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Abstract

A variety of pulmonary insults can prompt the need for life-saving mechanical ventilation;

however, misuse, prolonged use, or an excessive inflammatory response, can result in ven-

tilator-induced lung injury. Past research has observed an increased instance of respiratory

distress in older patients and differences in the inflammatory response. To address this, we

performed high pressure ventilation on young (2-3 months) and old (20-25 months) mice for

2 hours and collected data for macrophage phenotypes and lung tissue integrity. Large dif-

ferences in macrophage activation at baseline and airspace enlargement after ventilation

were observed in the old mice. The experimental data was used to determine plausible tra-

jectories for a mathematical model of the inflammatory response to lung injury which

includes variables for the innate inflammatory cells and mediators, epithelial cells in varying

states, and repair mediators.

Classification methods were used to identify influential parameters separating the param-

eter sets associated with the young or old data and separating the response to ventilation,

which was measured by changes in the epithelial state variables. Classification methods

ranked parameters involved in repair and damage to the epithelial cells and those associ-

ated with classically activated macrophages to be influential.

Sensitivity results were used to determine candidate in-silico interventions and these

interventions were most impact for transients associated with the old data, specifically those

with poorer lung health prior to ventilation. Model results identified dynamics involved in M1

macrophages as a focus for further research, potentially driving the age-dependent differ-

ences in all macrophage phenotypes. The model also supported the pro-inflammatory

response as a potential indicator of age-dependent differences in response to ventilation.

This mathematical model can serve as a baseline model for incorporating other pulmonary

injuries.
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Author summary

Pulmonary insults can prompt the need for life-saving mechanical ventilation; however,

some patients can develop ventilator-induced lung injury. Prior observational data has

shown increased instance of injury in older patients and differences in the inflammatory

response, although further research is needed to confirm this. We performed high-pres-

sure ventilation on young (2–3 months) and old (20–25 months) mice and observed dif-

ferences in macrophage activation at baseline and lung tissue integrity following

ventilation. The experimental results were used to select plausible parameter sets for a

mathematical model of the inflammatory response to lung injury. Important parameters

were selected based on a variety of numerical and statistical methods and results identified

parameters involved in damage and repair of the epithelial cells and those controlling the

pro-inflammatory response to be important in separating parameter sets based on the

associated age group (young or old) and lung health after ventilation, determined by

model variables. In-silico interventions were simulated based on these results and

improvements were most influential for the parameter sets identified for the old group,

specifically those with poorer lung health prior to ventilation. This mathematical model

can serve as a baseline model for incorporating other pulmonary injuries.

Introduction

A variety of inhaled pathogens and other pulmonary insults illicit an immune response that

causes inflammation in the lung tissues. Intense or persistent inflammation can damage the

delicate alveolar tissue and result in acute respiratory distress syndrome (ARDS). This can

progress to complete respiratory failure in some cases. To increase the probability of survival,

the clinical intervention for ARDS is the use of mechanical ventilation (MV) [1]. While MV is

often a necessary procedure, prolonged use or misuse of the ventilator may result in ventila-

tor-induced lung injury (VILI). The damage caused to alveolar sacs (clusters of alveolar cells)

during MV can lead to volutrauma (extreme stress/strain), barotrauma (air leaks), atelec-

trauma (repeated opening and closing of alveoli), and biotrauma (general severe inflammatory

response). The culmination of these injuries can result in ventilator dependence, multi-system

organ failure, or even death [2, 3].

Although VILI can occur in patients regardless of prior lung health [2], there is a higher

incidence of critical disease as well as observable differences in the inflammatory response of

older individual [4–6]. Past research has shown increased risk of lung injury following ventila-

tion for older mice [7, 8]. Most recently, infections associated with the novel coronavirus have

also exhibited an increased risk of mortality and severe disease in older patients [9]. One par-

ticular study found that 6.6% of participants aged 60 years of age and older developed critical

disease following a SARS-CoV-2 infection; this is approximately twelve times higher than in

younger participants (0.54%) [6]. Studies have also reported increased levels of circulating

inflammatory cytokines and altered macrophage function in older mice [10]. These observed

discrepancies in the inflammatory response and increased rate of mortality and severe disease

in elderly patients stress the need for further studies of VILI in regards to aging.

Nin et al. [11] found increased susceptibility and severity to pulmonary and vascular dys-

function associated with age during high tidal volume ventilation in mice. Older mice also

exhibited increased levels of inflammation marked by a higher concentration of interleukin-6,

a pro-inflammatory cytokine, and aspartate aminotransferase, a non-specific marker of cell

injury. This intrinsic decline in the effectiveness of the innate immune response has been
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studied extensively [12–15]. Most notably, Dace and Apte [15] found that aging affected the

polarization of macrophages, an immune cell that can exhibit a range of pro- and anti-inflam-

matory properties. An effective immune response relies on both a pro-inflammatory response

to rid the insult of foreign cells and other debris and an anti-inflammatory response to regulate

the pro-inflammatory response, promote repair, and remove debris incurred by early-response

phagocytes. With aging, polarization of macrophages was observed to be skewed toward the

alternatively-activated, M2, phenotype. Decreased activation of the classically-activated, M1,

phenotype, generally associated with pro-inflammatory activities, could result in a decreased

ability to clear infections, thus prolonging the inflammatory response and inhibiting later

stages of healing.

An imbalance in the pro- and anti-inflammatory responses can cause additional complica-

tions for the individual during various injuries and insults. Macrophages in particular play a

significant role in the impact of aging on the immune response [10, 16, 17]. Therefore, to

develop interventions to mitigate the effects of VILI, it is important to study the immune

response to lung injury and the interplay between various types of cells. We are focused on the

innate immune cells, neutrophils and macrophages, their associated cytokines, and the alveolar

epithelium, which consists of alveolar type I and type II cells. Alveolar type I cells make up

about 95% of the alveolar surface and are primarily responsible for facilitating gas exchange.

Type II cells cover the other 5% of the surface and are important in the innate immune

response. In the presence of damage, these cells proliferate to repair the epithelium and can

also differentiate to type I cells [18, 19]. In the present study, we examine these cells in 2–3

month old mice (young) and 20–25 month old mice (old) exposed to high-pressure MV for up

to 2 hours. We present broad macrophage sub-phenotypes, M1 and M2, obtained from flow

cytometry and quantitative measures of lung damage at the alveolar epithelial-endothelial

barrier.

We use mathematical modeling and statistical methods to investigate the differences in the

pulmonary innate immune response and predicted outcomes for the model simulations asso-

ciated with either young or old experimental data. At this stage of exploration of VILI, we

focus on epithelial damage and immune system interactions in young and old mice. It is diffi-

cult to clinically isolate the local epithelial and inflammatory response in the lung during VILI

and often expensive to collect quality data. For this reason, we rely on in silico modeling of

experimental data to supplement the available in vivo data. These in silico approaches provide

insight into the immune response and the nonlinear dynamics of the system. The resulting

analysis is used to identify important factors and generate hypotheses [20].

Minucci et al. [21] developed a model for VILI including major immune cell interactions

involved in the inflammatory response to tissue damage and epithelial variables encompassing

healthy, damaged, and dead epithelial cellular states. The current model is an expansion of the

model built in Minucci et al. by including terms modeling epithelial barrier breakdown leading

to increased cytokines and immune cells in the alveolar compartment [21]. The resulting

model has 19 variables and 64 parameters. In this study we use the young and old experimental

data to select plausible parameter sets and explore age-dependent outcomes and dynamics.

These mechanistic, equation-based models are often used in conjunction with statistically-

based methods and models [22] to understand the possible dynamics associated with varying

parameter sets. Parameter sampling and post-analysis of the mechanistic data obtained from

the model are just two examples of processes that benefit from a statistical approach. To sam-

ple large parameter spaces, numerous aptly named ‘space-filling designs’ have been developed

since the advent of computer experiments in the 1970s. Perhaps the most commonly used

design is Latin hypercube sampling [23], but many others are used, including uniform sam-

pling and maximin designs [24]. Many others have built off these general designs that work
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only for continuous data, and created variants and alternatives more specifically geared

towards individual use-cases, such as the sliced Latin hypercube design [25] for categorical

inputs and the fast flexible filling algorithm [26], designed for non-rectangular spaces.

Machine learning algorithms have also aided in the analysis of mechanistic models. Methods

such as random forest, neural networks, and principal components analysis continue to be

used in congruence with mathematical models and biological systems [27–31]. These methods

work well to process the large amounts of data obtained from a mechanistic model and identify

abstract features of the system [22]. These algorithms can also identify nonlinear interactions

between factors within the model, adding crucial insight into parameters affecting the

response.

Sensitivity analysis is a useful tool for models with a large number of parameters where

baseline values are unknown or difficult to measure. This approach measures changes to the

model outputs from perturbations in the model inputs [32] and includes both local and global

methods. In local sensitivity analysis, the change in the model output is observed when only

one model parameter is varied around a selected nominal value and all other parameters are

held constant. Global methods examine the sensitivity of parameters within the entire parame-

ter space. Global techniques are usually implemented using Monte Carlo simulations, giving

them the description of sampling-based methods [33]. This includes methods like Pearson cor-

relation coefficient and partial correlation coefficients for linear trends and Spearman rank

correlation coefficient and partial rank correlation coefficient for nonlinear trends with a

monotonic relationship between inputs and outputs. Nonlinear non-monotonic trends require

slightly different methods based on decomposition of model output variance. These methods

include the Sobol method and its extended version based on (quasi) random numbers and an

ad hoc design [34], and the Fourier amplitude sensitivity test and its extended version. The

methods have been implemented in various models involving wound healing and the inflam-

matory response [35–39]

To determine plausible parameter sets for our model using both the young and old experi-

mental data, we initially sampled using a beta distribution to favor lower parameter values,

and then performed an iterative stochastic local search around likely candidates. The model

variables were then simulated from the resulting parameter sets and model variables were

compared with in vivo data to determine old or young presenting behavior in the resulting

transients before and after ventilation. Various transient features were also calculated and ana-

lyzed including epithelial qualities and inflammatory cell quantities. Analysis of the resulting

parameter sets included identifying parameters associated with young or old data, analyzing

differences in lung health states between the young or old sets, and determining parameters

associated with poorer lung health both including and excluding age classification. Further

investigation of the identified parameter sets included local sensitivity analysis to assess model

output sensitivity to variations in the parameters. The results from classification and sensitivity

analysis were used to simulate pseudo-interventions to determine parameters that may be

modulated to improve epithelial health during MV. This can help inform potential therapeutic

targets for patients that are considered high risk before ventilation or even for patients that

present signs of distress during ventilation.

Materials and methods

Ethics statement

Animal Research (involving vertebrate animals, embryos or tissues) Male C57BL/6 mice 8

weeks of age were purchased from Jackson Laboratory (Bar Harbor, ME). All animals were

housed in accordance with guidelines from the American Association for Laboratory Animal
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Care and Research protocols and approved by the Institutional Animal Care Use Committee

at Virginia Commonwealth University (Protocol No. AD10000465).

Experimental materials & methods

Animals. Male C57BL/6 mice 8 weeks of age were purchased from Jackson Laboratory

(Bar Harbor, ME). Male C57BL/6 mice 20 months of age were provided by the National Insti-

tute on Aging (Bethesda, MD). All animals were housed in accordance with guidelines from

the American Association for Laboratory Animal Care and Research protocols and approved

by the Institutional Animal Care Use Committee at Virginia Commonwealth University (Pro-

tocol No. AD10000465). The present study only includes male mice as male mice are the most

common sex used in VILI studies [40]. Further, aged female mice were not available at the

time of our study. For our future work, we will include both sexes. The results may be different

in female mice as we are aware there are often inflammatory differences based on sex. For

example, male mice respond with greater inflammation to lipopolysaccharides induced lung

injury [41] and this may influence inflammatory results. It is unclear how this inflammation

will change with age.

Pressure-controlled ventilator-induced lung injury model. We mechanically ventilated

young (2–3 months) and old (20–25 months) C57BL/6J wild-type mice using a Scireq Flexi-

Vent computer-driven small-animal ventilator (Montreal, Canada) and previously cited meth-

ods in Herbert et al. [8] with slight modifications. Mice were anesthetized, tracheotomized,

and then ventilated for 5 minutes using a low pressure-controlled strategy (peak inspiratory

pressure (PIP): 15 cmH20, respiratory rate (RR): 125 breaths/min, positive end-expiratory

pressure (PEEP): 3 cmH20). Mice were then ventilated for 2 hours using a high pressure-con-

trolled mechanical ventilation (PCMV) protocol (PIP: 35–45 cmH20, RR: 90 breaths/min, and

PEEP: 0 cmH20). Pulmonary function and tissue mechanics were measured and collected at

baseline and every hour during the 2-hour high PCMV duration using the SCIREQ FlexiVent

system and FlexiWare 7 Software. A separate group of mice was anesthetized, tracheotomized,

and maintained on spontaneous ventilation for 2 hours. Experimental models are limited in

that they cannot be replicated for the duration of the typical time on a mechanical ventilator

for humans (3 days). To adjust for this limitation, our experimental ventilator parameters are

increased to cause damage that would normally be accumulated over days in a short amount

of time, 2 hours.

Tissue processing

Immediately following mechanical ventilation, the right lobes of the lung were snap frozen

with liquid nitrogen, then stored at -80˚C for further analysis. The left lobes of the lung were

then inflated with digestion solution containing 1.5 mg/mL of Collagenase A (Roche [42]) and

0.4 mg/mL DNaseI (Roche [43]) in HBSS with 5% fetal bovine serum and 10mM HEPES and

processed as previously described Yu et al. [44]. The resulting cells were counted, and dead

cells were excluded using trypan blue. Subsets of the experimental groups were also used to

collect left lobes for histological analysis.

Histological analysis. Lung tissue samples were embedded and stained with hematoxylin

and eosin (H&E). The mean linear intercept, an index of airspace enlargement, was used to

quantify relative differences in alveolar airspace area within lung histology sections. These

were measured and analyzed as previously described Herbert et al. [8]. In our model, the high

pressure mechanical ventilation does break alveolar walls and is thus quantified with airspace

enlargement. If the change was due to alveolar wall creep, we would expect it to return to an

undistended state upon our slow gravity fixation at 25cmH2O, which is not increased pressure.
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We did also see the presence of alveolar edema and inflammatory markers as described in

[45], but the airspace enlargement gives a physical quantification of the tissue.

Flow cytometric analysis. Following live cell counts, 4 × 106 cells per sample were incu-

bated in blocking solution containing 5% fetal bovine serum and 2% FcBlock (BD Biosciences

[46]) in PBS. The cells were then stained using a previously validated immunophenotyping

panel of fluorochrome-conjugated antibodies [47] with slight modifications (See S1 Fig for a

list of antibodies, clones, manufacturers, and concentrations). Following the staining proce-

dure, cells were washed and fixed with 1% paraformaldehyde in PBS. Data were acquired and

analyzed with a BD LSRFortessa-X20 [48] flow cytometer using BD FACSDiva software (BD

Bioscience [49]). Histogram plots were generated using FCS Express 5 software (De Novo

[50]). Compensation was performed on the BD LSRFortessa-X20 flow cytometer at the begin-

ning of each experiment. “Fluorescence minus one” controls were used when necessary. Cell

populations were identified using a sequential gating strategy that was previously developed in

Misharin et al. [47]. The expression of activation markers was presented as median fluores-

cence intensity.

Mathematical model and analysis methods

Model equations. The model uses differential equations to track the transition from a

healthy lung state to a state with damage to the epithelial cells in response to ventilation. This

models a direct transition from a healthy state to a damaged state at the cellular level. That is,

we do not explicitly model the stress and strains at the tissue level that give rise to epithelial tis-

sue damage. In our model damaged cells produce mediators that activate innate immune cells,

neutrophils and macrophages. Immune cell influx causes additional damage to the lung epi-

thelial cells. The epithelial cells can 1) return to a healthy state via repair, which is regulated by

repair mediators, or 2) transition to the death/empty state. The portion of the population that

is in the death/empty state represents the portion of the lung that needs to be replaced via pro-

liferation of healthy epithelial cells. A full model schematic including the dynamics is given in

Fig 1, model variables are in Table 1, and the parameters with brief descriptions are in Table 2.

We account for macrophage phenotype on a population level. Therefore, our variables

track the overall level of M1 type activity (classically activated) versus M2 type activity (alterna-

tively activated). Activation of naive macrophages M0 by pro-inflammatory mediators (PIMs)

give rise to the M1 phenotype, phagocyte cells producing PIMs and anti-inflammatory media-

tors (AIMs). M1 cells phagocytize both damaged epithelial cells and apoptotic neutrophils.

Neutrophils also phagocytize damaged epithelial cells and produce PIMs.

Conversely, activation of naive cells by AIMs gives rise to the M2 phenotype, producing

AIMs and repair mediators. M1 cells can transition to M2 cells in response to phagocytising

apoptotic neutrophils. The full equations for our model are in Appendix S1–S6 Eqs. The main

reference for the equation derivations are given in Minucci et al. [21], since our current model

is an adaptation of that model.

The main change from Minucci et al. [21] in this model was the introduction of a break-

down in the barrier integrity that leads to an increase in inflammatory cell and mediator move-

ment between the systemic blood compartment into the lung space that is not diffusion

driven. We illustrate this with an immune cell equation, the lung M0 equation (Eq 1), and a

mediator equation, the lung PIMs (p, Eq 2), but this type of term occurs for all the immune

cells and mediators (see Appendix S1–S5 Eqs). The second to last term in the M0 equation (Eq

1) is a nonlinear Hill- type term that allows naive cells to move from the blood into the lung

when the epithelial lung barrier is degraded significantly. Therefore, the term is dependent on

Ee with the parameter xee controlling the level of Ee at which this term achieves its half max. xee

PLOS COMPUTATIONAL BIOLOGY Age-dependent ventilator-induced lung injury: Mathematical modeling and experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011113 February 22, 2024 6 / 26

https://doi.org/10.1371/journal.pcbi.1011113


is fixed to 0.75 for all immune cell equations. The second to last term of the p equation (Eq 2)

has the same form but with the parameter defined as xeem which is fixed to 0.5 for all mediator

equations. These parameters are fixed at these levels to ensure that the smaller mediators pass

through the degraded alveolar-capillary barrier at lower value of Ee than the immune cells. The

Fig 1. Model schematic. The model has two compartments: lung tissue and blood. The various circles and boxes represent the different inflammatory

cells, mediators, and epithelial cell states. Black arrows represent upregulation or transition and black lines with bars represent inhibition or down-

regulation. The blue arrows represent movement between the two compartments, either diffusion based or at a constant rate. The red arrows represent

movement from the blood into the lung compartment as a result of epithelial barrier degradation.

https://doi.org/10.1371/journal.pcbi.1011113.g001

Table 1. Table of model variables with descriptions.

Bloodstream Lung Description

Eh Healthy epithelial cells

Ed Damaged epithelial cells

Ee Dead epithelial cells/empty space

pb p Pro-inflammatory mediators

ab a Anti-inflammatory mediators

M0b M0 Naive macrophages

M1b M1 M1, classically-activated macrophages

M2b M2 M2 alternatively-activated macrophages

N0b N0 Unactivated neutrophils

Nb N Activated neutrophils

AN Apoptotic neutrophils

R Repair mediators

The epithelial variables Ed, Ee, and Eh are proportions, such that Eh + Ed + Ee = 1. The remaining variables have

arbitrary units for simulation. The variables M0, M1, and M2 are used to calculate percentages for each phenotype, in

order to compare to experimental flow cytometry data.

https://doi.org/10.1371/journal.pcbi.1011113.t001
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Table 2. Model parameters with descriptions.

Parameter Description Units Young Min. Young

Max.

Old Min. Old

Max.

ab1 Relative effectiveness of ab at inhibiting M0b differentiation to M1b a-units 1.33 × 10−4 84.5325 3.2248 39.0498

a1 Relative effectiveness of a at inhibiting M0 differentiation to M1 a-units 0.0108 72.5097 0.2902 57.2817

bd Baseline decay of damaged cells h-1 8.25 × 10−5 76.1677 3.0326 × 10−3 65.1373

bp Baseline self-resolving repair of epithelial cells h-1 0.8312 69.7958 0.0311 44.2681

br Baseline repair of damaged cells h-1 6.96 × 10−4 72.1149 0.2169 47.1704

da Rate of diffusion for a h-1 0.0125 82.1587 0.1035 67.5635

dm0 Rate of diffusion for M0 h-1 0.1717 84.7813 1.0139 59.7648

dp Rate of diffusion for p h-1 1.264 × 10−3 81.5292 6.8524 × 10−3 24.1756

kam1 Production rate of a by M1b & M1 a-units �M-units-1 � h-1 0.0144 69.6048 10.9822 72.1224

kam2 Production rate of a by M2b & M2 a-units �M-units-1 � h-1 6.4797 × 10−3 71.1447 4.6606 × 10−3 63.1206

kan Rate at which neutrophils become apoptotic h-1 0.0516 62.276 0.0403 37.3451

kanm1 Rate of M1 phagocytosis of AN M-units-1 � h-1 1.73 × 10−5 68.8604 0.2398 54.0499

kanm2 Rate of M2 phagocytosis of AN M-units-1 � h-1 1.4828 × 10−3 92.023 7.8663 56.181

kem1 Rate of phagocytosis of damaged cells by M1 M-units-1 � h-1 1.2397 × 10−3 85.7842 16.4332 98.4928

ken Rate of phagocytosis of damaged cells by N N-units-1 � h-1 2.2547 × 10−3 82.9453 4.1329 × 10−3 66.7115

kep Rate of self-resolving repair mediated by p p-units-1 � h-1 8.4747 × 10−3 76.1888 0.0338 47.0804

ker Rate of repair of damaged cells by R h-1 0.0176 61.7146 5.5664 × 10−3 49.5429

xer Regulates effectiveness of repair of damaged cells by R (Hill-type

constant)

R-units 0.0217 73.0257 5.4888 67.3679

km0a Rate of differentiation of M0 induced by a h-1 9.2296 × 10−3 75.3057 3.8383 × 10−3 42.3501

xm0a Regulates effectiveness of differentiation of M0 induced by a (Hill-type

constant)

a-units 1.75 × 10−4 83.8636 0.4768 54.2981

km0ab Rate of differentiation of M0b induced by ab h-1 1.757 × 10−3 76.8485 0.0343 68.9449

xm0ab Regulates effectiveness of ab to induce differentiation of M0b (Hill-type

constant)

a-units 5.28 × 10−4 73.6692 0.0149 64.5509

km0p Rate of differentiation of M0 induced by p h-1 2.4 × 10−4 80.7515 0.6304 46.5157

xm0p Regulates effectiveness of p to induce differentiation of M0 (Hill-type

constant)

p-units 0.0996 54.3827 0.5422 33.1738

km0pb Rate of differentiation of M0b induced by pb h-1 2.3817 × 10−3 91.7174 3.3674 53.0414

xm0pb Regulates effectiveness of pb to induce differentiation of M0b (Hill-type

constant)

p-units 0.2125 70.6259 4.19 × 10−4 31.6476

kman Rate of M1 switch to M2 by AN M-units � N-units-1 1.0217 × 10−3 85.4308 0.9625 58.4498

kmne Rate of collateral damage to epithelial cells by macrophages and

neutrophils

h-1 0.0144 87.4140 4.3902 55.8505

xmne Regulates effectiveness of macrophages and neutrophils to damage

epithelial cells (Hill-type constant)

(M + N)-units 0.0895 68.5317 3.05 × 10−3 10.2302

kn Rate of infiltration of Nb to lung h-1 0.0342 92.8295 0.8702 70.1239

kn0pb Rate of activation of Nb induced by pb h-1 5.4571 × 10−3 79.0613 0.0686 71.3452

xn0pb Regulates effectiveness of pb to induce activation of Nb p-units 4.83 × 10−3 80.1988 0.0708 28.0339

kpe Production rate of p by Ed p-units � h-1 5.0833 78.5846 0.0576 45.4633

kpm1 Production rate of p by M1 & M1b p-units �M-units-1 � h-1 1.6489 × 10−3 75.4175 0.0208 68.4131

kpn Production rate of p and pb by neutrophils p-units � N-units-1 � h-1 3.62 × 10−5 75.2844 0.0167 37.4531

krm2 Production rate of R by M2 R-units �M-units-1 � h-1 2.0303 × 10−3 76.6348 7.235 × 10−3 42.9838

μa Decay rate of a h-1 8.7545 × 10−3 89.7891 0.0964 58.2379

μab Decay rate of ab h-1 2.45 × 10−5 70.0997 2.2509 44.3072

μm0 Decay rate of M0 h-1 1.2771 × 10−3 86.2183 18.1666 57.0514

μm0b Decay rate of M0b h-1 5.0617 × 10−3 66.3658 0.0550 46.2847

μm1 Decay rate of M1 h-1 0.1494 83.7439 0.0200 37.3965

(Continued)
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values of xee and xeem at this point create a partitioning of the range of values for Ee, [0, 1]

which is a first step to mapping the epithelial variables to clinically relevant lung injuries, such

as pulmonary edema. These values were chosen so that xeem is smaller than xee and that sub-

stantial damage (half of the range) is needed before reaching the half max for the mediator

influx term. Mediator flux is associated with severe lung damage and immune cell leakage into

the lung due to barrier disruption which would lead to ventilation failure as the alveoli fill with

fluid instead of air. The third from last term in both of these equations model the diffusion

driven infiltration between compartments.

The first term in the M0 equation (Eq 1) models the activation of the naive macrophages

into the M1 and M2 phenotypes with down-regulation of the M1 phenotype via inhibition by

AIMs represented by the variable a. The first three terms of the p equation (Eq 2) models pro-

duction of PIMs by damaged epithelial cells, M1 cells (inhibited by a) and neutrophils,

Table 2. (Continued)

Parameter Description Units Young Min. Young

Max.

Old Min. Old

Max.

μm1b Decay rate of M1b h-1 6.7474 × 10−3 86.8009 1.8930 54.6995

μm2 Decay rate of M2 h-1 0.3748 78.7343 1.0916 32.3682

μm2b Decay rate of M2b h-1 1.1642 × 10−3 83.7154 0.0848 90.4447

μn Decay rate of N h-1 3.57 × 10−4 74.7403 0.0170 19.7722

μnb Decay rate of Nb h-1 4.9563 × 10−3 82.5759 2.1406 × 10−3 51.4149

μn0b Decay rate of N0b h-1 0.0109 73.707 8.1144 × 10−3 49.572

μp Decay rate of p h-1 1.97 × 10−4 71.0144 0.1147 42.6670

μpb Decay rate of pb h-1 3.7486 × 10−3 66.7341 7.5471 × 10−3 16.8999

μR Decay rate of R h-1 1.4206 77.6702 3.6178 23.4071

sa Source rate of background ab a-units � h-1 0.0315 90.5490 8.8694 81.6087

sd Rate of damage from ventilator h-1 1.6823 82.2663 0.9770 66.8206

sm Source rate of M0b M-units � h-1 0.0649 83.6374 5.4517 61.3312

sn Source rate of N0b N-units � h-1 0.0651 86.7327 4.683 66.2144

sp Source rate of background pb p-units � h-1 0.1903 60.7942 4.9828 92.3764

kee* Rate of inflammatory cell and mediator leakage into alveolar

compartment

h-1 2.0545 × 10−3 79.59 9.0485 42.4358

xee* Regulates effectiveness of inflammatory cell leakage into alveolar

compartment (Hill-type constant)

No Units- Normalized

Variable

0.75 0.75 0.75 0.75

xeem* Regulates effectiveness of inflammatory mediator leakage into alveolar

compartment (Hill-type constant)

No Units- Normalized

Variable

0.5 0.5 0.5 0.5

km1* Rate of M1 infiltration into alveolar compartment h-1 1.8228 74.9223 25.1536 60.8061

km2* Rate of M2 infiltration into alveolar compartment h-1 4.6 × 10−4 91.5074 7.1409 54.7490

kn0p* Rate of activation of N induced by p in the alveolar compartment h-1 0.1285 85.1315 0.0144 46.1535

xn0p* Regulates effectiveness of p to induce N activation in the alveolar

compartment

p-units 0.0355 65.0746 2.0399 45.9973

μan* Decay rate of AN h-1 1.2156 × 10−3 81.2026 0.0192 79.2533

μn0* Decay rate of N0 h-1 0.0393 85.9090 0.0119 48.7474

Parameters indicated with an asterisk (*) are novel to this iteration of the model and were not utilized in the Minucci et al. [21] model. Model variable units are arbitrary

and indicated as related to the general cell type. Therefore, N-units represent neutrophils, M-units represent all phenotypes of macrophages, p-units represent pro-

inflammatory mediators, a-units represent anti-inflammatory mediators, and R-units represent repair mediators. The time unit is hours, h. Parameter ranges are

determined by the maximum and minimum value achieved by each parameter over the plausible parameter sets associated with young and old experimental data. The

process for obtaining these ranges is explained in the following sections.

https://doi.org/10.1371/journal.pcbi.1011113.t002
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respectively. The last term in both equation models intrinsic decay.
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Sampling and parameter selection. The model variables were simulated using MATLAB

(R2021a) [51] to determine plausible in silico parameter sets associated with each experimental

group. Plausible parameter sets were those where, 1) non-ventilated simulated variables

reached a numerical steady state, 2) the associated steady state value fell within the range of in
vivo data for either the young or old data at t = 0 hours, and 3) ventilated simulations starting

from steady state fell within the range of the associated young or old data at t = 2 hours. During

this selection process M0, M1, M2, and Ee were compared to the experimental data for unacti-

vated macrophages, classically-activated macrophages, alternatively-activated macrophages,

and airspace enlargement, respectively.

The data ranges used for each experimental group and cell are plotted in Fig 2. Note from

Fig 2 some data ranges overlap significantly, but given that there is separation in the M0 and

M2 data for time zero, there are no parameter sets that satisfy both young and old conditions.

Fig 2. Summary of data ranges used to select plausible parameter sets. The plot gives the range of experimental values for M0, M1, and M2

macrophages and airspace enlargement used to assess the numerical simulations for biological plausibility. Each range consists of 3–6 experimental

observations since some data points were excluded as outliers. Outliers were defined as those being more than two standard deviations outside the

mean.

https://doi.org/10.1371/journal.pcbi.1011113.g002
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Model variables were simulated for each parameter set to reach numerical steady-state to

ensure that the dynamics observed during ventilation were only a product of the ventilation

and not a result of the variables attempting to reach steady state. For these simulations, the

parameter sd, a parameter used to describe the damage caused by ventilation, was set to zero.

Each parameter set was simulated starting at an initial condition where all model variables

were set to zero excluding M1 macrophages in the lung and healthy epithelial cells which were

set to 50 and 1, respectively, initiating a return to steady state from an inflammatory insult.

Simulations were run for 800 hours and classified as achieving numerical steady state if the

Euclidean norm of the difference between the end values of the variables and the value at each

numerical time step within the last 20 hours of simulation was less than 0.001. If the model var-

iables did not reach steady state, the model was simulated starting at an additional initial con-

dition where all model variables were set to zero excluding healthy epithelial cells and

damaged epithelial cells which were set to 0.75 and 0.25, respectively, initiating a return to

steady state from an epithelial damage-induced insult. Parameter sets that did not produce

model transients that reach steady state for either initial condition were excluded from further

sampling and analysis. Variable transients that achieved steady state and fell within the range

of either the young or old initial data values were then simulated starting at their numerical

steady state for a total of 200 hours with ventilation occurring during the first two hours (sd>
0) to observe transient behavior during and after ventilation. The resulting model variables

were then compared to the data at 2 hours and the respective parameter sets were classified as

young or old depending on their ability to satisfy the respective data ranges. Those that did not

fall within the range of either the young or the old data at both time points were excluded from

the final accepted parameter sets.

Parameter sets for this process were found using a three-step parameter sampling process

in R [52]. In the initial step, a large number of samples were generated using a scaled Beta(1, 3)

distribution with a large scale parameter to sample between 0 and 120 (to include multiple

orders of magnitude). Parameter sets with associated transients that fell within the range of the

data for any of the macrophage variables or Ee at either time point for either age group were

used to define the ranges of each parameter during the next stage of sampling. Uniform sam-

pling was used over this refined space for the second stage. The final step was iterative stochas-

tic local search; using four iterations, successively restricting the space by adding more

components of the criteria until in the end all remaining sets matched every criterion for one

of the age groups.

Classification, regression and sensitivity. Several methods were fitted on various subsets

of the parameter sets which fell in the range for either the young or old data. A suite of model

fitting algorithms were applied using the R package H2O [53], including Generalized Linear

Models, Distributed Random Forests, Gradient Boosting Machines, and Neural Networks.

The best model in terms of 5-fold cross-validated F1 score (for classification) or root mean

squared error (for regression) was chosen and the variable importance values were calculated

for each. In classification methods, the importance values rank the relative importance of each

data feature in the defined statistical model. Thus, an importance value is calculated for each

parameter based on their relative influence in separating the parameter sets into the young or

old associated groups. In order to justify the importance metric for classification models where

the data was not balanced (e.g., predicting young versus old), the same models were fitted on

down-sampled data with balanced labels.

Local sensitivity analysis was also used to measure the relative sensitivity of the model

parameters for each experimental group. The methods were implemented using the SimBiol-

ogy package available in MATLAB [51] which calculates the time-dependent derivatives of the

model sensitivity to each parameter evaluated at specified time points. Details about the
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calculations performed can be found in Martins et al. [54]. Default settings were used for the

sensitivity matrix. The overall relative sensitivities for each parameter were calculated by taking

the root mean square of the sensitivity values at the chosen time points for the chosen vari-

ables. The resulting values for each parameter were then normalized by scaling each to the

maximum overall sensitivity value in each group.

Results

Experimental results

A large difference was observed in M0 cells at baseline between young and old mice (Fig 2).

There were increases in M1 marker expression in the alveolar macrophage populations (Fig 2)

from both the young and old mice after 2 hours of PCMV. M2 cells were increased at baseline

in the old mice, with overlapping ranges in the PCMV mice. High PCMV enlarged the airspace

in both young and old mice. The mean linear intercept, which is an index of airspace enlarge-

ment, was quantified to further assess the extent of injury (Fig 2). There was significantly

increased airspace enlargement in the old PCMV group compared to the young and old non-

ventilated controls. These findings suggest that there was a substantial generation of acute lung

injury in both the young and old age groups; however, the severity appears to intensify with

the old mice.

In silico results

Plausible parameter sets and transients. Iterative sampling used for the large sampling

space produced 19,202 plausible parameter sets associated with either the young or old experi-

mental data. Of these sets, 17,477 were associated with the young data and 1,725 were associ-

ated with the old data. Average model behavior for the variables Eh, Ee, M0, M1, M2, N, and AN
are shown in Fig 3. Additionally, the percentage of the macrophage activity that was M0, M1,

or M2 were plotted.

Parameter sets were separated using the proportion of their associated Eh variable value

before ventilation (t = 0) and directly after the 2 hour ventilation (t = 2). Parameter sets were

defined at each selected time point as healthy when Eh> 0.9, moderate when 0.5< Eh< 0.9,

and severe when Eh< 0.5. The resulting groups are shown in Fig 4.

This separation scheme created a natural division in the plausible parameter sets into the

following groups by age and ventilation response: young sets that started healthy and became

moderate after ventilation (Young H2M), young sets that started healthy and became severe

after ventilation (Young H2S), old sets that started healthy and became moderate after ventila-

tion (Old H2M), old sets that started healthy and became severe after ventilation (Old H2S),

old sets that started moderate and stayed moderate after ventilation (Old M2M), and old sets

that started moderate and became severe after ventilation (Old M2S). We will exclude the one

young set that remained healthy after ventilation due to the sample size.

A representative set was determined for each age and ventilation response group such that

it was one of the parameter sets in the group and its behavior was most inline with the mean of

the key variable transients for all the parameter sets in its group. The mean of the transients

was calculated for each group using the average values at each time point for the model vari-

ables Eh, Ed, Ee, M0, M1, M2, N, and AN. A representative set from each group was then chosen

by minimizing the residual sum of squares for all six mean transients. The representative sets

are plotted for each variable in Fig 5.

Importance factors for age classification. Importance values for the various classification

methods are shown in Fig 6. To account for the difference in sample size between the young

and old associated parameter sets, classification methods were performed on random subsets
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Fig 3. Average young and old transients. The solid blue and red lines plotted within the corresponding shaded bands

represent the mean response for the transients associated with each experimental group at each time point. The borders

of the surrounding bands encompass the 10th and 90th percentile at each time point. M0%, M1%, and M2% represent

the percentage of the macrophage activity that is M0, M1, and M2, respectively. These percentages along with the Ee
variable were validated by the experimental data at 0 hours and 2 hours. Due to differences in scale, the variables N and

AN also include overlays with just the young mean and percentiles plotted.

https://doi.org/10.1371/journal.pcbi.1011113.g003

PLOS COMPUTATIONAL BIOLOGY Age-dependent ventilator-induced lung injury: Mathematical modeling and experiments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011113 February 22, 2024 13 / 26

https://doi.org/10.1371/journal.pcbi.1011113.g003
https://doi.org/10.1371/journal.pcbi.1011113


of the parameter sets associated with the young data. For each classification method, down-

sampled data yielded similar results; the ordering of parameters often varied, but the parame-

ters most important for each classification remained unchanged. Plot A exhibits ranked

parameters in the classification of old and young parameter sets. In terms of scaled impor-

tance, the first four parameters are of interest since the numerical value decays significantly

after the fourth parameter. Thus, the following parameters had high importance in classifying

Fig 4. Plausible parameter sets separated by age group and epithelial health. Separation of plausible sets was made using the Eh variable proportion

before and after 2 hours of ventilation. Transients were classified as healthy when Eh> 0.9, moderate when 0.5< Eh< 0.9, or severe when Eh< 0.5.

Corresponding percentages were calculated at each level of separation in the flowchart as a percentage of the previous bin.

https://doi.org/10.1371/journal.pcbi.1011113.g004

Fig 5. Plots of selected model variables for each representative set. Transients are plotted for Eh (plot A), Ee (plot B), N (plot C), M0 (plot D), M1 (plot

E), and M2 (plot F). Due to the differences in scale, plot C also includes a zoomed in plot of just the young transients for the variable N.

https://doi.org/10.1371/journal.pcbi.1011113.g005
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between the young and old parameter sets: kem1, the rate of phagocytosis of damaged cells by

M1, xer, a Hill-type constant regulating the effectiveness of repair of damaged cells by repair

mediators, km1, the rate of M1 infiltration into the alveolar compartment, which is novel to this

iteration of the model, and xmne, a Hill-type constant regulating the effectiveness of macro-

phages and neutrophils to damage epithelial cells.

The parameters kem1, xer, and xmne specifically involve repair and damage of the epithelial

cells. The experimental data (Fig 2, “Airspace Enlargment”) and in silico simulations (Fig 3,

“Ee”) both exhibited a discrepancy in the epithelial variables. In terms of the actual data, the

experimental range for airspace enlargement (Fig 2, “Airspace Enlargement”, correlated with

the model variable Ee), does overlap between young and old mice, but a general increase in this

value is observed in the old mice. However, simulations show a clear distinction in the variable

Ee (Fig 3, “Ee”). Therefore, the classification methods found parameters associated with epithe-

lial dynamics important in separating parameter sets between the two age groups. Why other

parameters affecting this variable were not found to be as important is unclear.

The parameters km1, kem1, and xmne involve macrophages, specifically the M1 phenotype.

This was not the expected phenotype to be associated with age classification given that the

experimental groups have non-overlapping ranges for M0% and M2% (Fig 2) and for the in sil-
ico simulations (Fig 3). However, the M1 phenotype changes are driven by the ventilation and

their percentages are directly linked to the M0 and M2, thus activation of the M1 phenotype

directly affects population numbers of the M0 and M2 phenotypes.

An additional classification suite was performed for the old parameter sets prior to ventila-

tion, shown in Fig 6B, since there was variety in the starting states of these simulations. The

parameter sd holds the largest importance value as it contributes directly to damage of the

Fig 6. Scaled variable importance for top 10 predictors. Plots A-D exhibit scaled importance values for all observations (predicting young or old), the

old class (predicting healthy or moderate at time 0), the healthy, young class (predicting moderate or severe after 2 hours), and the healthy, old class

(predicting moderate or severe after 2 hours), respectively.

https://doi.org/10.1371/journal.pcbi.1011113.g006
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epithelial cells by the ventilator. The parameters ker, the rate of repair to damaged cells by

repair mediators, and xmne, a Hill-type constant regulating the effectiveness of macrophages

and neutrophils to damage epithelial cells, are both parameters in the epithelial equations con-

tributing to damage and repair processes. The parameters km0ab, the rate of differentiation of

M0b by ab, and sa, the source rate of background ab, also had high importance factors. Both

parameters are involved in the function of AIMs that have not yet been discussed in the topic

of lung health classification. AIMs as well as their cellular counterparts, namely M2 macro-

phages, help regulate the pro-inflammatory response and are crucial to preventing a feedback

loop of chronic inflammation. As discussed earlier, both the pro- and anti-inflammatory

responses are needed to ensure effective healing. Thus, despite their absence in the epithelial

equations, AIMs are crucial to controlling cellular damage and promoting repair. The classifi-

cation results reflect this relationship.

Importance factors for response. Fig 6C exhibits classification for a moderate or severe

state after two hours of ventilation for young parameter sets. The most important parameters

in classifying moderate or severe lung health were sd, the rate of epithelial damage from the

ventilator, kn0p, the rate of activation of N in the alveolar compartment, novel to this iteration

of the model, km0p, the rate of differentiation of M0 by p, br, baseline repair of damaged cells,

and bd, baseline death rate for damaged cells.

For old sets that started healthy, classification methods were used to determine importance

factors for a moderate versus severe response to ventilation, Fig 6D. The most important

parameters for classification were sd, kep, the rate of self-resolving repair mediated by p, bp,
baseline self-resolving repair of epithelial cells, br, and xm0pb, a Hill-type constant regulating

the effectiveness of differentiation of M0b by pb.
The actual parameters with high importance factors differ between young and old parame-

ter sets but generally involve rates of damage and repair. The parameter sd was the top parame-

ter for each group. This parameter contributes directly to decreasing Eh and thus influences

the resulting classification of lung health. The parameters br, bd, kep, and bp all contribute

directly to the epithelial variables and thus influence the level of Eh as well. The remaining

parameters kn0p, km0p, and xm0pb are not directly involved in the epithelial variables but do con-

tribute indirectly to increased damage. All are involved in activation of inflammatory cells by

PIMs. The pro-inflammatory phagocytic cells contribute to additional cellular damage. This is

a well-established phenomenon of the inflammatory stage [55, 56].

Local sensitivity analysis for representative sets. Local sensitivity analysis was performed

to measure the sensitivity of the variables Eh and Ee to the model parameters. For each of the

representative sets a local sensitivity analysis was performed and the top ten sensitive parame-

ters for each representative set are plotted with their normalized value in Fig 7.

The model variables were considered to be sensitive to a parameter if the sensitivity value

was larger than 10% of the maximum value for each group. Multiple parameters were identi-

fied above this threshold for all of the representative sets, namely; bp, baseline self-resolving

repair of epithelial cells, sd, the rate of damage from the ventilator, br, baseline repair of dam-

aged cells, kep, the rate of self-resolving repair mediated by p, and μp, decay rate of p. These

parameters mainly affect accumulation of damage, ability to repair, and dynamics involving

PIMs. Since Eh and Ee were the variables used in the sensitivity calculations, it is unsurprising

that the parameters in those equations had high sensitivity values. We also again see parame-

ters involved in the pro-inflammatory response to be important.

Additional parameters were found to be sensitive in the majority of the groups. Parameters

sp, source of PIMs, sn, source of neutrophils, and ken, rate of phagocytosis of damaged cells by

neutrophils, had sensitivity values larger than 10% of the maximum in all groups except Young

H2M. The parameter xn0pb, a Hill-type parameter involved in the activation of neutrophils by
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Fig 7. Normalized local sensitivity values for the top ten parameters in each representative set. Plots A-F are the sensitivities for the parameter

sets grouped in Young H2M, Young H2S, Old H2M, Old H2S, Old M2M, and Old M2S, respectively. Parameters indicated with an asterisk had

sensitivities greater than 10% of the maximum sensitivity value for all representative sets.

https://doi.org/10.1371/journal.pcbi.1011113.g007
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PIM, had a sensitivity value larger than 10% of the maximum in all the old groups. Again, we

see parameters involved in PIMs and inflammatory cell activation as well as their processes.

Interestingly, the parameter kem1, phagocytosis of damaged cells by M1 macrophages, had

small sensitivity values for the majority of the groups. This is interesting since it was the top

parameter identified in separating parameter sets associated with the young or old data. How-

ever, while the parameter values clearly differ between the parameter sets associated with either

the young or old data, the parameter itself does not appear to have a major affect on the pro-

portion of healthy or dead epithelial cells in the lung tissue. This is consistent with previous

research which has hypothesized that a sustained inflammatory insult is primarily mediated by

neutrophils rather than macrophages, contributing to the development of acute lung injury

and ARDS [57].

Modulating response to ventilation. The results of the local sensitivity analysis were used

to simulate a pseudo-intervention for the parameter sets associated with a severe state after 2

hours of ventilation; Young H2S, Old H2S, and Old M2S.

The parameters chosen as influential across all groups from the sensitivity analysis were bp,
sd, br, kep, and μp. These parameters were increased or decreased by 10% one at a time and the

percent increase or decrease in the variables Eh and Ee at 2 hours was calculated for each

parameters set within the Young H2S, Old H2S, and Old M2S groups. Table 3 shows the mini-

mum, mean, and maximum percent change for each variable for each of these three groups.

The supplementary materials include this same procedure with the additional parameters

identified as influential in the majority of the groups as well as an intervention starting after

one hour of ventilation rather than prior to ventilation as shown here.

Parameters had varying effects on the variables, with some increasing Eh while simulta-

neously increasing Ee as well; thus not necessarily improving health outcome. However, an

increase in the parameters bp, br, and kep consistently increased Eh and decreased Ee with a

decrease in the parameter producing the opposite effect. The parameter sd exhibited the

inverse relationship where an increase generally produced a decrease in Eh and an increase in

Ee with a decrease in this parameter producing the opposite effect. It is also clear by the color

intensities that variation in the parameters generally had the most impact on the parameter

sets in the Old M2S group. The largest impact was specifically observed in the variable Ee.
Since only Eh was used to define the possible health states, a large change in Ee may not result

in a change in the health state as we have defined it.

Fig 8 shows some example transients for the variations of the parameters br and sd. The var-

iations use the same magnitude shown in Table 3 of a 10% increase or 10% decrease in the

selected parameter. The parameter changes appear to have a greater effect on the parameter set

associated with the Old M2S representative set (Fig 8C and 8F) which was previously observed

in Table 3. Model transients of the variable Ee also show larger differences compared to the

transients of Eh as inferred from Table 3. Also note that the general shape of the transients did

not change significantly when parameters were varied. Instead the value at which the model

variable plateaus changed.

The intent of modulating parameters was to explore potential targets for therapeutic inter-

ventions prior to or during MV. The results in Table 3 demonstrate the various outcomes as

well as differences among groups. A range of responses is expected in practice since patients

have unique health profiles, however, the mean provides a reasonable expectation for the aver-

age response. The results shown in Table 3 exhibit the wide range of behavior possible with the

model and parameter sets provided and specific groups and parameter combinations pro-

duced larger ranges of possible values. Specifically, the Old M2S parameter sets had a high

level of variability in the observed maximums, especially for the variable Ee. The parameters bp,
kep, sd, and μp produced a possible difference of around 40–50% in the variable Ee. Potential
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large decreases were also observed for the same parameters producing a decrease in Ee at simi-

lar magnitudes. Generally, overall averages were not as considerable and were all less than 10%

in absolute value, with some producing average differences close to zero. This suggests that on

average, we would not expect a significant change in the defined health state, unless the simu-

lation was already relatively close to the set threshold. Despite this, even a 2–3% increase or

decrease in the amount of healthy epithelial cells available for gas exchange may affect clinical

presentation. More research would need to be done to assess this claim.

Discussion

Age-dependent responses to ventilation are of medical interest given the increased need for

ventilation and increased mortality rates of ventilated patients associated with age. Further,

despite the clinical need for better understanding of age-related VILI, there is no consensus on

VILI models that are used experimentally, and few existing experimental models have tested

aged subjects [40]. Using mathematical modeling and statistical methods, we analyzed plausi-

ble ventilator responses associated with experimental groups for young and old mice with 2

hours of ventilation using macrophage phenotype and lung integrity data. Our mathematical

model calibrated with data from one commonly used mouse VILI model, high-pressure

mechanical ventilation for 2 hours, may be used to test future VILI models and plan experi-

ments with clinically meaningful results.

The experimental data was used as acceptance criteria to identify parameter sets associ-

ated with the young or old data. Thus, differences observed in the in silico model transients

Fig 8. Eh and Ee model transients with varying parameters for example parameter sets from selected groups. Each model variable was simulated for

the baseline value, a 10% increase, and a 10% decrease for the selected parameter. Plots A-C exhibit transients for the varied parameter br using

randomly selected parameter set from the representative groups Young H2S, Old H2S, and Old M2S, respectively. Plots D-F exhibit transients for the

varied parameter sd using a randomly selected parameter set from the representative groups Young H2S, Old H2S, and Old M2S, respectively.

https://doi.org/10.1371/journal.pcbi.1011113.g008
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of M0, M1, M2, and Ee match those observed in the experimental data. Neutrophil counts,

however, were not included in data collection, but do exhibit an observable difference in

the model simulations as seen in Figs 3 and 5. The old transients exhibited much higher lev-

els of neutrophils compared with the young sets. This is consistent with in vivo results

where increased neutrophil infiltration and alveolar damage were correlated [58]. Higher

neutrophil infiltration has also been observed in older individuals following lung injury

[59].

Classification results revealed that parameters involved in repair and damage of epithelial

cells were important in separating parameter sets into the young or old experimental groups.

The parameters involved in repair and damage of epithelial cells were expected results given

the discrepancies observed in the airspace enlargement variable of the experimental data as

well as past research that has shown poorer lung health in aged subjects. The potential for

repair and damage in the epithelial tissue offers some insight into what may be driving major

differences in the response to ventilation for young and old patients. Parameters involved in

macrophage function were also ranked highly in separating parameter sets between the two

age groups. These were expected to be associated with differences in parameter sets associated

with the young and old data based on past research as well as our experimental findings. Clas-

sification results highlighted macrophage parameters specifically relating to the M1 phenotype

which was not observed to have discernible differences in the experimental data. However,

changes in activation of the M1 phenotype directly affect the populations of the M0 and M2

phenotypes which did have significantly different ranges in the experimental data at baseline.

Based on the data, differences are observed in the M0 and M2 phenotype populations at base-

line but the classification results indicate that this difference may be related to underlying M1

dynamics.

Classification results based on lung health state identified parameters involved in activation

of inflammatory cells and mediators, and parameters involved in damage and repair to be

important. These results are expected from the model since repair and damage directly con-

tribute to the variables used to classify the health state. Additionally, the processes involved in

the pro-inflammatory response are known to affect local tissue health. Local sensitivity results

identified similar parameters involved in damage and repair as well as parameters directly

related to the pro-inflammatory response, namely PIMs and neutrophils. Past research has

identified a pro-inflammatory response, mainly mediated by neutrophils, to be significant in

the development of acute lung injury and ARDS. Our model suggests that neutrophils likely

play a role in age-related differences as well since increased neutrophil activation was observed

in the parameter sets associated with the old data as well as generally correlating with poorer

epithelial health.

To explore how targeted interventions could change the poor responses to ventilation we

modulated parameters that model outputs were sensitive to and evaluated changes in the

model-predicted epithelial cell health. The local sensitivity results were used to select parame-

ters to modulate and simulations were performed for all parameter sets in each of the represen-

tative groups with a severe health state after ventilation. In some cases, a wide range of

responses were observed. The greatest effects were observed in the old representative sets, spe-

cifically for the variable Ee. For the old representative set classified as moderate before ventila-

tion and severe after ventilation, some parameter modulations produced a potential increase

or decrease in Ee of about 40–50%. Overall, the mean response to modulation of each parame-

ter had a magnitude less than 10%, with some near 0. Despite this, the targeted parameters

offer potentially large improvements, particularly in the old parameter sets with poorer lung

health. Additionally, an intervention performed mid-way through ventilation also produced

potential improvements in the transients but to a lesser extent.
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The exploration of age differences in VILI expresses early attempts to create more personal-

ized medical interventions. Despite the observed differences in MV response with age, clinical

use and interventions for MV remain a one-size-fits-all approach, ignoring underlying immu-

nological variance in patients. Our model suggests that parameters controlling M1 macro-

phage dynamics and pro-inflammatory mediators show distinct separation between young

and old associated parameter sets. These could be potential targets for further research to help

identify the cause of the differing responses to ventilation in young and old subjects. Simulated

interventions indicated damage and repair parameters showed the potential to improve tissue

health during ventilation, with these being most influential for old associated parameter sets

with poorer lung health. However, the wide range of potential responses indicates there are

more components involved in alveolar tissue health.

This model can be adapted to account for non-VILI associated lung injury, such as an infec-

tion or inhaled toxins. The statistical and mathematical method used with this model can then

determine key components of the immune and repair responses for those insults. Insults could

be combined with ventilation to better explore the age-dependent response to VILI while

accounting for co-factors that lead to the necessity for ventilation.

Supporting information

S1 Fig. Supplementary flow cytometry table.

(TIF)

S1 Eq. M0 macrophage equations.

(PDF)

S2 Eq. M1 macrophage equations.

(PDF)

S3 Eq. M2 macrophage equations.

(PDF)

S4 Eq. Neutrophil equations.

(PDF)

S5 Eq. Pro- and anti-inflammatory mediators equations.

(PDF)

S6 Eq. Repair and epithelial equations.

(PDF)

S1 Table. Full table modulating parameters prior to ventilation. Minimum, mean, and max-

imum change in the variables Eh and Ee from a 10% decrease (indicated by “-”) or a 10%

increase (indicated by “+”) in the listed parameters. Values are shaded on a sliding scale where

darker colors represent numbers with a larger magnitude and lighter colors represent numbers

with a smaller magnitude. For the minimum in each group, induced decreases in the value of

Eh and Ee are orange and induced increases in the value of Eh and Ee are blue.

(TIF)

S2 Table. Full table modulating parameters after 1 hour of ventilation. Minimum, mean,

and maximum change in the variables Eh and Ee from a 10% decrease (indicated by “-”) or a

10% increase (indicated by “+”) in the listed parameters after 1 hour of ventilation. Values are

shaded on a sliding scale where darker colors represent numbers with a larger magnitude and

lighter colors represent numbers with a smaller magnitude. For the minimum in each group,

induced decreases in the value of Eh and Ee are orange and induced increases in the value of Eh
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and Ee are blue.

(TIF)
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