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Abstract

Neural computations emerge from local recurrent neural circuits or computational units such

as cortical columns that comprise hundreds to a few thousand neurons. Continuous prog-

ress in connectomics, electrophysiology, and calcium imaging require tractable spiking net-

work models that can consistently incorporate new information about the network structure

and reproduce the recorded neural activity features. However, for spiking networks, it is

challenging to predict which connectivity configurations and neural properties can generate

fundamental operational states and specific experimentally reported nonlinear cortical com-

putations. Theoretical descriptions for the computational state of cortical spiking circuits are

diverse, including the balanced state where excitatory and inhibitory inputs balance almost

perfectly or the inhibition stabilized state (ISN) where the excitatory part of the circuit is

unstable. It remains an open question whether these states can co-exist with experimentally

reported nonlinear computations and whether they can be recovered in biologically realistic

implementations of spiking networks. Here, we show how to identify spiking network con-

nectivity patterns underlying diverse nonlinear computations such as XOR, bistability, inhibi-

tory stabilization, supersaturation, and persistent activity. We establish a mapping between

the stabilized supralinear network (SSN) and spiking activity which allows us to pinpoint the

location in parameter space where these activity regimes occur. Notably, we find that biolog-

ically-sized spiking networks can have irregular asynchronous activity that does not require

strong excitation-inhibition balance or large feedforward input and we show that the dynamic

firing rate trajectories in spiking networks can be precisely targeted without error-driven

training algorithms.

Author summary

Biological neural networks must be able to execute diverse nonlinear operations on signals

in order to perform complex information processing. While nonlinear transformations

have been observed experimentally or in specific theoretical models, a comprehensive the-

ory linking the parameters of a network of spiking neurons to its computations is still
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lacking. We show that spiking networks can be accurately approximated with a mathe-

matically tractable model, the Stabilized Supralinear Network. Using the mapping we

derived between these two frameworks, we show that spiking networks have a rich reper-

toire of nonlinear regimes at their disposal and link the existence of such regimes to pre-

cise conditions on parameters. Notably, we show that classical excitatory-inhibitory

networks of leaky integrate-and-fire neurons support nonlinear transformations without

the need for synaptic plasticity, intricate wiring diagrams or a complex system of different

cell types. The capacity of a network to reliably perform such operations has profound

functional implications as they can be the basis permitting the execution of complex

computations.

Introduction

Layered or columnar neuronal structures consisting of hundreds to thousands of neurons con-

stitute local computational blocks in the mammalian cortex. Each computational block has its

particular size and connectivity rules, which determine its dynamics and computational reper-

toire. Therefore, understanding the computational regimes of recurrent networks with sizes

ranging from hundreds to millions of neurons and diverse connectivity patterns is essential to

explain the emergence of cognitive functions and behavior. While powerful mathematical the-

ories can operate at opposite scales, from a small number of neurons generating a particular

activity pattern [1] to the limit of infinitely large networks [2], it is currently challenging to

quantitatively predict the activity of biologically-sized spiking neural networks whose size lie

between these two limits. However, growing amount of datasets containing activity recordings

of thousands of neurons require theories that can make mathematically tractable, quantitative,

and experimentally relevant predictions for the sizes of spiking networks reported for local

cortical circuits [3–5].

Here, we study the activity regimes of spiking networks whose sizes range from a few hun-

dred to thousands of neurons. Many parameters describing spiking neurons and their intra-

cortical connections have recently been measured across cortical cell types [6], and detailed

numerical network simulations have been put forward [7]. However, it is challenging to inter-

pret and generalize spiking network simulations because network dynamics depend strongly

on multidimensional parameter settings, while experimentally reported parameters vary across

broad ranges [8–12].

An alternative to detailed numerical simulations is provided by population rate models

[13–15] which describe the average activity of neurons in each population and can relate the

activity in a complex neural network to a few underlying parameters characterizing the con-

nectivity and the properties of neurons. Many such models exist which differ by the features

considered and the level of complexity of their mathematical formulation. Consequently, mul-

tiple rate models can precisely predict the dynamics of neural networks by employing mathe-

matically exact descriptions of the neuronal response to input [14, 16–18] or by considering

finite-size deviations from a mean-field approach such as the effect of correlations and fluctua-

tions [17, 19, 20]. Yet, this high fidelity comes at the expense of mathematical tractability. The

most accurate models are difficult to manipulate, which makes it challenging to predict theo-

retically the computational regime of a network from its parameter configuration.

On the other side of the complexity spectrum is the balanced state framework [2, 21], which

provides a powerful and mathematically tractable model in the limit of infinitely large net-

works. Its biological correlate is the experimentally reported strong balance between excitatory
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and inhibitory synaptic currents [22–24] and results in asynchronous irregular spiking activity

[25]. However, the computational hallmarks of the balanced network limit, including response

linearity and strong feedforward connections, are not consistent with a set of experimentally

reported non-linear responses across cortical areas [26] and reports of weak feedforward

inputs [27]. Furthermore, the existence of a stable balanced solution imposes strict conditions

on the connectivity configuration [21, 28] which are not guaranteed to be met in biological

neural networks.

Finally, the stabilized supralinear network model (SSN) [29] is a phenomenological rate

model which does not come with such strict restrictions on parameters. It is based on a supra-

linear power law as a transfer function. The advantage of the SSN framework is that its activity

states can be characterized analytically [15, 30] and it can reproduce a variety of nonlinear cor-

tical responses in the realistic range of firing rates observed in vivo [29].

Could the SSN model provide a tractable framework to predict and quantify the activity

regimes in biologically-sized spiking networks for arbitrary connectivity configurations? Here,

we show that the SSN model can be used to predict diverse nonlinear responses such as super-

saturation, bistable activity, and inhibition stabilized regimes [31, 32] in spiking networks. We

propose a mapping between the high-dimensional parameter space of the leaky-integrate-and-

fire (LIF) network of spiking neurons to the SSN model which results in a mathematically trac-

table model which can be manipulated analytically. With this work, we provide an easy-to-

implement analytical approximation of the spiking network which relies on the SSN model.

This allows us to predict the computational regime of a network of LIF neurons based on its

parameters. We show how this mapping can be used to design a neural network to target a

desired activity trajectory or operational regime of interest without network training. This

approach can be used to generate specific nonlinear functions (eg: XOR gate). Furthermore,

we find that not only biologically-sized but also much larger spiking networks can have a com-

plex nonlinear behavior that can be more accurately described with the SSN framework than

the balanced state theory.

Results

Our goal is to understand how neural circuits comprising a few thousand neurons organize

their spiking activity. We want to predict whether specific nonlinear computations can occur

in these networks and pinpoint their location in the multidimensional parameter space

spanned by recurrent connectivity and input weights. We choose the size of the networks to be

4000 neurons, which is biologically plausible for local cortical circuits (S1 Text). Neurons

belong to one of two homogeneous populations, Excitatory (E) and Inhibitory (I). We restrict

our analysis to the the range of 0–10 Hz, which is consistent with sustained population-aver-

aged activity levels reported in vivo [33–40]. We choose the strength and probability of synap-

tic connections to be within the same order of magnitude as the values reported by the

database of the Allen Institute for the visual cortex area V1 in mice [6] (S1 Text). To model

cortical activity, we use the leaky-integrate-and-fire (LIF) model (see Materials and methods),

which represents a useful description of cortical neurons both in vivo and in vitro [41]. To pre-

dict spiking network activity regimes, we map the mean activity of spiking networks to a rate-

based 2D SSN model.

Approximating spiking network activity with the SSN model

Our starting point is the observation that a power-law function can accurately describe the F-I

curve of a single LIF neuron in response to white noise input across different membrane time

constants τ and input noise values σ (see Fig 1B and 1C). Throughout this study, we are
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interested in the firing rate range from zero to approximately 10 Hz which has been reported

in vivo across many brain areas [33–40]. To this end, we fit the low firing rate regime (0–10

Hz) of the F-I curve of a LIF neuron given by the Ricciardi transfer function F Eq 9 [42] using

the threshold power-law function of the form

n ¼ aðm � bÞn
þ
: ð1Þ

Where ν is the firing rate, μ is the input to the neuron and (x)+ = max{x, 0}. The constants a, b,

and n, which are obtained by fitting the F function Eq 9, characterize the power-law approxi-

mation with a scaling pre-factor a, an input threshold b upon which the neuron starts firing,

and an exponent n. The power-law exponent n in our approximation varies between 2 and 4,

which is consistent with the biologically reported range [38, 43].

We connect the individual LIF neurons into a recurrent network of excitatory (E) and

inhibitory (I) neurons (Fig 1A). We assume that E and I neurons differ in their membrane

time constants (τE = 20 ms, τI = 10 ms, black crosses in Fig 1C) consistently with experimental

reports [6]. We note that the input to a neuron in a recurrent network, which is a superposi-

tion of postsynaptic potentials (PSPs), is equivalent to an Ornstein Uhlenbeck process or white

noise if the number of incoming PSPs is sufficiently large and the activity is temporally uncor-

related or Poissonian [44, 45].

To describe the activity of the E and I populations, we use the power-law approximation of

the single-neuron transfer function (Eq 1). In the mean field approximation, the average firing

rate of each population is given by a system of equations equivalent to the SSN [29]

tPE
dnE
dt

¼ � nE þ aEðmE � bEÞ
nE
þ

tPI
dnI
dt

¼ � nI þ aIðmI � bIÞ
nI
þ
:

ð2Þ

Where νX, X 2 {E, I} are the firing rates of the two populations, the parameters aX, bX, and nX
are given by the F-I curve fit of E and I neurons (black crosses in Fig 1C), and μX is the total

Fig 1. Spiking neurons can be quantitatively described by a supralinear power law for low activity. (A, top) Schematic representation of the F-I transfer function of

a neuron. (A, bottom) Architecture of the recurrent Excitatory-Inhibitory network. (B) Neuronal firing rate as a function of input for different input noise σ and

membrane time constant τ. The power-law approximation (Eq 1) accurately aligns with the LIF neuron simulation andF transfer function Eq 9 for low firing rates.

Note that the power-law fit is only applied in the range of ν< 10 Hz, and diverges beyond this range. The vertical mark denotes the power-law parameter b for one of

the curves (b is negative for the other two curves). (C) The power-law parameters depend on input noise σ and the membrane time constant τ. The two crosses indicate

the parameter regimes we use for the excitatory (τE = 20 ms) and inhibitory (τI = 10 ms) neurons in recurrent networks. Other symbols indicate the parameters τ and σ
used in B. The fit is obtained with the least squares method. Power-law parameters are listed in Table D in S1 Text.

https://doi.org/10.1371/journal.pcbi.1011097.g001
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input to the neurons in each population. In a recurrent E-I network, μX is the sum of recurrent

(JXEνE − JXIνI, see Eq 12) and feedforward (μextX) inputs to each population. The population

time constants tPX characterize how fast the firing rate of each population evolves. In vivo cor-

tical networks have been shown to respond to sudden stimulation with a transient (or onset)
response that has a time scale of approximately 20 ms [46]. Meanwhile, in vivo recordings of

multiple cortical areas have reported autocorrelation on a much slower timescales, of the order

of hundreds of ms [47–49]. This suggests that the timescales over which biological networks

typically evolve in vivo is driven by extrinsic factors such as changes in feedforward input,

rather than the intrinsic timescales tPX which emerge from synaptic and neuronal variables.

Therefore, in this work we restrict our analysis to the study of firing rates dynamics which

evolve on sufficiently slow timescales to assume that the network operates at the equilibrium

state. While the study of fast or transient dynamics would necessitate to consider the temporal

characteristics of the network Eq 2, the steady states of the SSN are described by

nE ¼ aEðJEEnE � JEInI þ mext � bEÞ
nE
þ

nI ¼ aIðJIEnE � JIInI þ rmext � bIÞ
nI
þ
:

ð3Þ

Here r is the ratio of the external inputs to the I and E populations r = μextI/μextE, which allows

for the simplified notation: μext = μextE and rμext = μextI. The population-wise connection

strengths JXY characterize the recurrent connections from population Y to population X,

whereby X, Y 2 {E, I}.
Previous work identified the constraints on connectivity configurations in the SSN model

that underlie such nonlinear activity responses as supersaturation [15], the paradoxical effect

[50, 51], bistability, and persistent activity [30]. We show that the parameters of LIF spiking

networks can be mapped to the SSN such that the same activity types emerge in the spiking

network, according to the observations made with the SSN. In the following sections, we dis-

cuss each activity type and its corresponding connectivity regime in the SSN, as well as in LIF

spiking networks.

Supersaturation—Firing rates can decline for growing input

Firing rates of neurons in vivo can show a range of nonlinear behaviors as a function of stimu-

lus strength [52]. In particular, the activity level of sensory neurons may decrease after stimula-

tion, and a substantial number of pyramidal V1 neurons in mice show reduced firing in

response to enhanced stimulus contrast [53]. At the same time, the average activity of thalamic

neurons in mice—primarily targeting V1 neurons—is an increasing function of the stimulus

contrast [54]. Therefore, it appears that E neurons can be suppressed despite the increase in

external input. This phenomenon is generally referred to as supersaturation [15].

First, we studied E firing response to growing inputs and aimed to delineate parameter

regimes where a decreasing population response can be observed. We found that supersatura-

tion (
dnE
dmext

< 0) can be observed in a large class of connectivity and input weights configurations

within the spiking networks that can be predicted by the inequality derived for the SSN model

in [15, 55]

r >
JII
JEI
: ð4Þ

Interestingly, only three network parameters determine the SSN network’s ability to be in a

supersaturating activity regime (Eq 4). For a network to be supersaturating, the ratio of exter-

nal inputs r has to exceed the ratio of recurrent inhibition JII/JEI. As a result, the remaining two
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connectivity parameters (the recurrent excitation JIE and JEE) cannot control the existence of

supersaturating activity in the SSN. The exact point at which a network satisfying Eq 4

becomes supersaturating does, however, depend on all network parameters as it occurs when

the inhibitory firing rate exceeds a specific threshold value (S1 Text, Eq S6).

To determine whether the condition derived in the SSN model (Eq S6 in S1 Text) leads to a

quantitative description of supersaturation in spiking networks, we generated LIF network

parameters fulfilling the supersaturating condition using the SSN-LIF mapping framework in

Eq 1 (Fig 2A). We found that the activity in a LIF spiking network aligns robustly with the

activity of the SSN model (Fig 2A).

Recent work [56] compared the responses of LIF and SSN models, pointing out that the

peak E activity in supersaturating spiking networks is small, and in particular, it is smaller than

the SSN peak. As shown in Fig 2A, the peak firing rates obtained with the two methods are in

agreement. Furthermore, we show that it is possible to control the height of the E firing rate

peak in both networks such that it can be made arbitrarily high (Fig 2B, S1 Text). Specifically,

we show that the peak of E activity can be controlled by modifying the ratio of the external

inputs r, and the connectivity parameters JEI and J � 1
IE by the same factor. This manipulation

derived from the SSN analysis (S1 Text) leads to the same effect in the spiking networks (Fig

2B).

To determine how close the network operates to E-I balance, we introduce the balance fac-

tor which measures the fraction of excitation that is cancelled by inhibition. We define the bal-

ance factor (BF) of population X, for positive external input μextX, as BF = μXI/(μXE + μextX). If

the network operates at balance, the recurrent inhibitory input will cancel out the total excit-

atory input and lead to a BF of 1. It should be clarified that the balance we are considering here

must be understood in the sense of tight balance [2, 21, 57], meaning that inhibition matches

the excitation and leads to near perfect cancellation. While a partial cancellation is considered

a loose balance [29], it does not lead to characteristic features such as a predictable linear net-

work response. Here, the BF measured at the peak E firing rate is close to 40% for E neurons

and nearly null for I neurons, demonstrating that the network operates far from E-I balance

(Fig 2C). Still, the network appears to be asynchronous irregular and the firing is compatible

with a Poisson spiking process as the coefficient of variation of the interspike intervals at the

peak E firing rate is close to 1 (CVISI� 1) (Fig 2D). Importantly, the supersaturation regime

occupies the biologically plausible activity range of 0–10 Hz in spiking networks [33–40], and

the amplitude of the synaptic connection strengths, as well as the size of the network

(N = 4000), are both in line with biological estimates of functional cortical network size [6, 58,

59] (S1 Text). We note that the supersaturation condition is incompatible with the existence of

a stable balanced state solution, as defined in Eq S4 in S1 Text as it would lead to negative firing

rates.

Knowing how the 2D firing rates emerge from recurrent and feedforward connectivity in

the SSN allows us to invert this relation and select external inputs such that they lead to the

desired E and I activity trajectory in the spiking network. This is illustrated in Fig 2E where we

targeted a complex 2D trajectory. We obtained the feedforward inputs that result in the desired

dynamics νE(t) and νI(t), by inverting Eq 3:

mextEðtÞ ¼
nEðtÞ
aE

� �1=nE

þ JEInIðtÞ � JEEnEðtÞ þ bE

mextIðtÞ ¼
nIðtÞ
aI

� �1=nI

þ JIInIðtÞ � JIEnEðtÞ þ bI:

ð5Þ

These dynamic feedforward inputs μextE(t) and μextI(t) are shown in Fig 2F, bottom and the
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Fig 2. SSN-predicted supersaturation can be observed in spiking network simulations. The existence of the supersaturating response can be

predicted by the SSN framework using Eq S6 in S1 Text. (A) E (blue) and I (red) firing rates as a function of external input. LIF spiking activity

is in line with the SSN solution (dashed line). (B) The peak of E activity can be tuned to any desired level by modifying the I/E ratio of external

inputs (r) along with the connectivity weights JIE and JEI. (C) Boxplot of the Balance Factor (BF) for the E (blue) and I (red) neurons computed

at the peak of E activity (see inset). The low values demonstrate that the network is operating far from E/I balance, as neurons in both

populations receive significantly more excitation than inhibition. (D) The spiking activity of both E and I neurons is irregular and compatible

with a Poisson process (CVISI close to 1). The inset shows the distribution of firing rates of individual neurons. (E) Spiking networks can follow

a user-defined target dynamical trajectory. The black line shows the target trajectory we aim to replicate with the network. The blue line shows

the trajectory of the spiking network in the E-I activity phase space. (F) Same simulation as in panel E. The time course of the E and I firing

rates in the LIF network (top) follows the target trajectory and results from designed dynamical inputs (bottom). (G) Supersaturating networks

can perform the XOR task. Top: Layout of the network used to perform the XOR task, where the E-I network is supersaturating (Eq S6 in S1

Text). Bottom: The LIF E population activity performs XOR logical operation of the two inputs X1 and X2. The feedforward weights are JEX1
¼

JIX1
¼ JEX2

¼ JIX2
¼ 2:5 mV. The spiking network parameters can be found in Table B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1011097.g002
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fidelity of the targeting is illustrated in Fig 2F, top. Notably, the timescale of the autocorrelation

function of neuronal activity (as defined in [60]) is around 300 ms, which is in line with

recorded cortical activity [47–49]. These results indicate that complex dynamic trajectories

evolving on biologically realistic timescales can be accurately captured by the SSN steady states

Eq 3. It follows that the mapping between the steady states of the SSN and spiking neural net-

works provides a valuable approximation even for slow spiking network dynamics.

Let us note that while we used here dynamic feedforward inputs to move along the activity

trajectory, it is equally possible to dynamically modify the connectivity to obtain the same 2D

trajectory in activity space. In this scenario, synaptic plasticity is recruited to obtain a user-

defined output. This can be done by setting the plastic connections J as dynamic while the

external inputs are constant.

JEEðtÞ ¼

nEðtÞ
aE

� � 1
nE

þ JEInIðtÞ � mext þ bE

nEðtÞ

JIEðtÞ ¼

nIðtÞ
aI

� � 1
nI

þ JIInIðtÞ � rmext þ bI

nEðtÞ
:

ð6Þ

Overall, we show that the mapping between SSN and spiking networks makes it possible to

construct inputs or synaptic weights in a spiking neural circuit such that its activity follows a

user-defined complex target dynamical trajectory.

In balanced networks, the implementation of logical gates is a complex task due to the lin-

earity of the transfer function [61]. Therefore, we asked whether the nonlinear regimes of spik-

ing networks can be used to perform specific logical operations. Here, we show that it is

possible to combine feedforward and recurrent inputs in a way that makes the circuits perform

the nonlinear XOR operation, which is one of the key computing components of logical cir-

cuits, while being challenging to implement in a neural network [62]. We show in Fig 2G how

a supersaturating network can execute the XOR operation from two input signals. The E activ-

ity is maximal if the input X1 + X2 corresponds to the peak input in the SSN supersaturating

regime. The E activity is unstimulated if both inputs X1 and X2 are low and silenced if they are

both high. This shows that the nonlinearity of biologically-sized spiking networks can be

exploited to carry out fundamental logical operations.

We have shown that the SSN provides a powerful framework to study the supersaturating

network presented in Fig 2. Next, we explore if a neural network corresponding to the experi-

mentally reported connectivity parameters in mouse V1 by the Allen Institute [6] can also

show supersaturation (Table B in S1 Text). We use these parameters as a reference point for

the biologically plausible range of connection strengths. Interestingly, a circuit with these con-

nectivity parameters does not have a balanced state solution for the equal external input ratio

r = 1 (μextE = μextI) and requires r< 0.9 to fulfill the balanced state requirement (Eq S2 in S1

Text). The network can be supersaturating for values of r larger than 0.9. Remarkably, for

r = 1, the E activity does not decrease in the low input range but saturates instead (Fig 3A), the

network only becomes supersaturating for μext > 150 mV/s (S1(B) Fig). For larger values of r
the activity decreases and becomes silent for inputs close to 100 mV/s (see inset Fig 3A,

r = 1.5).
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Inhibitory stabilization and its presence for reconstructed synaptic weights

Inhibitory stabilization is a network state in which the recurrent excitation feedback loop is

strong and intrinsically unstable but can be stabilized by the recurrent inhibition [31, 63]. The

paradoxical effect is a feature of the ISN [31], in which the I activity decreases as the input to

the I population is increased (
dnI
dmextI

< 0). Recent studies using optogenetic stimulation of inhibi-

tory neurons confirmed the paradoxical effect in mouse visual, somatosensory, and motor cor-

tices [64] suggesting that the ISN is a ubiquitous property present across cortical networks. A

recent review presented further experimental evidence and techniques used to study the inhi-

bition-stabilized dynamics and discussed the ISN consequences for cortical computation [32].

In the SSN model [50, 51], a network is inhibition-stabilized if it fulfills the condition

nE > ðaEn
nE
E J

nE
EEÞ
� 1
nE � 1: ð7Þ

We note that in networks with a threshold linear transfer function, the analogous ISN condi-

tion only requires a strong recurrent coupling JEE> 1 and does not impose any constraints on

the E firing rate level or the transfer function parameters [31, 32]. However, large enough JEE
does not always guarantee that a recurrent neural network with a nonlinear transfer function

is in the ISN regime. Increasing JEE can also lead to instability, as the excitatory feedback loop

can strengthen to a point where it escapes stabilization from recurrent inhibition. In the

extreme case, it is even possible to build a network that can never enter the ISN regime regard-

less of the value of JEE, as E activity never reaches the level where it can be stabilized by inhibi-

tion (S1 Text).

Next, we investigated whether this condition (Eq 7) can predict the existence of the ISN in

spiking networks of LIF neurons. Interestingly, we found that the ISN condition cannot be

Fig 3. The experimentally reported network parameters can generate supersaturation and be adapted to enter the inhibition-

stabilized state. (A) Firing rates of the E and I populations, blue and red lines, respectively, as a function of external input using the

parameters reported by the Allen institute [6], see Table B in S1 Text. The dashed lines show the SSN solution. In this network, the E

activity saturates for inputs larger than 20 mV/s. If the external input to the I population is larger than that to the E population, as shown in

the inset with r = 1.5, E firing rate declines for growing input. (B) This spiking network exhibits inhibitory stabilization matching the

predictions of the SSN (dashed line). The connection strength JEE is higher than in panel A (Table B in S1 Text). The ISN state is exposed

by the paradoxical effect which occurs when the I firing rate decreases for increasing μextI. First, the inputs to both populations grow to

drive the network in a state where the E subnetwork is unstable: νE> 1.5 Hz, Eq 7 (vertical dotted line). Once μextI reaches 50 mV/s, only

the input to I increases (from 50 to 100 mV/s), while μextE remains at 100 mV/s. This results in a decrease in the firing rates of both

populations, as predicted by the SSN (dashed lines). The inset shows a close up of the I activity to illustrate the paradoxical effect and shows

that the paradoxical effect wanes as the E firing rate approaches the ISN threshold (νE� 1.5 Hz).

https://doi.org/10.1371/journal.pcbi.1011097.g003
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met for the connectivity strengths reported for mouse V1 from the Allen Atlas [6] if the E/I

input ratio r is equal to 1. This is due to the fact that the required E firing rate (νE>27 Hz) is

higher than the maximum stable E firing rate reached in the network (Fig 3A). Yet, even for

very low values of r (around r = 0.1), an ISN state can only be reached by exposing the network

to very high external inputs (around μext = 1000 mV/s) (S1(B) Fig). We will choose a network

which operates outside these cases since the corresponding firing rates are far beyond the 0–10

Hz firing rate range we consider in this study. Therefore, in order to illustrate the ISN condi-

tion, we modified one of the connectivity strengths. Specifically, we increased the connectivity

parameter JEE, which is supported by the study by [10] who report larger JEE than the Allen

Atlas [6]. We set JEE such that the network is in the ISN state for E firing rates larger than 1.5

Hz and kept all other connectivity strengths as reported by the Allen Atlas ([6], see Table B in

S1 Text). Fig 3B shows that the resulting network exhibits the paradoxical effect and is there-

fore in the ISN regime.

Bistability and persistent activity

One of the most prominent experimentally recorded neural activity features in vivo is the net-

work ability to switch between higher and lower firing levels. One example is spontaneously

alternating intervals of tonic firing and silence observed across different cortical areas [37].

Another example is the sustained firing rate in the prefrontal cortex after stimulus withdrawal

during decision-making tasks which is hypothesized to represent short-term memory [14, 65].

The coexistence of multiple network states can be explained theoretically by bistability, where

the system has two stable states for the same level of input. If multiple stable states co-exist in a

network model, a sufficiently large perturbation can drive network activity away from its cur-

rent state towards another attractor. In the situation where a bistable network can sustain its

high activity level in the absence of feedforward input, it has persistent activity. Here, we asked

whether the SSN model can predict the connectivity regime supporting bistability in spiking

circuits.

Bistability and persistent activity can be obtained in the SSN model [30] without the need

for synaptic plasticity [66] or complex synaptic weight distributions [67]. Unlike supersatura-

tion and inhibition stabilization, bistability cannot be delimited by a simple tractable condition

on network parameters (S1 Text). However, we can use the conditions presented in [30], as a

starting point to guide our search for bistability in biologically realistic spiking networks, even

though they are derived under restrictive assumptions on the a, b, and n parameters. We show

an example of a biologically realistic bistable network in Fig 4.

The LIF network simulation confirms the SSN-predicted bistability Fig 4: the network can

sustain either low activity or high activity for external inputs in the 2–4 mV/s range.

Although the SSN rate model is deterministic, the spiking network simulation is not. Due to

the stochastic nature of the neuronal activity, fluctuations in firing can cause spontaneous

transitions between steady states (shown in Fig 4A, inset). We note that the spontaneous

transitions between the up and down states have not been reported in the bistable balanced

networks with short-term plasticity [66]. This is because the fluctuations driving spontane-

ous transitions are finite-size effects [20], and the switching probability decreases with net-

work size.

We find that a higher excitatory membrane time constant broadens the window of bistabil-

ity (Fig 4B), making bistability more robust to spontaneous fluctuations and easier to locate in

phase space. As τE increases, the bistability window shifts towards lower feedforward input.

When the bistability window intersects the vertical μext = 0 axis, the network has a persistent

activity state in the absence of feedforward input (τE = 22 ms in Fig 4B). Here again, the E-I
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balance is weak, as shown by the balance factor of inputs (Fig 4C), and the spiking activity is

Poisson-like, as shown by the coefficient of variation of the ISIs Fig 4D.

Finally, the nonlinear transformation performed by spiking networks can be functionally

relevant for information processing. Logical operations such as the AND operation can be

implemented without the need to recruit synaptic plasticity, thanks to the sharp transition

between the two stable states. If the transition from the low to the high activity level requires a

strong input, so that two signals X1 and X2 need to be present to elicit the transition, the net-

work can execute the AND operation. Moreover, the bistability of a neural network can also

offer the possibility to store information. Once the network has been switched into a different

activity state by a strong perturbation, it remains in the same state even after the perturbation

withdrawal.

Fig 4. SSN-predicted bistability and persistent activity can be observed in spiking network simulations. (A) E and I firing rates as a

function of external input in a bistable network (coexistence of high and low activity states for a given external input). Simulated LIF

spiking activity is accurately predicted by the SSN. The inset illustrates that the width of the bistability window can vary between

simulations of the same network due to the spontaneous transitions between the two states. (B) The width of the bistability window

depends on the excitatory membrane time constant: higher values of τE lead to broader bistability windows, which are shifted leftward. If

τE is sufficiently large for the bistability window to exist for zero feedforward input, the network can sustain persistent activity. In the SSN,

changes in τE correspond to changes in the parameters aE, bE and nE. (C) Balance Factor for the E (blue) and I (red) neurons measured on

the high activity branch (see inset). The BF values are far from 1, which indicates that the network is only loosely E/I balanced. (D) The

coefficient of variation of the interspike intervals (CVISI) is near 1, which is compatible with a Poisson process and demonstrates that

activity is asynchronous and irregular. Both (C) and (D) are measured in the upstate, as shown in the inset to (C). All parameters are given

in Table B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1011097.g004
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Computational regimes and their position in input space

In previous sections, we demonstrated that the SSN framework can be used to locate specific

computational regimes such as supersaturation and the paradoxical effect in parameter space,

and that the observations derived from the SSN are confirmed in corresponding spiking neural

networks. Here, we focused on the activity regimes associated with the 2D space of the feedfor-

ward input and the I/E external input ratio (μext, r). For two examples of connectivity matrices

J, we scanned the 2D input space for supersaturation (Eq S6 in S1 Text), ISN (Eq 7) and bist-

ability using the characteristic function F as defined in [30] (Eq S10 in S1 Text). We also show

the input regimes for which the network permits a balanced limit solution (Eq S2 in S1 Text).

Importantly, the sign of the determinant of the weight matrix (det J = JEIJIE − JEEJII) determines

the number of SSN steady states (stable and unstable): for det J> 0, the SSN has an odd num-

ber of steady states whereas for det J< 0 the number of steady states is even [15, 30]. Thus, net-

works with positive det J (Fig 5A) always have at least one steady state. In the network shown

in Fig 4, bistability occurs when the system transitions from having one steady state to having

three (two stable and one unstable). On the other hand, networks which have a negative det J
(Fig 5B) can lack steady states at all, and any possible stable steady state coexists with an unsta-

ble steady state [30]. Finally, the sign of det J also determines whether the system can have a

stable balanced state (Eq S4 in S1 Text) or lacks it. In networks where the sign of det J is nega-

tive, a balanced state solution can exist with positive firing rates if r > max JII
JEI
;
JIE
JEE

� �
, but it is

unstable [28].

Fig 5 shows the map of feedforward inputs and the corresponding computational regime

for two examples of the connectivity matrix J. Panel A corresponds to the connectivity parame-

ters from the bistable network shown in Fig 4 with det J> 0. The region where bistability is

expected corresponds to the results in Fig 4A with r = 1. The balanced state exists and is stable

for low values of r. Panel B corresponds to a network with det J< 0. In this case, the balanced

state only exists for high values of r, but it is unstable. Furthermore, we find that for large input

Fig 5. Mapping the computational states in the SSN model for two representative connectivity regimes. (A) Varying the ratio

of the external input weights and the amplitude of external drive in a network with a positive det J allows to traverse different

computational regimes (J as in Fig 4, see parameters in Table B in S1 Text). Gray stripes denote the input space subset with a

stable balanced state limit (N!1) which does not exist above the horizontal gray line. The blue area represents the inhibition

stabilized regime (ISN). The red area denotes the phase space occupied by supersaturating spiking activity. The green area

corresponds to a bistable region (as shown in Fig 4A with r = 1). Within the green region, the up-state is in the ISN whereas the

down-state is not. We note that the inhibitory stabilization and supersaturation can co-exist. (B) The same analysis is performed

on a network with negative det J (Table B in S1 Text). In this case the balanced state limit is unstable. The ISN region is narrower

and there is a broad range of inputs for which the network does not have a steady state solution.

https://doi.org/10.1371/journal.pcbi.1011097.g005
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and low r, the network does not have a steady state. In this region, inhibition cannot stabilize

the network, and the activity blows up. The same analysis is also performed for the supersatu-

rating network in Fig 2 and the mouse V1 network in Fig 3A (S1 Fig). Overall, using the SSN

model, we can precisely locate the regions corresponding to distinct behaviors of spiking net-

works in their parameter space. Notably, we observe that the sign of the determinant of the

connectivity matrix J plays a crucial role in the type of activity regimes available to the network

(S1 Text).

Effect of network size on network response nonlinearity

While biologically-sized networks can generate diverse nonlinear responses to external input,

the balanced state framework implies that network response becomes linear as network size

approaches infinity. How do networks transition from nonlinear to linear regimes for increas-

ing network size N? To tackle this question, we re-scaled the recurrent connections jXY by the

factor 1=
ffiffiffiffi
N
p

as a function of network size N, and increased N from N = 4 × 103 to 5 × 105

while keeping the connection probabilities fixed, leading to an effective re-scaling of the popu-

lation-wise JXY by
ffiffiffiffi
N
p

. This parameter re-scaling follows the convention of the balanced state

theory [2, 21] and allows us to address whether these nonlinear spiking networks converge to

the expected balanced state, and if so, when and how. In the balanced state convention, the

feedforward input follows the same rescaling and grows with
ffiffiffiffi
N
p

. We show in Fig 6A, 6C and

6E the network response to the effective feedforward input after scaling (μext), and in Fig 6B,

6D and 6F the network response as a function of the external input before scaling, (mext=
ffiffiffiffi
N
p

)

to highlight a possible convergence to the balanced solution as N grows.

A dynamically stable balanced state limit can only exist if det J is positive and the fraction of

external input weights r satisfies 0 < r < min JII
JEI
;
JIE
JEE

� �
, see Eq S4 in S1 Text. In our network

convergence study, we focus on three spiking networks: one supersaturating network with

det J> 0 (shown in Fig 2), one bistable network with det J> 0 (shown in Fig 4), and a super-

saturating network with det J< 0 (presented in Fig 5B, where we set r = 3). Among our three

example networks, we have one example for which a balanced state limit does not exist (super-

saturation), one network with a stable balanced state solution (bistable network) and one net-

work with a balanced state that exists but is dynamically unstable (det J< 0). In all three cases,

the SSN model remains an accurate description of the spiking network mean activity across

different network sizes N (Fig 6A, 6C and 6E), and its predictions align qualitatively and quan-

titatively with the self-consistency solution Fsc model (Fig 6B, 6D and 6F, inset).

We find that the network response can remain nonlinear even for very large network sizes

consisting of up to half a million neurons (see inset). By considering the feedforward input

before scaling (mext=
ffiffiffiffi
N
p

) [2, 21], the network response should converge toward a single linear

solution—the balanced limit (Eq S1 in S1 Text, dashed line in Fig 6D and 6E). In the case of

the supersaturating network, the balanced limit does not exist, as it would lead to negative E

firing rates. Therefore, in the limit of large network size the E firing rate tends to zero. In the

case of the bistable network, a balanced state limit does exist but the network response is still

far from converging to it, even for N = 5 × 105. Finally, for the network with det J< 0 and

r = 3, the network exhibits supersaturation for N = 4000 (see Fig 5B). However, as N increases,

the network enters a region for which there is no steady state, and where the firing rates blow

up. This behaviour is observed in spiking network simulations, the SSN solution and the mean

field Fsc. The inset shows how this instability is caused by the collision of the two steady state

branches, leaving a gap where the firing rates are unbound. For this network, the mean-field

solution converges to the balanced limit as N increases (Fig 6F). However, the balanced state
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Fig 6. Increasing network size does not guarantee convergence to a balanced state. (A-B) Supersaturating network with det J> 0, (C-D) bistable network

with det J> 0, (E-F) supersaturating network with det J< 0, parameter regimes which we identified using the SSN framework and studied forN = 4000 in

previous figures. Here, we gradually increase the size of these networksN and follow the balanced network convention to rescale the weights JXY by
ffiffiffiffi
N
p

as the

network grows. (A) The excitatory firing in the supersaturating network from Fig 2A across different network sizes. The colored lines represent spiking

networks (from 4 × 103 to 4 × 104), the black lines represent the corresponding SSN solution. The inset shows the excitatory rate for network sizes from

N = 4 × 103 (blue) toN = 5 × 105 (red), in steps of ×100.1 obtained using the SSN. (B) The same network as in A, but the external input is expressed before

scaling: mext=
ffiffiffiffi
N
p

. This network does not have a balanced state solution (see first condition of Eq S4 in S1 Text). AsN grows, the excitatory activity peak

becomes smaller and in the limit of very large networks, the excitatory population remains silenced (νE = 0). The inset shows that the Ricciardi self-consistency

solutionFsc (Eq 14) and the SSN model predict the same behavior as N increases. (C) The excitatory activity for the bistable network from Fig 4 for N = 4 × 103

and N = 4 × 104. The spiking activity of the spiking LIF network (colored lines) is captured by the SSN model (black lines). As N increases we observe a

broadening of the bistability window and a decreasing firing rate, see inset. (D) The same network as in panel C but now without external inputs scaling to

highlight the balanced solution. The balanced state predicts a linear solution for theN!1 limit (Eq S1 in S1 Text, dashed line). The convergence to the
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limit is unstable here, and it only matches with the unstable mean-field solution (high firing

rates part of the branch) whereas the stable low activity solution tends to zero.

Overall, our example networks illustrate that for many classes of spiking networks with bio-

logically plausible sizes and connectivity configurations, the activity will escape the predictions

of the balanced state. Depending on the parameters, the balanced state may not exist or be

unstable. Yet, even when a stable balanced state exists, it is not guaranteed that it provides a

realistic description of network activity, even for unrealistically large sizes N. Next, we investi-

gated whether these networks which are non-linear and do not conform to the balanced state

prediction can have a balance factor close to 1. We have shown that the values of BF are far

from 1 in the bistable network of 4000 neurons (Fig 4C), which is an indicator that the network

is operating far from balance. However, we found that the BF of inputs can be network size

dependent: increasing the size N from 4000 to 40000 strongly increased the inhibition to exci-

tation ratio even though the firing rate activity in both cases does not conform to the balanced

state solution (S2 Fig). In summary, the observation of significant cancellation of incoming

excitatory and inhibitory signals does not guarantee that the balanced state framework is appli-

cable to predict the firing activity. Even small deviations from tight balance (BF<1) can lead

to significant deviation in the resulting network activity regime.

Discussion

Understanding how activity regimes of biologically-sized spiking networks relate to network

structure is critical to making sense of experimentally recorded data. The state-of-the-art

experimental techniques now enable simultaneous recordings of thousands of neurons [68,

69]. These large experimental datasets require solid theoretical foundations bridging knowl-

edge on the spiking network composition with the observed network activity. Here, we show

how to predict the computational regime of a spiking network comprising a few thousand neu-

rons from its connectivity configuration by mapping the spiking network to a tractable SSN

model. This network size corresponds to a fundamental functional network unit such as a

minicolumn found in diverse cortical regions [70–74]. Additionally, we set the range of firing

rate activity to meet the experimentally reported range of a few Hz [33–40].

In the present work, we developed a mapping between the rate SSN model and a biologi-

cally-sized spiking network of two neuronal populations without any constraints on the net-

work’s connectivity configurations. We have shown that the nonlinear behavior of the

spiking networks can be mechanistically understood using the lower-dimensional and math-

ematically tractable SSN model. The rich computational repertoire of the SSN model origi-

nates from one simple experimentally inspired assumption that the activation function of

individual neurons is supralinear. This function resembles the input-output relation in a

spiking network, providing a critical component for mapping the two models. Using the

mapping, we delineated connectivity regimes for which nonlinear computations such as bist-

ability, supersaturation, inhibitory stabilization, or even the absence of steady states can

occur in spiking networks. We found that networks can be inhibition stabilized in conditions

where a balanced limit does not exist, even though both require strong inhibitory feedback.

For example, the inhibitory stabilization can overlap with the supersaturation regime and is

balanced limit is very slow, and even at N = 5 × 105 neurons, the network rates still do not converge to the balanced state. (E) Activity of a spiking network with

a negative det J from Fig 5B, with r = 3. As N grows, the excitatory activity dissociates into two distinct branches separated by an unstable region where the

firing rates diverge to1. The inset illustrates that this separation occurs when the stable and unstable steady states collide. (F) The same network as in E, now

with the external inputs expressed before scaling. The balanced solution of this network (dashed line) is unstable (Eq S4 in S1 Text). The unstable network

solution approaches the balanced state, while the stable solution tends to 0 as N increases.

https://doi.org/10.1371/journal.pcbi.1011097.g006
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possible in networks with the negative determinant of the connectivity matrix (det J< 0, Fig

5), a connectivity regime for which a balanced network solution would be unstable. We

found that a set of connectivity configurations obtained from experimental connectivity esti-

mates fulfills the balanced state condition only if the E population receives a stronger feedfor-

ward input than the I population. Additionally, we have shown that a spiking network could

implement an XOR gate in a supersaturation connectivity regime which we detected using

the proposed mapping between SSN and spiking network models (Fig 2G). This observation

provides a mechanistic understanding of how a trained spiking network could implement a

fundamental XOR logical gate.

Overall, we found that the SSN model can accurately predict nonlinear activity regimes of

biologically-sized spiking networks without constraints on the network connectivity config-

urations imposed by the balanced state condition. Specifically, the SSN model can describe

the mean response of biologically-sized spiking networks that are not large enough to con-

verge to the balanced state limit or cannot reach the limit because their underlying connec-

tivity does not fulfill the balanced state condition (Fig 6). Since the SSN model has fewer

dimensions than spiking network models, we expect that spiking network simulations may

exhibit activity regimes which cannot be obtained in the SSN model. However, we found

that the provided mapping can accurately approximate the mean activity of a spiking net-

work for a set of nonlinear computational regimes supported by the SSN. A recent study [56]

pointed to discrepancies between the SSN and spiking network outcomes in the supersatura-

tion regime. Specifically, numerical simulations in [56] suggested that the supersaturation

peak in the SSN model’s output seems generally smaller than the peak reached by a spiking

network. Here, using our SSN to spiking network mapping formalism, we show how to align

and simultaneously control the supersaturation peak of both the SSN and spiking network

models Fig 2B.

In this work, we choose the SSN rate model to provide a mathematically tractable descrip-

tion of spiking neural networks and uncover diverse nonlinear activity regimes. It should be

noted that alternative models derived from the balanced state could be used as well. For exam-

ple, balanced networks with short-term synaptic plasticity have been proposed to permit the

emergence of nonlinear activity, such as bistability [66]. Likewise, the experimentally reported

small feedforward input which drives spiking activity in vivo [75–78] was inconsistent with the

original balanced state predictions but was accommodated via the inclusion of broad synaptic

weight distributions [67]. Similarly, semi-balanced networks were proposed [61], where neu-

rons which receive net inhibition remain silent. This generates a piecewise-linear manifold

which can operate as a nonlinear decision boundary and allows for a broader domain of valid-

ity than the classical balanced framework. While the network nonlinearities we report in this

work only emerge as a consequence of powerlaw-like transformation of the LIF neuron, future

works could aim to include the effects of synaptic plasticity, broad distributions of synaptic

weights or silencing of neuronal subpopulations in a tractable mathematical framework to

study the interplay of these multiple sources of nonlinearity.

Similarly, a recent article by Sanzeni et al. [56] used a different approach to study nonlinear-

ities in spiking neural networks. The self-consistency solution was analyzed by using expan-

sions of the Ricciardi F function in two limits where nonlinearities in the F-I curve occur: at

response-onset, where firing rates are low and spiking is driven by noise, and at saturation

where firing rates reach a maximum bounded by the refractory period of neurons. These two

nonlinearities can lead to supersaturation and multisolution at the network level. While we do

not consider saturation and refractory periods, our approach expands on these results by pro-

viding an alternative framework to describe the noise-induced nonlinearity through the

power-law approximation. This power-law has a broader range of validity since it does not
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require to operate at the weak coupling limit. Furthermore, the power-law function is designed

to be both an accurate approximation of LIF dynamics and a simple mathematical expression.

Thanks to this property, we showed that the SSN model can accurately match the activity of

biologically realistic networks of LIF neurons including possible nonlinear features with tracta-

ble equations and few parameters. This framework is useful to develop theoretical results

which provide a deeper understanding of network mechanisms than numerical simulations.

Nevertheless, it should be noted that the SSN, being a rate model, does not account for the

recurrent noise originating from the activity in the network, which has been shown to make or

break some nonlinear regimes [56]. Overall, the two approaches are complementary as the

power-law framework focuses on mathematical tractability, matching LIF simulations and

uses a unique activation function over the biological activity range while Sanzeni et al. [56]

provide a finer analysis at two precise sources of nonlinearity.

Concurrently, large-scale computational projects have developed detailed numerical simu-

lations by including the state-of-the-art activity datasets and connectivity reconstructions to

precisely recreate a mammalian nervous system [79]. Due to the complex biology of the brain,

the resulting network simulations represent multidimensional dynamical systems whose

behavior often cannot be predicted and controlled. In contrast, our approach of mapping a

multidimensional spiking network to a lower-dimensional mathematically tractable circuit

provides promising access to a mechanistic understanding of complex dynamical systems such

as the mammalian brain. Future studies could expand the results presented here by including

additional neuronal populations into the network, considering the heterogeneity of neuronal

cell types or of connection strengths affecting the network dynamics [67, 80] or by including

plasticity in synaptic connections. Similarly, future work could analyze the dynamical proper-

ties of spiking networks (tPE and tPI in Eq 2) to study such activity regimes as oscillations

observed in the SSN model [30] and characterize the dynamical stability of network states or

expand the model to characterize finite-size effects which become substantial in smaller net-

works [17, 19, 20]. Finally, the study of biologically-sized spiking networks (� 103 neurons)

provides an understanding and control of functional units such as minicolumns or layers

which compose larger networks corresponding to whole functional brain areas and beyond (�

105 neurons [81]). Progress in experimental techniques requires computational models clearly

explaining the relationship between activity and connectivity datasets. Here, the necessity for a

better understanding of the brain’s fundamental building blocks—such biologically-sized spik-

ing networks—remains a critical milestone in exploring the brain’s global functions and work-

ing principles.

Materials and methods

Power-law approximation of the input-output transformation in a single

neuron

We represent the spiking activity of a neuron using the integrate-and-fire model

dV
dt
¼ � V=tþ I: ð8Þ

Where V is the membrane potential, τ is the membrane time constant, and I is the input to the

neuron. Upon reaching the firing threshold Θ, V(t) is reset to VR. In the following, we assume

that the input I received by the LIF neuron is white noise, which can be written as

IðtÞ ¼ mþ sZðtÞ:

Where μ is the mean input, σ is the noise strength and η is a normally distributed random
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variable, such that

hZðtÞi ¼ 0

hZðtÞZðt0Þi ¼ dðt � t0Þ:

Under the assumption of white noise, the firing rate of the neuron in Eq 8 can be described by

the Ricciardi transfer function F [42, 82]

n ¼ F m;s; tð Þ ¼

�

t
ffiffiffi
p
p
Z Y� mt

s
ffiffi
t
p

VR � mt
s
ffiffi
t
p

ez2 1þ erf zð Þð Þdz
�� 1

: ð9Þ

For low inputs, F is a supralinear function of the mean input μ and can be accurately approxi-

mated by a power law with an exponent n> 1 (see Fig 1). For high inputs, however, F

becomes linear. In this work, we restrict ourselves to the low firing rate regime (ν� 10 Hz)

often reported for cortical activity measured in vivo [33–40]. In this low activity regime with

constant noise σ and time constant τ, the firing rate can be accurately approximated by a

power law Eq 1, see Fig 1B. The parameters a, b and n are obtained by fitting F Eq 9 (Fig 1C)

with a power law.

LIF spiking network simulation

We consider a spiking network of one excitatory (E) and one inhibitory (I) population with

NE ¼ 3

4
N and NI ¼ 1

4
N LIF neurons, respectively. We assume that both E and I populations

are homogeneous, i.e. neurons within each population have the same parameters (membrane

time constant τX, threshold potential ΘX, reset value VRX), receive external input with the same

mean μextX and noise σextX, X 2 {E, I}. The E and I populations have different membrane time

constants (see black crosses in Fig 1C), and the feedforward input they receive differs by a fac-

tor of r (μextI = rμextE, see Fig 1A). Additionally to the feedforward input, the neurons receive

recurrent input from other E and I neurons in the network. The connections are randomly

generated based on a homogeneous probability of connection, such that each neuron in popu-

lation X receives inputs from exactly NYpXY randomly chosen neurons in population Y, where

pXY is the connection probability from population Y to population X. We use two types of syn-

apses, the delta synapse and the exponential synapse.

For delta-synapses, the function

IXYðtÞ ¼ jXYdðt � tsÞ ð10Þ

represents the input from a neuron of the population Y to a neuron in X. Where jXY is the

strength of the synapse, ts is the spike time of the presynaptic neuron, and δ is the Dirac delta

function.

In some network configuration, delta synapses promote synchronization of the whole neu-

ronal population. This synchronicity can lead to population spikes [16, 83] which violates the

assumption of asynchrony and irregularity in the mean field approach. In order to avoid this

synchronization in these cases, we use exponential synapses instead of delta synapses. In expo-

nential synapses, the synaptic potential from a neuron in population Y to a neuron in popula-

tion X decays exponentially in time

IXYðtÞ ¼
jXY
tsXY

e�
t� ðtsþDÞ
tsXY ; t > ts þ D: ð11Þ
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Where jXY is the strength of the synapse, ts is the spike time of the presynaptic neuron, τsXY is

the synaptic decay time constant andD is the synaptic delay. This type of synapse prevents syn-

chronization as the effect of each spike is more distributed in time and each synaptic connec-

tion has a different delay D.

We use the exponential synapse in the spiking network simulation in Figs 4, 6C and 6E and

S2 Fig, and delta synapses in all other cases. The exponential synapse parameters can be found

in Table C in S1 Text. It should be noted that the synaptic delay values we use are higher than

experimentally reported [84–86], but this jitter only serves to prevent population synchrony

and does not affect the steady state network activity.

Self-consistent network solutions

In this work we derive predictions for the activity regimes of spiking networks using the

closed-form solutions offered by the SSN framework (Eq 3). In some instances, it is useful to

compare the SSN predictions to the previously proposed self-consistent network solutions to

understand the dynamic origin of the SSN predictions. The self-consistent system is derived

from the single-neuron LIF response. For a neuron embedded in a network, the input it

receives (I in Eq 8) is the sum of feedforward input (Iext) originating from outside of the net-

work and recurrent input (Irec) caused by synaptic connections from other neurons in the con-

sidered network. Here we assume that feedforward input is white noise with mean μext and

noise strength σext. The recurrent input results from the spike trains of presynaptic neurons.

I ¼ Irec þ Iext
Iext ¼ mext þ sextZðtÞ

Irec ¼
X

syn

jsyn
X

spike

dðt � tspikeÞ:

Where the first sum considers all synapses onto a neuron and the second sum considers all the

spikes arriving at this synapse. For Poisson spike trains, the mean and variance of Irec for a neu-

ron in population X can be given by the E and I firing rates νE and νI in the network:

E½Irec X� ¼ JXEnE � JXInI
VarðIrec XÞ ¼ JXEjXEnE � JXIjXInI:

ð12Þ

Where JXY is the population-wise connectivity defined by

JXY ¼ jXYpXYNY : ð13Þ

We note that Eq 13 also defines the relation between the connectivity constants jXY of the spik-

ing network and the connectivity weights JXY in the SSN model in Eq 3.

This leads to the system of self-consistent mean field network equations that arise from the

F transfer function [16] and that need to be solved numerically

nE ¼ FðmE; sEÞ

mE ¼ JEEnE � JEInI þ mext

s2
E ¼ JEEjEEnE þ JEIjEInI þ s2

extE

nI ¼ FðmI; sIÞ

mI ¼ JIEnE � JIInI þ rmext

s2
I ¼ JIEjIEnE þ JIIjIInI þ s2

extI:

8
>>>>>>>>>><

>>>>>>>>>>:

ð14Þ
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Since the F transfer function is derived for white noise input, this solution assumes that the

Poissonian recurrent input Irec does not lead to large deviation to white noise. We refer to this

approach as “Self-consistency solution” or Fsc.

Mapping LIF network—SSN

To meet the SSN activity regime with a simulation of spiking LIF neurons, we map the LIF net-

work parameters to SSN parameters. The connectivity parameters JXY in the SSN correspond

to the population-wise connectivity defined for the self-consistency solution Fsc according to

Eq 13. The transfer function parameters a, b and n for each of the populations are obtained by

fitting the F-I curve of the neuron obtained with the F function Eq 9, which depends on the

LIF membrane time constant τ, reset potential VR, firing threshold Θ, and the input noise σ
(Fig 1). The noise σ is set to be the external noise σext.

In LIF spiking networks, σext models the fluctuations in the membrane potential, which can

be caused by fluctuations in the external network input as well as originate from intrinsical

properties of the neuron [87]. We note that unlike in the Ricciardi mean-field solution Fsc (Eq

14), the SSN framework (Eq 3) does not explicitly model the input noise σ to neurons embed-

ded in a network. Instead, the effect of the noise is implicitly included in the power law approx-

imation of the F-I curve. As a result, the noise in the SSN model is independent of the network

activity leading to the assumption that the noise associated with recurrent input is negligible

compared to the external noise s2 ¼ s2
ext þ s

2
rec � s

2
ext. This approximation holds for firing

rates ν and connection strengths jXY in line with experimental observations [6, 33–40, 58, 59]

(S1 Text).

Supporting information

S1 Fig. Additional map of computational regimes. These maps are equivalent to the maps

shown in Fig 5, and are generated for the connectivity of the supersaturating network shown

in Fig 2 and the mouse V1 network shown in Fig 3A (A) The map shows many similarities to

the map shown in Fig 5A. The balanced state is only defined for low r values across external

input values. The network can be inhibition stabilized for large input and low r, whereas super-

saturation occurs for large input and high r. The supersaturation and ISN regions overlap.

However, unlike Fig 5A, this network does not have a bistable regime in the range of inputs

presented here. (B) Compared with the phase space in panel A, the ISN state (blue area)

appears more difficult to achieve for this network as it requires much higher external input to

reach. We show in Fig 3B that increasing JEE makes the ISN accessible for external inputs μext

lower than 100 mV/s.

(EPS)

S2 Fig. Effect of network size on E/I input balance. As the size of networks increases, the

incoming excitatory and inhibitory inputs become more balanced. This is measured in E

(blue) and I (red) neurons for the same bistability case as Figs 4 and 6C, at the point where the

excitatory firing rate reaches 10 Hz (see inset above, for each network size). The balance factor

measures the fraction of the excitatory input that is compensated by inhibition,
mXI

mXEþmextX
. For

N = 4000 neurons, E and I neurons receive nearly twice as much excitation as inhibition (BF�

55% and 43% respectively) whereas for N = 40000, most excitatory input is cancelled by inhibi-

tion (BF� 92% and 86% respectively). This shows that E-I balance gets tighter as the network

size increases even though the firing rates are far from the balanced state limit (dashed line,

inset) and the network response remains non-linear at low input level.

(EPS)
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S1 Text. Supplementary text with detailed information about the network models and

parameters used in the main text.

(ZIP)
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