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Abstract

The genetic etiology of brain disorders is highly heterogeneous, characterized by abnormali-

ties in the development of the central nervous system that lead to diminished physical or

intellectual capabilities. The process of determining which gene drives disease, known as

“gene prioritization,” is not entirely understood. Genome-wide searches for gene-disease

associations are still underdeveloped due to reliance on previous discoveries and evidence

sources with false positive or negative relations. This paper introduces DeepGenePrior, a

model based on deep neural networks that prioritizes candidate genes in genetic diseases.

Using the well-studied Variational AutoEncoder (VAE), we developed a score to measure

the impact of genes on target diseases. Unlike other methods that use prior data to select

candidate genes, based on the "guilt by association" principle and auxiliary data sources like

protein networks, our study exclusively employs copy number variants (CNVs) for gene pri-

oritization. By analyzing CNVs from 74,811 individuals with autism, schizophrenia, and

developmental delay, we identified genes that best distinguish cases from controls. Our find-

ings indicate a 12% increase in fold enrichment in brain-expressed genes compared to pre-

vious studies and a 15% increase in genes associated with mouse nervous system

phenotypes. Furthermore, we identified common deletions in ZDHHC8, DGCR5, and

CATG00000022283 among the top genes related to all three disorders, suggesting a com-

mon etiology among these clinically distinct conditions. DeepGenePrior is publicly available

online at http://git.dml.ir/z_rahaie/DGP to address obstacles in existing gene prioritization

studies identifying candidate genes.

Author summary

DeepGenePrior is a deep learning-based method for prioritizing genes in genetic diseases.

Conventional tools utilize the guilt by association principle, which relies on prior knowl-

edge to identify novel genes. In contrast, our method does not use any prior information.

Furthermore, other tools rely on auxiliary data, including false positive or negative rela-

tions, which may lead to erroneous associations. Another group of methods relies on
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hypothesis testing, and fundamental issues regarding this group have been widely dis-

cussed in different papers.
We compared the results of DeepGenePrior with both statistical and machine learning

studies against biological and classification benchmarks. Our method’s results outperformed

current works in three brain disorders: autism, schizophrenia, and developmental delay.

Introduction

Brain Disorders (BD) [1] are a group of disorders that affect the development of the nervous

system, leading to dysfunctional brain functions that can influence memory, emotion, and

learning ability. Well-studied loci associated with autism (a type of BD) include deletions in

16p11.2 [2–4] and duplications in 15q3 [5,6]. Genetic factors related to autism include TBX1

(involved in the regulation of development and associated with the 22q11.2 deletion syn-

drome), SHANK3 (a synaptic scaffolding gene), NLGN4 (a neuroligin gene), PCDH10 (a pro-

tocadherin gene), and NHE9 [7,8]. Other genes such as NRXN1, SHANK2, CNTN4,

CNTNAP2, DPYD, DPP6, RFWD2, NLGN1, ASTN2, SYNGAP1, and DLGAP2, as well as

DDX53-PTCHD1, are candidate genes for autism.

Schizophrenia (SCZ) is another disorder under the umbrella of brain disorders. CNVs dis-

rupt several genes associated with SCZ, including TBX1 (also associated with autism), ERBB4

(encodes a receptor for NDF/heregulin), SLC1A3 (a glutamate transporter), RAPGEF4 (a

nucleotide exchange factor), and CIT (a neuronal Rho-target gene) [7,8]. 7q11.2 and 15q13.3

have been reported as associated with SCZ [9]. In SCZ, a large (3 Mb) deletion on chromo-

some 22q11.21 is a significant risk factor [10], and other loci, including deletions at 1q21.1,

deletions at 3q29, duplications of 16p11.2, deletions at 15q13.3, exonic deletions at 2p16.3, and

duplications at 7q36.3, have also been reported [10]. Deletions in 1q24 (including the FMO

group of genes and DNM3), 2q33.1 (SATB2), and 2p16.1 (NRXN1) are well-known variations

associated with developmental delay (DD) [11].

Research on the genetics of diseases has implications for diagnosing, treating, and develop-

ing drugs for these disorders. Understanding the genetic etiology of brain disorders can pro-

vide valuable insights into effective prevention and treatment methods. Gene prioritization,

the process of identifying genes that most likely contribute to a disease or phenotype, can be

used in BDs. This work uses case and control copy number variants as input to prioritize

causal genes associated with BDs.

The prioritization of genes relies on various types of evidence. According to [12], gene-dis-

ease associations are grouped into five categories, namely functional, cross-species, same-com-

partment, mutation, and textual. The first category examines molecule interactions [13], while

the second category discusses homolog genes that cause similar phenotypes in other organisms

[14]. Same-compartment evidence is based on the fact that the gene is involved in known dis-

ease-associated pathways or compartments, such as the cell membrane or nucleus [15]. Muta-

tion evidence is based on Single Nucleotide Polymorphism (SNP) and structural variants,

which is also the focus of this study [16]. Text evidence can be obtained from online collections

like PubMed [17].

Several gene prioritization methods have been reviewed in [18–21], and from a methodo-

logical point of view, they can be classified into statistical and machine learning methods. The

first group primarily employs hypothesis testing, such as exact tests like Fisher’s or permuta-

tion tests, to determine whether a gene is associated or not. However, several studies have

reported p-value fallacies, such as distributional assumptions, limitations in data collection,

PLOS COMPUTATIONAL BIOLOGY DeepGenePrior: A deep learning model for prioritizing genes affected by CNVs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011249 July 24, 2023 2 / 31

deciphergenomics.org/about/stats and via email

from contact@deciphergenomics.org. Funding for

the DECIPHER project was provided by Welcome,

Grant No. WT223718/Z/21/Z. Those who carried

out the original analysis and collection of the data

in DECIPHER project bear no responsibility for the

analysis or interpretation of the analyses provided

in this study. Analysis was made possible with

computational resources provided by the UNSW

BioMedical Machine Learning Laboratory (BML)

Servers with funding from the UNSW Scientia

Program Fellowship. The funders had no role in

study design, data collection and analysis, the

decision to publish, or the preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011249
https://deciphergenomics.org/about/stats


and misleading results [22]. In addition, power loss and dependent values are discussed in

detail as other criticisms of marginal p-values in [3]. Other issues can arise with these types of

analyses, such as not considering all the heterogeneous features of genes.

Machine learning (ML) methods often rely on the ’guilt by association’ (GBA) principle

[23–25]. This principle suggests that the new genes associated with a disease interact with the

most recently discovered genes in a network that encodes similarities between genes. Inference

of different types of networks can then lead to the discovery of new genes. In other words, ML

methods require seed data (in this case, genes that implicitly characterize the disorder) [18]

and a similarity metric to determine which candidate genes are similar or associated with the

seed(s). However, issues arise with this approach, as discussed in [23,24]. For instance, it is

impossible to discover a novel gene association that does not relate to the previous ones. Addi-

tionally, genes of a novel genetic disease with unknown roots cannot be found [26,27] due to

the dependency of these methods on prior information.

The issues discussed above hinder an ideal gene prioritization solution. To overcome these

issues, we propose the DeepGenePrior method, which falls in the fourth category suggested in

[12], as a deep learning architecture for gene prioritization. DeepGenePrior uses the well-stud-

ied autoencoder architecture with a variational learning framework. The Variational AutoEn-

coder [28,29] (VAE) is the stochastic variant of the autoencoder. Our method uses Copy

Number Variants (CNV) data for gene prioritization. We train the network of neurons with

all CNVs of cases and controls for all three diseases, followed by fine-tuning with the CNVs of

the target disease. Controls and cases have zero and one CNV labels for the supervised learning

phase. Finally, we build a score for every gene using the network weights and prioritize them.

Fig 1 summarizes the method.

Our proposed method addresses gaps in previous studies and offers several advantages.

First, it does not rely on theoretical assumptions like those in the hypothesis testing. Second, it

does not require seed data, which is needed for methods based on guilt by association. Third,

it does not rely on networks with false relations, like protein-protein networks.

We used CNVs from brain disorders to evaluate our method and compared them against

major tools. We identified significantly mutated genes and found that our method detects

genes that are 12% more enriched in brain expression than other tools. Furthermore, we com-

pared the detected genes to those that cause nervous system phenotypes in mice and found

our results to be 15% more enriched than other methods.

In addition, we examined genes that were exclusively overrepresented in one gender and

analyzed the relationships between the detected genes and various phenotypes in the DECI-

PHER data source and the gene ontology of the putative genes. We found three genes common

among the top genes associated with all three diseases: ZDHHC8, DGCR5, and

CATG00000022283. According to the literature [30], defects found in ZDHHC8 can be linked

to susceptibility to schizophrenia. Also, we found that deletions in CYFIP1, PRODH, XXBAC,

B444P24, LINC00896, ZDHHC8, AC006547, NIPA2, RTN4R, NIPA1, and TUBGCP5 are asso-

ciated with schizophrenia and developmental delay.

The following section describes our algorithm, the data we used, and the experiments we

conducted. We then discuss our results before presenting our conclusions and future work in

the final section.

Results

Prioritization of the genes in BDs

A deep learning model was utilized to identify the genes associated with BDs. The model was

trained using copy number variants (CNVs) from all cases and controls, and the resulting
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model weights were employed to determine scores. The UCSC Lift Genome Annotations [31]

tool was employed to convert all CNVs to the hg19 genome, and the locations of all CNVs

were confirmed using NCBI remap tools [32]. CNVs smaller than one kilobase pair were

excluded from the analysis.

The study showcases Tables 1, 2, and 3, displaying the top 40 genes for each disorder,

accompanied by their respective p-values. Table 4 illustrates the methodology employed for

Fisher’s exact test. Specifically, CaseOV represents the overlaps between cases and the genes,

while ControlOV represents the overlaps between controls and the genes.

The study presents Tables 1, 2, and 3, which exhibit the top 40 genes for each disorder

along with their corresponding p-values. Table 4 shows the formulation of Fisher’s exact test.

CaseOV represents the number of overlaps between cases and the genes, while controlOV rep-

resents the number of overlaps between controls and the genes.

Furthermore, we examined the genes that are associated with all of the three disorders and

those linked with only two of them. COMT deletion is common between ASD and SCZ, while

deletions in CYFIP1, PRODH, XXBAC-B444P24, LINC00896, ZDHHC8, AC006547, NIPA2,

RTN4R, NIPA1, and TUBGCP5 are common between SCZ and DD. Next, common genes

between ASD and DD are deletions in FAM57B, SHANK3, and BDH1, and the shared genes

between the three disorders were deletions in DGCR5 and ZDHHC8.

Fig 1. Summary of the Method and Analyses of the Results (Created with BioRender.com). A deep learning model learns the

distinctions between cases and controls; then, the learned weights are used to prioritize the genes. After training, the results are evaluated

using mutant mouse genes, human brain-enriched genes, DECIPHER data, and gene ontology analyses.

https://doi.org/10.1371/journal.pcbi.1011249.g001
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Table 1. Top 40 genes associated with developmental delay are presented. The model’s top findings on the developmental delay (DD) data source are reported herein.

Each row provides information on gene names, overlapping cases and controls, P-value, and the type of genetic variation.

Gene name Status P-Value CaseOV ControlOV Gene name Status P-Value CaseOV ControlOV

TDRP dup 5.19E-159 293 18 NANOG del 6.13E-122 221 12

DGCR5 del 2.17E-159 288 15 SLC2A14 del 6.13E-122 221 12

PRODH del 1.46E-154 282 16 CYFIP1 del 5.85E-118 230 21

LCE3E del 1.51E-153 257 5 NIPA2 del 5.85E-118 230 21

ERICH1 dup 5.32E-140 275 26 TUBGCP5 del 1.31E-117 231 22

CATG0101427 dup 1.97E-143 260 14 NIPA1 del 5.85E-118 230 21

ERICH1-AS1 dup 2.72E-147 254 8 CATG0022283 del 5.85E-118 230 21

RP11-462G22 dup 3.88E-150 249 4 CATG0022286 del 5.85E-118 230 21

CATG0074892 dup 1.64E-149 248 4 CATG0024378 del 5.85E-118 230 21

CATG0074890 dup 6.38E-148 248 5 SLC2A3 del 8.47E-121 221 13

CATG0074891 dup 6.38E-148 248 5 CATG0007863 del 1.02E-120 219 12

RP11-462G22 dup 6.38E-148 248 5 CATG0011162 del 2.79E-118 215 12

CATG0074887 dup 2.69E-147 247 5 CATG0024374 del 2.85E-112 222 22

CATG0101432 dup 6.15E-138 251 14 LCE3D del 1.40E-105 256 57

NPHP1 dup 5.77E-133 260 24 RTN4R del 3.99E-116 183 0

MALL dup 1.29E-132 261 25 ZDHHC8 del 3.99E-116 183 0

RP11-378A12 dup 6.89E-135 246 14 AC006547 del 3.99E-116 183 0

RP11-134O21 dup 9.55E-125 243 22 LINC00896 del 3.99E-116 183 0

CATG0117958 dup 2.42E-124 234 17 XXBAC-B444P24 del 3.99E-116 183 0

TMEM72-AS1 dup 1.68E-123 236 19 OTUD7A dup 3.29E-97 228 46

https://doi.org/10.1371/journal.pcbi.1011249.t001

Table 2. Top 40 genes associated with schizophrenia are identified and presented. The model was trained using the schizophrenia data source, and the top results are

reported herein. Each gene entry includes information on case and control overlaps, type of genetic variation, and corresponding P-value.

Gene Name Status P-value CaseOV ControlOV Gene Name Status P-value CaseOV ControlOV

DGCR6 del 1.79E-06 129 60 MED15 del 1.79E-16 59 1

PRODH del 7.19E-06 130 64 DGCR8 del 1.17E-17 58 0

DGCR5 del 7.19E-06 130 64 CATG0058213 del 1.17E-17 58 0

AC009133 dup 2.11E-14 66 5 TMEM219 dup 6.54E-14 61 4

MVP dup 1.03E-14 64 4 PTPRT del 2.77E-05 110 53

CDIPT dup 1.03E-14 64 4 CATG0058203 del 2.31E-17 57 0

SEZ6L2 dup 1.03E-14 64 4 CATG0058206 del 2.31E-17 57 0

CATG0027072 dup 1.03E-14 64 4 CATG0058209 del 2.31E-17 57 0

CDIPT-AS1 dup 1.03E-14 64 4 CLTCL1 del 2.31E-17 57 0

ASPHD1 dup 1.90E-14 63 4 COMT del 3.47E-16 58 1

TRMT2A del 5.97E-18 59 0 NIPA2 del 0.00012 97 48

RANBP1 del 5.97E-18 59 0 NIPA1 del 0.00012 97 48

ZDHHC8 del 5.97E-18 59 0 CATG0022283 del 0.00012 97 48

AC006547 del 5.97E-18 59 0 CATG0022286 del 0.00012 97 48

LINC00896 del 5.97E-18 59 0 CYFIP1 del 0.000179 97 49

XXBAC-B444P24 del 5.97E-18 59 0 TUBGCP5 del 0.000179 97 49

QPRT dup 1.98E-12 65 7 CATG0024378 del 0.00016 96 48

KCTD13 dup 3.53E-14 62 4 BOLA2B dup 2.95E-11 51 4

PAGR1 dup 3.53E-14 62 4 CATG0022287 del 0.000191 94 47

RTN4R del 1.17E-17 58 0 AC023490 del 4.04E-14 46 0

https://doi.org/10.1371/journal.pcbi.1011249.t002
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In the subsequent sections, a comparison was made with machine learning methods, fol-

lowed by a search for genes displaying brain-enriched expression. Notably, it was observed

that many genes associated with brain disorders possess brain-enriched functions [33]. We

compared our results with similar studies, demonstrating that our research successfully identi-

fies more brain-enriched genes than previous investigations.

Furthermore, we compare our findings to genes that cause nervous system phenotypes in

mice, which were obtained from the MGI repository [34]. Our study demonstrates a higher

fold enrichment than similar studies. The next step is identifying genotype-phenotype rela-

tionships using the DECIPHER data source [35], focusing on phenotypes exhibiting high

enrichment levels.

In addition, we used WebGestalt [36] to perform gene ontology analyses of coding genes,

with a focus on examining Gene Ontology (GO), Human Phenotype Ontology (HPO), and

associated disease terms.

Comparison with machine learning methods

Next, we compare our method with machine learning methods for the gene prioritization

problem. The selected algorithms were guided backpropagation (GBP) [37], deepLIFT [38],

Table 3. The top 40 genes associated with Autism Spectrum Disorder (ASD) are presented in this study. These genes are identified as having the highest likelihood of

causing ASD based on their variations.

Gene Name Status P-Value CaseOV ControlOV Gene Name Status P-Value CaseOV ControlOV

DGCR2 del 2.38E-44 420 3 GABRA5 dup 9.82E-28 235 0

ARVCF del 3.77E-44 418 3 OCA2 dup 8.85E-28 234 0

GNB1L del 3.77E-44 418 3 CATG00000022283 del 5.01E-08 263 32

CATG00000058206 del 6.34E-44 417 3 CATG00000022351 dup 2.34E-27 231 0

COMT del 6.34E-44 417 3 NRXN1 del 2.08E-12 249 19

ZDHHC8 del 6.34E-44 417 3 LINC00624 del 3.24E-15 241 13

HIRA del 6.34E-44 417 3 XXBAC-B135H6 del 1.66E-21 229 4

TBX1 del 6.34E-44 417 3 BCL9 del 1.01E-16 234 10

CDIPT del 4.15E-28 387 15 CHD1L del 1.01E-16 234 10

SEZ6L2 del 4.15E-28 387 15 FMO5 del 1.01E-16 234 10

ASPHD1 del 4.15E-28 387 15 ACP6 del 1.01E-16 234 10

KCTD13 del 4.15E-28 387 15 CATG00000092640 del 5.84E-17 141 0

CATG00000027072 del 4.15E-28 387 15 CATG00000058020 del 1.96E-15 142 1

CDIPT-AS1 del 4.15E-28 387 15 RFC2 del 1.94E-15 141 1

ALDOA del 4.04E-28 386 15 WBSCR22 del 9.53E-17 140 0

FAM57B del 4.04E-28 386 15 GTF2I del 9.53E-17 140 0

CHRNA7 del 1.75E-26 239 1 STX1A del 9.53E-17 140 0

DGCR5 del 3.40E-21 244 6 EIF4H del 1.94E-15 141 1

GABRB3 dup 9.82E-28 235 0 DNAJC30 del 9.53E-17 140 0

OTUD7A del 2.64E-26 236 1 VPS37D del 9.53E-17 140 0

https://doi.org/10.1371/journal.pcbi.1011249.t003

Table 4. A contingency table was constructed to apply Fisher’s exact test. This table will be utilized in the analysis

to calculate the p-value for the genes and DNA segments under investigation.

# of case samples overlapped with the gene # of case samples not overlapped with the gene

# of control samples overlapped with the gene # of control samples not overlapped with the gene

https://doi.org/10.1371/journal.pcbi.1011249.t004
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and DeepGenePrior (without pre-training). The third choice is to show the effect of pre-train-

ing on the performance of the whole model (an ablation study). DeepLIFT [38] is a reference-

based global feature importance algorithm that uses a correlation score to measure the input’s

effect on the model’s output. Guided backpropagation is a global feature importance that is

gradient-based.

The performance benchmarks are computed as follows. The model is trained comprehen-

sively, and important genes are selected based on their respective weights. Subsequently, the

model is retrained using the identified important genes as inputs and the disease status as the

output. The performance evaluation is then reported based on the test set. Global methods

mainly suffer from many computations and estimates (making the model inaccurate). Deep-

LIFT needs a reference for calculation; the reference is very influential in the final results of the

model and may cause the model to choose the wrong inputs.

Guided backpropagation needs gradients, and it has been proven that the gradients can

sometimes be noisy, resulting in the selection of irrelevant features. Other methods need sev-

eral simple local surrogate models to interpolate the manifold in high-dimensional models

(like LIME [39]); these surrogates impose massive calculations and imprecise the model.

Some advantages of our proposed method are that it does not need the reference, does not

rely on noisy data, and is not local, and there is a way to inject unlabeled as well as labeled data

in the model.

The Python torch Captum [40] implementations of these algorithms were used for the

comparison.

The results were reported in Table 5 regarding the accuracy and ROC AUC. Our DeepGen-

ePrior algorithm Performs higher than the others. Besides, ROC curves are shown in Fig 2.

Table 5. A comparison was conducted with other machine learning methods to assess performance. The accuracies and ROC AUCs of various machine learning tech-

niques were reported for three datasets. It was found that DeepGenePrior outperformed the other methods, demonstrating higher accuracy and ROC AUC values.

SCZ ASD DD

Accuracy ROC AUC Accuracy ROC AUC Accuracy ROC AUC

DeepGenePrior 80 .86 82 .87 83 .89

DeepGenePrior without Pretraining 74 .81 73 .80 71 .79

DeepLIFT [77] 60 .65 62 .66 63 .68

Guided Backpropagation [78] 65 .72 69 .76 64 .69

https://doi.org/10.1371/journal.pcbi.1011249.t005

Fig 2. The Area Under the Curve (AUC) values for different machine learning methods. The yellow curve represents DeepGenePrior, the blue curve represents

DeepGenePrior without Pretraining, the green curve represents Guided Backpropagation [37], and the Red is for DeepLIFT [38].

https://doi.org/10.1371/journal.pcbi.1011249.g002

PLOS COMPUTATIONAL BIOLOGY DeepGenePrior: A deep learning model for prioritizing genes affected by CNVs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011249 July 24, 2023 7 / 31

https://doi.org/10.1371/journal.pcbi.1011249.t005
https://doi.org/10.1371/journal.pcbi.1011249.g002
https://doi.org/10.1371/journal.pcbi.1011249


Overrepresentation of tissue-specific genes

Several studies (such as [41] and [42]) claim that brain-enriched genes play an important role

in BDs. To determine whether the detected genes are overrepresented in the brain tissue, we

compute the fraction of coding and non-coding genes that have been enriched (background

expectation) and compare it with the percentage of genes that have overlapped with deleted or

duplicated CNVs.

The authors of [41] provide a list of brain-enriched genes. To obtain this list, they used the

FANTOM5 CAGE-associated transcriptome [43] to identify coding and long non-coding

RNA genes in the regions and examined their expression patterns across sample types.

In addition to alternative methods, we incorporated two gene prioritization tools, Gene-

Friends [44] and ToppGene [45], both accessible online. GeneFriends applies the guilt by asso-

ciation approach, while ToppGene identifies candidate genes based on functional similarity to

the training gene list. However, these tools possess certain limitations. Notably, they have a

restricted capacity for accommodating large datasets, require seed data for achieving results

(following the guilt by association principle), and rely on parameter tuning by the user, such as

setting a Pearson correlation threshold and an FDR threshold. For this analysis, the default

parameter values were employed.

Fig 3 presents the results of brain-enriched coding genes fold enrichment, and Fig 4 illus-

trates brain-enriched lncRNA genes fold enrichment.

The results of our study are compared with those of Coe et al. [11] and Cooper et al. [46],

two important studies of developmental delay. They were also compared with PLINK [47] and

SNATCNV [41], publicly available tools with state-of-the-art performance.

In the list of brain-enriched genes related to ASD and SCZ, DGCR2 specifies a protein pro-

posed to be important in neural crest cell migration [30]. The ZDHHC8 gene, strongly associ-

ated with ASD and SCZ [30], is another gene to note.

Fig 3. Brain-enrichment comparison, coding genes. This figure compares brain-enriched coding genes for different tools and methods. The percentage of brain-

enriched coding genes was evaluated for two variation types, namely deletion, and duplication.

https://doi.org/10.1371/journal.pcbi.1011249.g003
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Next, we have some brain-enriched genes associated with SCZ; RTN4R is a gene in which

adult central nervous systems are likely to be affected by its role in regulating axonal regenera-

tion and plasticity. CATG00000058203 and Septin5 and CATG00000057131 are some brain-

enriched genes associated with ASD and SCZ, previously mentioned in [41].

As for the developmental delay, the DGCR5, PRODH, NIPA1, TUBGCP5, RTN4R,

ZDHHC8, CRKL, and SERPIND1 genes are also brain-enriched and associated with the dis-

ease. Most of them are from the 22nd and 15th chromosomes (22q11.21).

Gene segregation analysis of male and female patients

Long-standing research shows that females are more tolerant of mutations than males, which

explains why males are more prone to brain disorders such as autism. New studies also con-

firm the validity of previous findings [48–50] that male cases show more significant enrich-

ment than female cases when comparing the ratios of cases to controls. In this research, we

pointed out that some genes are more biased towards males, for example, deletion in PHF2
(ENSG00000197724), duplication in NRXN1 (ENSG00000179915), and deletions inWDFY3
(ENSG00000163625), PHF3 (ENSG00000118482),MED13L (ENSG00000123066), and WAC
(ENSG00000095787), are more frequently seen in males than females for the developmental

delay.

Besides, we performed the same analysis with ASD CNVs. We found that the PTCHD1
(ENSG00000165186) gene deletion occurred more in male than female patients. (Table 6 pro-

vides the details for these claims, and the chi-square test confirms the results).

DECIPHER analysis

We used DECIPHER [35], the genotype-phenotype data source for almost 12,600 patients

with CNVs, to analyze phenotypes associated with candidate genes.

Fig 4. Brain-enrichment comparison, noncoding genes. This figure illustrates the comparison of different tools and papers based on the percentage of brain-enriched

noncoding genes.

https://doi.org/10.1371/journal.pcbi.1011249.g004
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To investigate the relationship between genes and phenotypes, we calculate the ratio of

overlapped samples with the specific phenotype to the number of overlapped samples for a

putative gene. Figs 5 (DD), 6 (SCZ), and 7 (ASD) depict the respective heatmaps for each target

disorder.

Some of the highlighted phenotypes related to the target diseases are obesity (HP:0001513),

autism (HP: 0000717), behavioral abnormality (HP: 0000708), irregularity of the face (HP:

00000271), and seizures (HP:0001250).

Children with autism are more likely to suffer from medical comorbidities. For example,

we found macrocephaly (HP:00000256), hydrocephalus (HP:00000238), cerebral palsy

(HP:0100021), migraine (HP:0002076), sleep disturbance (HP:0002360), and failure to thrive

(HP:0001508) which was also mentioned in [51] as the phenotypes that co-occur in the autism.

For schizophrenia, DECIPHER analysis revealed phenotypes such as obsessive-compulsive

behavior (HP:0000722), anxiety (HP:0000739), and depression (HP:0000716), as well

explained in [52].MVP duplication, overrepresented in SCZ, is associated with depression

(HP:0000716).

Regarding the developmental delay, secondary conditions such as microcephaly

(HP:0000252) and anxiety (HP:0000739) can be proposed, which was also suggested in [53];

This disorder has received less research. BCL9, FMO5, and GPR89B deletions related to micro-

cephaly are also overrepresented in DD. NIPA1 duplication, associated with anxiety, is among

the top genes of DD. In [53], microdeletion of the NF1 gene is found to be associated with

microcephaly and DD.

Our model deduces a set of genes for a target genetic disease. We investigated the set of phe-

notypes related to the genes; the specific relationship between genes and phenotypes shows

that there can be diversity in the etiology of the disease, which implies that the occurrence of a

phenotype in a target disease is influenced by what candidate genes are mutated in the patient.

Analysis of biological processes and phenotypic ontologies of candidate

genes

As part of our analysis, we used WebGestalt [36] to investigate the associations between identi-

fied genes and specific gene ontologies (GOs), human phenotype ontologies (HPOs), and dis-

ease terms [54,55].

Some examples of the discovered disease ontology terms were intellectual disability, lan-

guage development disorders, poor school performance (for the developmental delay), autistic

Table 6. Gender Bias Analysis of the Brain Disorders. This table presents the Gender Bias Analysis of Brain Disorders, highlighting genes associated with one gender.

Gene Name % Male

Cases

% Male

Controls

%Cases/ %Controls

(Male)

% Female

Cases

% Female

Controls

%Cases/ %Controls

(Female)

Log2 (Male/ Female

Enrichment)

PTCHD1(Del)

♂
.29 .08 3.7 .11 .07 1.6 1.21

PHF2(Del) ♂ .05 .08 .62 .01 .07 .21 1.59

NRXN1(Dup)

♂
.07 .08 .87 .04 .14 .31 1.49

WDFY3(Del)

♂
.08 .08 .99 .03 .07 .41 1.27

PHF3 (Del) ♂ .98 .15 6.53 .45 .27 1.66 1.97

MED13L(Del)
♂

.73 .08 9.125 .17 .06 2.83 2.06

WAC(Del) ♂ 1.2 .4 3 .21 .31 .677 2.15

https://doi.org/10.1371/journal.pcbi.1011249.t006
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disorder, and language development disorders. Language development disorders are discussed

in [56] as a comorbidity of BDs.

In the associated HPO terms, some examples were autistic behavior, delayed speech and

language development, intellectual disability, severe global developmental delay, abnormal

social behavior, impaired social interactions, and abnormally aggressive, impulsive, or violent

Fig 5. Heatmap for developmental delay. This figure showcases a Heatmap for Developmental Delay, providing insights into the

relationship between candidate genes and DECIPHER phenotypes. The heatmap demonstrates a strong correlation between genes

and phenotypes, depicted by the prominent dark red color.

https://doi.org/10.1371/journal.pcbi.1011249.g005
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behavior. Abnormal behavior is mentioned in [57], and impaired social interaction is dis-

cussed in [56] as phenotypes related to BDs.

The highlighted Gene Ontology terms include cognition, dendrite development, and syn-

apse organization. In [58], dendrite development is pointed out to be associated with BDs, and

the relationship between synapse organization and BDs is addressed in [59]. Tables 7, 8, and 9

summarize the results.

Fig 6. Heatmap for schizophrenia. This figure presents a Heatmap for Schizophrenia, where the horizontal labels

represent genes associated with SCZ, and the vertical labels represent DECIPHER phenotypes. Detailed explanations

of the results can be found in the accompanying text.

https://doi.org/10.1371/journal.pcbi.1011249.g006
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Overrepresentation of homologs of coding genes causative of nervous

system phenotypes in the mutated mouse

Studying animal genetic mutations provides insight into disease mechanisms and treatments

for brain disorders. Several animal models have been developed to uncover the disorder’s pro-

cess [60]. Mutant mice with specific defects in the nervous system are among them. Models

based on mutant mice replicate key symptoms of brain disorders.

We investigate what percentage of the causative genes have homologs in mouse genes

whose mutation causes nervous system phenotypes. For this purpose, we used the Mouse

Fig 7. Heatmap for autism. The color legend is similar to the last heatmap.

https://doi.org/10.1371/journal.pcbi.1011249.g007
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Genome Informatics (MGI) database to identify genes related to the mouse nervous system

and their human homologs.

Fig 8 presents an analysis of the proportions of homologs among the identified genes exhib-

iting nervous system phenotypes in mice. The findings reveal that the coding genes identified

by our method show a higher percentage of homologs in mutant mouse models displaying

nervous system phenotypes compared to the results obtained from other methods. We also

evaluated two gene prioritization tools, GeneFriends [44] and ToppGene [45]. For example,

some genes that have orthologs in mice with nervous system phenotypes are SEPTIN5,

RTN4R, and ZDHHC8. These genes are common among the three disorders.

Statistical analysis

Subsequently, an independent statistical analysis is conducted to compare the outcomes of

DeepGenePrior with hypothesis testing performed in similar studies. Sample results are

depicted in Fig 9. To assess whether the observed associations are statistically significant or

occur by chance, 100,000 random permutations of case and control labels were performed.

The corresponding results are illustrated in the respective diagrams.

Discussion

In this paper, we presented a deep learning approach that uses a variational autoencoder to ana-

lyze CNVs and prioritize genes within them systematically. Our deep learning model learns

how features are distributed over samples, which enables us to predict the likelihood that a

gene variation will cause a specific disease. We applied our method to three disorders under the

umbrella term of brain disorders. We examined the results for overrepresentation of enriched

brain coding, long non-coding RNA genes, and mouse orthologs with nervous system

Table 7. WebGestalt Analysis for Developmental Delay. Three types of analyses were conducted for genes associated with developmental delay (DD). The table presents

the p-value, false discovery rate (FDR), and the number of genes for each analyzed trait.

Description p-value FDR #Genes Type of Analysis

Autism spectrum disorders 4.02E-07 6.84E-04 7 Disease Ontology Terms

Intellectual disability 2.41E-06 2.05E-03 14 Disease Ontology Terms

Language development disorders 2.81E-05 1.60E-02 3 Disease Ontology Terms

Epileptic encephalopathy 7.90E-05 2.61E-02 4 Disease Ontology Terms

Mental retardation 1.38E-04 2.61E-02 11 Disease Ontology Terms

Low intelligence 1.38E-04 2.61E-02 11 Disease Ontology Terms

Mental deficiency 1.38E-04 2.61E-02 11 Disease Ontology Terms

Poor school performance 1.38E-04 2.61E-02 11 Disease Ontology Terms

Dull intelligence 1.38E-04 2.61E-02 11 Disease Ontology Terms

Cognition 1.03E-05 8.29E-03 8 Gene Ontology

Intraspecies interaction between organisms 8.84E-05 2.36E-02 4 Gene Ontology

Covalent chromatin modification 9.89E-05 2.36E-02 7 Gene Ontology

Chemical synaptic transmission, postsynaptic 1.44E-04 2.36E-02 5 Gene Ontology

Regulation of membrane potential 1.72E-04 2.36E-02 8 Gene Ontology

Multi-organism behavior 1.76E-04 2.36E-02 4 Gene Ontology

Neuron projection guidance 2.34E-04 2.44E-02 6 Gene Ontology

Dendrite development 2.43E-04 2.44E-02 6 Gene Ontology

Neuron projection organization 5.50E-04 4.91E-02 4 Gene Ontology

https://doi.org/10.1371/journal.pcbi.1011249.t007
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phenotypes. Additionally, we used the DECIPHER data to investigate how variations in the

identified genes influence other traits. Furthermore, we conducted gene ontology analyses.

We analyzed 118,968 case CNVs from 48,748 patients and 76,528 control CNVs from

26,063 healthy individuals for gene associations with brain disorders. Among the top 40

genes associated with developmental delay, DGCR6, PRODH, DGCR5, and ZDHHC8 are

Table 8. WebGestalt Analysis for Schizophrenia. The table displays the results of the WebGestalt analysis conducted for schizophrenia. Several traits have demonstrated

significant correlations with brain disorders, as determined by various types of analysis.

Description P-Value FDR #Genes Type of Analysis

Blepharophimosis 4.04E-07 4.29E-04 5 Disease Ontology Terms

Hernia, Inguinal 7.50E-07 4.29E-04 5 Disease Ontology Terms

Chronic otitis media 1.01E-06 4.29E-04 4 Disease Ontology Terms

ear infection chronic 1.01E-06 4.29E-04 4 Disease Ontology Terms

Proteinuria 8.52E-06 9.68E-04 5 Disease Ontology Terms

Redundant skin 9.10E-06 9.68E-04 3 Disease Ontology Terms

Bunion 9.10E-06 9.68E-04 3 Disease Ontology Terms

Hallux Valgus 9.10E-06 9.68E-04 3 Disease Ontology Terms

Sloping shoulders 9.10E-06 9.68E-04 3 Disease Ontology Terms

Congenital anomaly of neck 9.10E-06 9.68E-04 3 Disease Ontology Terms

Deformity of neck 9.10E-06 9.68E-04 3 Disease Ontology Terms

Malformation of the neck 9.10E-06 9.68E-04 3 Disease Ontology Terms

Hypoplastic toenails 9.10E-06 9.68E-04 3 Disease Ontology Terms

Phonophobia 9.10E-06 9.68E-04 3 Disease Ontology Terms

Colon diverticulum anatomic structure 9.10E-06 9.68E-04 3 Disease Ontology Terms

Diverticular disease of the colon 9.10E-06 9.68E-04 3 Disease Ontology Terms

Pointed chin 1.05E-05 1.05E-03 4 Disease Ontology Terms

Sacral dimples 1.81E-05 1.62E-03 3 Disease Ontology Terms

Pulmonary Stenosis 2.30E-05 1.62E-03 4 Disease Ontology Terms

Prominent lower lip 2.89E-05 1.62E-03 4 Disease Ontology Terms

Posterior embryotoxic 4.02E-08 3.95E-05 6 Human Phenotype Ontology

Abnormality of the line of Schwalbe 4.02E-08 3.95E-05 6 Human Phenotype Ontology

Retinal vascular tortuosity 4.02E-08 3.95E-05 6 Human Phenotype Ontology

Abnormal systemic arterial morphology 6.88E-08 5.06E-05 10 Human Phenotype Ontology

Retinal arteriolar tortuosity 4.40E-07 2.59E-04 4 Human Phenotype Ontology

Abnormal aortic morphology 5.50E-07 2.70E-04 8 Human Phenotype Ontology

Abnormal concentration of calcium in the blood 6.93E-07 2.92E-04 6 Human Phenotype Ontology

Patellar dislocation 5.94E-06 1.82E-03 4 Human Phenotype Ontology

Multiple renal cysts 5.94E-06 1.82E-03 4 Human Phenotype Ontology

Tetralogy of Fallot 7.50E-06 1.82E-03 6 Human Phenotype Ontology

Abnormality of calcium homeostasis 7.50E-06 1.82E-03 6 Human Phenotype Ontology

Blepharophimosis 8.79E-06 1.82E-03 6 Human Phenotype Ontology

Conotruncal defect 8.79E-06 1.82E-03 6 Human Phenotype Ontology

Inguinal hernia 8.82E-06 1.82E-03 7 Human Phenotype Ontology

Myocardial infarction 9.25E-06 1.82E-03 4 Human Phenotype Ontology

Atrophy/Degeneration involving the corticospinal tracts 1.37E-05 2.25E-03 4 Human Phenotype Ontology

Abnormality of divalent inorganic cation homeostasis 1.38E-05 2.25E-03 6 Human Phenotype Ontology

Abnormal ventriculoarterial connection 1.38E-05 2.25E-03 6 Human Phenotype Ontology

Abnormal connection of the cardiac segments 1.59E-05 2.46E-03 6 Human Phenotype Ontology

Cholelithiasis 1.97E-05 2.63E-03 4 Human Phenotype Ontology

https://doi.org/10.1371/journal.pcbi.1011249.t008
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potential candidates for involvement in DiGeorge syndrome pathology and schizophrenia.

Additionally, the expression of MVP may serve as a prognostic marker for several types of

cancer. For schizophrenia, DGCR6 and PRODH are well-known candidate genes, and

DGCR5 is a long non-coding RNA gene with a high score for causing schizophrenia.

Table 9. WebGestalt analysis for autism spectrum disorder.

Description P-value FDR #Genes Type of Analysis

Autism Spectrum Disorders 3.73E-08 6.34E-05 7 Disease Ontology Terms

Autistic Disorder 1.36E-06 1.16E-03 9 Disease Ontology Terms

Language Development Disorders 1.07E-05 6.10E-03 3 Disease Ontology Terms

Intellectual Disability 9.44E-05 3.89E-02 10 Disease Ontology Terms

Autistic behavior 1.14E-04 3.89E-02 3 Disease Ontology Terms

Intraspecies Interaction Between Organisms 8.79E-09 7.07E-06 6 Gene Ontology Terms

Multi-Organism Behavior 2.62E-08 1.05E-05 6 Gene Ontology Terms

Cognition 4.24E-07 1.14E-04 8 Gene Ontology Terms

Chemical Synaptic Transmission, Postsynaptic 9.33E-07 1.87E-04 6 Gene Ontology Terms

Dendrite Development 2.54E-05 4.08E-03 6 Gene Ontology Terms

Adult Behavior 3.05E-05 4.09E-03 5 Gene Ontology Terms

Membrane Biogenesis 6.32E-05 7.22E-03 3 Gene Ontology Terms

Synapse Organization 7.18E-05 7.22E-03 7 Gene Ontology Terms

Regulation Of Membrane Potential 8.37E-05 7.48E-03 7 Gene Ontology Terms

Respiratory Gaseous Exchange 2.21E-04 1.71E-02 3 Gene Ontology Terms

Peptidyl-Lysine Modification 2.33E-04 1.71E-02 5 Gene Ontology Terms

Neuron Projection Guidance 3.09E-04 2.07E-02 3 Gene Ontology Terms

Regulation Of Neurological System Process 4.82E-04 2.98E-02 4 Gene Ontology Terms

Covalent Chromatin Modification 8.51E-04 4.89E-02 5 Gene Ontology Terms

https://doi.org/10.1371/journal.pcbi.1011249.t009

Fig 8. Percentage of Mouse Genes Associated with Nervous System Phenotypes. The figure compares results obtained from various tools and methods, categorized

according to types of variation. The analysis focuses on the proportion of mice genes contributing to nervous system phenotypes.

https://doi.org/10.1371/journal.pcbi.1011249.g008
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Furthermore, SEZ6L2, CDIPTOSP, ASPHD1, and RANBP1 are potential candidate genes

for schizophrenia. For autism spectrum disorder, DGCR2, ARVCF, GNB1L, COMT,

ZDHHC8, CHRNA7, and NRXN1 are candidate genes with various associated developmen-

tal defects.

Schizophrenia is a complex and debilitating mental disorder associated with genetic factors.

One of the well-known candidate genes for schizophrenia is DGCR6, which codes for a pro-

tein. In addition, mutations in PRODH (Proline Dehydrogenase 1), located on 22q11.21, have

been linked with susceptibility to schizophrenia (SCZD4). Another potential genetic factor for

schizophrenia is DGCR5, which is a long non-coding RNA (lncRNA) with a high score for

causing schizophrenia. [30]

SEZ6L2 (Seizure Related 6 Homolog Like 2), located in 16p11.2, is another gene implicated

in mental disorders. This region is thought to hold candidate genes for autism spectrum disor-

der. CDIPTOSP (CDIP Transferase Opposite Strand, Pseudogene) is a lncRNA gene associated

with Central Nervous System Germ Cell Tumor disease. ASPHD1 (Aspartate Beta-Hydroxy-

lase Domain Containing 1) is another gene linked with schizophrenia (specifically, Schizo-

phrenia 3). Lastly, RANBP1 (RAN Binding Protein 1) is a protein-coding gene linked with

Digeorge Syndrome.

Autism spectrum disorder (ASD) is a complex developmental disorder linked to genetic

factors. One such factor is the deletion of DGCR2, which has been associated with a wide range

of developmental defects. These defects are collectively called CATCH 22, which stands for

DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome, and

isolated conotruncal cardiac defects. Additionally, the ARVCF gene is responsible for autoso-

mal dominant Velo-Cardio-Facial syndrome (VCFS), which is characterized by cleft palate,

conotruncal heart defects, and facial dysmorphology. GNB1L is another gene that is deleted in

DiGeorge syndrome. [61,62]

Schizophrenia and panic disorder are two other mental disorders that have been linked to

genetic factors. One such factor is the COMT (Catechol-O-Methyltransferase) gene, which

codes for a protein and has been associated with both schizophrenia and Panic Disorder 1.

Another gene linked to schizophrenia is ZDHHC8 (Zinc Finger DHHC-Type Palmitoyltrans-

ferase 8), which is located on chromosome 6q24-q25.

We also investigated the gender distribution of CNVs in BDs. We found that duplication in

NRXN1 and deletion in PTCHD1 are more frequently observed in males than females for

some of the BDs.

Fig 9. Distribution of -log10(p-value) across Chromosomes with Deletion and Duplication Samples. The figure displays the distribution of -log10(p-value) using

Fisher’s exact test for deletion (green curves) and duplication (red curves). The horizontal axis represents the chromosome loci, while the vertical axis represents the

-log10(p-value).

https://doi.org/10.1371/journal.pcbi.1011249.g009
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We observed that some brain-enriched coding genes were significantly expressed in all

three disorders. Examples include DGCR2, SEPTIN5, and ARVCF, which are located on chro-

mosome 22 and have a deletion associated with these disorders. These three genes were among

the top ten coding brain-enriched genes related to the three disorders. We also found that

DGCR5, a noncoding brain-enriched gene previously known as a biomarker for Huntington’s

disease, is highly associated with DD. AC000068 is a noncoding brain-enriched gene associated

with SCZ and ASD. SEPTIN5 has been previously shown to be associated with ASD and SCZ,

while DGCR2 is mainly known to be associated with SCZ. AC004471 is a noncoding brain

gene among the top 10 genes related to SCZ, ASD, and DD.

Among the top genes with significant brain expression, some have orthologs in mice that

showed nervous system phenotypes. SEPTIN5, ZDHHC8, RTN4R, and KCTD13 are the top

genes for ASD and SCZ, while RTN4R and ZDHHC8 also rank highly in DD. SEZ6L2 is top in

ASD but has a lower rank in SCZ. ZDHHC8 and RTN4R are genes with nervous system mor-

phological and physiological phenotypes, while SEPTIN5 shows only nervous and physiologi-

cal phenotypes in mice.

In the next step, we used DECIPHER [35] to examine the relationship between the detected

genes and other phenotypes. We found that delayed speech, language, and autism were associ-

ated with the set of genes. According to our findings, seizures were associated with SCZ; this

relationship was previously discussed in [63].

Microcephaly [64] and macrocephaly [65] are two reverse phenotypes associated with ASD

and SCZ. Additionally, ’abnormal facial shape’ is associated with all three disorders [66],

which has also been studied in [67]. CACNA1H is one of the genes related to some overrepre-

sented phenotypes [68], and TCF20, discussed in [69], is another gene highlighted in the heat-

map of developmental delay.

We performed gene ontology analysis for the detected genes using the WebGestalt tool.

This tool allowed us to perform gene ontology analysis, human phenotype ontology (HPO)

analysis, and disease ontology analysis separately. For the disease ontology, some terms were

“Language Development Disorders,” “Autistic behavior,” and “Congenital neck anomaly.”

Overrepresented HPO terms included “Severe global developmental delay,” “abnormal social

behavior,” “Delayed speech and language development,” and “Intellectual disability.” Some of

the most common gene ontology terms were “dendrite development,” “cognition,” and “Regu-

lation of Neurological System Process.” In summary, these findings support the biological rele-

vance of the method-identified genes to genetic factors that contribute to brain disorders.

Although the application of our model focused on three specific brain disorders, it is impor-

tant to note that our method is not limited to these disorders alone. The versatility of our

approach allows for its application in any case-control study involving copy number variants

associated with different target disorders. Consequently, the method inherently generates a list

of candidate genes specific to the target disorder.

In future research, we plan to explore integrating network analysis techniques and combin-

ing mutational data with other auxiliary information, such as proteins or other modalities.

This integration will enable the utilization of various modeling tools, such as graphs, to

uncover additional patterns within the mutational data.

Materials and methods

Data and preprocessing

In this study, we analyzed three case-control datasets comprising individuals with brain disor-

ders, namely autism spectrum disorder, schizophrenia, and developmental delay. After prepro-

cessing and quality control, the autism spectrum disorder dataset consisted of 47,119 cases and
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24,858 control copy number variants (CNVs), as documented in the AUTDB database [41].

The schizophrenia dataset comprised 42,046 cases and 40,414 control CNVs [70]. The devel-

opmental delay dataset included 29,803 cases and 11,256 control CNVs. These datasets were

selected based on their relevance to the genetic etiology of brain disorders and the availability

of reliable and well-curated CNV data.

The final data source for developmental delay comprised two independent datasets with

two different data types: NSTD 54 [46] and NSTD 100 [11]. We utilized the NSTD 100 dataset,

which includes gender data. All CNVs in this dataset are rare, with a frequency of less than 1%

of the population. Further details regarding these CNVs are reported in Table 10.

We used two supplementary data sources in our study. The first is the FANTOM5 (Func-

tional Annotation of the Mammalian Genome 5) Atlas [71], which includes 21,069 protein-

coding and 27,920 non-coding genes.

The second data source we used is the Database of Chromosomal Imbalance and Phenotype

in Humans Using ENSEMBL Resources (DECIPHER, February 1st, 2017) [35]. This dataset

contains information on patients, CNVs, and phenotypes such as ASD, DD, and SCZ. We

investigate DECIPHER website to analyze the relationship between genes and other pheno-

types and to augment and pretrain our system. Table 11 shows the statistics of the dataset.

In DECIPHER, there were 1,548 patients with ASD-related phenotypes, including

’HP:0000717’ (autism), ’HP:0000729’ (autistic behavior), and ’HP:0000753’ (autism with high

cognitive abilities). The dataset also contained 2,144 patients with DD-related phenotypes,

including ’HP:0001263’ (global developmental delay), ’HP:0011342’ (mild global developmen-

tal delay), ’HP:0011344’ (severe global developmental delay), ’HP:0011343’ (moderate global

developmental delay), and ’HP:0012758’ (neurodevelopmental delay).

This paper also analyzed tissue-enriched genes with a high brain expression level compared

to other tissues. We utilized the list of brain-enriched genes provided in [41]. While [42] high-

lights the impact of brain-enriched genes on autism spectrum disorder, our study focuses on

their effect on schizophrenia and developmental delay.

Table 10. Statistics of different datasets. The number of case and control individuals, along with the number of CNVs, were reported in the table.

Dataset of case CNVs of control CNVs Sum Ratio of Patients of Healthy Sum Ratio

Autism spectrum disorder 47,119 24,858 71,977 ~1.89 19,663 6,479 26,142 ~3.03

Schizophrenia 42,046 40,414 82,460 ~1.05 28,684* 28,893* 57,577 ~0.99

Developmental delay (NSTD 100) 29,803 11,256 41,059 ~2.64 29,085 19,584 48,669 ~1.52

* 13k Affy and 15k Illumina for cases, 14K Affy, and 14k Illumina for controls.

https://doi.org/10.1371/journal.pcbi.1011249.t010

Table 11. DECIPHER statistics [35]. DECIPHER is a genotype-phenotype data source that can be used to investigate the associations between genes and traits.

Num of Patients ~12,600 Patients

Num of CNVs ~16,600 CNVs

Num of Phenotypes ~2,615 Phenotypes

Num of Autism Patients ~ 1,548

Patients

Related Phenotypes: Autism, Autistic behavior, Autism with high cognitive abilities

Num of Developmental Delay

Patients

~ 2,144

Patients

Related Phenotypes: Global developmental delay, Mild global developmental delay, severe global developmental

delay, Neurodevelopmental delay, Moderate global developmental delay

Num of Schizophrenia

Patients

~ 12 Patients Related Phenotypes: Schizophrenia, Schizencephaly

https://doi.org/10.1371/journal.pcbi.1011249.t011
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Additionally, we used MGI (Mouse Genome Informatics) data [34] to determine if candi-

date genes related to disease cause a nervous system phenotype in mice, following a similar

approach as [41]. HTML was parsed from pages covering nervous system phenotype

(MP:0003631) [72], abnormal nervous system morphology (MP:0003632) [73], and abnormal

nervous system physiology (MP:0003633) [74]. The mapping was performed using [75]. The

data preprocessing involved CNV filtering, conversion, and supplementary data cleansing

(DECIPHER data analysis, FANTOM5 data, etc.).

For CNV filtering and conversion, we filtered out CNVs smaller than one kbps (similar to

other studies such as [11,41,46]). The CNV studies also had different coordinates (hg17, hg18,

and hg19). Therefore, we unified all CNVs and converted them to hg19 using the UCSC Lift

Genome Annotations tools [31]. Moreover, we removed Y chromosome CNVs due to insuffi-

cient data, eliminating all CNVs with missing values.

We removed patients without phenotypes during supplementary data cleansing while using

the DECIPHER data. Preprocessing was unnecessary for Fantom5, MGI, and brain genes

since all gene coordinates were already in the hg19 format and ready for processing.

Furthermore, we removed some genes that were not the result of the model, such as genes

that overlapped more with controls than cases or genes that did not overlap with CNVs.

A formal overview of a gene prioritization system

In the context of gene prioritization, the process can be conceptualized as a system where the

input consists of a target disease and a comprehensive gene list. Depending on the methodol-

ogy employed for gene processing, various additional datasets may also be incorporated as

auxiliary input. These datasets could include protein networks, pathway data, or reliable candi-

date genes associated with the target disease, thereby leveraging the "guilt by association" prin-

ciple. The desired output is a list of candidate genes, which can be sorted or unsorted,

representing the outcome of prioritization or classification. Furthermore, a scoring system

may be implemented to indicate the likelihood of a gene’s association with a particular pheno-

type or disease. The discriminatory algorithm aims to infer the role of each gene in the devel-

opment of the target disease.

This section aims to provide a formal definition of our work. Consider a case-control study

about a specific target disease. This study comprises copy number variants observed in both

patient and healthy control groups. The CNVs can be defined as quadruples, characterized as

follows:

CNVset ¼ ch; dosage; strt; stpð Þjch in 1::24f g; dosage in del; dupf g; strt < stpf g: ð1Þ

where ch is the chromosome number, the dosage is the type of CNV, either deletion or dupli-

cation, and strt and stp determine the region of the chromosome where the variation occurs.

The CNVs are for people (specified by an identifier) whose features (like gender, other pheno-

types, etc.) may or may not be available.

This CNV is available in two sets: one for cases and one for controls.

Dinput ¼ Dcase [ Dcontrol ð2Þ

Dcasejcontrol¼ ðpid ;CNVsetf Þjpid is the id of an individual;CNVset is the rare CNVs for himg
ð3Þ

Each rare CNV is related to an individual (characterized by p_id), either healthy or patient.

Additionally, the dataset may optionally include auxiliary data for each individual, such as gen-

der information. This supplementary information enables us to explore the discriminatory
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role of genes for each gender. Our objective is to address the gene prioritization problem utiliz-

ing a set of rare copy number variants.

The method overview

Compared to conventional machine learning methods, deep learning approaches offer the

advantage of constructing a feature hierarchy and reducing data dimensions. This facilitates

the identification of hidden patterns within the data more effectively than alternative

approaches. An example of deep learning is the autoencoder, which plays a crucial role in

dimensionality reduction and generating a concise, high-level representation of the data

through a hierarchical arrangement of features [6]. The autoencoder consists of an encoder

network (inference network) that progressively transforms the input into a low-dimensional

latent representation and a decoder network (generative network) that strives to reconstruct

the output to closely resemble the original input. Autoencoders have been widely employed in

various bioinformatics problems [76–78].

Combining autoencoders with the variational learning framework results in the develop-

ment of Variational Autoencoders VAE [28,79]. VAEs further enhance the capabilities of

autoencoders. Fig 10 presents an overview of the VAE, illustrating its schematic

representation.

The primary distinction between autoencoders and their variational counterpart lies in

their inherent nature. Autoencoders operate deterministically, while variational autoenco-

ders (VAEs) adopt a probabilistic approach. VAEs, in particular, employ regularization

techniques to prevent overfitting during training. VAEs are founded upon the Bayesian the-

orem and inference principles, incorporating a regularization constraint. This framework

assumes that the latent representation follows a multivariate Gaussian distribution, denoted

as N(μ, σ).

Numerous studies have demonstrated that VAE exhibits enhanced stability during train-

ing and produces less ambiguous outputs than other generative models. This improved per-

formance can be attributed to VAE’s optimization of precise objective functions rooted in

likelihood principles [81]. The posterior distribution in VAE is modeled as a Gaussian distri-

bution, characterized by its mean and variance. It has been theoretically proven that this

Gaussian distribution can approximate any function effectively. The primary objective of

the VAE model is to encode the input data into a Gaussian distribution, estimating its mean

and covariance.

VAE, a deep generative model that utilizes variational inference, is designed to discover a

low-dimensional latent representation, denoted as z, for high-dimensional input data X, fol-

lowing the probability distribution P(X). To capture the intrinsic information of the input

dataset, P(z|X), the estimation of the posterior distribution becomes necessary, which is typi-

cally intractable. By employing variational inference, a distribution family Q(z|X) (referred to

as the variational distribution) is introduced to approximate the P(z|X) distribution. The

objective is to minimize the Kullback-Leibler (KL) divergence (D) between these two distribu-

tions, serving as a dissimilarity measure.

D½QðzjXÞjjP zjXð Þ� ¼ Ez
e
Q½logQ zjXð Þ � log PðzjXÞ�: ð4Þ

After some calculations, we have the following objective function, which is the variational
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lower bound on log-likelihood:

log py xð Þ � ‘VAE
¼ log P Xð Þ � D½QðzjXÞjjP zjXð Þ�

¼ Ez
e
Q½log PðXjzÞ� � DðQðzjXÞjjP zð Þ�

ð5Þ

The first term is the expectation over the approximate posterior distribution (named as

reconstruction error), and the second term (KL distance) is the regularizer (P (z) is standard

Gaussian Distribution, N(0, I)). Q(z|X) is the encoding distribution, and P (X|z) is the decod-

ing distribution.

Utilizing these equations transforms the minimization task into a maximization task. The

encoder, denoted as Q(z|X), and the decoder, denoted as P(X|z), play crucial roles in this pro-

cess. This goal can be achieved using deep neural networks coupled with stochastic gradient

variational Bayes. In the VAE framework, the encoder component is employed to generate the

parameters of the variational distribution. To mitigate overfitting, the dropout technique can

be applied. The recognition model Q(z|X) takes the form of a multi-dimensional Gaussian dis-

tribution, where the network generates the mean and covariance of this Gaussian distribution.

Fig 10. Visualization of a Two-Step Semisupervised Variational Autoencoder (VAE) Process. The figure illustrates

the two steps involved in training the VAE. Initially, the VAE is trained in an unsupervised manner. In the second step,

one part of the VAE is utilized for training with labels, introducing supervised learning. [80].

https://doi.org/10.1371/journal.pcbi.1011249.g010
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As for the latent space, a standard Gaussian distribution N(0, I) is employed as the prior

distribution.

The loss function in VAE comprises two terms: the reconstruction loss, which facilitates

efficient encoding and decoding similar to an autoencoder, and the regularization term, also

known as the latent loss, which imposes constraints on the latent space. The regularization

term approximates the latent space to follow a standard Gaussian distribution. To incorporate

the regularization, the VAE loss function incorporates the Kullback-Leibler divergence, which

encourages the covariance matrix to be close to the identity matrix and the mean to be zero.

The training process of the deep learning models consists of two phases: pretraining and

fine-tuning. During the pretraining phase, the autoencoder is trained to learn high-level features

from all the CNVs associated with the disorders. In the subsequent fine-tuning step, the decoder

is set aside, and only the dedicated CNVs specific to the target disease are utilized for training.

The method details

In this section, we explain our method for prioritizing genes. An overview of the method is

provided in Fig 11.

A deep learning model is proposed for this task. According to the dataset for each disease,

we have a copy number of variants for patients and healthy individuals. Each set of copy

Fig 11. Overview of the Proposed Method. This figure presents a schematic representation of the entire process

involved in the proposed method. The process consists of several sequential steps, as illustrated from left to right. The

first step involves data preprocessing for data preparation. Initially, the data is obtained in various formats such as

hg18, hg19, etc. To establish uniformity, the data is converted into a unified format, specifically hg19. Additionally, this

step eliminates redundant, useless, and incomplete features from the data. In the second step, a model is constructed

using the cleaned data. This model takes the form of an autoencoder. Subsequently, the weights of the network are

adjusted using the corresponding labels. These labels assign values of zero or one to distinguish between healthy and

patient individuals. In the fourth step, the autoencoder’s coefficients are utilized to prioritize the genes. The

importance of each gene is represented by the size of its corresponding icon in the figure. Larger icons correspond to

more significant genes, whereas smaller icons indicate less important genes.

https://doi.org/10.1371/journal.pcbi.1011249.g011
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number variants for an individual has some overlaps with genes, which are features that feed

into our deep learning. This is shown in Fig 12.

We have a list of genes that we want to determine whether their expression will affect dis-

ease incidence; besides, we have a list of cases and controls with CNVs for a target disease. We

want to convert them to a supervised learning algorithm.

We need to convert CNVs to genes for each healthy and patient individual. Computing

overlaps can do this. For the set of genes preprocessed, as discussed before, we measure the

length of overlap (in kbps) with the CNVs of an individual. The label of the training set is

whether the person is healthy or patient (zero or one).

In the pretraining phase of the model, we used all the CNVs of the brain disorders (autism

+ schizophrenia + developmental delay). In the next stage, fine-tuning, the CNV of a specific

disease is used. Thus, here we have used semi-supervised learning.

After our VAE has been fully trained, we just use the encoder part directly for the next step:

1. Train a VAE using all our data points and transform our data (X) into the latent space (Z

variables) (We use all data in this step).

2. Solve a standard supervised learning problem with (Z, Y) pairs (Y is the label set).

The learning algorithm for the whole process is shown in Fig 13. In this algorithm, p is the

true posterior, q is the approximate posterior distribution, z is the latent variable, θ is the

decoder (z|x) parameters (generative model), and φ is the encoder (x|z) parameters (inference

model).

Let’s suppose that the encoder weights are represented byWm
i�j, where m is the layer num-

ber, i is the output size in the last layer, and j is the input size in the current layer (no connec-

tion is determined by zero). As we know, the final layer that will be attached to the encoder is

the label; and its size is one (whether the individual is patient (= one) or healthy (= zero)).

Fig 12. Features Generated from Cases and Controls. This figure presents the features derived from a group of cases and controls. Specifically, the

figure depicts two cases and two controls, along with four genes of interest. The copy number variants (CNVs) observed in patients and healthy

individuals are visually represented as rectangles in the top section of the figure. Furthermore, the overlaps, which signify the values of features for each

case and control, are illustrated in the bottom section. These overlaps provide insight into the shared characteristics between the cases and controls.

https://doi.org/10.1371/journal.pcbi.1011249.g012
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If we multiply all weights matrices together, the result has the size input size × 1 (the matri-

ces are multiplicable since the output of the last layer equals the input of the next layer). The

resulting matrix (precisely column vector) can rank genes according to the label (the label is

the status of the disease), and this is the same thing we want to model. The formulation is as

follows:

Wfinal
I�1 ¼W1

I�: �W
2 � . . .�WM

:�1
ð6Þ

The specification of the deep learning model is such that a binary classification task is

accomplished. The size of each layer is the square root of the number of nodes of the last layer.

The final layer has a binary outcome, the last activation function is sigmoid, and loss function

is binary cross-entropy, and the optimization algorithm is Adam.

Additionally, we investigate the novelty of the top ten genes in three disorders by conduct-

ing a comprehensive literature search (searching the ’gene name’ + ’disorder name,’ the gene

will be labeled as known if a meaningful result is obtained. Table 12 shows the results of this

investigation.

The detail of the implementation

The deep learning model has a training phase, which needs a training set including cases and

controls. We developed the system with Python and PyTorch [83]. We used cross-validation

and grid search to tune the parameters (like the number of neurons in each layer).

The activation functions are empirically selected Rectified Linear Units, and the weights

were optimized by an adaptive optimization algorithm (Adam) [84] to minimize reconstruc-

tion error and loss. The decoder has a symmetrical structure to the encoder. The learning rate,

decay rate, and epoch were set to 0.001 and 1, and at most 10,000, respectively. Also, we restrict

connections to some extent for a reduction in parameters. The train/test ratio is set to 80/20.

The number of layers is at most three.

Fig 13. Variational autoencoder(VAE), the learning process algorithm [82].

https://doi.org/10.1371/journal.pcbi.1011249.g013
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Supporting information

S1 Table. Details of the results for Autism Spectrum Disorder.

(XLSX)

S2 Table. Details of the results for Schizophrenia.

(XLSX)

S3 Table. Details of the results for Developmental Delay.

(XLSX)

S1 Fig. The common genes between disorders, ‘del’ is short for deletion.

(EPS)

S2 Fig. Distribution of CNV length in different chromosomes for SCZ disease; y − Axis is

the ×105. The numbers on top of the plot show the number of cases and controls. The red

color (left) represents cases, and the blue (right) represents controls.

(EPS)

Table 12. Top ten genes suggested to be candidates for brain disorders and their status in last publications.

Gene Name Lastly Discovered

Developmental Delay TDRP Novel

DGCR5 Novel

PRODH Novel

LCE3E Novel

ERICH1 Known

CATG0101427 Novel

ERICH1-AS1 Novel

RP11-462G22 Novel

CATG0074892 Novel

CATG0074890 Novel

Schizophrenia CATG0074891 Novel

DGCR6 Known

PRODH Known

DGCR5 Known

AC009133 Novel

MVP Novel

CDIPT Known

SEZ6L2 Known

CATG0027072 Novel

CDIPT-AS1 Novel

Autism Spectrum Disorder DGCR2 Known

ARVCF Known

GNB1L Known

CATG00000058206 Novel

COMT Known

ZDHHC8 Known

HIRA Novel

TBX1 Known

CDIPT Known

SEZ6L2 Known

https://doi.org/10.1371/journal.pcbi.1011249.t012
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S3 Fig. Distribution of CNV length in different chromosomes for ASD disease. Y-Axis is

the ×106. The numbers on top of the plot show the number of cases and controls. The red

color (left) represents cases, and the blue (right) represents controls.

(EPS)

S4 Fig. Distribution of CNV length in different chromosomes for DD disease. Y-Axis is the

×106. The numbers on top of the plot show the number of cases and controls. The red color

(left) represents cases, and the blue (right) represents controls.

(EPS)

S5 Fig. Demographic Distribution of DD and ASD datasets.

(EPS)

S6 Fig. Decipher Phenotypes Frequency.

(EPS)

S7 Fig. Details of the setup of the method. Since the technique is semisupervised, the first

step is to use the data without labels to pretrain the network. The next step is to use the target

data to fine-tune it. Next, we use the coefficients of the network to derive a score for each of

the features of the input network, i.e., genes. The values of the scores are then sorted so that

the relative usefulness of the genes can be evaluated.

(EPS)
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