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Abstract

The recent advances in single-cell RNA sequencing (scRNA-seq) techniques have stimu-

lated efforts to identify and characterize the cellular composition of complex tissues. With

the advent of various sequencing techniques, automated cell-type annotation using a well-

annotated scRNA-seq reference becomes popular. But it relies on the diversity of cell types

in the reference, which may not capture all the cell types present in the query data of inter-

est. There are generally unseen cell types in the query data of interest because most data

atlases are obtained for different purposes and techniques. Identifying previously unseen

cell types is essential for improving annotation accuracy and uncovering novel biological dis-

coveries. To address this challenge, we propose mtANN (multiple-reference-based scRNA-

seq data annotation), a new method to automatically annotate query data while accurately

identifying unseen cell types with the aid of multiple references. Key innovations of mtANN

include the integration of deep learning and ensemble learning to improve prediction accu-

racy, and the introduction of a new metric that considers three complementary aspects to

distinguish between unseen cell types and shared cell types. Additionally, we provide a

data-driven method to adaptively select a threshold for identifying previously unseen cell

types. We demonstrate the advantages of mtANN over state-of-the-art methods for unseen

cell-type identification and cell-type annotation on two benchmark dataset collections, as

well as its predictive power on a collection of COVID-19 datasets. The source code and tuto-

rial are available at https://github.com/Zhangxf-ccnu/mtANN.

Author summary

Single-cell transcriptomics is rapidly advancing our understanding of complex tissues and

organisms by revealing the cellular composition of these structures. Supervised cell-type
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annotation is a popular approach in this field, which utilizes well-annotated single-cell

RNA sequencing (scRNA-seq) references. Compared with unsupervised methods, this

method saves time and effort, but it often relies on the assumption that the reference data-

set includes all cell types present in the query data. Misleading predictions can result if the

query dataset includes new cell types not present in the reference dataset. However, due to

the diverse purposes and interests of different sequencing experiments, there are often

unseen cell types in the query data that need to be identified for accurate annotation and

to discover novel biological phenomena. To address this challenge, we propose mtANN, a

novel method that automatically annotates query data while accurately identifying unseen

cell types with the aid of multiple references. We demonstrate the annotation performance

of mtANN in PBMC and Pancreas collections, where different proportions of unseen cell

types are present in the query dataset. Additionally, we verify the practical application of

mtANN in a collection of COVID-19 datasets for patients with different symptoms.

This is a PLOS Computational Biology Methods paper.

Introduction

Single-cell RNA sequencing (scRNA-seq) technologies allow measuring the gene expression

profile of individual cells, enabling the identification and characterization of the cellular com-

position of tissues at a previously unattainable level of resolution. Recent advances in scRNA-

seq technologies have revolutionized our understanding of the heterogeneity of complex tis-

sues. Various sequencing technologies, such as 10x Genomics Chromium, Drop-seq, and

Smart-seq2, have emerged, making cell-type annotation a crucial task for analyzing new

sequencing data in the context of complex tissues [1–3].

There are two typical solutions for cell-type annotation tasks. One solution is to unsuper-

vised cluster cells into groups based on the similarity of their gene expression profiles, and

annotate cell populations by assigning labels to each cluster according to cluster-specific

marker genes [4–8]. However, such methods require extensive literature review and manual

testing of various combinations of marker genes, which is not only time-consuming but also

not reproducible across different experiments within and across research groups [9, 10].

Another solution is to learn the intrinsic relationship between gene expression profiles and cell

types based on a well-annotated reference atlas, and transfer the learned relationship to query

data for cell-type annotation. There are two main types of approaches to this reference-based

strategy, one is to learn the similarity between the reference atlas and the query data based on

statistical metrics as the basis for cell-type label transfer [11–14]. The other is to model a classi-

fier on the reference atlas, which can make predictions directly on the query data [15–19]. The

reference-based method can avoid manual selection of marker genes, and the trained classifier

can be used for any new query data, providing convenience for practical applications.

Previous reference-based methods have rarely taken into account the following two issues.

The first issue is the selection of the reference atlas. Noise from the reference data and incor-

rectly annotated cell types may lead to inaccurate annotations on the query data, and the selec-

tion of input features of the classification model can also impact the annotation performance

of different methods [20, 21]. This issue can be partially addressed by integrating multiple
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well-annotated reference datasets and multiple gene selection methods [22–25], but an appro-

priate integration strategy is needed. Previous methods often integrate multiple well-labeled

datasets to create a comprehensive reference atlas, which is then used to annotate the cell types

in new data. However, this approach can be vulnerable to batch effects, and it is challenging to

select an appropriate batch correction method in advance [26, 27]. Over-correction can lead to

loss of differences between cell types in the reference data, resulting in reduced accuracy for

subsequent annotations, while under-correction may not effectively address the batch effects

between the datasets, increasing time and labor cost. The second issue is the difference in the

joint distribution of gene expression and cell type between the reference and query datasets

due to the difference in the marginal distributions. Distributional differences in gene expres-

sion, known as batch effects, have been extensively addressed in previous studies [28, 29],

while differences in the distribution of cell types have been rarely considered. Discrepancies in

cell types indicate that there may be cell types in the query data that are not present in the ref-

erence atlas, which can be called “unseen” cell types. Unseen cell types may suggest new bio-

logical discoveries that cannot be neglected. Additionally, ignoring the presence of unseen cell

types biases the classifier learned on the reference atlas to known cell types, resulting in false

predictions on the query data. These two issues are potentially related. Integrating multiple ref-

erence datasets can enrich the cell type information of reference data, but how to integrate ref-

erence datasets containing different cell types is difficult. In addition, effective methods are

needed to identify cell types in the query data that are not seen in the reference data.

In order to address the above two issues, we propose mtANN (multiple-reference-based

scRNA-seq data annotation), a novel method that automatically identifies unseen cell types

while accurately annotating query dataset by integrating multiple well-annotated scRNA-seq

datasets as references. The main idea of mtANN is first to learn multiple deep classification

models from multiple reference datasets to obtain multiple prediction results. These results are

then used to vote on metaphase annotations and to compute metrics from three complemen-

tary aspects to identify unseen cell types. Final annotations are made based on metaphase

annotation and unseen cell-type identification results. mtANN has the following characteris-

tics: (i) it utilizes the diversity of multiple reference datasets and avoids the selection of a single

reference dataset; (ii) it combines the ideas of deep learning and ensemble learning to improve

prediction accuracy; (iii) it proposes a new metric from three complementary aspects to mea-

sure whether a cell belongs to an unseen cell-type; and (iv) it introduces a new data-driven

approach to automatically determine thresholds for the identification of unseen cell types. We

benchmark mtANN using two collections of benchmark datasets, each from different tissues,

sequencing technologies, and containing different cell types. We prepared a total of 75 bench-

mark tests, including annotations across different technologies and identification of unseen

cell types belonging to different cell types. We also use a COVID-19 dataset and prepare a total

of 249 tests to assess the performance. Experimental results demonstrate that mtANN outper-

forms state-of-the-art methods in both unseen cell-type identification and cell-type

annotation.

Results

Overview of mtANN

The workflow of mtANN is illustrated in Fig 1 and S1 Text. mtANN consists of a training pro-

cess and a prediction process, which can be divided into 5 modules to simultaneously annotate

the query data and identify unseen cell types. In the training process (Fig 1A), mtANN first

adopts eight gene selection methods to generate a series of subsets that retain distinct genes for

each reference dataset (Module I). This step facilitates the detection of biologically important
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Fig 1. Overview of mtANN. (A) The training process of mtANN includes two modules: gene selection (Module I) and deep classification model

training (Module II). The labeled data i is used as an example. In Module I, eight gene selection methods are applied on data i, obtaining multiple

reference subsets. The gene sets selected by the eight gene selection methods intersect with all the genes in the query dataset, determining the input

genes of multiple deep classification models. In Module II, pairs of reference subset and query dataset after gene selection are used as input to train

each deep classification model. We conduct theses two modules for every labeled data, thus obtaining multiple deep classification models. (B) The

prediction process of mtANN (Module III) first makes predictions for the query data based on deep classification models learned by Module II and

then conducts a majority vote to obtain a metaphase annotation. (C) Unseen cell-type identification process consists of two modules: quantifying

the likelihood of a cell belonging to an unseen cell type (Module IV) and using a data-driven threshold determination method to identify unseen

cell types (Module V). In Module IV, we define an unseen cell-type identification metric by averaging three uncertainty measures calculated from

the results obtained from III. In Module V, we derive a new a data-driven method based on Gaussian mixture model to determine the threshold for
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genes and increases data diversity for effective ensemble learning. Based on all reference sub-

sets, mtANN trains a series of neural network-based deep classification models in Module II.

These base classification models characterize different relationships between gene expression

and cell types which are complementary in identifying unseen cell types. The prediction pro-

cess contains the integration of the outputs of all base classification models and the identifica-

tion of unseen cell types (Fig 1B). In Module III, mtANN obtains a metaphase annotation for

query dataset by majority voting on all base results. An essential step, the identification of

unseen cell types (Fig 1C) consists of two modules: the formulation of a metric for unseen cell-

type identification (Module IV) and the determination of a threshold (Module V). mtANN

defines a new uncertainty metric from intra-model, inter-model, and inter-prediction perspec-

tives to identify cells that may belong to unseen cell types. Specifically, the intra-model metric

quantifies uncertainty based on the average of entropy of prediction probability of different

classifiers. The inter-model metric characterizes uncertainty by averaging the prediction prob-

abilities of all classification models and then calculating the entropy. The inter-prediction met-

ric characterizes uncertainty in terms of inconsistency among the predictions obtained by all

the base classification models. Finally, based on the assumption that metric proposed in Mod-

ule IV follows a mixed Gaussian distribution when there are unseen cell types in the data,

mtANN fit a Gaussian mixture model to the metric to select cells with high predictive uncer-

tainty as “unassigned” in Module V (for details please refer to Materials and method).

Validating the effectiveness of ensemble learning in mtANN

mtANN integrates multiple well-annotated scRNA-seq datasets as references and applies eight

gene selection methods to select informative genes. To validate the effectiveness of integrating

multiple reference datasets and gene selection methods, we use two collections of datasets

from two tissues: peripheral blood mononuclear cells (PBMC) collection which contains seven

datasets sequenced by seven different technologies [20] and Pancreas collection containing

four datasets sequenced by four different technologies [30–33] (Methods Datasets section). In

each collection, we select one dataset as a query dataset and the rest as reference datasets alter-

nately. We apply the eight gene selection methods, denoted as DE, DV, DD, DP, BI, GC, Disp,

and Vst (see Methods Gene selection section), to these reference datasets separately, obtaining

multiple reference subsets. We compare the base classification models trained on a single ref-

erence subset with mtANN, which integrates the results from different models, to demonstrate

the effectiveness of ensemble learning.

As an illustrative example, we use “Celseq” from PBMC collection and “Baron” from Pan-

creas collection as the query datasets. For the PBMC collection, the remaining datasets, includ-

ing “Drops”, “inDrop”, “Seq-Well”, “Smart-seq2”, “10X v2”, and “10X v3”, are all used as

reference datasets. In the Pancreas collection, the “Muraro”, “Segerstolpe”, and “Xin” are used

as reference datasets while “Baron” is used as the query dataset. To show the differnece in gene

selection methods, we present the performance of different gene selection methods with differ-

ent colored points. As shown in Fig 2, the red line is consistently higher than all the points,

indicating that mtANN’s strategy of integrating all reference datasets and gene selection meth-

ods is superior to using a single classification model. It is worth noting that the performance of

different gene selection methods varies across reference datasets, and no single gene selection

method always outperforms others on all datasets. Similar results are also observed in

unseen type identification. If a cell is identified as belonging to an unseen cell type, mtANN annotates it as “unassigned”; otherwise mtANN

annotates it as the result of module III.

https://doi.org/10.1371/journal.pcbi.1011261.g001
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experiments with other datasets from both data collections (S1 Fig). These results demonstrate

the necessity and effectiveness of integrating multiple reference datasets and gene selection

methods to annotate cell types in scRNA-seq datasets, highlighting the importance of leverag-

ing diverse sources of information for accurate cell-type annotation.

Benchmarking mtANN for unseen cell-type identification

mtANN is specifically designed for unseen cell-type identification during cell-type annotation.

To demonstrate its ability in identifying unseen cell types, we also use the two data collections:

PBMC and Pancreas. Within each data collection, each dataset is alternately used as a query

dataset and the rest as reference datasets. To simulate an unseen cell type in the query dataset,

we perform a leave-one-cell-type-out setting in each references-query pair. In doing so, we

obtain a total of 50 tests in the PBMC collection and 25 tests in the Pancreas collection (for

details, please refer to S2 Fig and S1 and S2 Tables). We compare mtANN with several existing

popular methods, including scmap-clust, scmap-cell [11], Seurat v3 [12], ItClust [15], scGCN

(entropy), scGCN (enrichment) [16], and scANVI [17] (S1 Text Methods for benchmark sec-

tion) as they also provide metrics for unseen cell-type identification. We evaluate each meth-

od’s ability to distinguish unseen cell types from shared cell types by comparing their

performance in terms of AUPRC scores. (S1 Text Performance assessment section).

The results presented in Fig 3A show that mtANN outperforms the compared methods

when the “10X v3” dataset is the query. The results on other datasets also demonstrate the

superior performance of mtANN (S3 Fig). Across all the experiments, we count the number of

times each method ranks first in terms of AUPRC scores. We observe that the performance of

scmap-clust, ItClust, and scGCN (enrichment) vary widely between different data collections

(S4 Fig). These methods may rank first in some datasets but have a large performance drop in

others, possibly due to differences in the distribution of cell types in the query and reference

datasets. Take ItClust as an example, missing cell types in the reference data may lead to mis-

alignment of cell labels and clusters, resulting in over-fitting of the model. mtANN effectively

addresses this issue by borrowing complementary information between different reference

Fig 2. Accuracy comparison between mtANN and each base classification model. The “Celseq” dataset from PBMC collection and the

“Baron” dataset from Pancreas collection, used as query datasets, are shown. In each plot, each column represents a reference dataset. Each point

represents the performance of a base classification model, and points of different colors indicate different gene selection methods. The red line

indicates the performance of mtANN, which integrates different reference datasets and gene selection methods.

https://doi.org/10.1371/journal.pcbi.1011261.g002
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datasets to define the uncertainty of cell annotation at different aspects, thereby accurately dis-

tinguishing between shared cell types and unseen cell types (Fig 3B and S5–S7 Figs).

Another important issue in identifying unseen cell types is the choice of thresholds. Most

methods for identifying unseen cell types use a fixed threshold (e.g., scmap) or a fixed ratio

(e.g., Seurat v3) as the threshold, which may not generalize well on new datasets. To test the

performance of the threshold selection methods, mtANN is compared with scmap-clust,

scmap-cell and Seurat v3, which have provided threshold selection methods, in terms of F1

score. The results are presented in Fig 3C and S8 Fig. It can be seen that mtANN performs bet-

ter than other methods in most cases, scmap-cell performs the worst in PBMC collection, and

the relative performance of scmap-clust, scmap-cell and Seurat v3 varies by dataset. To further

investigate the reasons for the differences in the performance of these methods, we compare

the proportion of true unseen cell types with the proportion of cells identified as “unassigned”

Fig 3. Performances in unseen cell-type identification. (A) Boxplots display the AUPRC score of mtANN and other methods using “10X v3” in

PBMC collection as the query dataset. (B) Distribution of cell prediction uncertainty metrics of mtANN, scmap-clust, scmap-cell, and Seurat v3 when

“10X v3” in the PBMC collection is the query dataset and “B cell” is the real unseen cell type. The histogram color distinguishes between unseen cell

types and shared cell types. The black dotted line represents the subpopulations of the Gaussian mixture model fitted by mtANN, and the red solid line

represents the default threshold selected by each method. Cells with metrics above the threshold are identified as “unassigned” in mtANN, while cells

with scores below the threshold are identified as “unassigned” in scmap-clust, scmap-cell, and Seurat v3. (C) Boxplots display the F1 score of mtANN

and other methods using “10X v3” in PBMC collection as the query dataset. The default threshold provided by each method is used to select

“unassigned” cells. (D) Barplots show the proportion of unseen cell types and “unassigned” cells predicted by each method using the “10X v3” dataset in

the PBMC collection as the query dataset. The real unseen cell type is indicated in the title of each plot.

https://doi.org/10.1371/journal.pcbi.1011261.g003

PLOS COMPUTATIONAL BIOLOGY Cell-type annotation with unseen cell-type identification

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011261 June 28, 2023 7 / 24

https://doi.org/10.1371/journal.pcbi.1011261.g003
https://doi.org/10.1371/journal.pcbi.1011261


by each method (S9 Fig). As an example, we take an experiment where “10X v3” is the query

dataset (Fig 3D). When the unseen cell type is B cell, the true proportion of the unseen cell

type is 11%, and the proportion of cells predicted by mtANN as “unassigned” is close to 11%.

However, the proportion of “unassigned” cell predicted by scmap-cell is much higher than the

true proportion, and the proportion of “unassigned” cells identified by Seurat v3, fixed at 20%,

is also higher than the true proportion. When the unseen cell type is Dendritic cell, the propor-

tion of unseen cell types is small. The proportion of cells predicted by mtANN as “unassigned”

decreases and is close to the true proportion, while the proportions of cells predicted by

scmap-clust, scmap-cell, and Seurat v3 as “unassigned” are much higher than the true propor-

tion. With default thresholds, we count the number of times each method ranks first in terms

of F1 score across all the experiments, and find that mtANN is consistently able to accurately

identify unseen cell types when the proportion of unseen cell types is varied (S4 Fig).

Benchmarking mtANN for cell-type annotation

In addition to identifying unseen cell types, annotating new query data requires labeling cells

belonging to shared types. To evaluate the performance of mtANN in annotating query data-

sets with unseen cell types, we also use the PBMC and Pancreas collections to conduct the

experiments. In each experiment, one dataset is selected as the query dataset, while the remain-

ing ones are used as reference datasets. To account for the presence of unseen cell types, we

still use the leave-one-cell-type-out setting in each experiment. As the choice of threshold can

affect the annotation accuracy of the query dataset, we evaluate the performance with two dif-

ferent approaches for threshold selection: using the real proportion of unseen cells and using

the default threshold provided by each method.

When using the actual proportion (let p) of unseen cell types in the query dataset to deter-

mine threshold, we calculate the threshold as the value corresponding to the ((1 − p) ∗ 100)%

quantile of the metrics of mtANN and scGCN (entropy) and the (p ∗ 100)% quantile of the met-

rics of other methods. The annotation accuracy of mtANN and other methods are presented in

Fig 4A and S10 Fig. It can be observed that in different experiments with varying proportions of

unseen cell types, mtANN consistently achieves higher annotation accuracy than other methods

(S4 Fig). The performances of scmap, Seurat v3, and ItClust vary greatly across different experi-

ments. This may be attributed to the presence of unseen cell types in the query dataset, resulting

in annotation bias towards shared cell types. To validate this, we calculate the Pearson correla-

tion coefficient between the true proportional distribution of cell types in each experiment and

the proportional distribution of the predicted results of each method (S11 Fig). The results

show that mtANN has the highest correlation in both PBMC and Pancreas collections. We also

use “10X v3” datasets as the query dataset and B cell as the real unseen cell type to provide an

example. Fig 4B shows that the proportion of cell types obtained from mtANN’s prediction is

more similar to the true proportion. In detail, we find that mtANN identifies most B cells as

“unassigned”, whereas all other comparison methods annotate most B cells as a similar cell type

(CD4+ T cells) as they are all derived from lymphoid progenitors (Fig 4C). For shared cell

types, mtANN performs better at distinguishing the two monocyte subtypes, while scmap-clust

and scmap-cell tend to confuse CD16+ monocyte cells with CD14+ monocyte cells. scGCN

(enrichment), scGCN (entropy), and scANVI fail to annotate monocytes and other rare cell

types (Dendritic cell, Megakaryocyte, Natural killer cell, and Plasmacytoid dendritic cell). As

ItClust and scGCN are not designed for multiple reference datasets, we also use combat [34] to

correct batch effects between different reference datasets before combining them, and compare

the annotation results of the corrected reference data and the directly combined reference data

(S1 Text Methods for benchmark section). For most datasets, the corrected reference datasets
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perform worse than the directly combined reference datasets (S12 Fig). This may be partially

due to the fact that even though batch effect correction can remove batch effects between differ-

ent reference datasets to some degree, over-correction may occur, and the distribution diversity

of the reference dataset, which may be important for annotating query data, decreases.

In reality, obtaining the real proportion of unseen cell types is often not feasible, making

the default threshold provided by each method more practical and essential. The prediction

accuracies of mtANN, scmap-clust, scmap-cell, and Seurat v3 when using the default method

to select the threshold are presented in S13 Fig. We can observe that the accuracy of mtANN is

higher than those of the compared methods when “Celseq”, “Drops”, “inDrop”, “Smart-seq2”,

“10X v2”, and “10X v3” are evaluated as the query datasets (S13(A) Fig). Furthermore, S13(B)

Fig shows that mtANN also has the best performance when “Baron” and “Xin” are used as the

query datasets. In addition, the result of mtANN at the default threshold is similar to the result

at the actual proportion (S14 Fig), indicating that the threshold selected by mtANN is compa-

rable to the threshold determined according to actual proportion of unseen cells.

Fig 4. Performances in cell-type annotation when there are unseen cell types in query dataset. (A) Boxplots show the accuracy of mtANN and

other methods when the query dataset is “10X v3” dataset in the PBMC collection. (B) Bar plots display the real proportion of cell types and the

proportion of cell types annotated by each method when the query dataset is “10X v3” dataset in the PBMC collection, with the real unseen cell type

being “B cell”. (C) Heatmaps depict the confusion matrices of mtANN and other methods when the query dataset is the “10X v3” dataset and the

real unseen cell type is “B cell”. The confusion matrix shows the proportion of cells belonging to one cell type that are predicted to be of other cell

types, with the row and column names corresponding to the true cell labels and the predicted cell labels of the query dataset, respectively. The

abbreviations NK cell and pDC refer to the Natural killer cell and the Plasmacytoid dendritic cell, respectively.

https://doi.org/10.1371/journal.pcbi.1011261.g004
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Effect of number of reference datasets on performance

In this section, we conduct experiments with PBMC and Pancreas collections to evaluate the

effect of the number of reference datasets on mtANN annotation results. We use “10X v2” in

the PBMC collection and “Baron” in the Pancreas collection as the query datasets, and B cell

and acinar cell are used as unseen cell types, respectively. We run mtANN with a subset of the

remaining datasets with different numbers of datasets. For the PBMC collection, we try all pos-

sible combinations of 1, 2, 3, 4, 5, and 6 datasets, resulting in 6, 15, 20, 15, 6, and 1 results,

respectively. For the Pancreas collection, we run mtANN with all possible combinations of 1,

2, and 3 datasets, resulting in 3, 3, and 1 results. As shown in Fig 5, the annotation accuracy

shows an upward trend with the increase in the number of reference datasets in both the

PBMC and Pancreas collections. Additionally, in the PBMC collection, the combination of

some 5 datasets in the remaining 6 datasets can achieve satisfactory results, but it is difficult to

know which data should be selected in practical applications. Thus, multiple reference datasets

are helpful for improving annotation performance.

Ablation study on metrics for unseen cell-type identification

We further investigate whether combining the three complementary measurements of uncer-

tainty provides superior performance compared to using a single evaluation metric. We run

mtANN with four different settings: using only one of the three metrics m(1), m(2), and m(3),

and using a combination of the three metrics (m) for determining unseen cell types. We evalu-

ate unseen cell-type identification accuracy using AUPRC and cell type annotation perfor-

mance in terms of accuracy. To facilitate comparison, we introduce the Accuracy Ratio (AR)

index (S1 Text Performance assessment section), which represents the ratio of the number of

tests in which one setting outperforms another setting to the number of tests in which it per-

forms worse. An AR greater than 1 indicates that the former setting performs better than the

latter. We present the comparison results in Fig 6. Our findings indicate that the ensemble

uncertainty measurement in unseen cell-type identification (Fig 6A) and cell-type annotation

(Fig 6B) outperforms the three single metrics. Results shown in S15 Fig demonstrate that each

single metric has its own advantages and limitations and none of them can perform well in all

experiments. For example, while m(2) generally outperforms m(1) in most cases, there are some

instances where the accuracy of m(1) surpasses that of m(2). Therefore, we conclude that a more

comprehensive uncertainty measurement scheme that combines complementary metrics pro-

vides better performance compared to individual metrics.

Fig 5. Accuracy comparison of mtANN with varying numbers of references. The query datasets used are the “10X v2” dataset from the PBMC

collection and the “Baron” dataset from the Pancreas collection. Each plot displays the accuracy on the y-axis and the number of references used in

mtANN annotation on the x-axis. The red line in each plot represents the performance of mtANN when integrating all the remaining data as reference

datasets. Results are presented using both the threshold determined by the actual proportion of unseen cells and the default threshold provided by

mtANN.

https://doi.org/10.1371/journal.pcbi.1011261.g005
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Cell-type annotation of COVID-19 patients with different symptoms

Coronavirus disease 2019 (COVID-19) has caused more than 647 million infections and more

than 6.6 million deaths, according to World Health Organization (WHO) statistics as of

December 16, 2022. It is thus important to annotate the cell types of the sequencing data from

COVID-19 patients for understanding the disease mechanism. With many scRNA-seq data

from COVID-19 patients available, we select the study of COVID-19 that offers a comprehen-

sive immune landscape [35], including 284 samples from 196 COVID-19 patients and controls

to assess the performance of mtANN on real data. We use the dataset from PBMC cells in the

COVID-19 dataset as the query datasets and the PBMC collection we used above [20] as refer-

ences to evaluate the performance of mtANN and other methods.

We group the cells according to samples’ id, resulting in 249 query datasets. mtANN is

compared with scmap-clust, scmap-cell, and Seurat v3 under the default threshold parameters

for identifying unseen cell types. The accuracies of mtANN and other methods on the 249

query datasets are presented in Fig 7A. It can be seen that the accuracies of mtANN for patients

with different symptoms are higher than other methods, and scmap-cell suffers a decrease. We

further conduct a one-to-one comparison and find that mtANN significantly (two-sided

paired Wilcoxon test, p-value < 0.01) outperforms the compared methods (Fig 7B). We

Fig 6. Comparisons between the combination of the three metrics for determining unseen cell types and each individual metric. (A) The

comparison in unseen cell-type identification. (B) The comparison in cell-type annotation. Each dot in the plot represents an experiment, and the

different colors of the dots represent the data collections. The x-axis represents the AUPRC (panel A) or accuracy (panel B) of a single metric, and the y-

axis represents the AUPRC (panel A) or accuracy (panel B) of mtANN. The black solid line represents the line of y = x, indicating the situation where

mtANN and the single metric have the same performance. The AR index is reported to quantify the performance comparison, with a value greater than

1 indicating that mtANN outperforms the corresponding single metric.

https://doi.org/10.1371/journal.pcbi.1011261.g006
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compare the composition of cell types between patients with different symptoms and find that

the proportion of B cells increases in patients with severe symptoms, and the percentage of

Dendritic cells and T cells decreases, particularly in patients with severe symptoms (Fig 7C),

which is consistent with the lymphopenia phenomenon previously reported [36]. We also find

that the percentage of Megakaryocyte and CD14+ monocyte elevates in patients with severe

symptoms, which is agreement with the original study [35]. Compared with scmap-clust and

Seurat v3, mtANN can more accurately reflect the difference in the proportion of Dendritic

cell and Megakaryocyte cells between different populations, which is instructive for the study

of the development process of COVID-19.

Discussion

With the development of single-cell sequencing technology, traditional unsupervised cluster-

ing-based cell-type annotation methods are difficult to adapt to rapidly generated datasets

since they are time-consuming [37, 38]. Another method for automatic cell-type annotation

based on a reference atlas has been widely studied, but these methods are rarely able to

Fig 7. Application of different methods on COVID-19 dataset. (A) Boxplots display the accuracy of different methods on samples with different

symptoms. (B) One-to-one comparisons are made between mtANN and other methods including scmap-clust, scmap-cell, and Seurat v3. Each point in

the plot represents a query dataset. The p-values of two-sided paired Wilcoxon signed-rank tests are reported to test the significance of differences in

performance. (C) Boxplots show the proportions of B cells, T cells, Dendritic cells, Megakaryocyte cells, and CD14+ monocytes between samples with

different symptoms. The significance of the two-sided T-test is represented by stars, where one, two, and three stars indicate p-values less than 0.05,

0.01, and 0.001, respectively. The abbreviation “ns” means that the corresponding p-value is greater than 0.05.

https://doi.org/10.1371/journal.pcbi.1011261.g007
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discover unseen cell types in the query data [23, 39, 40]. Identifying previously unseen cell

types can lead to new biological discoveries, while errors in identification may result in missing

new biological discoveries or leading to improper biological conclusions. Although some pre-

vious methods for automatic cell-type annotation address the problem of identifying unseen

cell types, they all rely on setting a default threshold instead of proposing a methodology for

automatically selecting a threshold. The choice of threshold can significantly impact the accu-

racy and usability of the method.

In this study, we propose a novel ensemble learning-based cell-type annotation method

to automatically annotate cell-type labels for query datasets. Our method mainly has three

innovations: (i) it integrates multiple reference datasets not only to enrich cell types in the

reference atlas, but also to provide complementary information to annotate cell types; (ii) it

proposes a new metric from three complementary aspects to effectively measure whether a

cell belongs to an unseen cell type; and (iii) it proposes a data-driven approach to adap-

tively determine the threshold for unseen cell-type identification. Through the 75 experi-

ments, we demonstrate the annotation ability of mtANN for new sequencing data and

validate that mtANN can accurately distinguish between unseen cell types and shared cell

types, even when the proportion of unseen cell types in the query dataset varies. Addition-

ally, mtANN has excellent discrimination between two similar cell types in the shared cell

types. Our application on the real data verifies the annotation performance of mtANN for

COVID-19 patients and shows the difference in the proportions of different immune cells

between different populations. We also compare the runtime and memory usage of

mtANN with other methods (S16 Fig). Despite integrating multiple reference datasets and

gene selection methods, mtANN’s runtime is still comparable, and it uses less memory.

Moreover, mtANN allows users to input pre-selected gene sets or gene sets of interest,

which can further reduce the running time. Our comprehensive benchmark and extensive

application on publicly available benchmark datasets indicate that mtANN has achieved

state-of-the-art performance for unseen cell-type identification and cell-type annotation in

the meantime.

There may be two limitations in integrating multiple reference datasets for unseen cell-

type identification that we have not addressed well in this work. One is the inconsistent ter-

minology of cell types across different reference datasets. In this work, we address this prob-

lem by manually checking the cell-type annotations. For example, the cell type “PP” in the

Xin dataset is changed to “gamma”, as “gamma” is the name used by all other datasets. Sev-

eral approaches can be attempted in the future to match cell types between datasets, such as

matching based on marker genes of cell types or mutual prediction between datasets. In this

work, we only mark the cells that are considered to belong to unseen cell types as “unas-

signed”. Thus, another limitation is that we do not provide a further biological interpretation

of these cells. A straightforward way to determine the identities of these cells is to use unsu-

pervised annotation methods. In addition, integrating the Cell Ontology [41, 42] into the

method may be instructive for annotation of “unassigned” cells. For example, when Plasma-

cytoid dendritic cells are absent from reference dataset, they can be assigned to supertypes of

Dendritic cells with the help of Cell Ontology. In the future, we will extend our method to

implement this functionality.

Materials and methods

Notations and problem statement

For convenience, we first introduce some notations (S3 Table). We assume that M well-labeled

reference datasets with the same tissue type as the query dataset are collected. Let
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fðXri ;YriÞg
M
i¼1

denote the references, where Xri is an nri � pri matrix that denotes the gene

expression matrix after library size normalization of the i-th reference dataset with rows repre-

senting cells and columns representing genes, and Yri denotes the corresponding cell type

labels. The number of cells and genes of the i-th reference dataset are denoted by nri and pri

separately. Let Kri denote the set of cell types observed in Yri and K ¼ union
�
fKrig

M
i¼1

�

denotes all cell types present in all reference datasets. Let Xq be an nq × pq matrix that denotes

the gene expression matrix after library size normalization of the query dataset. The number of

cells and genes of the query dataset are denoted by nq and pq separately. Let Yq denotes the cor-

responding cell type labels which is unknown.

In this study, we focus on annotating cells in a new query dataset with multiple well-labeled

references. Mathematically, our goal is to estimate Yq based on observed data, fðXri ;YriÞg
M
i¼1

and Xq. In practical application, although multiple reference datasets are integrated, there may

still be cell types in the query dataset that are not observed in any reference dataset. We call

such cell types “unseen cell types”. Identifying cells belonging to unseen cell types while accu-

rately annotating other types is essential. To achieve our goal, we propose a novel multiple-ref-

erence-based scRNA-seq data annotation method (Fig 1 and S1 Text The workflow of mtANN

section). Our method consists of five modules. First, we adopt eight gene selection methods to

generate a series of subsets that retain distinct genes for each reference dataset. Second, we train

a series of neural network-based deep classification models based on all subsets of all reference

datasets. Third, we obtain a metaphase annotation for query dataset through integrating the

base results output by all base classification models. Fourth, a new metric for prediction uncer-

tainty measurement is identified from three complementary aspects, distinguishing unseen cell

types from shared cell types. Finally, we fit a Gaussian mixture model to the prediction uncer-

tainty metric, choosing a threshold based on the grouping of cells. With Module IV and Module

V, we identify cells that may belong to unseen cell types and mark them as “unassigned”.

Module I: Gene selection

In order to include as much informative gene sets as possible with different meanings, we

selecte eight gene selection methods, including five supervised gene selection methods:

Limma, Bartlett’s test, Kolmogorov-Smirnov test, Chi-squared test, and Bimodality index,

which are collected by scClassify [23]; and three widely used unsupervised methods for highly

variable gene selection, including Gini index [43], Dispersion, and Variance-stabilizing trans-

formation [12] (for details, please refer to S1 Text). For each reference dataset ðXri ;YriÞ, we

apply the eight gene selection methods to pick genes from different perspectives which are dif-

ferentially expressed genes (DE), differential variable genes (DV), differentially distributed

genes (DD), differentially proportioned genes (DP), and bimodally distributed genes (BI), and

the highly variable genes based on Gini index-based clustering (GC), dispersion (Disp), and

variance (Vst) (the parameter settings can be found in S4 Table). We index these gene selection

methods using j = 1, � � �, 8. Let Grij denotes the gene set selected by the j-th gene selection

method for the i-th reference dataset, where rij, i = 1, � � �, M, j = 1, � � �, 8 is the index of refer-

ence subsets, and Gq denote all genes in the query dataset. By doing so, we can obtain 8M refer-

ence subsets to expand the diversity of references. In each reference subset, we can train a deep

classification model with Grij \ Gq as the input features. We denote Xrij and Xqij as the gene

expression matrix after gene selection for the ij-th reference subset and query dataset. For con-

venience, we still denote the preprocessed data by Xrij and Xqij . Based on preprocessed data, we

construct a dataset pair ðXrij ;Yri ;XqijÞ as the training dataset for the next step to train a base

classification model.
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Module II: Deep classification model training

Based on each dataset pair ðXrij ;Yri ;XqijÞ, we train a classification model based on deep learn-

ing. The classification model involves two components: the embedding component for extract-

ing cell type-related features and the linear classifier layer for classification. Let Eij and Cij

denote the embedding component and the linear classifier layer separately. The forward prop-

agation result of the classification model after softmax transformation can be defined as

P̂rij ¼ softmaxðCijðEijðXrijÞÞÞ, where P̂rij is an assignment probability matrix with rows repre-

senting cells and columns representing cell types. The (c, k)-th element of P̂rij can be regarded

as the predicted probability of cell c in (ij)-th reference subset belonging to cell type k. The

cross-entropy loss

Lce ¼ �
1

nri

Xnri

c¼1

X

k2K

1½Yri
c ¼k� log P̂rij

ck: ð1Þ

is used to train the classification model, where 1[�] denote the indicative function, and nri is the

number of cells in i-th reference dataset.

To enable the embedding component Eij to fully capture the characteristics of cells and

make the classification model better fit the query dataset, we employ the embedding compo-

nent as an encoder and use a mirror image of the embedding component as a decoder to con-

struct an autoencoder. The reconstruction loss of cells both from the reference subset and the

query subset is taken into consideration when training the classification model. Let Dij denote

the decoder component. The forward propagation results of the autoencoder can be defined as

X̂ rij ¼ DijðEijðXrijÞÞ and X̂qij ¼ DijðEijðXqijÞÞ, where X̂ rij and X̂qij denote the reconstruction of

Xrij and Xqij separately. The reconstruction loss is measured by the mean squared error, which

can be formulated as

Lre ¼
1

nripij

�
�
�X̂ rij � Xrij

�
�
�

2

F
þ

1

nqpij

�
�
�X̂qij � Xqij

�
�
�

2

F
; ð2Þ

where pij represents the number of genes in this dataset pair, and k�kF denote the Frobenius

norm of a matrix.

Therefore, the final optimization problem for training the classification model for dataset

pair ðXrij ;Yri ;XqijÞ can be written as

min
Eij;Dij;Cij

Lce þ lLre; ð3Þ

where λ is the tuning parameter and the default value is 1. Details of the neural network archi-

tecture, hyperparameter settings, and initialization can be found in S1 Text. For all the refer-

ence-query pairs, we can have 8M base classification models denoted by {(Eij, Cij)}i=1,� � �,M,

j=1,� � �,8.

Module III: Query dataset annotation

Based on one base classification model (Eij, Cij), we take the corresponding query subset Xqij as

input. The forward propagation result along the model after softmax transformation can be

formulated as P̂qij ¼ softmaxðCijðEijðXqijÞÞÞ. The (c, k)-th element of P̂qij can be regarded as the

predicted probability of cell c in the query dataset belonging to cell type k. For each cell in the
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query dataset, we obtain qij-th base prediction label Ŷ qij according to P̂qij . For cell c,

Ŷ qij
c ¼ arg max

k2K
P̂qij

ck : ð4Þ

Then, based on the majority voting principle we integrate all these predictions for consen-

sus annotation, denoted by Ŷ q. For cell c, we calculate

Ŷ q
c ¼ arg max

k2K

PM
i¼1

P8

j¼1
1
½Ŷ

qij
c ¼k�

Lk
; ð5Þ

where L 2 RK , and Lk indicates the number of reference subsets which contain cells belong

to cell type k. The numerator represents the number of times that cell c is predicted to

belong to cell type k across all base predictions and the denominator represents the number

of reference subsets containing cell type k. The role of the denominator is to handle the situ-

ation where a cell is predicted as a single-reference-specific cell type and indeed belongs to

that cell type in the query dataset. It is worth stating that the setting of the denominator

increases the prediction probability of the single-reference-specific cell type, making full

use of the diversity of the reference datasets. Details of the integration can be found in S1

Text.

Module IV: Metrics for unseen cell identification

Since there is no training data in reference datasets for the unseen cell types, the predictions

for the cells belonging to these cell types can be more uncertain. We define the uncertainty

from three perspectives based on the outputs of all the base classification models, including the

intra-model, inter-model, and inter-prediction perspectives. For a cell belonging to the unseen

cell type, from the intra-model perspective, no single cell type dominates the predicted proba-

bilities in all base classifiers; From the inter-model perspective, no cell type has a high predic-

tion confidence among the overall predicted probabilities of all base classifiers; From the inter-

prediction perspective, there is a large inconsistency among the predictions obtained by all the

base classification models. Therefore, we design three entropy-based measures, denoted by

m(1), m(2) and m(3), to quantitatively characterize the uncertainty, where m(1) is from the intra-

model perspective, m(2) is from the iner-model perspective, and m(3) is from the inter-predic-

tion perspective.

Intra-model measurement from each single classification model. The first metric m(1)

calculates the entropy of the probability that a cell belongs to different cell types by each classi-

fication model, and then averages these entropy values as a final uncertainty measure. For cell

c, this metric is defined as

mð1Þc ¼
1

8M

X

i;j

H
�
P̂qij

c:

�
; ð6Þ

where H(�) represents the function to compute an entropy and is defined as

H
�
P̂qij

c:

�
¼ �

P
k2KP̂

qij
ck log2

�
P̂qij

ck

�
. The larger mð1Þc is, the more uncertain the predictions is, and

thus the more likely the cell c is of unseen cell types.

Inter-model measurement from the overall predicted probabilities. The second mea-

sure m(2) characterizes uncertainty from the inter-model perspective by first averaging the pre-

diction probabilities of all classification models and then calculating the entropy. We compute
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the average of prediction probabilities Q(2) as

Qð2Þck ¼

P
i;jP̂

qij
ck

Lk
; ð7Þ

where Qð2Þck represents the average of the prediction probability that cell c belongs to cell type k
across all classification models. Then, Q(2) is transformed into a probability matrix ~Qð2Þ by

dividing each value by the row sum. For cell c, if there is no cell type with high prediction con-

fidence in ~Qð2Þc: , then the prediction uncertainty of cell c is high. Therefore, we define m(2) as

the entropy of the average of the prediction probability. For cell c, it is defined as

mð2Þc ¼ H
�

~Qð2Þc:

�
: ð8Þ

The larger mð2Þc indicates the the more uncertainy, and thus cell c is more likely to be of an

unseen cell type.

Inter-prediction measurement from the hard-assignment labels. The third measure

m(3) calculates uncertainty from the inter-prediction perspective. The difference with m(2) is

that it integrates the hard-assignment labels of all classification models, rather than the predic-

tion probabilities. Let Q(3) denotes the integration result for this measure. The (c, k)-th element

of Q(3) is defined as

Qð3Þck ¼

P
i;j 1½Ŷ

qij
c ¼k�

Lk
: ð9Þ

Then, as before, we transform Q(3) into a probability matrix ~Qð3Þ by dividing each value by the

row sum. If the different base prediction labels for cell c are inconsistent, then none of cell

types dominate the row c of ~Qð3Þ. Similarly, we calculate the entropy to define m(3), i.e., for cell

c,

mð3Þc ¼ H
�

~Qð3Þc:

�
: ð10Þ

After obtaining the three complementary metrics, m(1), m(2) and m(3), the values are scaled to

[0, 1] linearly through Min-Max scaling separately, denoted by �mð1Þ, �mð2Þ and �mð3Þ. The ensem-

ble uncertainty measure m is defined as the average of these three measures which is

m ¼
�mð1Þ þ �mð2Þ þ �mð3Þ

3
: ð11Þ

Generally, for cell c, a larger value of mc indicates a higher probability that cell c belongs to an

unseen cell type. Details of the calculation of each measurement can be found in S1 Text.

Module V: Data-driven method for default threshold selection

Determining the threshold to distinguish cells belonging to unseen cell types remains subjec-

tive in previous studies, and a method to automatically determine the exact threshold is

required. Instead of using a fixed value as a threshold as in previous studies, we provide a new

method to automatically identify cells with higher uncertainty. We initially apply a Gaussian

mixture model to the uncertainty metric m, with the number of mixture components ranging

from 1 to 5. The optimal number of components is determined based on the Akaike informa-

tion criterion (AIC). If the suitable number of mixture components determined by AIC is 1,

we consider that no cells are assigned as “unassigned”. Otherwise, all the cells are divided into
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different groups according to the posterior probability of the estimated Gaussian mixture

model, and then the mean of the metric m of cells within each group is calculated. If there are

groups with a mean greater than or equal to 0.6, these groups are considered to be uncertain

groups. Meanwhile, the group with the largest mean is considered to be the uncertain group.

All the cells in the uncertain groups are annotated as “unassigned”.

Datasets

We use two collections of publicly available scRNA-seq datasets and a study of COVID-19

patients (S5 and S6 Tables) varying from tissues (peripheral blood mononuclear cells (PBMC)

and Pancreas), cell populations and sequencing technologies to benchmark mtANN and other

methods.

The PBMC collection, including seven datasets curated from Butler et al. [44], are

sequenced by Cel-seq, Drops, inDrop, Seq-Well, Smart-seq2, 10X v2, and 10X v3. The datasets

are downloaded from https://doi.org/10.5281/zenodo.3357167 [20]. The Pancreas collection,

including four datasets curated from Baron et al. [30], Muraro et al. [31], Segerstolpe et al.

[32], and Xin et al. [33], are sequenced by inDrop, Cel-seq2, Smart-seq2, and SMARTer. We

obtain all the datasets from https://hemberg-lab.github.io/scRNA.seq.datasets/human/

Pancreas/. Following the study of scClassify [23], we manually check the cell-type labels that

are provided by the original authors of each dataset and remove the cell types that are labeled

as “unclear” in the Muraro dataset, “co-expression”, “not applicable”, “unclassified” and

“unclassified endocrine” in Segerstolpe dataset, and “alpha.contaminated”, “beta.contami-

nated”, “delta.contaminated” and “gamma.contaminated” in Xin dataset.

The study of COVID-19 [35] provides a scRNA-seq atlas including 284 samples from

PBMC, bronchoalveolar lavage fluid (BALF), sputum, and pleural fluid mononuclear cells

(PFMCs) which is available at GEO database: GSE158055. In this study, we only take 249 of

these samples from PBMC. We manually renamed CD8+ T cells to Cytotoxic T cells to be con-

sistent with the previous PBMC collection.

For the PBMC and Pancreas data collections, we first remove cell types with less than 10

cells, then genes expressed in less than 100 cells are removed, and cells expressing less than 100

genes are later removed. These datasets are selected to be either the reference or the query

datasets in the following experiments. For details about the reference and query datasets used

in the benchmark tests, please refer to S1 and S2 Tables.

Data preprocessing

For each scRNA-seq dataset, preprocessing consists of four steps. Firstly, the library size nor-

malization is performed, i.e., dividing the expression of each gene in a cell by the total expres-

sion of the cell and then multiplying it by a scale factor of 10000 in order to make the total

expression values of all cells after being transformed the same. Secondly, logarithmic transfor-

mation is applied to the dataset to make each expression value x be log2(x + 1). Thirdly, z-

score standardization is performed for each gene so that the mean of each gene on all cells is

equal to 0 and the standard deviation of each gene is equal to 1. Lastly, the expression values of

each gene are scaled to [0, 1] linearly through Min-Max scaling. It is worth noting that the first

step is applied to the raw datasets, while the last three steps are applied to the datasets after

gene selection.

Supporting information

S1 Fig. Accuracy comparison between mtANN and each base classification model. Each

plot is named after the corresponding query dataset. In each plot, each column represents a
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reference dataset, and each point represents the performance of a base classification model,

with points of different colors indicating different gene selection methods. The red line indi-

cates the performance of mtANN, which integrates different reference datasets and gene selec-

tion methods. Two collections are used in this comparison: (A) PBMC collection, and (B)

Pancreas collection.

(EPS)

S2 Fig. Illustration of experimental design. To simulate a scenario where the query dataset

contains unseen cell types, we remove cells belonging to one shared cell type between all refer-

ence and query datasets in each test. Each shared cell type is removed once, resulting in multi-

ple tests. For example, with three reference datasets and three cell types shared by all datasets,

there will be three tests when using the reference datasets to annotate the query dataset. In the

first test, all cells belonging to the yellow cell type in all reference datasets are removed, making

the real unseen cell type the yellow cell type. Similarly, in the second and third tests, all cells

belonging to the blue and red cell types are removed, respectively. Multiple tests are conducted,

with 50 tests for the PBMC collection and 25 tests for the Pancreas collection, by alternatively

removing each shared cell type.

(EPS)

S3 Fig. Performances in unseen cell-type identification. Boxplots of the AUPRC scores of

different methods in (A) PBMC collection and (B) Pancreas collection. The results with differ-

ent query datasets are displayed in different panels.

(EPS)

S4 Fig. Performance summary of mtANN and other compared methods in unseen cell-

type identification and cell-type annotation. Bar plots of the number of times each method

ranks first in each evaluation metric are illustrated. The evaluation metrics are indicated at the

top of the graph and dataset collections are illustrated below the graph. Under each evaluation

metric, the top 3 methods are marked with rankings.

(EPS)

S5 Fig. Distributions of metrics measuring cell prediction uncertainty when the query

dataset is “10X v3” and the real unseen cell type is “B cell”. The distributions of the metric

obtained from (A) ItClust, (B) scGCN (enrichment), (C) scGCN (entropy), and (D) scANVI

are shown. The color of the histogram distinguishes between the unseen cell type and shared

cell types.

(EPS)

S6 Fig. Distributions of metrics measuring cell prediction uncertainty when the query

dataset is “10X v3” and “CD14+ monocyte” is the real unseen cell type. The distribution of

metric obtained from (A) mtANN, (B) scmap-clust, (C) scmap-cell, (D) Seurat v3, (E) ItClust,

(F) scGCN (enrichment), (G) scGCN (entropy), and (H) scANVI are illustrated. The color of

the histogram distinguishes unseen cell types from shared cell types. The black dotted line in

(A) represents the subpopulations of the Gaussian mixture model fitted by mtANN. The grey

solid lines in (A-D) represent the default thresholds selected by mtANN, scmap-clust, scmap-

cell, and Seurat v3.

(EPS)

S7 Fig. Distributions of metrics measuring cell prediction uncertainty when the query

dataset is “10X v3” and “Megakaryocyte” is the real unseen cell type. The distribution of

metric obtained from (A) mtANN, (B) scmap-clust, (C) scmap-cell, (D) Seurat v3, (E) ItClust,

(F) scGCN (enrichment), (G) scGCN (entropy), and (H) scANVI are illustrated. The color of
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the histogram distinguishes unseen cell types from shared cell types. The black dotted line in

(A) represents the subpopulations of the Gaussian mixture model fitted by mtANN. The grey

solid lines in (A-D) represent the default thresholds selected by mtANN, scmap-clust, scmap-

cell, and Seurat v3.

(EPS)

S8 Fig. Performance in unseen cell-type identification under the default threshold. Box-

plots of the F1 scores of different methods in (A) PBMC collection and (B) Pancreas collection.

The results with different query datasets are displayed in different panels.

(EPS)

S9 Fig. Comparison between the true proportion of unseen cell types and the proportion

of unassigned cells predicted by each method. Dot plots are displayed for all tests (75 tests)

conducted on the PBMC and Pancreas collections, respectively. For each plot, the x-axis

represents the true proportion, and the y-axis represents the proportion of unassigned cells

predicted by each method. Each method is denoted with a different color in the plot. The

black solid line represents the line of y = x. Pearson correlation coefficients between the

true proportion and the proportion of unassigned cells predicted by each method are

reported.

(EPS)

S10 Fig. Cell-type annotation performance with the real proportion of unseen cell types as

a threshold. Boxplots of the accuracy of different methods in (A) PBMC collection and (B)

Pancreas collection. The results with different query datasets are displayed in different panels.

(EPS)

S11 Fig. Heatmaps of Pearson correlations between cell-type proportions of the true cell-

type label and annotation labels predicted by each method. (A) PBMC collection and (B)

Pancreas collection. The columns of the heatmap represent the 50 tests in PBMC collection

and the 25 tests in Pancreas collection.

(EPS)

S12 Fig. Comparison of cell-type annotation performance between the directly combined

references and the corrected references. Boxplots of the accuracy of different methods in (A)

PBMC collection and (B) Pancreas collection. The results with different query datasets are dis-

played in different panels.

(EPS)

S13 Fig. Cell-type annotation performance with the default threshold. Boxplots of the accu-

racy of different methods in (A) PBMC collection and (B) Pancreas collection. The results with

different query datasets are displayed in different panels.

(EPS)

S14 Fig. Comparison of mtANN’s performance using real proportions versus default

threshold for annotation. Boxplots comparing the accuracy of mtANN using the real propor-

tion of unseen cell types versus using the default threshold, for (A) PBMC collection and (B)

Pancreas collection. Each panel shows results for a different query dataset.

(EPS)

S15 Fig. Comparison between single metrics for unseen cell-type identification and cell-

type annotation. Dot plots of all tests (75 tests) conducted in the PBMC and Pancreas collec-

tions, respectively. The x-axis shows the AUPRC (for unseen cell-type identification) or accu-

racy (for cell-type identification) of a single metric, while the y-axis represents the AUPRC (for
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unseen cell-type identification) and accuracy (for cell-type identification) of another single

metric. Each dot represents an experiment, with different colors representing different data

collections. The black solid line corresponds to the line of y = x. The AR index is reported.

(EPS)

S16 Fig. Comparison of runtime and memory usage of all methods. Bar plots comparing

the (A) runtimes and (B) memory usage of comparison methods and our method on the

PBMC and Pancreas collections. The query dataset for the PBMC collection is “10X v2” and

“Baron” is used as the query dataset for the Pancreas collection. All methods are run on a

workstation equipped with an Intel(R) Xeon(R) Silver 4214 CPU (2.20GHz x 48), 128GB

RAM, and a Tesla V100 PCIe 16GB GPU.

(EPS)

S1 Text. Supplementary notes of mtANN. There are algorithm, details in the Modules I-IV

of mtANN, methods for benchmark and performance assessment.

(PDF)

S1 Table. The query datasets, references and the real unseen cell type of each experiment

test in PBMC collection.

(DOCX)

S2 Table. The query datasets, references and the real unseen cell type of each experiment

test in Pancreas collection.

(DOCX)

S3 Table. Terms and notations.

(DOCX)

S4 Table. Gene selection threshold settings.

(DOCX)

S5 Table. The cell types and cell numbers of each dataset in PBMC collection.

(DOCX)

S6 Table. The cell types and cell numbers of each dataset in Pancreas collection.

(DOCX)
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