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Abstract

As the key for biological sequence structure and function prediction, disease diagnosis and

treatment, biological sequence similarity analysis has attracted more and more attentions.

However, the exiting computational methods failed to accurately analyse the biological

sequence similarities because of the various data types (DNA, RNA, protein, disease, etc)

and their low sequence similarities (remote homology). Therefore, new concepts and tech-

niques are desired to solve this challenging problem. Biological sequences (DNA, RNA and

protein sequences) can be considered as the sentences of “the book of life”, and their simi-

larities can be considered as the biological language semantics (BLS). In this study, we are

seeking the semantics analysis techniques derived from the natural language processing

(NLP) to comprehensively and accurately analyse the biological sequence similarities. 27

semantics analysis methods derived from NLP were introduced to analyse biological

sequence similarities, bringing new concepts and techniques to biological sequence similar-

ity analysis. Experimental results show that these semantics analysis methods are able to

facilitate the development of protein remote homology detection, circRNA-disease associa-

tions identification and protein function annotation, achieving better performance than the

other state-of-the-art predictors in the related fields. Based on these semantics analysis

methods, a platform called BioSeq-Diabolo has been constructed, which is named after a

popular traditional sport in China. The users only need to input the embeddings of the biolog-

ical sequence data. BioSeq-Diabolo will intelligently identify the task, and then accurately

analyse the biological sequence similarities based on biological language semantics. Bio-

Seq-Diabolo will integrate different biological sequence similarities in a supervised manner

by using Learning to Rank (LTR), and the performance of the constructed methods will be

evaluated and analysed so as to recommend the best methods for the users. The web

server and stand-alone package of BioSeq-Diabolo can be accessed at http://bliulab.net/

BioSeq-Diabolo/server/.

Author summary

Inspired by the similarities between the biological sequences and human languages, we

apply the semantics analysis techniques derived from the natural language processing
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(NLP) to comprehensively and accurately analyse the biological sequence similarities, and

propose a platform called BioSeq-Diabolo for intelligently and automatically analysing

biological sequence similarities. BioSeq-Diabolo is an important updated version of Bio-

Seq-BLM fo/ccusing on the homogeneous and heterogeneous biological sequence similar-

ity analysing, which is beyond the reach of any exiting software tool or platform. BioSeq-

Diabolo is named after a popular traditional sport in China whose components reflect its

analysing procedures. When playing diabolo, the diabolo stably spins reflecting that the

BioSeq-Diabolo is able to automatically construct the optimized predictors, and analyse

the corresponding performance for a specific biological sequence similarity analysis task.

1. Introduction

All the information determining the structures and functions of DNA, RNA and protein

sequences is in their sequences. As one of the fundamental steps in the biological structure and

function studies, analysing biological sequence similarities is the foundation of many tasks in

bioinformatics, such as protein remote homology detection [1], protein fold recognition [2],

protein structure and function prediction [3–5], non-coding RNA and disease association

identification [6,7], etc. Therefore, biological sequence similarity analysis has been attracting

more and more attentions.

The biological sequence similarities can be further divided into homogeneous biological

sequence similarities and heterogeneous biological sequence similarities according to different

data types. For the homogeneous biological sequence similarities, the queries and the retrieved

samples are homogeneous. For examples, for protein remote homology detection, both the

queries and the retrieved samples are protein sequences. Therefore, the homogeneous biologi-

cal sequence similarities were applied to detect the remote homology relationships [8]. For the

heterogeneous biological sequence similarities, the queries and the retrieved samples are het-

erogeneous. For examples, for circRNA-disease association identification, the queries are cir-

cRNAs, while the retrieved samples are diseases. Therefore, the heterogeneous biological

sequence similarities were applied to identify the circRNA-disease associations [9].

Because of its importance, some computational methods have been proposed to calculate

the biological sequence similarities. For examples, the methods for calculating homogeneous

biological sequence similarities have been proposed based on the alignments in an unsuper-

vised manner, such as PSI-BLAST [10], HHblits [11], HMMER [12], DIAMONDScore [13],

etc. Later, the supervised methods were proposed, such as HITS-PR-HHblits [14], SMI-BLAST

[15]. These methods have been successfully applied to protein remote homology detection,

metagenome analysis, prediction of mammalian N6-methyladenosine sites from mRNAs, etc.

Because the queries and retrieved samples are belong to different data types, the alignment

methods fail to analyze the heterogeneous biological sequence similarities. In this regard, the

supervised methods have been proposed. These methods are based on different features,

machine learning techniques, biological sequence association networks, etc. Among these

methods, the approaches based on deep learning techniques have achieved the state-of-the-art

performance, such as HGATLDA [16], GMNN2CD [17], DeepFRI [4], etc. These methods

have been successfully applied to lncRNA–disease association prediction, circRNA–disease

associations identification, protein function prediction, etc.

All these aforementioned computational methods for analysing the biological sequence

similarities have greatly facilitated the developments of many important tasks in bioinformat-

ics. However, they are still suffering from the following disadvantages: i) It is difficult for the
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existing methods to detect the low homogeneous biological sequence similarities among bio-

logical sequences sharing remote homology relationships; ii) The accuracy for calculating the

heterogeneous biological sequence similarities is relatively low because of the various data

types, whose characteristics are hard to be captured and formulated; iii) All these methods are

designed for specific tasks, and their performance evaluation for the other related tasks is

unexplored. Therefore, their contributions to the related fields are limited.

In this study, we are to propose a platform called BioSeq-Diabolo for analysing biological

sequence similarities based on biological language semantics, which is named after a popular

traditional sport in China whose components reflect the analysing procedures of BioSeq-Dia-

bolo. When playing diabolo, the diabolo stably spins reflecting that the BioSeq-Diabolo is able

to automatically construct the optimized predictors and analyse the corresponding perfor-

mance for a specific biological sequence similarity analysis task. To the best knowledge of ours,

it is the first platform for systematically analysing both the homogeneous and heterogeneous

biological sequence similarities. Inspired by the similarities between the biological sequences

and the natural languages, we are seeking the semantics analysis techniques derived from the

natural language processing (NLP) to comprehensively and accurately calculate the biological

sequence similarities. Previous studies have proved that the methods developed for analysing

natural languages can be applied to the field of molecular biology based on Noam Chomsky’s

formal language theory [18]. Hierarchical analogy between natural languages and biological

sequences has been carried out by [19], where protein sequences were regarded as the “raw

text” carrying high-level “meanings” of the structures and functions of proteins. Following the

analogy between biological sequences and natural languages, the techniques derived from NLP

have greatly contributed to the development of biological sequence analysis [20]. Furthermore,

motivated by language models, the biological language models have been proposed [21],

which can be applied to residue-level and sequence-level biological sequence analysis tasks.

The protein language model ProtTrans [22] is important for understanding the language of

life through self-supervised learning. As shown in Fig 1, the biological sequence similarity

analysis is particularly similar with the semantics similarity analysis in NLP. Sentences deter-

mine their semantics of the corresponding natural language, which are the keys for measuring

and judging the similarity between sentences. As the sentences of “the books of life” [18], bio-

logical sequences determine their structures and functions, which can be considered as the

“semantics” of biological sequences. The computational methods for analysing the semantics

of natural languages are mature after being studied for decades, giving us an opportunity to

apply these methods for improving the performance of biological sequence similarity analysis.

In this regard, a total of 27 methods derived from semantics analysis in NLP have been incor-

porated into BioSeq-Diabolo to analyse the biological sequence similarities, which capture the

relevance of biological sequences from distribution, representation and interaction perspec-

tives. Based on these methods, we can uncover the hidden biological language semantics so as

to more accurately analyze the biological sequence similarities. Furthermore, the Learning to

Rank (LTR) [8,9,23] was employed to integrate the results of different methods in a supervised

manner.

In order to help the researchers to study the computational methods for different aims and

tasks, we followed the pipelines of intelligent software tools (BioSeq-Analysis2.0 [24], GAIN

[25], BioSeq-BLM [21], iLearnPlus [26], etc) to construct the BioSeq-Diabolo platform. The

users only need to input the homogeneous or heterogeneous biological sequence data, BioSeq-

Diabolo will automatically construct the computational predictors for biological sequence sim-

ilarity analysis, evaluate the performance, and analyze the results in different views. BioSeq-

BLM [21] is a platform for analyzing biological sequences based on biological language models,

which is able to automatically construct computational predictors for classification and
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sequence labelling tasks. BioSeq-Diabolo is an important updated version of BioSeq-BLM

focusing on the homogeneous and heterogeneous biological sequence similarity analysing,

which is beyond the reach of any exiting software tool or platform. The comparisons between

BioSeq-Diabolo and BioSeq-BLM are listed in Table 1. The biological sequence features

extracted by BioSeq-BLM can be fed into BioSeq-Diabolo, and the biological sequence similar-

ity scores calculated by BioSeq-Diabolo can also be used as the input features of BioSeq-BLM.

2. Materials and methods

2.1. Biological sequence similarity analysis tasks

Biological sequence similarities can be further divided into homogeneous biological sequence

similarities and heterogeneous biological sequence similarities according to the data types of

the target biological sequences. The aim of homogeneous biological sequence similarity analy-

sis is to detect the similarities between two biological sequences with the same data type. For

Fig 1. The similarities between biological sequence similarity analysis (a) and natural language semantics analysis (b). Sentences determine their semantics of

the corresponding natural language, while biological sequences determine their structures and functions. The biological sequence similarity analysis is

particularly similar with the semantics similarity analysis in natural language processing.

https://doi.org/10.1371/journal.pcbi.1011214.g001

Table 1. The comparisons between BioSeq-Diabolo and BioSeq-BLM.

Descriptions BioSeq-BLM BioSeq-Diabolo

Biological sequence analysis tasks Classification and sequence

labelling

Sequence similarity

analysis

Number of classification algorithms 8 0

Number of sequence labelling algorithms 9 0

Number of sequence similarities analysing

algorithms

0 27

Categories of algorithms used for result analysis 4 6

Support integration or not No Yes

Support GPU-accelerate or not Yes Yes

https://doi.org/10.1371/journal.pcbi.1011214.t001
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examples, Fig 2A shows the process of analysing the RNA sequence similarity, which is a

homogeneous biological sequence similarity analysis task. Fig 2B shows the process of identi-

fying the associations between non-coding RNAs and diseases, which is a heterogeneous bio-

logical sequence similarity analysis task.

2.2. Biological sequence similarity analysis based on biological language

semantics

Semantics represent the meanings of sentences in a particular context. Even the same sentence

in different contexts would have different semantics. In order to understand the semantics, the

sentences are represented as abstract representation considering both local and global infor-

mation of the context, and then the advanced natural language processing techniques are per-

formed on the abstract representation to automatically understand the semantics. The

semantics analysis plays a key role in NLP, which is important for machine translation, infor-

mation retrieval, text generation, etc. As the language of “the books of life”, biological

sequences can be considered as the sentences containing all the information for determining

their semantics (the structures and functions of the biological sequences). Therefore, the ideas

and techniques derived from semantics analysis can be applied to analyse the “semantics” of

biological sequences (see Figs 1, 2C and 2D). 27 different biological sequence similarity analy-

sis methods were incorporated into BioSeq-Diabolo to analyse the biological sequence similar-

ities. These methods can be divided into 3 categories, including distribution methods,

representation methods and interaction methods. The following sections will introduce these

27 methods and their embeddings.

Fig 2. The analogy between biological sequence similarity analysis tasks and natural language processing tasks. (a)

Non-coding RNA similarity analysis, which is a homogeneous biological sequence analysis task. (b) Non-coding RNA

and disease association identification, which is a heterogeneous biological sequence analysis task. (c) Text matching

task, which is a homogeneous language analysis task. (d) Machine translation task, which is a heterogeneous language

analysis task. Thick dotted lines indicate high similarity, and thin dotted lines indicate low similarity. The same shape

represents homogeneous association, while different shapes represent heterogeneous association.

https://doi.org/10.1371/journal.pcbi.1011214.g002
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Embeddings

Embeddings transfer biological sequences to dense vectors via incorporating local and global

information (Fig 3A). Based on the effective embeddings, the biological sequence similarity

analysis methods can capture hidden patterns from biological sequences, which is fundamental

for learning biological language semantics. Intelligent platforms are able to generate different

embeddings, such as BioSeq-Analysis2.0 [24], BioSeq-BLM [21], iLearnPlus [26], etc. These

platforms and tools represent the biological sequences based on different techniques and

theories.

Distribution methods

Distribution methods fully consider the spatial correlation of input pairs, and show good gen-

eralization ability for modelling different types of data [27]. After encoded by the embedding

layers (Fig 3A), the biological sequences are projected into the high-dimensional space by the

mapping layer, and different algorithms are performed on this high dimensional space to cal-

culate the probabilities, treated as the similarity scores (Fig 3B). There are 9 models in distri-

bution methods. For more detailed information of the distribution methods, please refer to

S1 Table.

Representation methods

The representation methods employ the Siamese architecture to encode the sentences [27],

which can be applied to analyse the biological sequence similarities. Based on Siamese archi-

tecture in Contrastive Learning, representation methods efficiently learn the hidden difference

and connection of homogeneous biological sequences. Representation methods apply the sym-

metrical representation layers to extract biological language semantics and matching layers to

conduct semantic matching operations based on metric learning (Fig 3C). After semantic

matching, the similarity scores are generated by calculating the posteriori probabilities. There

Fig 3. The architectures of biological sequence similarity analysis methods based on biological language semantics. (a) The

architectures of embeddings. (b) The architectures of distribution methods. (c) The architectures of representation methods. (d)

The architectures of interaction methods.

https://doi.org/10.1371/journal.pcbi.1011214.g003
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are 4 models in representation methods. For more information of the representation methods,

please refer to S2 Table.

Interaction methods

Interaction methods employ the hierarchical deep architecture to learn the semantics from the

local interaction matrix of query and retrieved documents [27], which is suitable for compre-

hensively learning the associations between biological sequences. Based on biological

sequences and their embeddings, the relevance of two biological sequences is captured by the

interaction layer in interaction methods, and the following representation layers learn biologi-

cal language semantics from interaction matrix (Fig 3D). The similarity scores are generated

by calculating the posteriori probabilities. There are 14 models in interaction methods. For

more information of interaction methods, please refer to S3 Table.

2.3. BioSeq-Diabolo

Because the biological sequence similarity analysis tasks are diverse with different features and

input data, it is often very difficult for the researchers to select the suitable computational

methods and techniques for their own tasks and aims. In this regard, an intelligent platform

which can automatically construct computational methods for biological sequence similarity

analysis, and select the optimized methods for specific tasks is highly required. In this study,

we construct a powerful platform called BioSeq-Diabolo for automatically analysing biological

sequence similarities based on biological language semantic (Fig 4). The users only need to

input the biological sequence data and the parameters, BioSeq-Diabolo will intelligently iden-

tify the specific tasks (homogeneous or heterogeneous biological sequence similarity analysis

tasks) based on the input embeddings of the biological sequences and the parameters provided

by the users, and then will accurately analyse the biological sequence similarities based on bio-

logical language semantics. BioSeq-Diabolo will integrate the biological sequence similarities

Fig 4. BioSeq-Diabolo schematic overview. BioSeq-Diabolo is named after a popular traditional sport in China whose

components reflect its analysing procedures. When playing diabolo, the diabolo stably spins reflecting that the BioSeq-

Diabolo is able to automatically construct the optimized predictors, and analyse the corresponding performance for a

specific biological sequence similarity analysis task.

https://doi.org/10.1371/journal.pcbi.1011214.g004
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in a supervised fashion by using Learning to Rank (LTR) [28]. Finally, the performance of dif-

ferent constructed methods will be evaluated and analysed.

Learning to rank

There are 27 biological sequence similarity analysis methods in BioSeq-Diabolo, leading to

1.09^1028 (27!) different combinations. Furthermore, many embeddings are proposed. For

example, BioSeq-BLM [21] can generate 155 different embeddings of biological sequences

based on different biological language models. Therefore, the number of base models gener-

ated by BioSeq-Diabolo via different biological sequence similarity analysis methods and

embeddings is even unlimited. To fully consider the advantages of these base models, we

employed Learning to Rank (LTR) [29] to integrate these methods following ProtDec-LTR [8],

GOLabeler [23], iCircDA-LTR [9] and DrugE-Rank [30]. Learning to Rank ranks the rele-

vance and importance between queries and documents in a supervised manner. With its help,

the biological language semantics will be efficiently explored and uncovered. For more infor-

mation of LTR, please refer to S1 Text.

Performance evaluation

Four performance measures were used to evaluate the performance of different methods gen-

erated by BioSeq-Diabolo, including area under the Receiver Operating Characteristic Curve

(AUC) [31], area under the Precision-Recall Curve (AUPR) [32], Normalized Discounted

Cumulative Gain (NDCG) [33], ROC [34], Fmax [35] and Smin [35]. Please refer to S2 Text for

details.

Result analysis

The result analysis module in BioSeq-Diabolo provides multiple visualization functions for

output results so as to intuitively show the performance of the predictors. The result analysis

module mainly includes the following visualization functions: 1) Performance visualization.

BioSeq-Diabolo provides Receiver Operating Characteristic (ROC) curve, Precision-Recall

(PR) curve, Radar map and histogram to visualize the performance of the constructed predic-

tors. 2) Similarity network. BioSeq-Diabolo uses NetworkX [36] library to draw the similarity

network according to the predictions of the best generated predictors. 3) Complementarity

and relevance map. The Heatmap is automatically generated to show the Pearson Correlation

[37] of similarity scores predicted by generated predictors. 4) Score distribution. The distribu-

tion histogram for similarity scores of constructed predictors is drawn to compare their inter-

val differences. 5) Contribution of integrated predictors. The Learning to Rank calculates the

contribution weights of integrated predictors, and the pie chart is drawn to show the contribu-

tion of each predictor. 6) Comparison between embeddings and similarity scores. T-distrib-

uted Stochastic Neighbor Embedding (TSNE) [38] is applied to show the difference between

input embeddings and similarity scores based on dimension reduction.

To summarize, BioSeq-Diabolo constructs various predictors based on biological language

semantics, and integrates them to generate the best predictor for specific biological sequence

similarity analysis task. The performance of the predictor is then evaluated, and the visualiza-

tion of the prediction results improves the interpretability of the constructed predictors. All

these complicated processes will be automatically conducted by using BioSeq-Diabolo by

using only one command line.
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2.4. Web server and stand-alone package of BioSeq-Diabolo

Based on the flowchart of BioSeq-Diabolo (S1 Fig), the web server and stand-alone package of

BioSeq-Diabolo were developed to facilitate the researchers for analyzing the biological

sequence similarities based on biological language semantics.

Web server

We provide detailed tutorial and documents to explain each procedure and option of the web

server, which can be accessed at http://bliulab.net/BioSeq-Diabolo/. More specifically, after

selecting biological sequence similarity analysis task, choosing biological sequence similarity

calculation methods and setting using Learning to Rank or not, the users will see the input

page (see http://bliulab.net/BioSeq-Diabolo/server/). The users need to select the parameters

for each module in this page, and input biological sequence data in the BLS format. Please

refer to the document of BioSeq-Diabolo for detailed descriptions of BLS format. After submit-

ting the form of the input page, the web server will conduct the calculation according to the

pipelines. When the calculation is complete, the results will be displayed in the result page (see

http://bliulab.net/BioSeq-Diabolo/server/graph_ssc/rank/submit/result/user). The result page

includes visualization results, downloadable files and the similarity scores predicted by Bio-

Seq-Diabolo. The command lines of stand-alone package are also provided in the result page

so as to help the users to perform the analysis by using their own computing resources via

stand-alone package of BioSeq-Diabolo.

Stand-alone package

Stand-alone package ensures that users can make full use of their own computing resources.

There are four modules in the BioSeq-Diabolo stand-alone package: 1) biological sequence

similarity analysis: ‘sesica_arc.py’, ‘sesica_clf.py’, scripts in ‘arc’ folder and scripts in ‘clf’ folder;

2) Learning to Rank: ‘sesica_rank.py’ and scripts in ‘rank’ folder; 3) Performance evaluation:

scripts in ‘utils’ folder; 4) Result analysis: ‘sesica_plot.py’ and scripts in ‘plot’ folder. Addition-

ally, the multiprocessing technique and GPU acceleration are employed to improve its execu-

tion efficiency. The Scikit-learn [39] and MatchZoo [40] python libraries are used to

implement the stand-alone package. As discussed in results and discussion section, compilated

biological sequence similarity analysis tasks can be easily solved by only using one command

line with the help of the stand-alone package of BioSeq-Diabolo. Please refer to the README

file in the stand-alone package for more details of the three examples shown in results and dis-

cussion section.

3. Results and discussion

BioSeq-Diabolo is able to facilitate the development of the computational methods for biologi-

cal sequence similarity analysis. In this section, we will show the effects of BioSeq-Diabolo for

automatically developing computational predictors for solving three important biological

sequence similarity analysis tasks, including one homogeneous biological sequence similarity

analysis task (protein remote homology detection) and two heterogeneous biological sequence

similarity analysis tasks (circRNA-disease associations and protein function annotation). For

each task, BioSeq-Diabolo automatically constructs various computational predictors, and

selects the best one for the following analysis (see the README file in the stand-alone package

of BioSeq-Diabolo).
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3.1. BioSeq-Diabolo facilitates the protein remote homology detection

Protein remote homology detection is one of fundamental research tasks in protein sequence

analysis, which has been extensively studied for decades [1]. However, because proteins with

remote homology relationship share very low sequence similarities (<30%), the existing computa-

tional predictors fail to accurately detect the protein remote homologous. Therefore, new concepts

and techniques are desired to solve this challenging problem. Here, we investigate if BioSeq-Dia-

bolo can construct powerful computational predictors for protein remote homology detection or

not. Trained and evaluated on a benchmark dataset constructed based on SCOP1.75 database

[41] (http://bliulab.net/BioSeq-Diabolo/download/), BioSeq-Diabolo constructs various predic-

tors, and analyses their performance by using the following command line:

The performance analysis results of the top 5 best predictors constructed by BioSeq-Diabolo

are shown in Fig 5, from which we can see that these predictors perform well for protein

remote homology detection, and they are complementary. Is it possible to combine these com-

plementary methods to further improve the predictive performance? In order to answer this

question, these methods are combined by a supervised framework Learning to Rank (LTR) by

using BioSeq-Diabolo, and the corresponding results are shown in Table 2 along with the per-

formance of the other state-of-the-art predictors in this field, including PSI-BLAST [10], DEL-

TA-BLAST [42], HHblits [11] and HHsearch [43]. From this table we can see that the

predictor automatically constructed by BioSeq-Diabolo outperforms all the other approaches

Fig 5. The visualization results automatically generated by BioSeq-Diabolo for protein remote homology detection. (a) Similarity network

predicted by the best predictor constructed by BioSeq-Diabolo. (b) Radar map for performance comparison among the top 5 best predictors. (c) Pie

chart for contribution weights of the integrated top 5 best predictors calculated by Learning to Rank. (d) Distribution histogram for similarity scores

of the top 5 best predictors. (e) 3D scatter diagram for dimension reduction of input embeddings. (f) 3D scatter diagram for dimension reduction of

similarity scores.

https://doi.org/10.1371/journal.pcbi.1011214.g005

python sesica_arc.py -data_type homo -bmk_vec bmk_vec.txt -bmk_label pos_label.txt neg_la-
bel.txt -arc dssm cdssm drmm drmmtks match_lstm duet knrm -metric roc@50
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in terms of ROC50. These results are not surprising because the semantics analysis techniques

derived from natural language processing incorporated in BioSeq-Diabolo are able to effi-

ciently capture the insightful semantics of protein sequences, which are critical for protein

remote homology detection [44].

Estimation of time consumption is important for a user-oriented method. Therefore, we

evaluated the running time of BioSeq-Diabolo for protein remote homology detection on the

proteins randomly extracted from SCOP1.75 database [41] (http://bliulab.net/BioSeq-

Diabolo/download/) with the following command line:

With the increase of the number of samples, the training time of BioSeq-Diabolo increases obvi-

ously, while its test time is roughly linearly with the number of test samples (see Fig 6). BioSeq-Dia-

bolo achieved an ROC1 of 0.927 trained with 50000 samples for predicting 50000 test samples. The

corresponding training time and test time are 3580 seconds and 243 seconds, respectively. For large

scale analysis, we suggest the users to use the stand-alone package. And when the number of samples

is the same, the time required for different methods to get the result from scratch are show in S2

Fig. Interaction methods and representation methods (both are based on deep-learning) consume

more time than distribution methods (based on traditional machine learning methods).

3.2. BioSeq-Diabolo facilitates the circRNA-disease association

identification

CircRNAs are major regulators in various cellular processes, and associated with the pathogen-

esis of human diseases. Exactly identifying circRNA-disease associations is critical for

researching disease mechanism, and developing corresponding drug targets. Because the exist-

ing computational methods ignore the fact that there is a high false positive rate in the negative

set, most of existing computational predictors fail to detect potential missing relationship

between circRNAs and diseases [9]. Therefore, new approaches for detecting the diseases asso-

ciated with circRNAs are urgently needed. Here, we applied BioSeq-Diabolo to improve the

performance of circRNA-disease association identification. Trained and evaluated on the

Table 2. The performance of BioSeq-Diabolo compared with competing methods for protein remote homology

detection.

Methods ROC50c

PSI-BLASTa 87.40%

DELTA-BLASTa 88.49%

HHblitsa 90.52%

HHsearcha 90.45%

BioSeq-Diabolob 92.00%

a The results of the competing methods were obtained from [45]. These competing methods and BioSeq-Diabolo

were evaluated on the same test dataset. Therefore, these results can be directly compared
b The results of the best predictor constructed by BioSeq-Diabolo (integrating the top 5 best predictors by using

Learning to Rank). The input protein sequence embeddings are based on 2-Kmer [46] by using BioSeq-BLM [21]
c The performance evaluation indicators were described in S2 Text and details of the reported experiments were

described in S3 and S4Texts.

https://doi.org/10.1371/journal.pcbi.1011214.t002

python sesica_clf.py -data_type homo -bmk_vec bmk_vec.txt -bmk_label pos_label.txt neg_label.
txt -clf svm rf ert knn mlp -metric roc@1
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benchmark dataset [9], BioSeq-Diabolo constructs numerous predictors, and selects the best

predictor by using the following command line:

The performance analysis results of the top 5 best predictors constructed by BioSeq-Diabolo

are shown in Fig 7, indicating that these predictors can accurately identify circRNA-disease

associations, and they are complementary. In this regard, we employ Learning to Rank to inte-

grate these 5 complementary predictors, and construct the best predictor by using BioSeq-Dia-

bolo. The performance of the best predictor constructed by BioSeq-Diabolo is shown in

Table 3 along with the performance of the other state-of-the-art predictors in this field, includ-

ing gcForest [47], DWNN-RLS [48], GBDT [49] and iCircDA-LTR [9]. From this table we can

see that the predictor automatically constructed by BioSeq-Diabolo outperforms all the other

approaches in terms of NDCG and NDCG@10. Based on biological language semantics and

Learning to Rank, BioSeq-Diabolo takes the global relationships among circRNAs and all can-

didate diseases into consideration, which is the main reason for its better performance.

3.3. BioSeq-Diabolo facilitates the protein function annotation

Because only a few proteins have experimentally validated functional annotations, the compu-

tational annotations of protein functions have become a crucial step for understanding of the

Fig 6. The training time and test time of BioSeq-Diabolo trained and tested with different number of samples.

The test time was evaluated with the corresponding BioSeq-Diabolo trained with the same number of samples. These

experiments were performed on Intel(R) Xeon(R) CPU E5-2660 v3 (2.60 GHz with 10 cores) and memory of 64 G.

https://doi.org/10.1371/journal.pcbi.1011214.g006

python sesica_clf.py -data_type hetero -bmk_vec_a bmk_circRNA.txt -bmk_vec_b bmk_disease.
txt -bmk_label pos_label.txt neg_label.txt -clf svm rf ert knn mnb gbdt goss dart mlp -metric auc
-gs_mode 2
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complex mechanisms of living cells [51]. Although some computational predictors have been

proposed to predict protein functions, their performance is still limited prevented by the unde-

fined relationships between protein sequences and their multiple hierarchically organized

labels [52]. BioSeq-Diabolo integrates biological sequence semantics from different perspec-

tives, facilitating protein function prediction. Trained and evaluated on a benchmark dataset

constructed based on CAFA3 database [52] (http://bliulab.net/BioSeq-Diabolo/download/),

Fig 7. The visualization results automatically generated by BioSeq-Diabolo for circRNA-disease association identification. (a) Radar map for

evaluating performance of the top 5 best predictors. (b) ROC curves of the top 5 best predictors. (c) Pie chart for contribution weights of integrated

top 5 best predictors calculated by Learning to Rank. (d) Heatmap for complementarity and relevance of the top 5 best predictors. (e) 3D scatter

diagram for dimension reduction of input embeddings. (f) 3D scatter diagram for dimension reduction of similarity scores.

https://doi.org/10.1371/journal.pcbi.1011214.g007

Table 3. The performance of BioSeq-Diabolo compared with competing methods for circRNA-disease association

identification.

Methods NDCGc NDCG@10c

gcForesta 0.4406 0.3767

DWNN-RLSa 0.5466 0.4911

GBDTa 0.5736 0.5280

iCircDA-LTRa 0.5879 0.5426

BioSeq-Diabolob 0.6009 0.5492

a The results of the competing methods were obtained from [9]. These competing methods and BioSeq-Diabolo were

evaluated on the same test dataset. Therefore, these results can be directly compared
b The results of the best predictor constructed by BioSeq-Diabolo (integrating the top 5 best predictors by using

Learning to Rank). The input CircRNA embeddings are extracted by BioSeq-Analysis2.0 [24] with PseKNC [50]

(parameter φ is set as 0.5). The input disease embeddings are represented by semantic similarity score matrix

reported in [9]. We concatenated circRNA features and disease features, fed into BioSeq-Diabolo for further analysis.
c The performance evaluation indicators were described in S2 Text and details of the reported experiments were

described in S3 and S4 Texts.

https://doi.org/10.1371/journal.pcbi.1011214.t003
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BioSeq-Diabolo constructs various predictors, and analyses their performance by using the fol-

lowing command line:

The performance analysis results of the top 5 best predictors constructed by BioSeq-Diabolo

are shown in Fig 8. In the same way, BioSeq-Diabolo integrates the top 5 best predictors by

using Learning to Rank. The integrated predictor is highly comparable with the other state-of-

the-art predictors, including DIAMONDScore [13], DeepGO [35] and DeepGOCNN [53] (see

Tables 4, S4 and S5). These experimental results show that BioSeq-Diabolo is also able to facil-

itate the development of the computational predictors for protein function prediction.

4. Conclusion

Biological sequence similarity analysis plays a critical role in the biological structure and func-

tion studies. As the language of “the books of life”, like natural language, biological sequence is

Fig 8. The visualization results automatically generated by BioSeq-Diabolo for protein function annotation. (a) Histograms for evaluating performance of

the top 5 best predictors. (b) 3D scatter diagram for dimension reduction of input embeddings. (c) 3D scatter diagram for dimension reduction of similarity

scores.

https://doi.org/10.1371/journal.pcbi.1011214.g008

Table 4. The performance of BioSeq-Diabolo compared with competing methods in Cellular Component Ontol-

ogy (CCO) for protein function annotation.

Methods AUPRc Fmaxc Sminc

Naive1 0.483 0.541 8.466

DIAMONDScore1 0.500 0.523 8.347

DeepGO1 0.446 0.503 5.791

DeepGOCNN1 0.523 0.582 5.234

BioSeq-Diabolob 0.514 0.577 5.569

a The results of the competing methods were obtained from [54]. These competing methods and BioSeq-Diabolo

were evaluated on the same test dataset. Therefore, these results can be directly compared
b The result of the best predictor constructed by BioSeq-Diabolo (integrating top 5 best predictor by using Learning

to Rank). The input protein sequence embeddings are extracted by BioSeq-BLM [21] with Position-Specific method

[55]. The input GO term embeddings are represented by label embedding matrix reported in [54]
c The performance evaluation indicators were described in S2 Text and details of the reported experiments were

described in S3 and S4 Texts.

https://doi.org/10.1371/journal.pcbi.1011214.t004

python sesica_clf.py -data_type hetero -bmk_vec_a cc_bmk_vec_a.txt -bmk_vec_b
cc_bmk_vec_b.txt -bmk_label pos_label.txt neg_label.txt -clf svm rf ert knn mnb gbdt goss dart
mlp -metric aupr -gs_mode 2
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information-complete, and has its own semantics. Based on biological language semantics, we

can better understand the semantics of “the books of life”. The platform BioSeq-Diabolo auto-

matically analyses biological sequence similarities based on biological language semantic for

different tasks in bioinformatics. Experimental results show that the predictors automatically

generated by BioSeq-Diabolo even outperform the state-of-the-art predictors in the fields of

protein remote homology detection, circRNA-disease association identification and protein

function annotation, indicating that BioSeq-Diabolo will provide new concepts and techniques

for biological sequence analysis, and facilitate the development of new computational predic-

tors for biological sequence analysis. Although BioSeq-Diabolo incorporates some state-of-

the-art biological sequence similarity analysis methods, we will focus on integrating more pow-

erful algorithms into BioSeq-Diabolo in our future studies. We believe that BioSeq-Diabolo

will play important roles in biological sequence analysis.
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43. Söding J. Protein homology detection by HMM–HMM comparison. Bioinformatics. 2005; 21(7):951–60.

https://doi.org/10.1093/bioinformatics/bti125 PMID: 15531603

44. Yu L, Tanwar Deepak K, Penha Emanuel Diego S, Wolf Yuri I, Koonin Eugene V, Basu Malay K. Gram-

mar of protein domain architectures. Proceedings of the National Academy of Sciences. 2019; 116

(9):3636–45. https://doi.org/10.1073/pnas.1814684116 PMID: 30733291

45. Shao J, Chen J, Liu B. ProtRe-CN: Protein Remote Homology Detection by Combining Classification

Methods and Network Methods via Learning to Rank. IEEE/ACM Transactions on Computational Biol-

ogy and Bioinformatics. 2021:1-. https://doi.org/10.1109/TCBB.2021.3108168 PMID: 34460380

46. Liu B, Liu F, Wang X, Chen J, Fang L, Chou K-C. Pse-in-One: a web server for generating various

modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Research. 2015; 43

(W1):W65–W71. https://doi.org/10.1093/nar/gkv458 PMID: 25958395

47. Zeng X, Zhong Y, Lin W, Zou Q. Predicting disease-associated circular RNAs using deep forests com-

bined with positive-unlabeled learning methods. Briefings in bioinformatics. 2020; 21(4):1425–36.

https://doi.org/10.1093/bib/bbz080 PMID: 31612203

48. Yan C, Wang J, Wu F-X. DWNN-RLS: regularized least squares method for predicting circRNA-disease

associations. BMC Bioinformatics. 2018; 19(19):520. https://doi.org/10.1186/s12859-018-2522-6

PMID: 30598076

49. Lei X, Fang Z, Guo L. Predicting circRNA–Disease Associations Based on Improved Collaboration Fil-

tering Recommendation System With Multiple Data. Frontiers in Genetics. 2019;10.

50. Chen W, Lin H, Chou K-C. Pseudo nucleotide composition or PseKNC: an effective formulation for ana-

lyzing genomic sequences. Molecular BioSystems. 2015; 11(10):2620–34. https://doi.org/10.1039/

c5mb00155b PMID: 26099739

51. Torres M, Yang H, Romero AE, Paccanaro A. Protein function prediction for newly sequenced organ-

isms. Nature Machine Intelligence. 2021; 3(12):1050–60. https://doi.org/10.1038/s42256-021-00419-7

52. Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, et al. The CAFA challenge reports

improved protein function prediction and new functional annotations for hundreds of genes through

experimental screens. Genome Biology. 2019; 20(1):244. https://doi.org/10.1186/s13059-019-1835-8

PMID: 31744546

53. Kulmanov M, Hoehndorf R. DeepGOPlus: improved protein function prediction from sequence. Bioin-

formatics. 2020; 36(2):422–9. https://doi.org/10.1093/bioinformatics/btz595 PMID: 31350877

54. Cao Y, Shen Y. TALE: Transformer-based protein function Annotation with joint sequence–Label

Embedding. Bioinformatics. 2021; 37(18):2825–33. https://doi.org/10.1093/bioinformatics/btab198

PMID: 33755048

PLOS COMPUTATIONAL BIOLOGY BioSeq-Diabolo

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011214 June 20, 2023 18 / 19

https://doi.org/10.1016/s0097-8485%2896%2980004-0
https://doi.org/10.1016/s0097-8485%2896%2980004-0
http://www.ncbi.nlm.nih.gov/pubmed/16718863
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1093/bioinformatics/btx624
http://www.ncbi.nlm.nih.gov/pubmed/29028931
https://doi.org/10.1038/s41598-019-57247-4
http://www.ncbi.nlm.nih.gov/pubmed/31949233
https://doi.org/10.1038/s41467-019-13056-x
http://www.ncbi.nlm.nih.gov/pubmed/31780648
https://doi.org/10.1006/jmbi.1995.0159
http://www.ncbi.nlm.nih.gov/pubmed/7723011
https://doi.org/10.1186/1745-6150-7-12
http://www.ncbi.nlm.nih.gov/pubmed/22510480
https://doi.org/10.1093/bioinformatics/bti125
http://www.ncbi.nlm.nih.gov/pubmed/15531603
https://doi.org/10.1073/pnas.1814684116
http://www.ncbi.nlm.nih.gov/pubmed/30733291
https://doi.org/10.1109/TCBB.2021.3108168
http://www.ncbi.nlm.nih.gov/pubmed/34460380
https://doi.org/10.1093/nar/gkv458
http://www.ncbi.nlm.nih.gov/pubmed/25958395
https://doi.org/10.1093/bib/bbz080
http://www.ncbi.nlm.nih.gov/pubmed/31612203
https://doi.org/10.1186/s12859-018-2522-6
http://www.ncbi.nlm.nih.gov/pubmed/30598076
https://doi.org/10.1039/c5mb00155b
https://doi.org/10.1039/c5mb00155b
http://www.ncbi.nlm.nih.gov/pubmed/26099739
https://doi.org/10.1038/s42256-021-00419-7
https://doi.org/10.1186/s13059-019-1835-8
http://www.ncbi.nlm.nih.gov/pubmed/31744546
https://doi.org/10.1093/bioinformatics/btz595
http://www.ncbi.nlm.nih.gov/pubmed/31350877
https://doi.org/10.1093/bioinformatics/btab198
http://www.ncbi.nlm.nih.gov/pubmed/33755048
https://doi.org/10.1371/journal.pcbi.1011214


55. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design

to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology. 2016; 34

(2):184–91. https://doi.org/10.1038/nbt.3437 PMID: 26780180

PLOS COMPUTATIONAL BIOLOGY BioSeq-Diabolo

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011214 June 20, 2023 19 / 19

https://doi.org/10.1038/nbt.3437
http://www.ncbi.nlm.nih.gov/pubmed/26780180
https://doi.org/10.1371/journal.pcbi.1011214

