behaviours as pprod is varied.

We developed a measure for the system’s ability to generate one behaviour distinctly under

perturbations to the upstream pathway (with these perturbations previously simplified to

modifying the parameter pprod) (Section 4.5.3). The measure tests, as pprod is varied, if the sys-

tem generates one behaviour uniquely while being unable to produce the other one. We

scanned this distinctness-of-behaviour measure (for both behaviours) across ηamp-ηfreq space

(Fig 5A and 5B). Our scan suggested that the single response pulse behaviour is distinct for

Fig 5. The properties of the noise in the upstream pathways may bias the system towards either response behaviour. (A,B) The amplitude (ηamp)

and frequency (ηfreq) of the upstream pathway’s noise is varied. Plots show, for each parameter combination, the distinctness of the single response

pulse (A) and stochastic pulsing (B) behaviours. The distinctness (of either behaviour) designates the system’s ability to uniquely generate that

behaviour (and not the other behaviour) as a parameter is varied (here pprod). This measure is described in detail in Section 4.5.3 (there designated Dsrp
or Dsp). Light green dots mark parameter sets optimising either behaviour’s distinctness. (C,D) For the parameter sets that maximise the distinctness of

the single response pulse (C) and stochastic pulsing (D) behaviours, the magnitudes of the two behaviours are shown as functions of pprod. For each

parameter set, 7 selected values of pprod are marked with grey lines. (E,F) For the 7 parameter sets marked in C (E), and D (F), a single simulation is

displayed (stress added at t = 0, red dashed line). As pprod is varied, the two behaviours are generated much more robustly than what they were for the

parameter set in Fig 4. Parameter values and other details on simulation conditions for this figure are described in S6 and S7 Tables.

https://doi.org/10.1371/journal.pcbi.1011265.g005
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small values of ηamp. Meanwhile, stochastic pulsing requires low ηfreq and high ηamp. This sug-

gested that while upstream noise is not required to produce either response behaviour, the

presence (or lack) thereof, makes either behaviour more robust (Fig 5C–5F).

Finally, our separation of the upstream noise from that of the core circuit allowed us to

investigate the relative effect of the two types of noise on the system’s behaviour. We measured

the relative distinctness of the two behaviours (Section 4.5.3) across ηamp-η space, where η
denotes the amplitude of the core circuit’s noise (to reduce combinatorial complexity, we set

ηfreq = 1). Here, the two stress sensing pathways will have the same core noise amplitude, but

different upstream noise amplitudes (ηamp). We note that a network where the core noise is

low, and the noise amplitude is low in one pathway and high in the other, should be able to

robustly generate the two types of behaviours (Fig 6).

3 Discussion

In recent years, the importance of cellular noise to generate biological phenotypes has been

demonstrated in a range of systems. These advances have been aided by the development of

techniques for dynamic single-cell measurements of cellular components. Such techniques

have revealed that the σB network responds to two types of inputs (energy and environmen-

tal stress) through two distinct response behaviours (a single response pulse and stochastic

pulsing, respectively). Here, we use the CLE to implement noise in the Narula model (which

was previously based on the deterministic reaction rate equation). This has allowed us to

study how noise modulates the network’s two responses. By modelling the intrinsic noise of

the system’s biochemical reactions, we demonstrated how the core circuit can reproduce

both response behaviours, without making assumptions about the distinguishing properties

of the two upstream pathways. This is in agreement with recent experiments that suggest

that both stress types can generate both responses, as experimental conditions are varied

[36–38, 44].

To determine how the two upstream pathways generate distinct responses while feed-

ing into a common core circuit, we characterised the parameters defining the pathways.

Fig 6. Core circuit noise compared to upstream noise. (A,B) For each combination of core circuit noise amplitude (η) and upstream pathway noise

amplitude (ηamp) we vary the parameter pprod (over the interval 20< pprod< 200) and calculate each behaviour’s distinctness (Section 4.5.3). The total

amount of noise in the system, rather than how it is distributed between the core and upstream pathway, is an important determinant for both

behaviours’ occurrence. (A) The single pulse response behaviour is distinct when both types of noise are low. (B) The stochastic pulsing behaviours

require some amount of noise (in either pathway), but do diminish if the total amount of noise becomes too large. It is especially prominent when core

circuit noise amplitude (η) is small and upstream pathway noise amplitude (ηamp) is intermediately valued. Parameter values and other details on

simulation conditions for this figure are described in S7 Table.

https://doi.org/10.1371/journal.pcbi.1011265.g006
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We showed that the response was mainly determined by the rate of RsbV dephosphoryla-

tion (pprod). The two responses can thus be explained by the energy stress sensing pathway

dephosphorylating RsbV at a higher rate, as compared to the environmental one. Further-

more, we showed how the system transitioned through a range of response behaviours,

including single pulse and stochastic pulsing dynamics, as this crucial property was

varied.

We also investigated how noise in the upstream pathways affected which behaviour was

favoured. We found that the single response pulse behaviour was favoured by low ampli-

tude noise, while the stochastic pulsing behaviour required larger (but not too large) ampli-

tude noise. Furthermore, we noted that the stochastic pulsing behaviour was deterred by

high-frequency noise (when fluctuations in the upstream pathway grow larger than the

time scale on which the core circuit operates, the core is likely to only see a deterministic

mean input). By modelling the amplitude of noise in the core and the pathway separately,

we showed how a system with low noise in the core could optimally generate the two

response behaviours from two upstream pathways. Here, the environmental stress sensing

pathway would be distinctly less noisy than the energy stress sensing pathway. Our unbi-

ased approach thus helps justify assumptions in previous models, where the energy stress

pathway was simulated with a gamma distributed Ornstein-Uhlenbeck process whilst the

environmental stress was modelled without noise [36, 45], but goes further as it allows us to

quantify the effects of different noise levels on each behaviour. Our results suggest that the

components of the environmental stress sensing pathway may regulate cellular noise.

Indeed, this pathway contains the stressosome protein complex, which controls the avail-

ability of phosphatase, and mutations of which permit environmental stress to also generate

a stochastic pulsing type response [37, 42]. This suggests that the stressosome complex may

reduce cellular noise.

Previous experimental work disagrees on the type of dynamics generated by the energy and

environmental stress pathways [36–38, 44]. By showing that the two behaviours are highly

related, we can help explain these differing results. We have shown how relatively minor

changes in core circuit activation strength, or pathway noise levels, can cause a switch between

the two behaviours. This suggests that differences in the stressors used, or possibly the experi-

mental set-up, could affect which response was generated in each set of experiments.

Finally, our results further demonstrate how noise may have non-intuitive effects on

dynamic systems [56–58]. This includes our result that the amplitude of the initial response

pulse strictly increases with the noise amplitude (Fig 2A and 2B). It also includes our bifur-

cation-stability analysis of the system (S16 Fig), which demonstrates that oscillatory behav-

iours appear for lower values of pprod in the stochastic system (as compared to the

deterministic one).

To make them tractable for analysis, models must simplify the real system. In this work,

we used the chemical Langevin approach (CLE) to model system noise. This is an approxi-

mation of the Gillespie algorithm that, due to its simulation speed, allowed us to simulate

over a large range of parameters and noise values. However, it is satisfying that we could

confirm, using Gillespie algorithm simulations, the key results of our work. This is that the

core circuit can generate both single pulse and stochastic pulsing dynamics, and that the sys-

tem transitions from a single pulse, to stochastic pulsing, to oscillations as the rate of

dephosphorylation of RbsV is increased. The fact that simulations using both the CLE and

the Gillespie algorithm give qualitatively similar dynamics increases the robustness of our

conclusions.

In the future, it will be interesting to examine further, both experimentally and in models,

the source of the noise in the σBcircuit. Although technically challenging due to the small size
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of the proteins involved and difficulties with fluorescent tags affecting function, it would be

powerful to examine the levels of RsbW, RsbV and σBsimultaneously in single cells. This

would allow us to use the experimentally measured noise level of each component to directly

inform our models. On the modelling side, a more detailed model could include noise due to

transcriptional and translational bursts [59, 60], whereas here transcription and translation are

combined for simplicity. In addition, we assume uncorrelated noise for each reaction channel,

but there is interesting theoretical work that suggests that the coupled expression of genes in

operons could lead to correlations in noise that can affect the system dynamics [61]. Further

simplifications include that dilution terms are modelled as independent, while in reality they

are correlated across all species, as well as the fact that we choose to model intrinsic noise only.

Although focusing on intrinsic noise is motivated by our experimental understanding of the

system, it would be interesting to examine how extrinsic noise might also affect output dynam-

ics. For example, noise due to the partitioning of molecules at division events is not consid-

ered, meaning we could be underestimating the noise due to division [62]. It will be important

to address how such additional complexity can affect the σB circuit in future models. More

generally, stochastic pulsing dynamics have been observed in multiple alternative sigma cir-

cuits [38], as well as other stress pathways in microbes [63], and stochastic modelling could

allow us to further address whether there are any general principles behind these dynamics.

Finally, in Narula (2016) it was shown that the dynamics of the σB circuit are robust to compe-

tition from other sigma factors [45]. It would be interesting to investigate the effect of intrinsic

noise on such competition dynamics.

As methods for stochastic CRN modelling have become more widespread [64, 65], the

effect of noise on cellular systems has increasingly been characterised [66–68]. This has not

only been important to understand the design principles of native circuits, but also when

designing synthetic ones. Indeed, being able to quantify the effect of intrinsic noise is

required to optimally design synthetic regulator networks. This will be especially true in the

context of sigma factors, as their ability to create orthogonal regulatory systems has gathered

interest as synthetic regulators [69–71]. In this article, we have shown that intrinsic cellular

noise can generate novel stochastic behaviours in a genetic circuit, and even affect the prop-

erties of what is otherwise a purely deterministic behaviour. As the noise properties of more

systems are characterised (both experimentally and through models), it will increasingly

become clear whether stochastic dynamics, and not deterministic ones, constitute the rule

rather than the exception.

4 Methods

4.1 Model implementation

As a starting point, we use the CRN model implementation of the core σB circuit model as

introduced in Narula (2016) [45]. Our only modification is that the phosphatase concentration

before and after stress have been formalised as model parameters. The model describes the

concentration of σB, RsbW, and RsbV, as well as the various complexes and dimers they form.

It also models the input phosphatase, P, as a species of the system.

The strength of the stress is determined by the concentration of the species P. In the orig-

inal model, environmental stress is modelled as a step, where [P] is increased from a low to

a higher level at the time of stress (generating a single response pulse). Energy stress is mod-

elled by letting the phosphate concentration adopt a (pre-simulated) gamma-distributed

Ornstein-Uhlenbeck process, and then performing reaction rate equation based ODE simu-

lations with this noisy input (creating a stochastic pulsing output). Since we will use the

CLE to model system noise, we do not need to add specific noise to the concentration of P.
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Hence, we can allow all inputs to be step increases in [P]. Formalising this, we let the param-

eter pinit be the concentration of P before stress, and pstress be the concentration of P after

stress.

4.1.1 Reactions. The model consists of 27 reactions, which are provided in Table 1.

4.1.2 Parameters. The model consists of 24 parameters, all of which stay constant

throughout a simulation. The parameter values, as they were initially set in [45], are given in

Table 2. Throughout the article, the parameters are modified as we investigate how this

changes the system’s behaviour (exact details of which parameter values are used for each set

of simulations can be found in S1–S7 Tables). Finally, we have also introduced an additional 3

parameters to the model: pinit is the pre-stress concentration of the phosphatase, pstress is the

concentration of the phosphatase in the stressed state, and η is the amplitue of noise in the sys-

tem (using linear scaling of the noise in the CLE).

Table 1. The reactions of the CLE adaptation of Narula model of the σB circuit.

Description Reaction Rate Propensity

Production ⌀! σB v0

1þF½sB �
Kþ½sB � v0

1þF½sB �
Kþ½sB �

⌀!W lW � v0

1þF½sB �
Kþ½sB � lW � v0

1þF½sB �
Kþ½sB �

⌀! V lV � v0

1þF½sB �
Kþ½sB � lV � v0

1þF½sB �
Kþ½sB �

Dimerisation 2W!W2 kBw kBw
½W�2

2!

Binding W2 + V!W2-V kB1 kB1[W2] � [V]

W2-V + V!W2-V2 kB2 kB2[W2-V] � [V]

W2 + σB!W2-σB kB3 kB3[W2] � [σB]

P + VP! P-VP kB5 kB5[P] � [VP]

Partner switching W2-σB + V!W2-V + σB kB4 kB4[W2-σB] � [V]

W2-V + σB!W2-σB + V kD4 kD4[W2-V + σB] � [σB]

Dissociation W2! 2W kDw kDw[W2]

W2-V!W2 + V kD1 kD1[W2]

W2-RsbV2!W2-V + V kD2 kD2[W2]

W2-σB!W2 + σB kD3 kD3[W2]

P-VP! P + VP kD5 kD5[W2]

Phosphorylation W2-V!W2 + VP kK1 kK1[W2-V]

W2-V2!W2-V + VP kK2 kK2[W2-V2]

Dephosphorylation P-VP! P + V kP kP[P-VP]

Degradation/dilution σB!⌀ kdeg kdeg � [σB]

W!⌀ kdeg kdeg � [W]

W2!⌀ kdeg kdeg � [W2]

W2-σB!⌀ kdeg kdeg � [W2-σB]

W2-V!⌀ kdeg kdeg � [W2-V]

W2-V2!⌀ kdeg kdeg � [W2-V2]

V!⌀ kdeg kdeg � [V]

VP!⌀ kdeg kdeg � [VP]

P-VP! P kdeg kdeg � [P-VP]

Here, W stands for RsbW and V for RsbV.

https://doi.org/10.1371/journal.pcbi.1011265.t001
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4.1.3 SDE and ODE systems. We will primarily use the CLE to simulate the model. From

a set of chemical reactions, it describes a system of SDEs according to

dxi ¼ dt
Xm

j¼1

vi; j � ajð�x; tÞ þ Z
Xm

j¼1

vi;j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajð�x; tÞ

q
� dWj ð1Þ

where xi denotes the concentration of the ith species, vi,j the net stoichiometric change in the

ith species as result of the jth reaction, and ajð�x; tÞ is the propensity of the jth reaction. dWj

denotes a Wiener process with 0 mean and unit variance. Here, the noise scaling parameter is

marked as η.

Due to the additional noise terms, this system becomes too large to yield any useful infor-

mation when displayed in SDE form. We will instead only write out the ODE system (as gener-

ated by the RRE), noting that the SDE system can be unambiguously generated by the CRN’s

reactions (Table 1) according to the previous equation.

d½sB�

dt
¼ v0

1þ F½sB�

K þ ½sB�
þ kD3½W2-s

B� þ kB4½V�½W2-s
B� � kB3½W2�½s

B�

� kB4½W2-V�½sB� � kdeg½sB�

d½W�
dt

¼ lW � v0

1þ F½sB�

K þ ½sB�
þ 2kDw½W2� � kBw½W�

2
� kdeg½W�

d½W2�

dt
¼ kD1½W2-V� þ kD3½W2-sB� þ kK1½W2-V� þ kBw

W�2

2
� kB1½W2�½V�

� kB3½W2�½s
B� � kDw½W2� � kdeg½W2�

d½W2-sB�

dt
¼ kB3½W2�½s

B� þ kB4½W2-V�½sB� � kD4½W2-sB�½V� � kD3½W2-sB� � kdeg ½W2-sB�

d½W2-V�
dt

¼ kD2½W2-V2� þ kK2½W2-V2� þ kB1½W2�½V� þ kB4½W2-V�½sB� � kB2½W2-V�½V�

� kD4½W2-sB�½V� � kD1½W2-V� � kK1½W2-V� � kdeg ½W2-V�

d½W2-V2�

dt
¼ kB2½W2-V�½V� � kD2½W2-V2� � kK2½W2-V2� � kdeg½W2-V2�

d½V�
dt

¼ lV � v0

1þ F½sB�

K þ ½sB�
þ kP½P-V

P� þ kD1½W2-V� þ kD2½W2-V2� þ kD4½W2-s
B�½V�

� kB1½W2�½V� � kB2½W2-V�½V� � kB4½W2-V�½sB� � kdeg½V�

d½VP�

dt
¼ kD5½P-VP� þ kK1½W2-V� þ kK2½W2-V2� � kB5½P�½VP� � kdeg½VP�

d½P�
dt

¼ kD5½P-VP� þ kdeg½P-VP� þ kP½P-VP� � kB5½P�½VP�

d½P-VP�

dt
¼ kB5½P�½VP� � kD5½P-VP� � kP½P-VP� � kdeg½P-VP�

8
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4.2 Modifications to the Narula model

In the CLE adaptation of the Narula model, we can investigate the σB response to a step

increase in phosphatase input. Here, the upstream pathway activating either RsbTU (envi-

ronmental stress) or RsbP (energy stress) produces a constant, non-fluctuating, level of

phosphatase in response to the stress (while the amount of phosphatase is constant, we note

that the relative fraction between phosphatase that is free, or bound to RsbV, fluctuate). In

this section, we expand the CLE adaptation of the Narula model, adding fluctuations to the

upstream phosphatase input. This allows us to investigate how upstream noise affects the

system’s response behaviour.

Upstream noise is implemented by assuming that the phosphatase has an active and an

inactive state, and that it switches between these according to the law of mass action. This

allows us to model the upstream noise through the CLE. By introducing a second CLE

noise-scaling parameter for the phosphatase, we can scale the upstream noise separately

from that of the core circuit. Through the way we write the new parameters, we can intro-

duce one, ηamp, which scales the amplitude of the noise in the phosphatase, and one, ηfreq,

Table 2. The parameters of the CLE adaptation of the Narula model of the σB circuit.

Parameter Value Description

v0 0.4 μM�hr-1 Operon base activity

F 30 Operon fold change

K 0.2 μM σB binding affinity for operon

λW 4 RsbW to σB relative production rate

λV 4.5 RsbV to σB relative production rate

kBw 3600 μM-1hr-1 RsbW dimerisation rate

kDw 18 hr-1 RsbW dimer dissociation rate

kB1 3600 μM-1hr-1 RsbW2 to RsbV binding rate

kB2 3600 μM-1hr-1 RsbW2RsbV to RsbV binding rate

kB3 3600 μM-1hr-1 RsbW2 to σB binding rate

kB4 1800 μM-1hr-1 RsbW2σB partner switching from σB to RsbV rate

kB5 3600 μM-1hr-1 Phosphatase to RsbV binding rate

kD1 18 hr-1 RsbW2RsbV dissociation rate

kD2 18 hr-1 RsbW2RsbV2 dissociation rate

kD3 18 hr-1 RsbW2σB dissociation rate

kD4 1800 μM-1hr-1 RsbW2RsbV partner switching from RsbV to σB rate

kD5 18 hr-1 Phosphatase-RsbV dissociation rate

kK1 36 hr-1 Phosphorylation rate (RsbW2RsbV)

kK2 36 hr-1 Phosphorylation rate (RsbW2RsbV2)

kP 180 hr-1 Dephosphorylation rate

kdeg 0.7 hr-1 Degradation/dilution rate

pinit 0.001 μM Phosphatase concentration before stress

pstress variable Phosphatase concentration during stress

η 0.025 Degree of system noise

To analyse the impact on the system, the values of a few parameters (kK2, η, pstress, kP, kB5, and kD5) are changed

throughout the model investigation. The three last parameters; pstress, pinit, and η have been added in this work (pstress
and pinit were implicitly given in the original model, and formally defined here to aid the model investigation). For

some analysis (Fig 3C and onwards), we use the parameter substitutions pprod = pstress � kP and pfrac = pstress/kP.

https://doi.org/10.1371/journal.pcbi.1011265.t002
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which scales the frequency of the noise in the phosphatase (S18 Fig). Our modified model

introduces 1 new species, 3 new reactions, and 2 new parameters.

Similarly to the original Narula model, stress is modelled by increasing the total amount of

phosphatase in the system. At the time of stress addition, [P] and [PI] are both increased by

pstress − pinit (setting the total amount of phosphatase in the system to 2pstress, with on average

half being in the active state).

4.2.1 Reactions. The modified model introduces one new species, PI (inactive phospha-

tase), and three reactions. These are the activation and the deactivation of the phosphatase. In

addition, phosphatase bound to RsbV can also deactivate (thus dissociating from RsbV)

(Table 3).

4.2.2 Parameters. The modified model introduces 2 new parameters (Table 4). The new

parameter ηamp scales the noise amplitude in the reactions in Table 3. Meanwhile, the old

parameter η still scales the noise of all the reactions in Table 1. The new parameter ηfreq scales

the rate of phosphatase activation and deactivation. This has no effect on the system’s deter-

ministic properties, but will scale the frequency of the fluctuations in the levels of active phos-

phatase. The parameters pinit and pstress, while in principle similar to in the previous model,

have their properties slightly altered. Instead of representing (before and after stress, respec-

tively) the total amount of phosphatase ([PI] + [P] + [P-VP]), they represent the average level

of active phosphatase (before and after stress, respectively). The total amount of phosphatase is

2pinit (before stress) and 2pstress (after stress).

4.2.3 ODE System. While we will primarily use the SDE system as generated by the CLE,

due to the addition of the noise terms, the system becomes too large to yield any useful infor-

mation when displayed in SDE form. We will instead only write out the ODE system (as gener-

ated by the RRE). The SDE system can be unambiguously generated by the CRN’s reactions

Table 4. The parameters added in our modified Narula model.

Parameter Value Description

ηamp variable Upstream noise amplitude

ηfreq variable Upstream noise frequency

In addition to these parameters, all the parameters in Table 2 are also a part of the modified Narula model. The

system is investigated for a range of ηamp and ηfreq values, so no particulate values are specified here.

https://doi.org/10.1371/journal.pcbi.1011265.t004

Table 3. The reactions added in our modified Narula model.

Description Reaction Rate Propensity

Activation PI! P ηfreq ηfreq[Pi]
Deactivation P! Pi ηfreq ηfreq[P]

P-VP! Pi + VP ηfreq ηfreq[P-VP]

In addition to these 3 reactions, all the reactions in Table 1 are also a part of the modified Narula model.

https://doi.org/10.1371/journal.pcbi.1011265.t003
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(Tables 1 and 3) through the CLE.

d½sB�

dt
¼ v0

1þ F½sB�

K þ ½sB�
þ kD3½W2-s

B� þ kB4½V�½W2-s
B� � kB3½W2�½s

B�

� kB4½W2-V�½sB� � kdeg ½sB�

d½W�
dt

¼ lW � v0

1þ F½sB�

K þ ½sB�
þ 2kDw½W2� � kBw½W�

2
� kdeg½W�

d½W2�

dt
¼ kD1½W2-V� þ kD3½W2-sB� þ kK1½W2-V� þ kBw

W�2

2
� kB1½W2�½V�

� kB3½W2�½s
B� � kDw½W2� � kdeg½W2�

d½W2-sB�

dt
¼ kB3½W2�½s

B� þ kB4½W2-V�½sB� � kD4½W2-sB�½V� � kD3½W2-sB�

� kdeg½W2-sB�

d½W2-V�
dt

¼ kD2½W2-V2� þ kK2½W2-V2� þ kB1½W2�½V� þ kB4½W2-V�½sB� � kB2½W2-V�½V�

� kD4½W2-sB�½V� � kD1½W2-V� � kK1½W2-V� � kdeg½W2-V�

d½W2-V2�

dt
¼ kB2½W2-V�½V� � kD2½W2-V2� � kK2½W2-V2� � kdeg ½W2-V2�

d½V�
dt

¼ lV � v0

1þ F½sB�

K þ ½sB�
þ kP½P-V

P� þ kD1½W2-V� þ kD2½W2-V2� þ kD4½W2-s
B�½V�

� kB1½W2�½V� � kB2½W2-V�½V� � kB4½W2-V�½sB� � kdeg½V�

d½VP�

dt
¼ Zfreq½P-VP� þ kD5½P-VP� þ kK1½W2-V� þ kK2½W2-V2� � kB5½P�½VP�

� kdeg½VP�

d½P�
dt

¼ Zfreq½Pi� þ kD5½P-VP� þ kdeg½P-VP� þ kP½P-VP� � kB5½P�½VP� � Zfreq½P�

d½Pi�

dt
¼ Zfreq½P� þ Zfreq½P-VP� � Zfreq½Pi�

d½P-VP�

dt
¼ kB5½P�½VP� � kD5½P-VP� � kP½P-VP� � Zfreq½P-VP� � kdeg ½P-VP�

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

4.3 Simulations

The models were implemented in the Julia programming language using the Catalyst.jl model-

ling package [72]. Simulations were carried out using the DifferentialEquations.jl package [73].

For Gillespie simulations, we use the Direct method (Gillespie’s direct method), which is

the recommended method for small problems [51, 52, 74]. These simulations also require a

stepping algorithm (which is used internally to manage the simulation). Since no reactions
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were time-dependent, we used the recommended SSAStepper. All Gillespie simulations were

performed using the reactions in Table 1, and the parameters described in S3 Table.

For the SDE simulations, we used the implicit Euler-Maruyama method, using fixed time

steps [75]. Due to numeric error, differential equations occasionally produce negative species

concentration. To prevent these from crashing simulations (due to negative numbers occur-

ring in the CLE’s square root noise term), every term within a square root was replaced with

its absolute value (e.g.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kdeg � ½W�

q
dW20 would become

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkdeg � ½W�j

q
dW20, where dW20 is a

Wiener process of the CLE SDE). This has no effect as long as species concentrations stay posi-

tive. However, if numeric errors and the noise term push a species into a negative concentra-

tion, the absolute value prevents the solver from causing an error due to attempting to take the

square root of a negative number [54]. For full details of the simulation, as well as the opportu-

nity to reproduce them, please see the provided scripts (see Section 4.6 for a link to the code).

4.4 Bifurcation analysis

Bifurcation analysis was carried out using the BifurcationKit package (which tracks steady

states using pseudo-arclength continuation) [76].

4.5 Automated behaviour measures

To aid our analysis, we develop four different measures of the system’s properties. Of these,

the first three are related (measuring the system’s ability to generate either behaviour under

various circumstances). The last one is a sensitivity measure of whenever either behaviour is

sensitive to change in a specified parameter.

4.5.1 Measure of behavioural magnitude. Throughout the paper, we wish to determine

the magnitude with which either behaviour occurs at a given parameter set

�p ¼ ðkBw; kDw; kB1; . . .Þ. To do so, we simulate the system n times, where, n = 50, 100, or 200

(values of n vary from figure to figure and are described in S2, S5 and S7 Tables). Each simula-

tion last 200 hours after the addition of stress (and begins 10 hours before stress). For each

simulation we measure:

• The amplitude of the transient pulse. This is measured as the maximum activity of the simu-

lation in the transient phase (t 2 [0.0, 5.0]).

• The maximum asymptotic pulse amplitude. This is measured as the maximum activity of the

simulation in the asymptotic phase (t 2 [5.0, 200.0]).

• The mean asymptotic activity. This is measured as the mean activity of the simulation in the

asymptotic phase (t 2 [5.0, 200.0]).

Using these, we define the magnitude of the single response pulse behaviour (Msrpð�pÞ) and

the stochastic pulsing behaviour (Mspð�pÞ) as:

Single response pulse: The amplitude of the transient pulse divided by the maximum asymp-
totic pulse amplitude.

Stochastic pulsing: The maximum asymptotic pulse amplitude divided by the mean asymptotic
activity.

By, for the single response pulse, dividing by the maximum asymptotic pulse amplitude we

penalise the single response pulse magnitude for the occurrence of stochastic pulses. This

ensures that for a single parameter set, the measures cannot both score highly. These measures

are illustrated in Fig 2C and 2D.
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The five-hour window for the transient phase was chosen to ensure the first (asymptotic)

pulse was fully captured. We note that it is possible that this interval might include further

pulses, but we still capture this possible sustained pulsing behaviour using our asymptotic

phase. To ensure that 5 hours captured the initial pulse, we made an automatic scan of a large

number (10, 000) of random parameter sets of our model. None of these exhibited an initial

pulse longer than 5 hours.

Finally, to provide additional intuition for these measures, we describe how they will work

in two different examples. First, consider a simulation with an oscillatory output. Here, the

mean asymptotic activity will typically be half of the maximum asymptotic activity, yielding a

stochastic pulsing measure of 2. This value is low compared to a simulation that exhibits sto-

chastic pulsing, where the stochastic pulsing measure often reaches 50. Next, consider a simu-

lation where a single stochastic pulse is exhibited in the asymptotic phase (t 2 [5.0, 200.0]).

This can maximise the magnitude of the stochastic pulsing behaviour, as further pulses will

increase the mean asymptotic activity, but only if the further pulses are of lower amplitude, as

otherwise the maximum would also increase. We note though that this is only true for the indi-

vidual simulation. In practice, our measures are always evaluated as the mean over a large

(n> 50) number of simulations. If one simulation-realisation of a parameter set exhibits a sin-

gle asymptotic pulse, it is likely that other simulations will exhibit none. For these, the stochas-

tic pulsing measure will equal 1, reducing the overall measure for the parameter set (taken as a

mean over all the simulations).

4.5.2 Measure of the system’s ability to robustly generate both behaviours. Next, we

wish to measure to what extent the system can generate both behaviours, as a single parameter

is tuned. This is used in S7 Fig to find fixed values for the core parameters so that both behav-

iours can be generated by modulating the upstream parameters only. The behaviours should

be distinct, that is, the system should clearly exhibit one behaviour to a higher magnitude than

the other (and be able to do so for both behaviours). With all other parameters fixed, define

Msrp(p) and Msp(p) as the magnitude of the two behaviours (both functions of a single parame-

ter p). We define

M∗
srpðpÞ ¼

MsrpðpÞ � MspðpÞ; MsrpðpÞ > MspðpÞ

0; MsrpðpÞ < MspðpÞ

8
<

:
ð2Þ

with M∗
spðpÞ defined similarly. These are the degrees to which either behaviour surpasses the

other. We then define our measure (of the degree with which the system can, as a parameter p
is varied, distinctly generate both behaviours):

Dsrp;spðpÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
R pend
pstart

M∗
srpðpÞdpÞð

R pend
pstart

M∗
spðpÞdpÞ

q

R pend
pstart

maxðM∗
srpðpÞ;M∗

spðpÞÞdp
ð3Þ

where (pstart, pend) is the interval over which we sample the parameter p to calculate the inte-

grals (In practice sums over a dense grid of parameter values are used to estimate the integrals).

This measure is illustrated in S6 Fig. Finally, we note that 0< Dsrp,sp(p)< 1.

4.5.3 Measure of the system’s ability to distinctly generate one behaviour. Next, we

wish to measure to what extent the system can generate one behaviour distinctly. That is, to

what extent, for a given parameter region, only one behaviour is generated. By optimising this

measure, one gets a system with a preference for one of the two behaviours. We do this by

modifying the previously defined Dsrp,sp(p) measure. Again, we will define our measure as a

function of only a single parameter, p (in practice it will be carried out using the parameter
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pprod). Our new measures Dsrp(p) and Dsp(p) can be defined as

DsrpðpÞ ¼
ð
R pend
pstart

M∗
srpðpÞdpÞ

2

R pend
pstart

maxðM∗
srpðpÞ;M∗

spðpÞÞdp
ð4Þ

with Dsp(p) defined similarly. Here, (pstart, pend) is the interval over which we sample the

parameter p. Using the terminology in S6 Fig, we have Dsrp ¼
A2
srp

AsrpþAspþAsrp;sp
. By squaring the

numerator, we create a preference for regions in parameter space where the behaviour is

prominent (not only prominent in comparison to the other behaviour).

4.5.4 Measure of the behaviours’ sensitivity to the phosphatase parameters. Finally, we

wish to measure to what extent the magnitude of a behaviour changes as we tune a single

parameter, p. This will be used in Fig 3E and 3F to determine which upstream parameters are

important for determining whichever behaviour is generated. Our parameters are sampled at

discrete values on a grid, fpig
n
i¼1

. We define our measures Csrpðp; �pÞ and Cspðp; �pÞ (where p is

the values of the model’s remaining parameters, which are kept fixed) as:

Csrpðp; �pÞ ¼ ðn � 1Þ
Xn� 1

i¼1

ðMsrpðpiþ1; �pÞ � Msrpðpi ; �pÞÞ
2

ð5Þ

with Cspðp; �pÞ defined similarly. The factor (n − 1) is added to remove any bias introduced by

the density with which the grid is sampled (fewer grid samples mean longer distances between

the individual values, these are emphasised by the square, this factor compensates for this). By

squaring each value we give preference for sudden dramatic changes, as opposed to gradual

change with the parameter.

For simplicity, the Csrpðp; �pÞ and Cspðp; �pÞmeasures shown in Fig 3E and 3F has been nor-

malised by the maximum value of the y-axis.

4.6 Code availability

Scripts for generating all of the figures in this article, as well as the simulations on which they

are based, can be found at https://gitlab.developers.cam.ac.uk/slcu/teamjl/loman_locke_2023.

All scripts are written in the Julia programming language. This enables the definition of a Proj-

ect.toml file, defining the exact package versions used. This will enable anyone to replicate the

exact conditions under which all figures were generated.

Supporting information

S1 Fig. Stochastic pulsing is not achievable in the model by tuning η alone. For each combi-

nation of stress magnitude (pstress) and noise amplitude (η) four simulations are shown (stress

added at red dashed line, t = 0). Parameter values and other details on simulation conditions

for this figure are described in S1 Table.

(PDF)

S2 Fig. Only through the tuning of two parameters can oscillations be achieved. (A) Bifur-

cation diagrams for the various parameters, each plot shows three diagrams (for the varying

stress levels pstress = 0.05 μM, 0.20 μM, and 0.80 μM). The stars mark the parameter value for

the original Narula model. Each x-axis is log10 scaled, and if the parameter’s original value is

p0, it is varied over the range (p0/10, 10p0), corresponding to a tenfold decrease and increase in

the target parameter, respectively. Only by tuning kK2 or λW can instability be achieved. For

some parameters (kK2, kP, and F), the curve for pstress = 0.80 μM reaches much larger values
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compared to the other two curves, making these hard to distinguish. To avoid figure crowding,

periodic orbits are not displayed in these diagrams, however, they are instead shown in S3 Fig.

(B) Bifurcation diagram for the parameter pstress (the magnitude of the stress) over the interval

(0.1 μM,10.0 μM), with the x-axis log10 scaled. Instability cannot be produced by tuning pstress
only. Parameter values and other details on simulation conditions for this figure are described

in S1 Table.

(PDF)

S3 Fig. Bifurcation diagrams with periodic orbits shown. Four of the bifurcation diagrams

in S2 Fig display periodic orbits, these are shown in more details here. The stars mark the

parameters’ values for the original Narula model and all x-axes are log10 scaled. (A) Bifurca-

tion diagram with respect to the parameter kK2. (B-D) Bifurcation diagram with respect to the

parameter λV, for three different values of pstress. Note that for these the y-axes are log10 scaled

(to help show the periodic orbits more clearly), unlikely in S2 Fig where they are linearly

scaled. Parameter values and other details on simulation conditions for this figure are

described in S1 Table.

(PDF)

S4 Fig. Both behaviours can be reproduced even as we remove all noise from upstream

reactions. Here we test whether removing all noise from phosphatase reactions can still allow

both response dynamics. In Fig 2 we demonstrate that both system behaviours can be recre-

ated even as phosphatase levels remain constant (unlike in [45] which assumed noisy concen-

trations of P). To do this, we use the CLE. The CLE adds noise to reaction channels, rather

than species concentrations (with the former affecting the latter). This means that there’s still

noise in P due to noise in the reactions involving P. (A,B) Here we remove noise from all reac-

tions involving P (and components containing P). To do this, we use our modified Narula

model that allows us to tune upstream noise (Section 4.2) and set ηamp = 0.0. Next, we recreate

both the single response pulse (A, pprod = 50.0, η = 0.01) and stochastic pulsing (B, pprod = 25.0,

η = 0.09) behaviours. This demonstrates that both behaviours can be generated by the core cir-

cuit, and are not dependent on any form of upstream noise. Stress is added at red dashed lines

(t = 0) and each plot shows four simulations. Full parameter sets for this figure are described in

S6 Table.

(PDF)

S5 Fig. The stochastic pulses in σB are preceded by a reduction in total RsbW concentra-

tion. (A) In the time leading up to a stochastic pulse, the total amount of σB (blue, scale marked

at the left) and RsbW (blue, scale marked at the right) is plotted. Four simulations are shown.

(B) For the same four simulations, the system is shown in σB-RsbW phase space. The state at

the beginning of the simulation is marked with a blue dot. Just before the pulse is initiated (σB

levels start to rise), the total RsbW concentration dips. Although harder to see, the dip can also

be distinguished in (A). Parameter values and other details on simulation conditions for this

figure are described in S1 Table.

(PDF)

S6 Fig. A measure of the system’s ability to generate both behaviours distinctly as a single

parameter is tuned. We find the two functions Msrp(p) and Msp(p) of our target parameter

(this example used pstress) (Section 4.5.2). We define three areas: Asrp is the area which is

beneath the Msrp(p) curve but above Msp(p), with Asp defined similarly. We also define Asrp,sp

as the area which is beneath both curves. Finally, our measure is defined as

Dsrp;spðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Asrp�Asp
p

AsrpþAsrp;spþAsp
. Parameter values and other details on simulation conditions for this
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figure are described in S2 Table.

(PDF)

S7 Fig. Heatmap showing which combinations of kK2 and η enables the system to optimally

generate both behaviours. The function Dsrp;spðpstress; �pÞmeasures the system’s ability to dis-

tinctly generate both behaviours, while varying the parameter pstress only (Section 4.5.2). The

optimal value, (kK2, η) = (7.0hr−1, 0.025), is found close to the bottom left corner (light green

dot). We chose the upper limit of η (0.15) as beyond this point behaviours start to become

obscured by noise levels. Parameter values and other details on simulation conditions for this

figure are described in S2 Table.

(PDF)

S8 Fig. An optimised parameter set is able to generate both behaviours by varying pstress
only. (A,B) The system’s response to stress (red dashed line, t = 0), for (kK2, η) = (7.0hr−1,

0.025) and pstress = 0.24 μM (A) and pstress = 0.28 μM (B). Each plot shows four simulations.

Parameter values and other details on simulation conditions for this figure are described in S1

Table.

(PDF)

S9 Fig. The shape of the two behaviours’ regions of occurrence is stable as kB5 and kD5 are

changed. Heatmaps showing the two behaviours occurrences in kB5-kD5-space. In all plots, the

behaviours region of occurrence is similar to a kP � pstress = C curve. Parameter values and

other details on simulation conditions for this figure are described in S2 Table.

(PDF)

S10 Fig. Heatmaps describing the magnitude of the single response pulse behaviour for

various values of kB5 and kD5. Each heatmap describes the behaviour’s magnitude as the

parameters pprod (x-axis) and pfrac (y-axis) are varied. A total of 36 heatmaps are plotted and

placed in a 6x6 grid for a range of values of kB5 and kD5. There is a distinct spike in magnitude

as pprod is varied. Changes to pfrac, pprod, and kD5 all have some effect on the magnitude, but not

as distinct as changes to pprod. Parameter values and other details on simulation conditions for

this figure are described in S5 Table.

(PDF)

S11 Fig. Heatmaps describing the magnitude of the stochastic pulsing response behaviour

for various values of kB5 and kD5. Each heatmap describes the behaviour’s magnitude as the

parameters pprod (x-axis) and pfrac (y-axis) are varied. A total of 36 heatmaps are plotted and

placed in a 6x6 grid for a range of values of kB5 and kD5. There is a distinct spike in magnitude

as pprod is varied. Changes to pfrac, pprod, and kD5 all have some effect on the magnitude, but not

as distinct as changes to pprod. Parameter values and other details on simulation conditions for

this figure are described in S5 Table.

(PDF)

S12 Fig. Heatmaps describing the magnitude of the single response pulse behaviour for

various values of pprod and pfrac. Each heatmap describes the behaviour’s magnitude as the

parameters kD5 (x-axis) and kB5 (y-axis) are varied. A total of 36 heatmaps are plotted and

placed in a 6x6 grid for a range of values of pprod and pfrac. Only for one value of pprod do

changes in the other parameters have a major effect on the behaviour’s magnitude. Parame-

ter values and other details on simulation conditions for this figure are described in S5

Table.

(PDF)
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S13 Fig. Heatmaps describing the magnitude of the stochastic pulsing response behaviour

for various values of pprod and pfrac. Each heatmap describes the behaviour’s magnitude as the

parameters kD5 (x-axis) and kB5 (y-axis) are varied. A total of 36 heatmaps are plotted and

placed in a 6x6 grid for a range of values of pprod and pfrac. Only for one value of pprod do

changes in the other parameters have a major effect on the behaviour’s magnitude. Parameter

values and other details on simulation conditions for this figure are described in S5 Table.

(PDF)

S14 Fig. Heatmaps describing the magnitude of the single response pulse behaviour for

various values of pfrac and kD5. Each heatmap describes the behaviour’s magnitude as the

parameters pprod (x-axis) and kB5 (y-axis) are varied. A total of 36 heatmaps are plotted and

placed in a 6x6 grid for a range of values of pfrac and kD5. There is a distinct spike in magnitude

as pprod is varied. Changes to pfrac, pprod, and kD5 have little effect on the behaviour’s magnitude.

Parameter values and other details on simulation conditions for this figure are described in S5

Table.

(PDF)

S15 Fig. Heatmaps describing the magnitude of the stochastic pulsing response behaviour

for various values of pfrac and kD5. Each heatmap describes the behaviour’s magnitude as the

parameters pprod (x-axis) and kB5 (y-axis) are varied. A total of 36 heatmaps are plotted and

placed in a 6x6 grid for a range of values of pfrac and kD5. There is a distinct spike in magnitude

as pprod is varied. Changes to pfrac, pprod, and kD5 have little effect on the behaviour’s magnitude.

Parameter values and other details on simulation conditions for this figure are described in S5

Table.

(PDF)

S16 Fig. Fig 4 with a system bifurcation diagram added. Subplot A is identical to subplot A

of Fig 4. Subplots C-N are identical to subplots B-M of Fig 4. Please see Fig 4 for legends of

these subplots. (B) Bifurcation diagram, showing the system’s steady state as a function of

pprod. After a region of inactivity, the steady state becomes unstable (implying a limit cycle). As

pprod increases further, the steady state becomes stable, with an increasing concentration that

eventually saturates. The transition in the bifurcation diagram corresponds to the transition in

C-N (stability at an inactive state, a limit cycle, stability at an active state). We note that the

bifurcation diagram is computed from the deterministic (ODE) system, while subfigures A,

and C-N all use the stochastic (SDE) system. Adding noise to a non-linear system affects the

parameter values at which stability occurs. This explains that the region of instability in (B)

occurs for different pprod values as compared to A. While the deterministic bifurcation analysis

in B cannot be directly translated to our stochastic system, it is still worth noting this similarity

between the two cases. Parameter values and other details on simulation conditions for this fig-

ure are described in S5 Table.

(PDF)

S17 Fig. The behavioural transition, as pprod is varied, in Fig 4 can be recreated using the

Gillespie algorithm. In Fig 4 we observed that the system undergoes a behavioural transition

as pprod is increased from small to high. For small values of pprod the system is inactive. As pprod
is increased the system exhibits, in order, single response pulse, stochastic pulsing, oscillating,

and persistent activity, behaviours. Here, we recreate the same transition using Gillespie simu-

lations. While we in Fig 4 vary the parameter pprod, we never introduce this parameter substitu-

tion for the Gillespie approach. We instead vary the parameter pstress. However, since pprod =

pstress � kP, the two transitions should be equivalent. (A-L) Gillespie simulation of the Narula

model for various values of pstress. Each frame contains 4 simulations, and stress is added at the
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red dashed lines (t = 0). The behavioural transition from Fig 4 is recreated. Parameter values

and other details on simulation conditions for this figure are described in S3 Table.

(PDF)

S18 Fig. In the modified Narula model, two parameters (ηamp and ηfreq), allow us to scale

the amplitude and frequency of the noise in the input phosphatase. By splitting the phos-

phatase into an active state (P) and an inactive state (Pi), with only the active state being

able to form the P-VP complex, we can introduce fluctuations in phosphatase levels. Before

the addition of stress, the total amount of phosphatase ([Pi] + [P] + [P-VP]) is 2pinit (with,

on average, at every time point, half being in the active state). At the time of stress onset

(here at the red dashed line at t = 0), the amount of phosphatase is increased to 2pstress
(again, with on average half being active). The frequency of the fluctuations scales with the

parameter ηfreq. The amplitude of the fluctuations scales with the parameter ηamp. Parame-

ter values and other details on simulation conditions for this figure are described in S7

Table.

(PDF)

S1 Table. Parameter values for simulation of the CLE adaptation of the Narula model. For

each figure where the model is simulated, the parameter values used for the simulations are

marked. If not marked, the following parameter values are used: kBw = 3600 μM-1hr-1, kDw =

18 hr-1, kB1 = 3600 μM-1hr-1, kB2 = 3600 μM-1hr-1, kB3 = 3600 μM-1hr-1, kB4 = 1800 μM-1hr-1,

kB5 = 3600 μM-1hr-1, kD1 = 18 hr-1, kD2 = 18 hr-1, kD3 = 18 hr-1, kD4 = 1800 μM-1hr-1, kD5 = 18

hr-1, kK1 = 36 hr-1, kK2 = 36 hr-1, kP = 180 hr-1 hr-1, kDeg = 0.7 hr-1, v0 = 0.4 μM-1hr-1, F = 30,

K = 0.2 μM, λW = 4, λV = 4.5, η = 0.05, pinit = 0.001 μM, pstress = 0.4 μM. Finally, in certain fig-

ures, some parameter values are varied as marked on the figures. Which parameters are varied

across each is marked in the last column.

(PDF)

S2 Table. Parameter values for parameter scans of the CLE adaptation of the Narula

model. For each figure where we perform parameter scans of the model’s behaviour, the

parameter values used are marked. If not marked, the following parameter values are used: kBw
= 3600 μM-1hr-1, kDw = 18 hr-1, kB1 = 3600 μM-1hr-1, kB2 = 3600 μM-1hr-1, kB3 = 3600 μM-1hr-1,

kB4 = 1800 μM-1hr-1, kB5 = 3600 μM-1hr-1, kD1 = 18 hr-1, kD2 = 18 hr-1, kD3 = 18 hr-1, kD4 =

1800 μM-1hr-1, kD5 = 18 hr-1, kK1 = 36 hr-1, kK2 = 36 hr-1, kP = 180 hr-1, kDeg = 0.7 hr-1, v0 =

0.4 μM-1hr-1, F = 30, K = 0.2 μM, λW = 4, λV = 4.5, η = 0.05, and pinit = 0.001 μM. The third col-

umn denotes how many simulations (n) are performed for each parameter combination.

Finally, in certain figures, some parameter values are varied as marked on the figures. Which

parameters are varied across each is marked in the last column.

(PDF)

S3 Table. Parameter values for Gillespie simulation of the Narula model. Here, Ms stand

for Molecules. For each figure where the Narula model is simulated using the Gillespie algo-

rithm, the parameter values used for the simulations are marked. If not marked, the following

parameter values are used: kBw = 3600 Molecules-1hr-1, kDw = 18 hr-1, kB1 = 3600 Molecules-1hr-1,

kB2 = 3600 Molecules-1hr-1, kB3 = 3600 Molecules-1hr-1, kB4 = 1800 Molecules-1hr-1, kB5 = 3600

Molecules-1hr-1, kD1 = 18 Molecules-1, kD2 = 18 hr-1, kD3 = 18 hr-1, kD4 = 1800 Molecules-1hr-1,

kD5 = 18 hr-1, kK1 = 36 hr-1, kP = 180 hr-1, λW = 4, λV = 4.5, and pinit = 0 Molecules. Finally, in S18

Fig, the value of pstress is varied as marked in the figure. This is designated by, in this table, putting

pstress in the “Varied parameters” column.

(PDF)
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S4 Table. Parameter values for simulation of the CLE adaptation of the Narula model with

parameter substitution. For each figure where the model is simulated, the parameter values

used for the simulations are marked. If not marked, the following parameter values are used: kBw
= 3600 μM-1hr-1, kDw = 18 hr-1, kB1 = 3600 μM-1hr-1, kB2 = 3600 μM-1hr-1, kB3 = 3600 μM-1hr-1,

kB4 = 1800 μM-1hr-1, kB5 = 3600 μM-1hr-1, kD1 = 18 hr-1, kD2 = 18 hr-1, kD3 = 18 hr-1, kD4 =

1800 μM-1hr-1, kD5 = 18 hr-1, kK1 = 36 hr-1, kK2 = 36 hr-1, kDeg = 0.7 hr-1, v0 = 0.4 μM-1hr-1,

F = 30, K = 0.2 μM, λW = 4, λV = 4.5, η = 0.05, pinit = 0.001 μM, and pfrac = 100 μM hr1. Finally,

in certain figures, some parameter values are varied as marked on the figures. Which parameters

are varied across each is marked in the last column.

(PDF)

S5 Table. Parameter values for parameter scans of the CLE adaptation of the Narula

model with parameter substitution. For each figure where we perform parameter scans of

the model’s behaviour, the parameter values used are marked. If not marked, the following

parameter values are used: kBw = 3600 μM-1hr-1, kDw = 18 hr-1, kB1 = 3600 μM-1hr-1, kB2 =

3600 μM-1hr-1, kB3 = 3600 μM-1hr-1, kB4 = 1800 μM-1hr-1, kB5 = 3600 μM-1hr-1, kD1 = 18 hr-1,

kD2 = 18 hr-1, kD3 = 18 hr-1, kD4 = 1800 μM-1hr-1, kD5 = 18 hr-1, kK1 = 36 hr-1, kK2 = 36 hr-1, kDeg
= 0.7 hr-1, v0 = 0.4 μM-1hr-1, F = 30, K = 0.2 μM, λW = 4, λV = 4.5, η = 0.05, pinit = 0.001 μM,

and pfrac = 100 μM hr1. The third column denotes how many simulations (n) are performed

for each parameter combination. These simulations are then used to determine behavioural

magnitudes (larger n yields smoother plots). Finally, in certain figures, some parameter values

are varied as marked on the figures. Which parameters are varied across each is marked in the

last column.

(PDF)

S6 Table. Parameter values for simulation of the modified Narula model. For each figure

where the modified Narula model is simulated, the parameter values used for the simulations

are marked. If not marked, the following parameter values are used: kBw = 3600 μM-1hr-1, kDw
= 18 hr-1, kB1 = 3600 μM-1hr-1, kB2 = 3600 μM-1hr-1, kB3 = 3600 μM-1hr-1, kB4 = 1800 μM-1hr-1,

kB5 = 3600 μM-1hr-1, kD1 = 18 hr-1, kD2 = 18 hr-1, kD3 = 18 hr-1, kD4 = 1800 μM-1hr-1, kD5 = 18

hr-1, kK1 = 36 hr-1, kK2 = 36 hr-1, kDeg = 0.7 hr-1, v0 = 0.4 μM-1hr-1, F = 30, K = 0.2 μM, λW = 4,

λV = 4.5, η = 0.05, pinit = 0.001 μM, pfrac = 100 μM hr1, ηamp = 0.05, and ηfreq = 1. Finally, in cer-

tain figures, some parameter values are varied as marked on the figures. Which parameters are

varied across each is marked in the last column.

(PDF)

S7 Table. Parameter values for parameter scans of the modified Narula model. For each fig-

ure where we perform parameter scans of the modified Narula model’s behaviour, the parame-

ter values used are marked. If not marked, the following parameter values are used: kBw =

3600 μM-1hr-1, kDw = 18 hr-1, kB1 = 3600 μM-1hr-1, kB2 = 3600 μM-1hr-1, kB3 = 3600 μM-1hr-1,

kB4 = 1800 μM-1hr-1, kB5 = 3600 μM-1hr-1, kD1 = 18 hr-1, kD2 = 18 hr-1, kD3 = 18 hr-1, kD4 =

1800 μM-1hr-1, kD5 = 18 hr-1, kK1 = 36 hr-1, kK2 = 36 hr-1, kDeg = 0.7 hr-1, v0 = 0.4 μM-1hr-1,

F = 30, K = 0.2 μM, λW = 4, λV = 4.5, η = 0.05, pinit = 0.001 μM, pfrac = 100 μM hr1, ηamp = 0.05,

and ηfreq = 1. The third column denotes how many simulations (n) are performed for each

parameter combination. These simulations are then used to determine behavioural magni-

tudes (larger n yields smoother plots). Finally, in certain figures, some parameter values are

varied as marked on the figures. Which parameters are varied across each is marked in the last

column.

(PDF)
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