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Abstract

An object’s colour, brightness and pattern are all influenced by its surroundings, and a num-

ber of visual phenomena and “illusions” have been discovered that highlight these often dra-

matic effects. Explanations for these phenomena range from low-level neural mechanisms

to high-level processes that incorporate contextual information or prior knowledge. Impor-

tantly, few of these phenomena can currently be accounted for in quantitative models of col-

our appearance. Here we ask to what extent colour appearance is predicted by a model

based on the principle of coding efficiency. The model assumes that the image is encoded

by noisy spatio-chromatic filters at one octave separations, which are either circularly sym-

metrical or oriented. Each spatial band’s lower threshold is set by the contrast sensitivity

function, and the dynamic range of the band is a fixed multiple of this threshold, above which

the response saturates. Filter outputs are then reweighted to give equal power in each chan-

nel for natural images. We demonstrate that the model fits human behavioural performance

in psychophysics experiments, and also primate retinal ganglion responses. Next, we sys-

tematically test the model’s ability to qualitatively predict over 50 brightness and colour phe-

nomena, with almost complete success. This implies that much of colour appearance is

potentially attributable to simple mechanisms evolved for efficient coding of natural images,

and is a well-founded basis for modelling the vision of humans and other animals.

Author summary

An object’s brightness and colour are not just due to its own surface properties, but also

depend on the colours and patterns of its surrounds. We set out to develop a computa-

tional model that could predict colour appearance based on the principle of efficient cod-

ing. This takes into account the fact that neural bandwidth is limited (e.g. the fastest rate a

neurone can fire might only be ten times its lowest rate), and that none of this valuable

bandwidth should be wasted when coding information across different spatial scales in a

typical natural scene. We next combined these principles with contrast sensitivity func-

tions (because contrast detection thresholds vary with spatial scale), and used either psy-

chophysical or neurophysiological data to estimate the bandwidth for humans/primates.

When we tested the model against a bank of visual phenomena (illusions) we found that
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the model was able to predict the direction of almost all phenomena. Our model is sur-

prisingly simple and generalisable, with no free parameters, and would be explained by

low-level feed-forward neural architecture. This suggests that many complex visual phe-

nomena–that have often attributed to high-level processes–could arise as artefacts of lim-

ited bandwidth and efficient coding, offering valuable avenues for future research.

This is a PLOS Computational Biology Methods paper.

Introduction

The colour and lightness of objects cannot be recovered directly from the retinal image of a

scene, but depend upon neural processing by low-level spatial filters and feature detectors

along with long-range and top-down mechanisms that incorporate contextual information

and prior knowledge about the visual world [1–4]. Ideally, image processing achieves lightness

and colour constancy–allowing us to see colour and form veridically–but inevitably it pro-

duces visual effects and illusions, which give insight into the underlying mechanisms. Thus,

the surroundings of an object affect its lightness or colour in several ways. For example, assimi-

lation and induction effects shift appearance towards that of neighbouring colours [5], whereas

simultaneous contrast increases the difference between an object and the surround, and in

contrast induction the surround affects the contrast of a pattern [6,7]. The crispening effect–

where contrasts close to the background level are enhanced–encompasses all three of these

phenomena [8,9]. Related effects in colour vision include the Abney, Bezold–Brücke, Hunt,

and Stevens effects, where colours, colourfulness and contrasts shift with saturation and

brightness [10].

Neural mechanisms have been proposed to account for some of the foregoing phenomena,

for example Mach Bands can be attributed to lateral inhibition [11], brightness induction to

spatial filtering in the primary visual cortex [12], and colour constancy to photoreceptor adap-

tation [13,14] or to cortical processing [15]–but these accounts are controversial, and some

effects are not easily explained [7,8,16]. Moreover, the lack of a comprehensive account of col-

our appearance limits the accuracy of the models that are used in design, industry and research

[10,17].

Although photoreceptor adaptation and lateral inhibition do partly account for colour con-

stancy and simultaneous contrast effects, their primary function is probably better understood

as allowing the visual system to efficiently encode images of natural scenes, which have a large

dynamic range and a high degree of statistical redundancy. Coding efficiency, which allows

the brain to make optimal use of limited neural bandwidth and metabolic energy, is a key prin-

ciple in early visual processing [18–22]; here we ask how a model based on this principle might

account for colour appearance.

The optimal (maximum entropy) code for natural images, as specified by their spatial auto-

correlation function (i.e. second-order image statistics), approximates a Fourier transform

[23,24], which is physiologically unrealistic. Efficient codes can however be defined for circu-

larly symmetrical Difference of Gaussian (DoG) or oriented Gabor-function filters, which

respectively resemble the receptive fields of retinal ganglion cells and the simple cells of mam-

malian visual cortex [22,25–27]. In early studies, Laughlin and his co-workers [20,28] found

that the contrast response functions and the centre-surround receptive fields of fly (Lucilia
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vicina) large monopolar cell (LMC) neurons—which are directly post synaptic to the photore-

ceptors—produce an efficient representation of natural images for the noise present the

insect’s photoreceptor responses. Specifically, synaptic amplification at the receptor to LMC

synapse and lateral inhibition between receptor outputs, give a neural code that quantitatively

accords with the methods of histogram equalization and predictive coding that are used by

data compression algorithms [28]. The centre-surround receptive fields of vertebrate retinal

ganglion cells are comparable to those of fly monopolar cells [29], while the simple cells in

visual cortex generate an efficient code for natural image statistics [22,30].

Our aim here is not to simulate biological vision precisely, but to model efficient coding by

physiologically plausible spatial filters. We describe a Spatiochromatic Bandwidth Limited

(SBL) model of early vision, which uses luminance and chromatic spatial filters at octave sepa-

rations to cover the detectable range of spatial frequencies (Figs 1–3). Three parameters specify

the model, namely the spatial autocorrelation function (power spectrum) of natural images,

noise in the retinal signal, and the channel bandwidth–or number of distinguishable response

states (Fig 1; [20]). The first of these parameters is given by image statistics, the second by

physiological or psychophysical measurements, and the third is estimated from psychophysical

data on the crispening effect (Fig 3A; [8]). As the model predicts colour and lightness in natu-

ralistic images, and accounts for various visual phenomena and illusions it offers a framework

for understanding neural image processing, and is a starting point for simulating colour

appearance for humans and other species.

The model

The SBL model is comparable to other models of early vision that have been proposed to

account for lightness and colour perception. These include MIRAGE [31], which uses non-ori-

ented DoG filters, the oriented difference of gaussians (ODOG) model [12], the brightness

induction wavelet model (BIWaM) [32], and neurodynamical brightness induction model

[33], which use orientation-sensitive filters. The SBL model differs from these predecessors in

that to achieve efficient coding of natural images the gain and dynamic range (i.e. contrast

response function) of neural channels vary with spatial frequency–as specified by the contrast

sensitivity threshold–with gain normalised to natural scene statistics, so that on average the

output has equal power in each spatial channel. These gain functions are hard-wired and feed-

forward, which contrasts with divisive gain models that use feedback loops to make efficient

use of neural bandwidth [34].

The model is implemented as follows (Figs 1 and 2). i): The image is filtered with a set of

spatial filters at one octave separations. These filters are either circularly symmetrical differ-

ence of Gaussian (DoG) functions [26] or Gabor functions at four orientations [25]. The filter-

ing process differs from convolution in that it applies a Michelson contrast to centre versus

surrounds; this approach follows the method proposed by Peli [35], who demonstrated that

contrast in complex scenes should be scaled relative to the local luminance. The three spectral

classes of filter correspond to those in human vision, namely achromatic/luminance with cen-

tre and surround receiving the same spectral inputs, blue–yellow, and red–green with centre

and surround receiving opposite spectral inputs. ii): The lower threshold (α) for the filter is set

by the psychophysical contrast sensitivity at the filter’s centre frequency (based on contrast

sensitivity functions, [CFSs], [36,37], parameters shown in Table A in S1 Supporting Informa-

tion). α is subtracted from image contrasts, which is consistent with human psychophysics

[38]. The filters’ contrast response function is linear over a limited dynamic range to an upper

threshold (β), which is a fixed multiple, ε, of α. ε corresponds to the number of contrast levels

that can be encoded (i.e. channel bandwidth or response states; [20]); (Figs 1 and 2). Thus, for
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ε = 10, the contrast saturation threshold β is 10 times the activation threshold α for each filter.

As ε is equal for all channels, high sensitivity filters encode a smaller range of image contrasts

than low sensitivity filters (Fig 2B and Fig B in S1 Supporting Information). We estimated ε by

fitting the model to Whittle’s [8] psychophysical measurement of the crispening effect (Figs

3A and 4). iii) Signal power in each channel is normalised to that of the filter’s response to a

natural scene, thereby whitening the average spatial frequency power spectrum of the output

[39]. This “neural gain” at each spatial frequency remains fixed (in contrast to divisive gain

models). iv) Filter outputs are summed to recover their representation of the original image,

which can be compared to human perception of the image.

Fig 1. Overview of the Spatiochromatic Bandwidth Limited (SBL) model. The model uses a cone-catch image (a, S1

Appendix), which is filtered by either DoG or Gabor kernels for luminance channels, and DoG kernels for chromatic

channels (b). Contrasts are converted to Michelson contrasts (c. showing luminance DoG outputs), then clipping and

gain processes are applied with a bandwidth (ε) of 10 (d. Fig 2), and the spatial filters are pooled to create the output

(e). Output colours are the model’s internal representation and are not scaled to sRGB space. However, we note that

the output image has qualities that combine the effects of an impressionist artist’s take on the scene that compresses the

contrasts and highlights chromatic features such as the “carpet of bluebells” that observers describe, but are much

weaker in the input image. Also noteworthy is that the model would produce the same overall green scene with blue

flowers irrespective of the input image’s white balance.

https://doi.org/10.1371/journal.pcbi.1011117.g001
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responses (with zero intercept) by least-squares regression. The SBL model shows a linear contrast response and saturation point that provide a better fit than

the authors’ model. The inset excludes the three highest contrast values to highlight the linear relationship prior to saturation.

https://doi.org/10.1371/journal.pcbi.1011117.g003
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For the red-green and blue-yellow chromatic channels we make the assumption, consistent

with neurophysiology [40,41], that the filters are less orientation selective than for luminance

channels and use only DoG filters (but see [42]). The bandwidth of the red-green channel

equals that of the luminance DoG signal, which produces plausible results (Fig 1 and below).

However, if the blue-yellow channel has the same bandwidth (ε), its low contrast sensitivity

(Fig 2A) means that it fails to saturate in natural scenes. We therefore reduced ε to give an

equal proportion of saturated pixels in natural images for red-green and blue-yellow channels.

Further details of the model are presented in S1 Supporting Information. An implementa-

tion of the SBL model is provided for use with ImageJ, a free, open-source image processing

platform [43] and the micaToolbox [44,45]. The code is accessible here.

Results

Estimation of the bandwidth, ε
Channel bandwidth (ε) is estimated by fitting the model to human psychophysical data from

Whittle’s [8] investigation of the crispening effect. Whittle described how perceived lightness

varies with luminance, and how contrast sensitivity depends on contrast and background

luminance, by asking subjects to adjust target luminances to make equal-interval brightness

series (Figs 3A and 4A). We created images simulating the viewing conditions in Whittle’s

experiment, including the spatial arrangement and luminance of the grey patches that he used

to create perceptually uniform equal-contrast steps. Raw data (Fig 3A) were extracted from fig-

ures using WebPlotDigitiser [46]. Based on least squares fitting, ε is 15 for the circularly sym-

metrical version of the SBF model (DoG, R2 = 0.994), and 3.75 for the oriented version of the

model (Gabor, R2 = 0.995). These bandwidths are within the range encoded by single neurones

[20,24]. Critically, the model recreates the characteristic inflection point around the back-

ground grey value. Lowering the bandwidth, and thereby increasing the proportion of satu-

rated channels, produces a more extreme crispening effect, which suggests that crispening is

due to saturation rather than to loss of contrast sensitivity with increasing contrast between

targets and the background (Fig 2), which is the usual interpretation of Fechner’s law [8].

Interestingly, the model with ε derived from Whittle’s [8] crispening data accurately pre-

dicts the responses of primate retinal ganglion cells to sinewave gratings [47] (Fig 3B). The

model fit (R2 = 0.972) is better than the authors’ own function (R2 = 0.952), although the dif-

ference in residuals is non-significant (T-test, t = 0.68, p = 0.50). Both the psychophysical crisp-

ening effect and bottom-up neural responses suggest that at around 4 cpd the saturation

threshold for the human vision and macaque retinal ganglion cells (β$ = 4) is approximately

0.2.

Fig 2. Dynamic range clipping and gain adjustment by the SBL model. a) human luminance and chromatic detection thresholds for sinewave

gratings [37]. b) Clipping adjusts contrasts so that they cannot fall below the CSF at each spatial frequency (α, SUBTHRESHOLD), or above the

saturation threshold (β, SATURATED). Subthreshold contrasts are subtracted, and signals at each spatial frequency are multiplied by a gain

value—denoted by arrow length in (c)—so that on average natural images have equal power at each spatial frequency (whitening). The

saturation threshold is calculated from the CSF and channel bandwidth, ε (4 in this example) at each spatial frequency. High and low spatial

frequency channels therefore have low contrast sensitivity, but encode a large range of image contrasts, whereas intermediate spatial frequencies

have high sensitivity and a low dynamic range. To demonstrate the clipping effects, we show an input image with sinewaves of different spatial

frequencies and contrasts (d). (e) shows bandpass spatial filters and (f) highlights regions that are clipped or preserved. The overlap between

neighbouring octaves (f) means that where contrasts are saturated for one channel, they are unlikely to be saturated for all neighbouring

channels so that contrast differences are detectable even in high contrast scenes. Ultimately this shows how a system with a severely limited

neural bandwidth of 15 contrast levels and peak sensitivity of ~200:1 can code for contrasts in natural scenes larger than 10,000:1. Note that the

fine lines in these illustrative images suffer from moiré effects when viewed on a monitor, and we have artificially blurred the higher spatial

frequencies in the input and output images to mitigate this effect. These effects were not present in the modelling, which did not use spatial

frequencies that exceeded the kernel’s peak sensitivity.

https://doi.org/10.1371/journal.pcbi.1011117.g002
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Model performance

We tested the SBL model’s ability to account for approximately 52 perceptual phenomena that

could plausibly be explained by low-level visual mechanisms [16,48,49], first for the version
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Fig 4. Illustration of dynamic range clipping by the SBL model. (a) for the crispening effect [8]. The three rows of grey levels are identical, with equal step

sizes. Against the black background contrasts appear largest for darker squares, whereas the opposite is true for the white background. The SBL model explains

this effect through saturation; contrasts near the grey level of the local surroundings are preserved (highlighted with circles), while other contrasts are saturated

(blue areas adjacent to the highlighted areas). The graph at the bottom plots differences between adjacent squares in the three rows, showing higher contrasts

for dark, middle and light ranges respectively. Illusions such as the Chevreul staircase (b) are also explained in part by clipping. The upper staircase appears to

be a series of square steps in grey level. The lower staircase has the same grey levels, but is flipped so that its gradient matches the surround gradient. The SBL

model correctly predicts that the upper staircase is seen as square steps in grey level (solid green line) while the lower staircase is a series of gradients (dashed

grey line). The plot shows pixel values in arbitrary units measured along each staircase, as highlighted in the output image. The model shows that this effect

arises partly because the matched gradients of the lower staircase causes local subthreshold contrasts, and because contrasts are not balanced on each side of the

step. (c) Shows the effects of increasing background contrast on two identical targets. At intermediate contrasts (~0.1–0.7) the targets are predicted to show

simultaneous contrast effects (the right-hand target appears lighter than the left-hand one), and at higher surround contrasts this is predicted to switch to the

White illusion (spreading) effect where the right-hand target becomes darker than the left-hand one.

https://doi.org/10.1371/journal.pcbi.1011117.g004
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with oriented luminance filters, and secondarily for DoG filters (chromatic filters were always

non-oriented, see above). Both versions of the model correctly predict the direction of almost

all effects and, where relevant, their controls (Table 1 and Fig 4 and S1 Appendix). The main

exceptions were the DoG (non-oriented) model’s inability to predict illusory spots and bars in

the Hermann grid and Poggendorff illusions, comparatively weak performance with one con-

trol for the Chevreul staircase [50], failure in some of the brightness induction effects pre-

sented by Zaidi et al. [51] (though mostly with the comparatively weak illusions), and the

enhanced assimilation of colour created by bars in patterned chromatic backgrounds [52].

Nevertheless, this performance was achieved with no free parameters (Figs 1–3), and the

model can be adjusted to predict all effects.

Discussion

The Spatiochromatic Bandwidth Limited model of colour appearance described here at least

qualitatively predicts the appearance of a wide variety of images that are used to demonstrate

colour and lightness perception (Table 1 and Fig 4 and S1 Appendix). These include ‘illusions’

that have been explained by high-level interpretations of 3D geometry, lighting, atmospherics,

or mid-level principles of perceptual organisation [53,54]: for example White-Munker,

shadow, Koffka ring and haze illusions. It is therefore parsimonious to suggest that many

aspects of object appearance can be attributed to mechanisms adapted for–or consistent with–

coding efficiency [19]. Other accounts of the same phenomena invoke specialised mechanisms

(e.g. [12,55]) or top-down effects, which imply that multiple sources of sensory evidence and

prior knowledge are used to infer the most likely cause of the stimulus [7,16,56,57]. Neither

does the SBL model invoke light adaptation or eye movements, which implies that colour con-

stancy is largely independent of the adaptation state of the photoreceptors–provided that they

are not saturated. By comparison the models used by standard colour spaces, such as CIE

LAB/CIE CAM implement the von Kries co-efficient rule [14], which assumes that photore-

ceptor responses are adapted to the global mean for a scene, even though chromatic adaptation

is affected by both local and global colour contrasts [58]. Retinex [55] and Hunt models do

normalise receptor signals to their local value [17], but the weightings of global and local fac-

tors are poorly understood. Recent work has successfully modelled some lightness phenomena

by simulating edge integration with asymmetric gain for centre-on and centre-off pathways

[59,60], but the mechanisms underlying colour constancy are less clear [58]. Moreover, the

Table 1. Summary of phenomena tested with oriented and non-oriented versions of the SBL model, with the

parameters, α, β and ε fixed as explained in the text. All phenomena were qualitatively explained to some degree.

For illustrations of specific effects see the S1 Appendix.

Y: Predicts effect and relevant controls

N: Partially predicts effect, or does not predict controls

Phenomenon DoG model Gabor Model

Crispening effect Y Y

Contrast sensitivity Y Y

Brightness induction/assimilation (e.g. White illusions) Y Y

Simultaneous brightness contrast Y Y

Illusory bars and spots (e.g. Hermann grid, Poggendorff illusion) N Y

Contrast induction for spatial frequency, orientation, and chromatic contrast Y Y

Colour constancy/chromatic adaptation Y Y

Chromatic simultaneous contrast Y Y

Chromatic assimilation N N

https://doi.org/10.1371/journal.pcbi.1011117.t001
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adjustments required for colour constancy are largely complete within about 25ms [61], which

is too fast for receptor adaptation, but consistent with the purely feed-forward character of the

SBL model (the Rudd & Zemach model is similarly feed-forward [59,62]). Fig 5 shows how the

SBL model can account for colour appearance in a naturalistic image under variable illumina-

tion. More generally, the feed-forward architecture of the SBL model explains why many other

visual phenomena appear without any delay, whereas existing models require feedback loops

for normalisation [12,17,32,55]. Thus, Brown and MacLeod [7] comment that the distribution

of surround colours affects colour appearance almost immediately, leaving little time for feed-

back or adaptation. Likewise, as suggested by [6], contrast induction is explained without

requiring the feedback invoked by Nassi et al. [63]. This is because, according to the SBL

Fig 5. The SBL model can account for colour appearance in complex naturalistic images. (a) shows the input image (similar to the Lotto cube [81]) where

the blue squares on the yellow-tinted side (right) and the yellow squares on the blue-tinted side (left) are physically the same grey (colours are shown in the

squares at the top of the image). The SBL model (b) correctly predicts that the squares under both tinting regimes appear yellow and blue, rather than grey. The

SBL model also predicts the powerful simultaneous contrast (or shadow) illusion present in this image whereby; the central tiles on top of the cube appear to be

darker than the central tiles on the shaded side of the cube (colours shown in squares on the far left and for right hand sides).

https://doi.org/10.1371/journal.pcbi.1011117.g005
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model, low contrast surrounds allow all spatial bands to operate within their dynamic ranges,

whereas high contrast surrounds saturate some spatial bands, resulting in under-estimates of

brightness contrast or chromaticity (Figs 3A and 4). Geier and Hudák [50] argue that lateral

inhibition cannot explain effects such as the Chevreul staircase, and this indeed is where the

SBL model fails to replicate one of their control conditions (see S1 Appendix). However, the

SBL model’s performance with the other control, combined with its use of CSFs (grounding

the model’s performance at low spatial frequencies) does at least address many of Geier and

Hudák’s reasons for rejecting low-level models. Likewise, Zaidi et al. [51] show how brightness

induction can be explained through t-junction based models, and while our models do not

predict all effects perfectly, we show that low-level models can predict all of their effects under

some conditions (e.g. White illusions and Benary cross). Future work should test the model’s

performance against humans quantitatively in key tasks such as this. The model also reconciles

contrast constancy with a visual system that varies dramatically in contrast sensitivity and con-

trast gain across spatial frequencies, allowing suprathreshold contrasts to have a similar

appearance at different distances [64]. Contrasts are predicted to be most constant where they

are saturated across multiple spatial frequencies, e.g. where the blue regions in Fig 2F overlap.

Pooling across spatial scales might explain the Abney effect, which is a shift in hue that occurs

when white light is added to a monochromatic stimulus [65], because the colour stimulus may

be below-threshold at some spatial bands, but above threshold for others, however we require

specific data to estimate the bandwidth of chromatic channels (equivalent to Whittle’s [8]

luminance crispening data). As noted above (Model, Figs 1 and 2A), we assume that the band-

width of the red-green signal equals the luminance DoG signal, but the blue-yellow signal has

reduced the bandwidth, which produces plausible results when processing natural scenes, but

future work should measure the chromatic bandwidth functions and determine whether the

SBL model can account for the Abney effect quantitatively. Further developments of the chro-

matic SBL model should also investigate whether performance could be improved by model-

ling both single-opponent and double-opponent pathways. The latter are sensitive to both

spatial frequency and orientation, and has been suggested to play a role in suprathreshold col-

our appearance [42]. However, we were able to simulate the same spatial-frequency/saturation

effects with the non-oriented version of the SBL model (S1 Appendix).

The Circularly Symmetric Version of the SBL Model and Animal Vision

Whereas the oriented version of the SBL model uses orientation selective achromatic filters

and circularly symmetrical chromatic filters (see above), the circularly symmetrical version

uses DoG filters for all channels. For the visual phenomena that we have tested the oriented

version of the SBL model predicts lightness and colour at least as well as the circularly symmet-

rical version (Table 1). It might therefore seem logical to consider only the former, but whereas

the visual systems of all animals probably have circularly symmetrical receptive fields (e.g.

[28]), there is limited evidence for orientation selective cells other than in mammalian visual

cortex. Also, the differences between the two versions of the SBL model seem to us to be sur-

prisingly small. For example, both predict White effects, which might be expected to depend

on orientation selective mechanisms (S1 Appendix; [12,49]), but only the oriented model cor-

rectly predicts the presence of illusory spots in the Hermann grid, and elimination of these

spots in the wavy grid [66]. Similarly, the oriented version of the model predicts Koffka rings

and the Chevreul staircase (Fig 4B) more accurately than the circularly symmetrical version.

The bandwidth, ε, for the non-oriented filter is approximately 15, which matches neurophysi-

ological measurements from primate retinal ganglion cells (Fig 3; [47]). By comparison the

bandwidth of the oriented version is estimated to be about four-fold lower than that of the
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non-oriented model, which is consistent with the low spike rates of neurons in the primary

visual cortex [24]. For a given spike rate partitioning the information into multiple channels

allows a correspondingly reduced integration time. The DoG model highlights an asymmetry

between positive and negative contrasts in natural scenes; in order to code natural scenes effi-

ciently and with equal bandwidth for positive (centre-on) and negative (centre-off) contrasts,

our model assumes that negative contrasts require a larger dynamic range in order to use the

same bandwidth efficiently (see Fig A in S1 Supporting Information). This may reflect the

observed asymmetries in primate LGN ON and OFF pathways, where the OFF pathway has a

larger dynamic range, and smaller receptive field size [67], and also in primate and cat cortical

pathways, where the ON pathways also have a smaller dynamic range than OFF pathways [68];

our models suggest that these asymmetries may be adaptations to natural image statistics.

The SBL model is useful for non-human animals because coding efficiency is a universal

principle, and contrast sensitivity functions are known for many species (Fig 2A; [69]),

whereas psychophysical and neurophysiological data on visual mechanisms in non-primates is

limited. Current research into non-human colour appearance typically uses the receptor noise

limited (RNL) model [70,71], which also assumes that early vision is constrained by low level

noise. Others have sought to control for acuity and distance dependent effects [45,69,72], but

surprisingly few studies have utilised contrast sensitivity functions [73], and behavioural vali-

dation of the models is difficult [74,75]. As with human vision, the SBL model may reconcile a

number of key effects. For example, in a bird (blue tit, Cyanistes caeruleus) chromatic discrimi-

nation thresholds depended on the contrast of the surround [74], which resembles chromatic

contrast induction [7] and is simulated by the SBL model. Shadow-illusion effects have also

been demonstrated in fish [76]. Aside from predicting colour appearance the SBL model high-

lights comparatively unexplored trade-offs in visual systems, with contrast sensitivity poten-

tially linked to dynamic range and to other factors such as low-light vision and temporal

acuity. For example, birds have poor luminance contrast sensitivity, but high temporal acuity

consistent with a low neural bandwidth in the SBL model [77–79].

Supporting information

S1 Appendix. This file contains a comprehensive list of visual phenomena tested with both

versions of the model and assessments of the models’ performance.

(PDF)

S1 Supporting Information. This text file contains additional information regarding the

model.

(PDF)
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PLoS One. 2016; 11. https://doi.org/10.1371/journal.pone.0151099 PMID: 26990087

80. Commision Internationale de l’Eclairage. Recommendations on uniform color spaces, color-difference

equations, psychometric color terms. Paris: CIE. 1978.

81. Purves D, Lotto RB, Nundy S. Why We See What We Do. Scientific American. 2002; 90: 236–243.

PLOS COMPUTATIONAL BIOLOGY A model of colour appearance based on efficient coding of natural images

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011117 June 15, 2023 16 / 16

https://doi.org/10.1073/pnas.1310442111
http://www.ncbi.nlm.nih.gov/pubmed/24516130
https://doi.org/10.1111/2041-210X.12911
https://doi.org/10.1111/2041-210X.12911
https://doi.org/10.1111/brv.12230
http://www.ncbi.nlm.nih.gov/pubmed/26468059
https://doi.org/10.1073/pnas.1800826115
https://doi.org/10.1073/pnas.1800826115
http://www.ncbi.nlm.nih.gov/pubmed/29866847
https://doi.org/10.1371/journal.pone.0145679
http://www.ncbi.nlm.nih.gov/pubmed/26799935
https://doi.org/10.1016/j.visres.2020.11.013
https://doi.org/10.1016/j.visres.2020.11.013
http://www.ncbi.nlm.nih.gov/pubmed/33596523
https://doi.org/10.1242/jeb.232090
http://www.ncbi.nlm.nih.gov/pubmed/32967998
https://doi.org/10.1038/srep35335
http://www.ncbi.nlm.nih.gov/pubmed/27748401
https://doi.org/10.1098/rspb.2018.1036
http://www.ncbi.nlm.nih.gov/pubmed/30158305
https://doi.org/10.1007/s00359-005-0090-5
http://www.ncbi.nlm.nih.gov/pubmed/16404602
https://doi.org/10.1371/journal.pone.0151099
http://www.ncbi.nlm.nih.gov/pubmed/26990087
https://doi.org/10.1371/journal.pcbi.1011117

