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Abstract

One of the key problems the brain faces is inferring the state of the world from a sequence

of dynamically changing stimuli, and it is not yet clear how the sensory system achieves this

task. A well-established computational framework for describing perceptual processes in

the brain is provided by the theory of predictive coding. Although the original proposals of

predictive coding have discussed temporal prediction, later work developing this theory

mostly focused on static stimuli, and key questions on neural implementation and computa-

tional properties of temporal predictive coding networks remain open. Here, we address

these questions and present a formulation of the temporal predictive coding model that can

be naturally implemented in recurrent networks, in which activity dynamics rely only on local

inputs to the neurons, and learning only utilises local Hebbian plasticity. Additionally, we

show that temporal predictive coding networks can approximate the performance of the Kal-

man filter in predicting behaviour of linear systems, and behave as a variant of a Kalman fil-

ter which does not track its own subjective posterior variance. Importantly, temporal

predictive coding networks can achieve similar accuracy as the Kalman filter without per-

forming complex mathematical operations, but just employing simple computations that can

be implemented by biological networks. Moreover, when trained with natural dynamic

inputs, we found that temporal predictive coding can produce Gabor-like, motion-sensitive

receptive fields resembling those observed in real neurons in visual areas. In addition, we

demonstrate how the model can be effectively generalized to nonlinear systems. Overall,

models presented in this paper show how biologically plausible circuits can predict future sti-

muli and may guide research on understanding specific neural circuits in brain areas

involved in temporal prediction.

Author summary

While significant advances have been made in the neuroscience of how the brain pro-

cesses static stimuli, the time dimension has often been relatively neglected. However,

time is crucial since the stimuli perceived by our senses typically dynamically vary in time,
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and the cortex needs to make sense of these changing inputs. This paper describes a

computational model of cortical networks processing temporal stimuli. This model is able

to infer and track the state of the environment based on noisy inputs, and predict future

sensory stimuli. By ensuring that these predictions match the incoming stimuli, the model

is able to learn the structure and statistics of its temporal inputs and produces responses

of neurons resembling those in the brain. The model may help in further understanding

neural circuits in sensory cortical areas.

Introduction

This paper is concerned with extending the theory of predictive coding to the problem of pro-

cessing dynamically changing sequences of sensory inputs arriving over time. Predictive cod-

ing, which originated from an algorithm for compression in information theory [1], was

initially developed and applied to the analysis of the brain by Srinivasa et al. [2] and Mumford

[3] and then formalized into a general computational model of the cortex by Rao and Ballard

[4]. The core hypothesis behind predictive coding is that the brain computes predictions of its

observed input, and compares these predictions to the actually received input. The difference

between the two is called the prediction error and quantifies how incorrect the brain’s predic-

tion was. Predictive coding proposes that the brain then adjusts its neural activities and synap-

tic strengths to minimize prediction errors which ultimately results in more accurate

predictions [5, 6]. Thus, solely by minimizing prediction errors, the brain is forced to learn a

general world model which can generate accurate predictions of its incoming sensory input [5,

7]. Moreover, these prediction errors are computed locally between the local input to the neu-

ron and the predictions it receives. This means that learning in predictive coding model

requires only local information and can be accomplished in most cases with purely Hebbian

synaptic plasticity [8–10].

Predictive coding has become an influential theoretical model for understanding cortical

functions [4, 5, 7, 11]. In their original study, Rao and Ballard trained predictive coding net-

works to generate static images of natural scenes, and demonstrated that the network learnt

receptive fields with similarities to those found in V1, as well as reproduced extra-classical

receptive fields and end-stopping [4]. Since then it has been demonstrated that predictive cod-

ing networks can explain many intriguing phenomena such as repetition suppression [12], bis-

table perception [13, 14], illusory motions [15], retinal stabilization [16] and even potentially

attentional modulation of perception [17, 18]. Moreover, there has been much work matching

the underlying neurophysiology of cortical microcircuits to the fundamental computations

required by the predictive coding algorithm [19–21], thus providing a potential low-level basis

for the implementation of predictive coding in neural circuitry.

Alongside the aforementioned works that have successfully reproduced many neurophysio-

logical phenomena, recent progresses in predictive coding have been concerned with machine

learning tasks such as the classification or generation of static images [22–25], and multiple

lines of research have investigated the relationship between predictive coding and backpropa-

gation, the driving force behind modern machine learning systems [22, 26]. However, most of

these works are concerned with inputs that are independent and identically distributed (i.i.d.)

samples from some datasets and are presented in batches to the predictive coding model in

random order. However, the visual input to the brain is a continually changing sensory stream

conveying a sequence of individual images with much correlation and rich structure embed-

ded in the timing of the sequence elements. Therefore, to better describe the information
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processing in the brain, predictive coding models must take into account one more crucial ele-

ment: time.

There are several established algorithms in statistics and machine learning for sequence

processing over time, but they typically require very complex computations that would be dif-

ficult for biological circuits to perform. Nevertheless, it is useful to consider them as a reference

against which the performance of biologically plausible models can be assessed. When there is

a linear relationship between the current and future states (and noise is assumed to be Gauss-

ian), the optimal temporal predictions can be achieved by the Kalman filter [27]. For more

complex nonlinear problems, one can employ recurrent neural networks [28], which contain

recurrent connections which maintain and update an internal hidden state over time. While

these recurrent networks, and more advanced successors such as the Long-Short-Term-Mem-

ory (LSTM) [29] can be very expressive and powerful, they are typically trained with backpro-

pagation through time algorithm (BPTT) [30–32] which requires storing a history of all

computations through a sequence and then ‘unrolling’ it sequentially backwards through time

to make updates. This algorithm is biologically implausible, because the brain can only receive

inputs in a sequential stream, and must be able to process them online, i.e. as the inputs are

received, and seems unlikely to be able to unfold a precise sequence of computations in

reverse. In this work, we focus our comparison to these statistical and machine learning mod-

els on the Kalman filter, an online algorithm that processes data sequentially, as biological sys-

tems appear to do.

Within the field of predictive coding, there are a few tracks of research that have considered

incorporating the temporal dimension. Earlier works [33, 34] employed Kalman filtering to

model the visual processing of dynamical sequences. Instead of using fixed transformation

matrices which are assumed to be known as in Kalman filtering, these works introduced learn-

ing rules to model synaptic plasticity in neural circuits performing filtering. Friston et al. [35]

have proposed the notion of extending predictive coding to use generalized coordinates [36,

37] which model a dynamical state by including a set of temporal derivatives in the state vector

and making predictions of these derivatives along with the current state. A few recent studies

have also developed predictive coding models that perform well in various tasks involving tem-

poral dependencies, such as those commonly examined in machine learning [38–40]. How-

ever, the works mentioned above have departed from the simple and flexible architecture of

classical predictive coding for static inputs [4] in order to take into account the temporal

dimension. For example, the pioneering work that introduced Kalman filtering into predictive

coding [33, 34] has not described how the computations of Kalman filtering could be imple-

mented in biological networks. Mapping of models employing generalized coordinates [35] on

a neural circuit would require explicit hard-coding of the expected temporal dependencies

between different dynamical orders. Other models include specialised network features to aid

the temporal processing, such as hyper-networks [40], multiple sub-networks [38] or complex

connectivity and neuron types [39].

In this paper, we propose a simple predictive coding network that also incorporates the

temporal dimension, which we call temporal predictive coding (tPC). This model generates pre-

dictions not only about the current inputs but also about its own future neural responses,

which is achieved by recurrent connections between neurons to transmit the prediction of one

time-step to the next. The paper makes four main contributions: First, we propose a predictive

coding model that addresses the problem of temporal prediction, while inheriting from static

predictive coding [4] the simple and biologically plausible neural network implementations

employing only local connectivity and Hebbian plasticity rules. Second, when the model is lin-

ear, we show that our model is a close approximation of the Kalman filtering model analyti-

cally, and has empirical performance comparable to Kalman filtering in benchmark filtering
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tasks while being computationally cheaper and requiring only biologically plausible opera-

tions. Also, unlike the Kalman filter, our model can learn the parameters of the system online.

Third, when trained with natural moving stimuli, we find that the model develops localized,

Gabor-like receptive fields similar to those observed by Rao and Ballard [4], and more impor-

tantly, the receptive fields are also motion-sensitive, a property unique to neurons responding

to dynamic stimuli [41]. Finally, we extend the model to the nonlinear case and show promis-

ing performance on a number of nonlinear filtering and sequence prediction tasks. Overall,

our model provides a possible computational mechanism underlying the cortical processing of

dynamic inputs based on predictive coding, suggesting that the brain may learn to represent

both static and continuous sensory observations using a single computational framework.

Models

The structure of the exposition in this section is as follows. Firstly, we present the underlying

graphical structure of our proposed generative tPC network i.e., a Hidden Markov Model

(HMM). Next, we show that, with Gaussian assumptions on the HMM and certain parametric

assumptions on the nonlinear generative processes, we can derive an objective function that is

similar to the original predictive coding network [4] but taking into account the temporal

dimension. We then demonstrate that neural dynamics and plasticity rules can be derived via

the minimization of the objective function by gradient descent, and a corresponding training

algorithm is presented. Finally, we show that the proposed computations and algorithms

afford biologically plausible neural implementations in several different cases and discuss how

they may be mapped to neural circuitry in the cortex. Since this paper contains much mathe-

matical notation, for ease of reading, we have collected it in Table 1 for quick reference.

Table 1. Table of mathematical notation used in the paper. Vector and matrix variables are defined with their

dimensions. Otherwise, the variables are scalars.

Notation Meaning

y Observation (Rdy )

x Latent state (Rdx )

u Control input (Rdu )

k Observation ‘frame’

t Inference time

A Dynamics matrix (Rdx�dx )

B Control matrix (Rdx�du )

C Observation matrix (Rdy�dx )

ωx Process noise (Rdx )

ωy Observation noise (Rdy )

f Nonlinear function

x̂ Inferred latent state (Rdx )

q(�) Variational distribution

F Variational free energy

�x Dynamics prediction error (Rdx )

�y Observation prediction error (Rdy )

η learning rate

Δt Inference step size

Sk Posterior variance (Rdx�dx )

K Kalman Gain matrix (Rdx�dy )

https://doi.org/10.1371/journal.pcbi.1011183.t001

PLOS COMPUTATIONAL BIOLOGY Temporal predictive coding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011183 April 1, 2024 4 / 31

https://doi.org/10.1371/journal.pcbi.1011183.t001
https://doi.org/10.1371/journal.pcbi.1011183


Model foundations: HMM and free energy

The conceptual level of our model is grounded within the Bayesian Brain paradigm [5, 42–44].

Specifically, we assume that the problem of perception is fundamentally an inference problem,

where there exists some real world ‘out there’, from which we only receive noisy and distorted

sensory input. We assume that the task of perception is to untangle and counteract the noise

in order to reconstruct the real (but hidden) state of the world given only our sensory observa-

tions. Thus, mathematically, we can represent the problem of perception as trying to infer a

series of latent states of the world xk (k = 1, 2, . . .) from their corresponding sensory observa-

tions yk (k = 1, 2, . . .). We assume that the underlying graphical structure of our tPC network

is an HMM, where the hidden states xk follow a Markov chain. That is, the current hidden

state of the world only depends upon the previous hidden state. Also, the current observation

is generated by the current state of the world only, with no dependence on past noisy observa-

tions. Fig 1 shows the generative process of the tPC where, for generality, we have also added

‘control’ inputs u which can be thought of as known inputs to the system at every time step

(such inputs are included in the Kalman filter that we will later use as a benchmark). This con-

trol input is useful to model systems where there are known external forces acting on the sys-

tem (such as an agent’s own actions) which we do not necessarily want to model simply as part

of the environmental dynamics.

From the generative model in Fig 1, we can also write out specific equations for the dynam-

ics of the states and observations in what is called the state-space representation:

xk ¼ Af ðxk� 1Þ þ Buk þ ox; ð1Þ

yk ¼ Cf ðxkÞ þ oy ð2Þ

where A is the matrix that transitions the previous hidden state xk−1 to xk, B is the matrix gov-

erning how the control input uk affects the current hidden state, and C is the ‘emission’ matrix

that determines how the observation yk is generated from the hidden state. f is a function trans-

forming xk that may be nonlinear. The above state-space representation also includes sources

of noise ωx and ωy. We will assume a white Gaussian noise model such that ox � N ð0;SxÞ

and oy � N ð0;SyÞ are zero-mean Gaussian random variables with covariance matrices Sx, Sy

(In the control theory literature, the process noise Sx is often denoted as Q and the observation

Fig 1. Graphical model of the generative process assumed by temporal predictive coding. xk correspond to hidden

states, yk to observations, and uk to control inputs. Circles denote latent variables, squares denote observations, and

arrows denote conditional dependence of the variables (the absence of an arrow indicates conditional independence).

https://doi.org/10.1371/journal.pcbi.1011183.g001
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noise Sy as R. We instead follow the convention that has arisen within the predictive coding lit-

erature, which we also believe is more straightforward, by calling them Sx and Sy, since it

makes explicit that these variances are simply the variances of the two distributions composing

the generative model.). Therefore, xk and yk can be considered as random variables that follow

the Gaussian distributions:

xkjxk� 1; uk � N ðAf ðxk� 1Þ þ Buk;SxÞ; ð3Þ

ykjxk � N ðCf ðxkÞ;SyÞ: ð4Þ

The objective of our model is to obtain an estimate x̂k of the current xk, given the previously

estimated x̂k� 1, current noisy observation yk and control input uk. This objective can be

expressed as estimating the posterior distribution pðxkjyk; x̂k� 1; ukÞ. If function f is nonlinear,

an analytic expression for the posterior cannot be found, and thus variational inference [45–

47] is utilized to find an approximate of the posterior. Specifically, we assume that there exists

an approximate posterior q(xk) and we seek an approximate posterior that is as close as possi-

ble to the ‘true’ posterior pðxkjyk; x̂k� 1; ukÞ, and variational inference finds such a q(xk) by mini-

mizing an upper bound on the divergence between the true and approximate posteriors called

the variational free energy. If we make an additional simplifying assumption that q(xk) follows

a Gaussian distribution with its density highly concentrated at its mean, the free energy F k

becomes approximately equal to [8, 9]:

F k ¼ � log pð yk; xkjx̂k� 1; ukÞ

¼ � log pð ykjxkÞpðxkjx̂k� 1; ukÞ
ð5Þ

and it is also sufficient to estimate the mode of the approximate posterior (which is the same as

its mean) instead of estimating the whole distribution with this assumption. Furthermore,

with the Gaussian assumptions underlying Eqs 3 and 4, the free energy becomes (we choose to

omit the other terms in the multivariate Gaussian density as they do not affect the optimization

over xk and A, B, C):

F k ¼
1

2
ð yk � Cf ðxkÞÞ

T
S� 1

y ð yk � Cf ðxkÞÞ

þ
1

2
ðxk � Af ðx̂k� 1Þ � BukÞ

T
S� 1

x ðxk � Af ðx̂k� 1Þ � BukÞ:

ð6Þ

Importantly, we can express this objective as the sum of squared prediction errors weighted

by their inverse covariances (which are often called precisions in the predictive coding litera-

ture). In this model, there are two kinds of prediction errors—‘sensory’ prediction errors

which are the difference between the observation and predicted observation yk−Cf(xk) and

‘temporal’ prediction errors which are the difference between the inferred current state and

the current state predicted from the previous state xk � Af ðx̂k� 1Þ � Buk. Thus, by finding an

estimate x̂k ¼ argminxk
F k, we effectively minimize the squared sum of these prediction errors

while the precision matrices serve to weight the importance of the sensory and temporal pre-

diction errors in accordance with their intrinsic variance (so highly variable prediction errors

are weighted less). After the minimization finishes, the estimated x̂k can then be used to esti-

mate the hidden state at the next step k + 1.

PLOS COMPUTATIONAL BIOLOGY Temporal predictive coding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011183 April 1, 2024 6 / 31

https://doi.org/10.1371/journal.pcbi.1011183


Inference and learning algorithm

With the objective function in Eq 6, it is then possible to derive an iterative algorithm to per-

form its minimization via gradient descent. Similar to static predictive coding [4], the gradient

descent is performed on two sets of values: the hidden states xk and the weight parameter

matrices A, B and C. As we will show in the next subsection, the former can be implemented as

neural responses and the latter can be implemented as synaptic connections in a neural circuit

in a similar way to static predictive coding. For the hidden state xk, its dynamics follow:

t
dxk

dt
¼ �

@F k

@xk
; ð7Þ

where τ is the time constant of the neurons. At convergence, we can say that the equilibrium

value x̂k represents the optimal inference about the mean of the true hidden state of the world.

It is worth mentioning that we now introduced two different indices k and t for distinct time

scales: for discrete steps k at which the observations arise and continuous real time t in which

computations are made within the model, and we will discuss the relationship between them

in detail in the next subsection.

To derive the exact expression for the inferential dynamics, we can define the precision-

weighted state and observation prediction errors as �x and �y respectively as follows:

�y ¼ S� 1

y ðyk � Cf ðxkÞÞ; ð8Þ

�x ¼ S� 1

x ðxk � Af ðx̂k� 1Þ � BukÞ: ð9Þ

We can then write Eq 7 as:

t
dxk

dt
¼ �

@F k

@xk
¼ � �x þ f 0ðxkÞ � CT�y; ð10Þ

where� denotes the element-wise product between vectors. The dynamics have contributions

from both the sensory and the temporal prediction errors, and the contribution of the sensory

prediction error is ‘mapped backwards’ through the transpose matrix CT.

Similarly, if we assume that the A, B and C parameter matrices are learnable, we can derive

update rules also following gradient descent on F k:

DA ¼ � Z
@F k

@A
¼ Z�x f ðx̂k� 1Þ

T
;

DB ¼ � Z
@F k

@B
¼ Z�xu

T
k ;

DC ¼ � Z
@F k

@C
¼ Z�y f ðxkÞ

T
:

ð11Þ

In the above equations, η denotes a scalar learning rate. As we will see below, the iterative

updates will correspond to local Hebbian plasticity in the neural implementation of the model.

Typically, if the A, B, and C matrices are learnt, then the matrices are updated by a single

step according to Eq 11 after the xk has already converged and using the equilibrium values x̂k.

This is because it is often assumed that these variables represent more slowly changing vari-

ables in the real world. Moreover, in the neural implementation, these matrices are often

assumed to be implemented by synaptic strengths which typically change slowly while the x̂
variables are typically mapped to neural firing rates, which change quickly.
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The process of learning a tPC model is shown in Algorithm 1. The algorithm assumes that

sensory observations yk arrive at discrete steps k. At each step k, we first initialize the xk values

with the previous estimated x̂k� 1 value from the last step. Then, we iterate Eq 10 until conver-

gence for a given observation yk. Upon convergence our x̂k becomes our best estimate of the

true state of the world. Given this x̂k, we can update the A, B, and C matrices using Eq 11.

Algorithm 1: Single training epoch for temporal predictive coding
N: Discrete steps of observations
for k = 1 to N do
Initialize xk with previously inferred x̂k� 1

while xk not converged do
Perform inference by updating xk (Eq 10)

end
Update weight matrices ΔA, ΔB, ΔC (Eq 11) using inferred x̂k

end

Neural circuit implementation

The update rules and dynamics we have derived in Eqs 10 and 11 can be mapped to a recurrent

predictive coding network architecture with biologically plausible Hebbian learning rules. In

this section, we present two examples of networks implementing the algorithm exactly, and

then a simplified network that approximates the algorithm.

Fig 2A presents a potential example of how the update rules we have derived can be imple-

mented in a neural network with only local and Hebbian plasticity, which is similar to the stan-

dard predictive coding network [4]. In this network, observations yk enter at the lowest level,

and cause sensory prediction errors �y as the observations are met by top-down predictions.

These prediction errors are explicitly represented by the activities of ‘prediction error neu-

rons’. These prediction error neurons receive top-down inhibitory connections from ‘value

neurons’ in the layer above which, through their firing rates, represent the inferred posterior

values x̂k. Similarly, at the layer above there are additional prediction error neurons that repre-

sent the difference between the current activity and that predicted based on the previous infer-

ence mapped through the dynamics function (Eq 9), and we assume that there are dedicated

neurons that ‘memorize’ latent activities x̂k� 1 inferred at the previous discrete time step, which

is used to make a prediction of the current latent activities and reloaded at the end of inference

at each time step.

There are several important aspects to note about this model. First, all the required update

rules can be implemented using purely local information. The dynamics of the hidden state

estimates xk (Eq 10) can be reproduced locally since the value neurons receive inhibitory con-

nections from the prediction error neurons �x at their ‘layer’ as well as excitatory connections

from the prediction error neurons �y at the layer below. Similarly, the prediction errors �y can

be computed according to Eq 8 as the corresponding prediction error neurons receive excit-

atory input yk and inhibition from neurons encoding xk. The prediction error �x can be com-

puted analogously. The update rules for the A, B, and C weight matrices (Eq 11) are also

precisely Hebbian, since they are outer products between the prediction errors and the value

neurons of the layer above which, crucially, are also precisely the pre and post-synaptic activi-

ties of the neurons where the synapses implementing these weight matrices are located. More-

over, we empirically demonstrate in the Results sections that scaling by the inverse covariance

matrices S� 1

x and S� 1

y could be encoded in the learnt A and C matrices, similarly as it has been

shown in static predictive coding models [48]. Thus, the tPC model can represent the covari-

ance matrices implicitly in its synaptic weights, without needing to implement them in explicit
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synaptic weights. The nonlinear function f(�) can be implemented in this circuit following the

way specified in [26], through local inhibitory neurons.

The network shown in Fig 2A follows a standard predictive coding architecture, but it

could be simplified because the prediction error neurons encoding �x only project to corre-

sponding neurons encoding x, and we could thus borrow the idea of dendritic computing sim-

ilar to the model of [49]. In particular, substituting Eq 9 into Eq 10, we obtain:

t
dxk

dt
¼ � xk þ Af ðx̂k� 1Þ þ Buk þ f 0ðxkÞ � CT�y; ð12Þ

where, for clarity of explanation, we omitted the precision S� 1

x that can be encoded in A. By

writing the dynamical equation in this way, we assume that there is no building block within

the model that encodes the error explicitly; rather, the apical dendrite will encode the inputs

Af ðx̂k� 1Þ þ Buk and send the signal to the soma of the pyramidal neuron. This dendritic signal

excites the soma and drives the inferential dynamics (Eq 12), together with the decay −xk that

is intrinsic to the soma and feedback signals from the observation layer. The corresponding

neural implementation is shown in Fig 2B. Although the architecture of the network becomes

simpler, learning parameters A and B is less straightforward because the prediction error �x is

not explicitly represented in the activity of any neurons in the network. Nevertheless, the pre-

diction error �x is equal to the difference between the neural activity and the membrane

Fig 2. Possible neural implementations of temporal predictive coding. A: Potential neural circuit implementing the iterative recurrent predictive coding

algorithm. For simplicity, we have depicted each neural ‘layer’ as possessing only two neurons. B: Version of the model where the prediction errors are

represented by the difference in membrane potential in soma and at apical dendrites (depicted as ellipses). C: Neural circuitry required to implement the

single-iteration predictive coding algorithms. This model no longer includes a separate set of neurons explicitly storing the estimate of the previous

timestep, but instead, the temporal prediction errors are computed naturally through recurrent connections. For simplicity, we omitted the control inputs

Buk, which can be implemented in a similar way to the recurrent inputs Ax̂k� 1 to the error neurons or apical dendrites.

https://doi.org/10.1371/journal.pcbi.1011183.g002
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potential in the apical dendrite, and it has been proposed that such difference drives plasticity

of synapses on the apical dendrite [50]. Since both the neural activity and the membrane

potential are encoded within the same neuron, it is plausible that their difference could be

computed within the neuron (e.g. the information on the neural activity could be brought to

the synapses on apical dendrites via backpropagating action potentials). Such a signal could

then drive local synaptic plasticity to learn the A and B matrices.

While simulating the model, we update the state estimates by numerically solving Eq 12

using the Euler method, i.e. we calculate the state estimates for every interval Δt:

xkðt þ DtÞ ¼ xkðtÞ þ
Dt
t
� xkðtÞ þ Af ðx̂k� 1Þ þ Buk þ f 0ðxkðtÞÞ � CT�y

h i
: ð13Þ

where Dt
t

is effectively the step size of the discretized inference that we tune in our simulations.

The above expression highlights that the algorithm has two nested timescales—firstly there is

the ‘external’ timescale which is where sensory inputs yk are received in a sequence of steps we

index by subscript k. Then, for each external step, there is an internal inference of the hidden

state that is numerically implemented as a set of recurrent iterations within that external step,

which we denote as t. In such a nested framework, the implementations in Fig 2A and 2B need

to store and hold fixed the state estimate of the previous step while the iterative inference of

the state estimate for the current step is ongoing. Specifically, the estimate from the previous

step x̂k� 1 needs to be held fixed throughout the iterative procedure while the actual current val-

ues xk(t) vary in order to find a balance x̂k between the demands of matching the prediction

from the last step and also the current observation (Algorithm 1). Once the iterations are com-

plete for a step, the new value of x̂k needs to be loaded into the memory and stored as the last

step for the next set of iterations. In situations where the observations are separated in time, it

is known that neurons are able to store the representation of stimuli presented a few seconds

earlier in their activity [51]. In the case where sensory input arrives continuously, the two time-

scales coincide, and there may be no time for inference between steps of sensory input. In that

latter case, the algorithm can be adapted to remove the issue of nested timescales without

unduly harming filtering performance by simply using a single iteration of the internal infer-

ence for each external step. This means that there is effectively no ‘inner loop’ of the algorithm

anymore, since the inner loop consists of just a single iteration. This makes the algorithm fully

online in the sense that it receives a new sensory input for every step. In particular, note that

by equating time indices Δk = Δt, we obtain:

x̂k ¼ xk þ
Dt
t
� xk þ Af ðx̂k� 1Þ þ Buk þ f 0ðxkÞ � CT�y

h i
: ð14Þ

A diagram of a potential neural circuit implementing this single-step algorithm is presented

in Fig 2C. This network no longer includes neurons storing past inferences. Instead, the tem-

poral prediction errors are computed solely using recurrent connections labelled A, which are

now assumed to introduce a temporal delay of one step.

The advantage of this approach is that it eschews the challenge of storing and loading the

memory of the last step; instead, this memory can be dynamically maintained across a single

external step simply through recurrent connections via their intrinsic synaptic delays. The dis-

advantage of this approach is that the update rules of the algorithm were derived as gradient

descent on an objective function, and this approach is equivalent to taking only a single gradi-

ent step for each example. Clearly, in many cases, such an algorithm simply would not work

because a single step is nowhere near enough to approach the optimum. However, there are

two features of the problem that ameliorate much of this difficulty in practice. The first is that,

when f is a linear function, the objective is actually convex, and thus the loss landscape is
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extremely well-behaved. This allows for the use of relatively high integration steps to move

large distances in a single, or a few steps, without fear of overshooting the optimum or running

into divergences. The other factor is due to the nature of the external world: typically, visual

scenes change relatively slowly on a microsecond-by-microsecond level, and thus the optimal

estimated hidden state in a single step is likely close to the optimum hidden state for the next.

In this case, since we initialize the inference of each step with the optimum of the last step, this

will usually be close to the optimum for the current step as well, thus meaning that the algo-

rithm simply does not have to make many iterations to achieve the optimum since it already

starts close by. In the next section, we show that, in practice, on standard tracking and filtering

tasks, these two factors can often simplify the inference problem enough that this single itera-

tion approach often works successfully, although it usually does not perform quite as well as

multi-step methods.

Results

The results of this paper are partitioned into a theoretical section and experimental sections. In

the theoretical section, we examine the relationship between the tPC model and Kalman filter-

ing and demonstrate that the tPC network, under certain assumptions, is equivalent to a Kal-

man filter with a fixed posterior variance. In simulations, we demonstrate that, despite not

correctly representing the posterior variance, the tPC network nevertheless exhibits strong and

robust tracking performance on both linear and nonlinear filtering tasks while also being capa-

ble of online system identification through the learning of the A and C matrices, unlike the

Kalman filter. Moreover, we show that when tPC is trained with natural movies, the simulated

neurons in the latent layer develop motion-sensitive receptive fields resembling those of neu-

rons in the primary visual cortex.

Relationship to Kalman filtering

Here we show that both Kalman filtering [27] and tPC can be derived as special cases of the

Bayesian filtering problem. Bayesian filtering concerns the problem of inferring the sequence of

hidden ‘causes’ x1, . . ., xK of the observations y1, . . ., yK. This problem can be effectively fac-

torised into a sequence of online inference problems i.e., inferring the hidden state xk at time

step k, given the whole history of observations y1, . . ., yk [52, 53]. For simplicity of notation, we

denote x1:k = x1, . . ., xk and y1:k = y1, . . ., yk. The Bayesian filtering problem can thus be formu-

lated as inferring the following posterior distribution:

pðxkjy1:kÞ: ð15Þ

We show in S1 Appendix that this posterior distribution is proportional to:

pðxkjy1:kÞ / pðykjxkÞ

Z

pðxkjxk� 1Þpðxk� 1jy1:k� 1Þdxk� 1 ð16Þ

where the integral is effectively the marginal distribution p(xk|y1:k−1) of the joint p(xk, xk−1|y1:k−1)

and can be considered as the prior on xk. Notice that the term p(xk−1|y1:k−1) is exactly the poste-

rior inferred from the previous time step k − 1, making Bayesian filtering a recursive method

[54]. As a special case of Bayesian filtering, Kalman filtering assumes that the conditional distri-

butions p(yk|xk) and p(xk|xk−1) can be parameterized linearly as follows:

ykjxk � N ðCxk;SyÞ; xkjxk� 1 � N ðAxk� 1 þ Buk;SxÞ: ð17Þ
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Further, it assumes that the posterior estimated at the previous step k − 1 follows:

xk� 1jy1:k� 1 � N ðx̂k� 1;Sk� 1Þ ð18Þ

where x̂k� 1 is the MAP estimate from the previous step k − 1 and is the mode (or mean) of the

Gaussian posterior with covariance Sk−1 at step k − 1. Under the above Gaussian assumptions,

the prior p(xk|y1:k−1) on xk (i.e., the integral in Eq 16) can be written as [55]:

pðxkjy1:k� 1Þ ¼ N ðAx̂k� 1 þ Buk;ASk� 1AT þ SxÞ: ð19Þ

Kalman filtering then performs maximum a posteriori (MAP) to find x̂k:

x̂k ¼ argmax
xk

log pðxkjy1:kÞ

¼ argmin
xk

ðyk � CxkÞ
T
S� 1

y ðyk � CxkÞ

þðxk � Ax̂k� 1 � BukÞ
T
ðASk� 1AT þ SxÞ

� 1
ðxk � Ax̂k� 1 � BukÞ:

ð20Þ

Since all the transformation functions in this optimization problem are linear, an analytical

expression for x̂k can be derived, which will result in the well-known algorithm for Kalman fil-

tering i.e., the ‘projection’:

x̂ �k ¼ Ax̂k� 1 þ Buk

S�k ¼ ASk� 1AT þ Sx

ð21Þ

and the ‘correction’ step where we then incorporate the new information we have received

from the environment to correct our estimates:

x̂k ¼ x̂ �k þ Kðyk � Cx̂ �k Þ

Sk ¼ ðI � KCÞS�k
K ¼ S�k C

T½CS�k C
T þ Sy�

� 1

ð22Þ

where K is known as the Kalman Gain matrix and is central to the Kalman filter update rules

for the estimated mean and variance in the correction step [56]. x̂k and Sk are then our esti-

mated mean and covariance of the posterior Gaussian distribution. The derivation of the pro-

jection and correction rules can be found in prior works [54, 57], while we also provide the

derivation in S2 Appendix as to compare to the update rules of our tPC model, which is dem-

onstrated below.

Our tPC model also aims to solve the Bayesian filtering problem in Eq 16, and it can also

make the linear and Gaussian assumptions underlying Eq 17. Notice that Eq 17 is identical to

Eqs 3 and 4, but with a linear f. tPC differs from Kalman filtering by making a different

assumption on the distribution on the previous-step posterior p(xk−1|y1:k−1). Instead of assum-

ing it as a Gaussian distribution in Eq 18, it assumes:

xk� 1jy1:k� 1 � dðxk� 1 � x̂k� 1Þ ð23Þ

where dðxk� 1 � x̂k� 1Þ denotes a Dirac distribution with its density concentrated at x̂k� 1. The

prior on xk for predictive coding thus becomes:

pðxkjy1:k� 1Þ ¼ pðxkjx̂k� 1Þ ¼ N ðAx̂k� 1 þ Buk;SxÞ ð24Þ

since the density of p(xk−1|y1:k−1) is concentrated at x̂k� 1. The MAP estimation of x̂k performed
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by predictive coding is thus:

x̂k ¼ argmax
xk

log pðxkjy1:kÞ

¼ argmin
xk

ðyk � CxkÞ
T
S� 1

y ðyk � CxkÞ

þðxk � Ax̂k� 1 � BukÞ
T
S� 1

x ðxk � Ax̂k� 1 � BukÞ

ð25Þ

which is the free energy in Eq 5 with a linear f. The above derivation thus provides another

interpretation of the tPC model, i.e. a special case of the Bayesian filtering problem that

assumes at each step the variance estimated at the previous step is 0. Again, as all transforma-

tions in the optimization objective are linear, we can derive an analytical expression for x̂k:

x̂ �k ¼ Ax̂k� 1 þ Buk

x̂k ¼ x̂ �k þ Kðyk � Cx̂ �k Þ

K ¼ SxCT½CSxCT þ Sy�
� 1

ð26Þ

which is similar to the projection and correction steps for Kalman filtering (Eqs 21 and 22),

but with Sk−1 assumed to be 0, i.e., tPC does not propagate the uncertainty estimations. The

derivation of these equations can be found in S2 Appendix.

It is also worth mentioning that in the tPC model, although we did not specify the estima-

tion of uncertainty Sk at each step, not propagating the uncertainty Sk−1 from the previous

step is not equivalent to not estimating it. In fact, as was shown in [58], even when we choose

to estimate Sk in the tPC model, it is still not propagated. Therefore, our MAP estimation x̂k

will not be affected.

To summarize, by assuming a linear f, here we have shown that both Kalman filtering and

tPC are special cases of the Bayesian filtering problem, while the key difference is that predic-

tive coding ignores the uncertainty estimated at the previous step when estimating the most

likely hidden ‘cause’ at the current time step, whereas Kalman filtering always estimates this

uncertainty. However, as we will show in the experimental results section, in the benchmark

tracking tasks, tPC performs on par with Kalman filtering, albeit not estimating the posterior

uncertainty. Importantly, there are several advantages of tPC over Kalman filtering as a model

of dynamical processing in the brain. Firstly, the projection and correction steps of Kalman fil-

tering require complicated matrix algebra and are challenging to compute in neural circuitry,

especially the Kalman Gain matrix K. On the other hand, although we can derive analytical

results for the estimates of tPC as well, these estimates can be obtained via the iterative meth-

ods mentioned above, which afford plausible circuitry implementations (Fig 2). Secondly, the

iterative nature of our tPC model also makes it adaptable to nonlinear f, where there are no

analytical solutions to the Bayesian filtering problem. In contrast, extending the Kalman filter

to nonlinear systems is challenging and standard methods such as the extended Kalman filter

[59] work by linearizing around the nonlinearity and thus require knowledge of the Jacobian

of the nonlinearity at every state, which is also challenging to implement in neural circuits.

Finally, the Kalman filter assumes knowledge of the correct A, B, and C matrices while these

must presumably be learnt from sensory observations in the brain.

Performance in linear filtering problems

Here we first present results for the linear tPC model on a simple tracking task of the kind to

which the Kalman filter is commonly applied in industry. Here, the goal is simply to infer the

unknown hidden state (position, velocity, acceleration) of an object that is undergoing an
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unknown acceleration. We receive noisy observations of the position, state, and acceleration of

the object which are mapped through a random C matrix with additional observation noise.

We use a random C matrix for the observation mapping to simulate and test the most difficult

scenario where the observations are entirely scrambled.

Mathematically, the generative process of this task can be represented according to a linear

state space model. We assume that the position and velocity of the object follow the usual laws

of Newtonian physics, and there is a persistent acceleration which is affected by the control

input, giving us the following A and B matrices,

A ¼

1 Dk
1

2
Dk2

0 1 Dk

0 0 1

2

6
6
6
6
4

3

7
7
7
7
5
; B ¼ 0 0 1½ �: ð27Þ

In Eq 27, Δk denotes the duration of the interval between successive sensory observations

(we used Δk = 0.001). Additionally, we draw a fixed C matrix from a random Gaussian distri-

bution C � N ð0; 1Þ, and modeled the control inputs as uk = e−0.01k. The process and observa-

tion noise Sx and Sy were set to identity matrices. We then generate the true latent states xk
and the noisy observations yk using Eqs 1 and 2, initialized with a zero vector when k = 0. The

performance of the models is then measured as the mean squared error (MSE) between the

estimated x̂k and true xk across all observation time steps. Fig 3A shows an example of the true

system state that we generated across 1000 time steps, and Fig 3B shows its corresponding

noisy observations. As can be seen, the projected observations are completely scrambled by

matrix C, making it a challenging task for the models to retrieve the true system states.

We then investigate tracking performance using tPC compared to the Kalman filter for

both 5 steps of inference between observations (Δk = 5Δt) and 1 step (Δk = Δt). Since the prob-

lem is linear, we also investigate the performance of a tPC when its inference dynamics have

reached the equilibrium, using the equilibrium condition derived in Eq 26. Since tracking per-

formance is visually indistinguishable when zoomed out over 1000 timesteps, in Fig 3C, we

plot the estimates of acceleration (x3) on the 40 timesteps between 560 and 600 steps in. It can

be seen from Fig 3C that both the tPC model with 5 inference steps and that with fully con-

verged inferential dynamics could achieve comparable performance to the Kalman filter. Inter-

estingly, the estimates of tPC tend to be closer to those of the Kalman filtering, rather than the

true values. Although the tPC model with a single inference step (corresponding to the neural

implementation in Fig 2C) has worse tracking performance, it is able to estimate a smoothed

version of the trajectory of the system state. We hypothesize that the smoothed estimate with a

single inference step is likely due to the fact that the tPC model does not completely converge

in 1 iteration, and so does not completely optimize its estimate on every timestep, with the

effect that the estimate is less sensitive to new information and effectively averages over recent

experiences rather than optimally solving each one independently. A similar performance

comparison is obtained on the position (x1) and velocity (x2) and is shown in S1 Fig.

To quantify the effect of the number of inference iterations and integration step size Dt
t

upon

performance, in Fig 3D we plotted the MSE difference between predictive coding models with

various inference iterations and inference step sizes and the Kalman filter, which is the optimal

solution to the tracking problem. The MSE is calculated as the mean squared difference

between the estimated system state x̂k and true state xk, averaged across time steps and trials.

We find that with a small number of inference steps, the performance of the tPC model is

worse, indicating that additional steps of inference aid the tracking performance of the
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algorithm. Moreover, although increasing the step size will initially improve the performance,

the MSE will start to increase if the step size is too large. It can also be seen that with more

inference steps and appropriate step sizes, the performance of tPC will be able to approximate

that of the (optimal) Kalman filter.

Learning the synaptic weights

In the previous investigations, we fixed the parameters A, B and C to the true values and only

performed the inference dynamics. However, in many cases, simply inferring the hidden states

of the world is not enough because we cannot assume that we know a-priori the structure of

the dynamics or observation functions of the world. That is, in most real-world situations, the

A, B, and C matrices are unknown. Instead, we must learn these matrices from observations.

In the tPC model, we have a natural Hebbian plasticity-based learning rule which we can use

Fig 3. The tracking task and the impact of inference step size and the number of inference steps on performance. A. The dynamics of the true hidden

state are represented as a 3-dimensional vector at each time step, with entries corresponding to position (x1), velocity (x2) and acceleration (x3). B. The

projected noisy observations from the true system state in A. C: Estimates of the acceleration with different models, zoomed in at the interval between 560

and 600 time steps. D: MSE difference between tPC and Kalman filter, with varying numbers of inference steps and step sizes for predictive coding. PC

stands for temporal predictive coding and KF stands for Kalman filter. All values are with arbitrary units (a.u.).

https://doi.org/10.1371/journal.pcbi.1011183.g003
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to learn these matrices directly (Eq 11). Here, we investigate how learning these parameters

affects the performance of the tPC model. Specifically, we compare three different ways of set-

ting the values for A and C: 1) fixing them to the true values used for generating the data; 2)

learning them using Eq 11 and Algorithm 1; 3) fixing them to random values. We then exam-

ine the performance of these models on two levels, the latent state level (x) and the observation

level (y), by measuring how well the model estimates the activities on both levels. It is worth

noting that the observation estimates are calculated by performing a forward pass at each time

step i.e., ŷk ¼ CðAx̂k� 1 þ BukÞ, where the values of A and C are obtained at each time step k via

the aforementioned three approaches. The results are shown in Fig 4.

For this set of results, we use 20 inference steps with a step size 0.2 to get the optimal perfor-

mance for the tPC models, based on Fig 3D. Fig 4A shows that, while our tPC estimates the

latent state well with true A and C, when asked to learn the parameters, the model fails to accu-

rately estimate the latent state. Quantitatively, as shown in Fig 4C, the estimation MSE of the

learning model on the state level is similar to tPC with totally random parameters, which is

Fig 4. Effects of learning parameters A and C. A, B: Estimation of the state and observation trajectories respectively by different models. ‘True’, ‘Learnt’

and ‘Random’ denote the predictive coding model with true, learnt and random A and C respectively. Only the first dimension of the latent and

observation is shown for simplicity. The other two dimensions have similar performance. C, D: MSE of the predictions on the hidden and observation

levels respectively. Boxplots were obtained with 40 trials for each model. Both x and y are with arbitrary units (a.u.).

https://doi.org/10.1371/journal.pcbi.1011183.g004
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much higher than those of the Kalman filter and tPC with true parameters. On the other hand,

however, we find that the model learning A and C can accurately estimate the observations

even with the incorrectly estimated latent state (Fig 4B). This effect arises because the problem

of inferring the true hidden state from the data is fundamentally under-determined. There are

many possible hidden states that, given a flexible learnt mapping, could result in an identical

predicted observation. Importantly, despite inferring a different representation of the hidden

state, the network is able to learn A and C that correctly predicts the incoming observations

(Fig 4D).

Learning the noise covariance matrices

For all our experiments above, we have used Sx = Sy = I when generating the training data,

where I is the identity matrix. However, the noise covariance underlying a natural dynamic

process may not always be identity. Although earlier works have proposed to encode the noise

precision matrices S� 1

x and S� 1

y into additional connections explicitly [9], this approach would

introduce extra complexity into the neural implementation of tPC. On the other hand, it has

been shown that in the static case, the noise precision matrix can be implicitly encoded in

recurrent connections similar to the A matrix in our tPC model [48], without needing to rep-

resent the precision matrix explicitly as in [9]. Therefore, here we investigate whether A and C
can encode the precision matrices of the process and observation noise respectively after learn-

ing. We used the same A, B and C matrices for data generation as before, but set the noise

covariance matrices as:

Sx ¼ Sy ¼

10 0 0

0 1 0

0 0 1

2

6
6
6
4

3

7
7
7
5
or Sx ¼ Sy ¼

10 2 0:5

2 1 0:4

0:5 0:4 1

2

6
6
6
4

3

7
7
7
5
: ð28Þ

We refer to the first case as ‘non-identity diagonal’ and the second case as ‘positive definite’.

The choice of these covariance matrices is arbitrary, although we intentionally make one diag-

onal entry larger than the others to examine tPC’s capability of learning such a unique struc-

ture. The training hyper-parameters for this experiment are identical to the ones used for Fig

4, with which the learning for A and C could also converge. As Fig 5A shows, when the noise

covariance matrices are non-identity diagonal and positive definite, the recurrent matrix A is

able to encode the large diagonal entry 10 in Sx into its diagonal entries. Likewise, the C matrix

develops stronger weights to account for the larger variance of the inputs, suggesting that our

tPC model can learn the noise covariance Sx and Sy into its recurrent and feedforward

weights, without accounting for them in the energy function and learning/inference dynamics

explicitly.

We then conducted a quantitative analysis of the impact of non-identity noise covariance

in Fig 5B and 5C, similar to Fig 4. Here, both ‘Kalman Filter’ and ‘True’ use the correct A, C,

Sx and Sy, although the ‘True’ tPC model performs inference to get the hidden states using

Eqs 8, 9 and 10. The ‘Learnt’ model has no access to all the matrices and has to learn both the

generative process and the noise covariance with its weights. The results are similar to Fig 4:

the model that learns A and C will fail to learn the correct hidden states but its observation esti-

mates are on par with Kalman filtering, even when the noise covariance matrices are non-iden-

tity. Interestingly, we also observed slightly degraded latent estimation performance of the

‘True’ model with non-identity noise covariance. We hypothesize that this is due to the large
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diagonal entry 10 affecting the inference dynamics, which can be solved using coordinate-wise

inference step sizes.

Overall, these results suggest that the synaptic plasticity of tPC can encode the noise covari-

ance in the generative process, without representing them explicitly in the dynamics and cir-

cuit implementations. It is also interesting to investigate the exact theoretical relationship

between the weights and noise covariance, similar to the analytical relationship in [48], and we

intend to investigate it in future explorations.

Training tPC with natural movies

Thus far, we have examined tPC in low-dimensional examples to understand its computa-

tional properties. In this section, we demonstrate that this model can also be applied to high-

dimensional stimuli and provide a plausible account of how the biological visual system devel-

ops representations of dynamical inputs. To do so, we trained the tPC model on a dataset of

patches extracted from movies of natural scenes. Each of the movies consisted of 50 frames of

200 × 200 pixels that we spatially bandpass filtered by a retina-like centre-surround filter [60].

Fig 5. Performance with non-identity noise covariance. A: True and learnt A and C matrices with different underlying noise covariance matrices. B, C:

MSE of the predictions on the hidden and observation levels with different noise covariance matrices. Error bars obtained with 40 trials.

https://doi.org/10.1371/journal.pcbi.1011183.g005
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We extracted 16 × 16 patches from the movies with the highest motion to form a dataset of

2000 moving patches of 50 frames. We also augmented the dataset with a left-right flipped ver-

sion of itself to ensure a rich variety of motion directions. Two examples of the first 10 frames

of the movies can be seen in Fig 6A. We then trained a tPC model with 320 hidden neurons

with this dataset. Specifically, due to the redundancy of information in natural scenes and neu-

ral connectivity and energy constraints, we trained a tPC model with L1 sparsity-constraint

latent activities and forward weights C. Therefore, the objective function we used in this set of

experiments is:

F k ¼ kyk � Cf ðxkÞk
2

2
þ kxk � Af ðx̂k� 1Þk

2

2
þ lxjxkj1 þ lC

X

i;j

jCijj ð29Þ

where | � |1 denotes vector 1-norm, and we used a linear f(�) in these experiments. We also

assume there is no control input to the model, so B = 0. The sparsity constraints are similar to

the classical sparse coding model [60] and recent temporal prediction neural network models

of dynamical inputs [61, 62]. To describe the cortical processing of natural scenes more accu-

rately, for the experiments with these natural movies, we also used a time constant τ = 10ms
estimated for visual cortical neurons [63]. The natural movies used in this experiment were

recorded with frame rates in the range of 20Hz to 30Hz. In our simulations, we set Δt to 0.1ms
(and therefore the inference step size Dt

t
¼ 0:01) and perform inference for 330 iterations to

Fig 6. Representations developed by the model when trained with patches from movies of dynamic natural scenes.

A: First 10 frames of 2 example training movies used in our experiments. Patches extracted from movies obtained at

websites pexels.com, pixabay.com and commons.wikimedia.org (for wikimedia attributions see https://github.com/

C16Mftang/temporal-predictive-coding). B: The projective fields C developed Gabor-like filters after training. C:

Space-time receptive fields developed by hidden neurons of the tPC model.

https://doi.org/10.1371/journal.pcbi.1011183.g006
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(approximately) match the 30Hz frame rate, although we did not observe any qualitative dif-

ference when we used more inference iterations to match the lower frame rates.

We then trained our adjusted model with the natural movies. In Fig 6B we show the (spar-

sity-constraint) forward weight C (of size 256 × 320), which develops Gabor-like and localized

projective fields similar to those observed in mammalian primary visual cortex [64]. This find-

ing is unsurprising as such a sparsity-constraint generative model is similar to the original pre-

dictive coding [4] and sparse coding models [60], which also reproduced localized Gabor

filters.

To study the dynamical properties of tPC, we then performed a reverse correlation analysis

[65] on the hidden neurons of the trained tPC. Specifically, after training, we supply a sequence

of white noise stimuli to the model, let the hidden neurons relax according to Eq 13 to develop

latent representations of the stimuli, and average the stimuli giving more weights to those pro-

ducing the highest response of a neuron. In particular, for each time step k and each neuron,

we multiply the hidden activity xk with each of the white noise stimuli from yk−4 to yk and sum

up the products. The weighted sum is the spatio-temporal receptive field (STRF) of this neuron

[65]. Formally, the STRF of the ith hidden neuron is defined as:

STRFi ¼
1

T � 5

XT

k¼5

xi;kyk� 4:k; ð30Þ

where xi,k denotes and activity of the hidden neuron i at time step k and yk−4:k denotes the 5

frames of white noise preceding and including time step k. Some examples of the STRFs devel-

oped by the hidden neurons of the tPC are shown in Fig 6C, where each row denotes a neuron

and each column a time step. Two important properties emerge: 1) The STRFs are temporally

asymmetric i.e., the power of the receptive fields decays back in time. This is consistent with

observations in real neurons [66] and earlier computational models [61, 62]; 2) Importantly,

many neurons also develop motion-sensitive STRFs, i.e., the spatial regions each neuron is

responsive to shift location in the visual field over history steps, moving in a fixed direction

(right-ward for neurons 160 and 298, left-ward for neurons 14 and 32 in the shown examples).

Such motion sensitivity has been observed in real neurons in early visual areas [41, 67] and

demonstrated in earlier sparse coding models [68, 69]. Overall, these results demonstrate that

the tPC model with realistic time constants matching cortical neurons can reproduce neural

representations observed in the visual areas, providing a possible computational mechanism

underlying the learning of such representations.

Extending tPC to nonlinear tasks

Here we examine our tPC model in nonlinear tasks. In order to make the task more challeng-

ing, we train the model on a simulated motion of a pendulum, in which the generative process

does not explicitly follow that of tPC. Fig 7A shows a free-body diagram of the pendulum that

we simulated in this experiment, demonstrating the mass, length L, and force vectors acting on

the system. We describe the state of the pendulum by the angle of the pendulum θ1 and its

angular velocity θ2. According to Newton’s Second Law of Motion, the angle of the pendulum

evolves according to:

€y1 ¼ �
g
L
sinðy1Þ ð31Þ
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where g is gravity. We can express this motion in a set of first-order equations:

_y1 ¼ y2

_y2 ¼ �
g
L
sinðy1Þ:

ð32Þ

In the simulation, we used the following parameters: g = 9.81 m/s2, L = 3.0 m. We then sim-

ulated the system as an initial value problem by numerically integrating the equations using

the explicit Runge-Kutta method for 2500 seconds with Δk = 0.1 second time steps and initial

values of θ1 = 1.8 rad and θ2 = 2.2 rad/s. These values were chosen to simulate the pendulum

motion with a large amplitude of oscillation to shift the system into a more nonlinear regime.

The time series presented to the models yk were created by adding these numerical solutions

and Gaussian noise with a zero mean and standard deviation of 0.1.

We trained both nonlinear (with a hyperbolic tangent nonlinearity f(�)) and linear tPC

models to predict these time series. Parameters of C and A were initialized to the identity

matrix and the zero matrix, respectively. The learning was performed in the same fashion as in

the previous section.

Fig 7B shows the results from the pendulum simulations using the phase portrait of the sys-

tem. The solutions of the ground-truth simulation and our nonlinear model prediction are

plotted on the vector field for the final 80 seconds. Even though both models performed rela-

tively well by correctly predicting the behaviour of the pendulum motion, the linear model

performed worse when the pendulum reached its highest angular displacements (see the noisy

prediction around the extremities of the θ1 axis in Fig 7B). On the other hand, the nonlinear

model stayed relatively stable throughout the entire prediction. Fig 7C shows the mean

squared error of prediction averaged over 100 separate simulations, and the nonlinear model

consistently outperformed the linear one. In S3 Appendix we also examined a nonlinear task

Fig 7. Simulations of the pendulum. A: A free-body diagram of a simple pendulum that has a mass m attached to a string with length L. Also shown are

the forces applied to the mass. The restoring force −mg sin θ is a net force toward the equilibrium position. B: A phase portrait of the pendulum simulation

showing the result of our linear versus nonlinear models prediction for the ground-truth data. The vector field (i.e. set of small arrows) was created by

computing the derivatives of
dy1

dt and
dy2

dt at t = 0 on a grid of 30 points over the range of −π to + π and -4 to +4 for θ1 and θ2, respectively. C: The barplot

shows the difference between the mean prediction errors of the linear model versus the nonlinear model from 100 simulations with varying noise profiles.

The mean errors are significantly different (p<< 0.001).

https://doi.org/10.1371/journal.pcbi.1011183.g007
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where the data generation process follows the generative model in Eqs 1 and 2 and obtained

similar results.

Discussion

In this paper, we have analysed the recurrent predictive coding architecture for temporal pre-

diction and filtering. This task is important because processing time-varying sequences of

inputs and using them to infer dynamically changing hidden states of the world is often con-

sidered a core task of the sensory regions of the brain [70]. As such, it is likely that these

regions have an architecture heavily specialised for performing such filtering tasks. Here we

have shown that the filtering problem can be tackled with a simple and biologically plausible

algorithm with a straightforward implementation in neural circuitry.

We have derived our tPC model from first principles as a variational filtering algorithm,

providing a clear algorithmic derivation in terms of gradient descents on the resulting free

energy functionals. We have also proposed a direct implementation in neural circuitry which

relies on only local information transmission as well as purely Hebbian plasticity that inherits

the simple neural implementation of static predictive coding networks. Furthermore, we have

also demonstrated that in the linear case, the algorithm is closely related to Kalman filtering,

and is capable of robustly solving filtering and tracking tasks at a level close to the optimal lin-

ear solution. Moreover, and unlike the Kalman filter, we have demonstrated that our model

can perform online learning of the parameters using Hebbian plasticity, which works rapidly

and effectively in predicting the correct observations. Importantly, when trained on natural sti-

muli and constrained by sparse weights and activities, the tPC model develops motion-sensi-

tive Gabor-filters of the visual scene, which is consistent with representations developed in the

visual cortex. We have also extended the algorithm to the nonlinear case. We demonstrated

that, when presented with noisy nonlinear stimuli, the nonlinear model has a superior perfor-

mance over a linear model in both learning the dynamics and predicting the behaviour of the

input sensory observation.

Related work

Several earlier works have tried to approach the problem of Kalman filtering in the brain. Wil-

son and Finkel [71] repurpose a line attractor network and show that it recapitulates the

dynamics of a Kalman filter in the regime of low prediction error. However their model only

works for a single-dimensional stimulus, does not encode uncertainty, and also only works

when a linearisation around zero prediction error holds. Deneve et al. encoded Kalman filter

dynamics in a recurrent attractor network [72]. Their approach however encodes stimuli by

means of basis functions, which leads to an exponentially growing number of basis functions

required to tile the space as the dimensionality of the input grows. In the predictive coding

approach, neurons directly encode the mean of the estimated posterior distribution, which

means that the network size scales linearly with the number of dimensions. Our gradient

method also completely eschews the direct computation of the Kalman Gain, which simplifies

the required computations significantly. Additionally, Beck et al. show that probabilistic popu-

lation coding approaches can compute posteriors for the exponential family of distributions of

which the Gaussian distribution is a member [73]. However, no explicitly worked-out applica-

tion of the population coding approach to Kalman filtering exists, to our knowledge. Recent

work has also addressed the question of how biological recurrent neural networks can be

trained for temporal prediction [74]. They proposed that synapses maintain eligibility traces

encoding to what extent they contributed to neural activity over time, and when combined
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with error signals, such traces enable effective credit assignment. It would be interesting to

investigate how such eligibility traces could be incorporated into tPC networks.

Moreover, other works have also explored predictive coding for temporal predictions. For

instance, early works [33, 34, 75] utilized a Kalman filter combined with sparse image repre-

sentations to make future predictions of visual stimuli. However, these works did not describe

how the Kalman filter can be implemented in biological circuits, and how their Kalman filter-

based models can be extended to the nonlinear case. More recently, Jiang and Rao [40] trained

a temporal version of predictive coding on sequences of natural video (filmed by a person

walking through a forest) and observed that neurons have spatiotemporal receptive fields

resembling those in the primary visual cortex. However, unlike our model, their model relies

on an external hyper-network to perform temporal predictions. Temporal versions of predic-

tive coding networks have also been extended to include multiple levels of hierarchy [39, 40].

Analysis of these networks revealed that neurons on higher levels change their activity with a

slower time scale than the neurons at the lower levels of the hierarchy [40]. It has been also

demonstrated that hierarchical temporal predictive coding networks can achieve performance

comparable to BPTT in standard machine learning benchmarks [39]. However, these models

require complex neural network implementations to perform these temporal tasks. It is thus

an interesting future direction to see whether our tPC model, which inherits the simple neural

implementation of the static predictive coding network, can present similar performance and

neural responses.

Work by Lotter et al. [76] adapted deep recurrent neural networks to perform a kind of pre-

dictive coding whereby the network was trained to predict future prediction errors of each

layer. They demonstrated that the resulting network was capable of correctly predicting

sequences of video frames. While substantially scaling up predictive coding architectures to

challenging machine learning tasks, the networks of Lotter et al. [76] diverged in many ways

from classical predictive coding architectures, and also utilized many non-biologically plausi-

ble components from machine learning such as convolutional and LSTM layers as well as

training their network with BPTT.

Kutschireiter et al. [38] addressed the question of how temporal predictive coding networks

can be extended so they represent posterior uncertainty. They demonstrated that if multiple

copies of the network are made, and the dynamics of each network include noise with an

appropriate magnitude, then each network can represent a sample from the posterior distribu-

tion p(xk|y1. . .yk) and the collection of networks as a whole can represent the posterior distri-

bution of state in a sampling-based manner. Their model is particularly interesting because the

posterior uncertainty can be decoded from the differences in the activity of individual net-

works. However, the encoding of posterior uncertainty comes with the cost of a larger number

of neurons required to form multiple networks.

A number of studies have used normative models to generate spatiotemporal receptive

fields resembling those of direction-selective V1 simple cells [61, 62, 68, 69, 77–82]. Some

models involved mechanisms related to predictive coding, such as sparse coding [68, 69] and

independent component analysis [77] and applied them to spatiotemporal stimuli. However,

while the resulting receptive fields were sometimes direction-selective, they did not have the

asymmetric temporal profile seen in real STRFs. Application of slowness principles to spatio-

temporal stimuli can also produce direction-selective STRFs [80, 81], but they again lack the

asymmetric temporal profile. Other models have trained single-hidden-layer neural networks

to perform temporal prediction on movies of natural scenes [61, 62, 82]. This has been shown

to reproduce direction-selective STRFs with an appropriate asymmetric temporal profile [61],

and indeed when stacked hierarchically reproduces units resembling motion-sensitive simple,

complex and pattern-motion cells [62]. However, these models were trained by back-
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propagation, arguably a biologically-unrealistic learning mechanism, hence while they are

informative about whether the cortex might have temporal prediction as a normative objective

they are agnostic about the potential learning mechanism. Our model helps bridge this gap,

demonstrating how temporal prediction can be combined with a more plausible learning

mechanism to produce units with spectrotemporal receptive fields resembling those of direc-

tion-selective V1 simple cells.

Relationship to Kalman filtering

The similarities and differences between the tPC algorithm and classical filtering algorithms

like Kalman filtering are of significant theoretical interest, as earlier works by Rao and Ballard

[34] have already used Kalman filtering as a model of dynamical processing in the brain, and

recent works have also been interested in Kalman filtering in a biologically plausible setting

[83]. We have found that the crucial distinction is in the representation of the model’s uncer-

tainty, mathematically represented in the posterior variance Sk. Specifically, in the tPC model,

although it represents the two ‘objective’ uncertainties Sx and Sy of the dynamical system it is

inferring, it does not represent the uncertainty in the estimated posterior distribution (unlike

the extended model of [38]). Crucially, it is the assumption of the prior at each time step that

prevents the tPC model from successfully propagating the posterior uncertainty through time.

Although tPC does not optimally update and represent the dynamically changing posterior

uncertainty of the agent, it has some computational advantages over Kalman filtering, which

may render it more suitable for implementation in neural circuitry. The key advantage of the

predictive coding approach is its computational simplicity compared to the Kalman filtering

update rules which require complex matrix algebra and especially matrix inversions to com-

pute the Kalman Gain matrix which are unlikely to be implementable in neural circuitry

directly, while the predictive coding equations are simple and only require local and Hebbian

updates and can be directly translated into relatively straightforward neural circuits. Moreover,

as seen in Fig 3, the predictive coding estimate and the Kalman filter estimates of a given

dynamical system end up closely converging anyway, which means that tPC networks could

provide the brain an efficient and cheap way to approximate the highly effective Kalman filter

using only simple circuitry.

One reason why predictive coding networks achieve performance similar to the Kalman fil-

ter is that the posterior uncertainty decays rapidly over trials (for an illustration see Fig 5A in

Moeller et al. [84]). Furthermore, for deterministic transition processes (with Sx = 0), the pos-

terior uncertainty decays to Sk = 0 [84]. Therefore, as the learning progresses, the Kalman filter

becomes more similar or even identical (for deterministic processes) to tPC.

Our work thus raises an interesting empirical question as to what kinds of uncertainties var-

ious agents—such as humans or animals—actually appear to represent in dynamical inference

tasks. For instance, it is not clear in the literature that subjective confidence ratings are highly

correlated with the true dynamical uncertainty of the decisions in a task [85]. Although the

Kalman filter has been used to describe reinforcement learning [86], direct comparison with

simpler reinforcement learning models did not favour the Kalman filter [87]. It may be inter-

esting, therefore, to compare predictions of the Kalman filter (and the extended model repre-

senting posterior uncertainty [38]) and the original tPC models to experimental data directly.

For example, one could compare if the learning rate in reinforcement learning tasks is better

described by the Kalman Gain or the value from tPC. Another interesting line related to Kal-

man filtering is to compare nonlinear tPC with extended [88] and unscented [89] Kalman fil-

ters in nonlinear tasks. Since this work focuses on linear tPC and its properties, we leave the

exploration of these directions for future investigations.
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Relationship with generalized coordinates

A further interesting theoretical property of the model is its potential to autonomously learn to

represent the dynamics of systems in generalized coordinates of motion [35, 36] if provided

with generalized coordinates as inputs. Generalized coordinates, introduced into the predictive

coding literature by Friston et al. [36], and well known in engineering practice, involve repre-

senting the n’th order derivatives of a state as additional coordinate dimensions. In effect, a

point in generalized coordinates of motion to n’th order reflects the approximate trajectory of

the state given by the n’th order Taylor expansion around that point. Original predictive cod-

ing models involving generalized coordinates typically required hardcoding the relationships

between the coordinates, and the relative precisions between different dynamical orders [35,

90, 91] which results in intricate and complex hardcoded connectivity, reducing the ultimate

biological plausibility of such models. However, our model’s capability to directly learn the A
and C matrices from data allows the model to simply receive a generalized coordinate state as

input and learn the required connectivity online, as demonstrated in our pendulum

simulations.

Neural implementation

There are several interesting questions regarding the biological plausibility of the multi-step

neural implementation. Initially these schemes, while they arise directly from the gradient

descent derivation, appear biologically implausible for two reasons. The first is the issue of

storage. Iterative schemes require the initial conditions (state estimate x̂k� 1Þ to be held fixed

throughout multiple iterations, and this means that this state must be stored somewhere acces-

sible to be utilized multiple times during the iterative inference phase. It is not clear where or

how this information could be stored in the brain, especially in low-level sensory systems. This

storage must be local and ubiquitous as a naive implementation of the multi-step algorithms

proposed in this paper would require separate storage for every single value neuron.

The second issue relates to the time it takes for an iterative algorithm to converge. Specifi-

cally, if we model the brain as receiving visual input as a continuous stream, then multiple iter-

ations based upon a single stimulus would necessitate ignoring the data arriving in the

intervals while the iterations are taking place. Moreover, an iterative approach would also take

more time to update upon information newly received, which could be crucial for survival in

some cases. There are also multiple potential solutions to this problem—firstly, the cortex may

implement both an iterative and an amortized feedforward pass solution simultaneously [92],

and there is evidence for precisely this. Firstly, core visual functions can often occur within

100–200 ms [93–96] which is too short to allow multiple steps of recurrent optimization, thus

demonstrating that some kind of rapid single-step inference is possible. Conversely, there is

much evidence that increased viewing time allows for the refinement of representations,

reduction of uncertainty, and improvement in accuracy over time, which strongly speaks to

the existence of some iterative recurrent processing occurring as well.

Finally, there is some interesting evidence that most brain regions, including the visual cor-

tex, operate on a characteristic frequency [97, 98]. In the case of the visual cortex, the dominant

rhythm is the alpha band at 5–15 Hz. Experiments have found that information presented in

phase with these oscillations is processed normally; however, if the information is presented

out of phase, then a drop of accuracy ensues, suggesting that the information has not been

fully or successfully processed [99]. These findings are consistent with the iterative conver-

gence algorithms proposed here being implemented in the cortex.

A further avenue for future work relates to the challenge of learning long-term dependen-

cies which span over many time steps. This has long been a central challenge with these
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recurrent models, and emerges essentially due to the fact that information is permuted or lost

at every step of the recurrent pass, and thus tracking dependencies across many recurrent

loops becomes increasingly difficult [29, 100, 101]. Numerous solutions to this have been sug-

gested in the literature, ranging from specially designed cell architectures that can explicitly

store or pass along information unaltered [29, 101] to having a nested hierarchy of recurrent

models which allow for the propagation of information over longer and longer timescales

[102].

The recurrent tPC model we propose can also be implemented when representing predic-

tion errors in dendrites as in [49] and [103] instead of using explicit prediction error neurons

as in Fig 2A. Such an architecture can reconcile predictive coding networks with the lack of

strong evidence for there being explicit prediction error neurons in the cortex [11], unlike the

dopaminergic reward prediction error neurons in the mid-brain whose existence has been

established for decades [104, 105]. For example, a recent study in rat cortex found little evi-

dence for prediction-related signals in spikes, but found strong evidence for it in local field

potentials, which are thought to be driven by somatic and dendritic potentials [106]. Although

in Fig 2B and 2C we still use error neurons in the hierarchical part of the network, they can

also be circumvented following the dendritic implementation in [107]. Moreover, as was dis-

cussed in [19], it is also possible to implement tPC with differentiation between excitatory and

inhibitory neurons following Dale’s Law, further increasing the biological plausibility of the

model.

Conclusion

In this paper, we have proposed temporal predictive coding, a model of how the processing of

dynamic stimuli may take place in the brain. We have demonstrated that the tPC model per-

forms simple and localised computations that afford a biologically plausible neural network

implementation while approximating the Kalman filtering model in theory. We have empiri-

cally verified this approximation, and further demonstrated that tPC can reproduce motion-

sensitive receptive fields in the visual areas of the brain. Moreover, the model can be straight-

forwardly extended to account for nonlinear dynamics, bringing an insight on how the brain

may perform dynamic sensory processing that is often nonlinear in nature.
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