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Abstract

Human vision is still largely unexplained. Computer vision made impressive progress on this

front, but it is still unclear to which extent artificial neural networks approximate human

object vision at the behavioral and neural levels. Here, we investigated whether machine

object vision mimics the representational hierarchy of human object vision with an experi-

mental design that allows testing within-domain representations for animals and scenes, as

well as across-domain representations reflecting their real-world contextual regularities

such as animal-scene pairs that often co-occur in the visual environment. We found that

DCNNs trained in object recognition acquire representations, in their late processing stage,

that closely capture human conceptual judgements about the co-occurrence of animals and

their typical scenes. Likewise, the DCNNs representational hierarchy shows surprising simi-

larities with the representational transformations emerging in domain-specific ventrotem-

poral areas up to domain-general frontoparietal areas. Despite these remarkable

similarities, the underlying information processing differs. The ability of neural networks to

learn a human-like high-level conceptual representation of object-scene co-occurrence

depends upon the amount of object-scene co-occurrence present in the image set thus

highlighting the fundamental role of training history. Further, although mid/high-level DCNN

layers represent the category division for animals and scenes as observed in VTC, its infor-

mation content shows reduced domain-specific representational richness. To conclude, by

testing within- and between-domain selectivity while manipulating contextual regularities we

reveal unknown similarities and differences in the information processing strategies

employed by human and artificial visual systems.

Author summary

Computational object vision represents the new frontier of brain models, but do current

artificial visual systems known as deep convolutional neural networks (DCNNs) represent

the world as humans do? Our results reveal that DCNNs are able to capture important

representational aspects of human vision both at the behavioral and neural levels. At the
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behavioral level, DCNNs are able to pick up contextual regularities of objects and scenes

thus mimicking human high-level semantic knowledge such as learning that a polar bear

“lives” in ice landscapes. At the neural representational level, DCNNs capture the repre-

sentational hierarchy observed in the visual cortex all the way up to frontoparietal areas.

Despite these remarkable correspondences, the information processing strategies imple-

mented differ. In order to aim for future DCNNs to perceive the world as humans do, we

suggest the need to consider aspects of training and tasks that more closely match the

wide computational role of human object vision over and above object recognition.

Introduction

We live in a structured world; as a consequence, sensory input is not a random collection of

lines and patterns but can be organized into meaningful and identifiable wholes such as

objects. These objects show particular relationships to their environment. Some objects are

most likely to appear in specific contexts, such as penguins in ice landscapes or lions in the

savannah. This set of rules, similarly to the grammar of our language, provides a structure to

guide our behaviour [1]. Here we investigate how information about object domain and their

cross-domain structure is represented through the visual processing in human and artificial

neural systems.

While visual information is fully intertwined at the retina level, soon through the human

hierarchical visual pathway, information pertaining to the different object domains is pro-

cessed in largely separated brain networks [e.g., 2,3] as confirmed by human neuroimaging

revealing rich domain-specific object spaces characterizing the different processing channels.

As an example, behaviourally relevant image dimensions are encoded in object and scene

areas: animate features such as the eyes/mouth, useful for identifying living entities in the for-

mer [4–6], and spatial layout, informative for scene navigation in the latter [7–9]. At the same

time, statistical regularities of the world influence perception [10–13] as shown by faciliatory

effects of context observed during object recognition [14] and evidence for interaction

between object and scene processing at the neural level [15–18]. While such studies indicate

that the representation of objects might be influenced by whether they share similar context

statistics, to our knowledge, none of them included a multivariate test pinpointing the repre-

sentational similarity of neural patterns across objects and scenes. Is the frequent occurrence

of a penguin in ice landscapes sufficient to modulate how penguins and ice landscapes are

coded despite the separate processing channels? Or does interaction occur at a later stage of

visual processing when information becomes relevant to support goal-directed behaviour?

Even less is known about how this across-domain segregation and integration happens in

artificial vision models. In the past decade, artificial computer vision models have been devel-

oped that are able to classify visual patterns with human-level performance, such as deep con-

volutional neural networks [DCNNs; 19] and recent adaptations including residual, recurrent,

and transformer networks [20]. These artificial models appear to develop representations simi-

lar to those in human visual cortex [21,22]. Various avenues have been suggested to further

improve this correspondence, such as the use of recurrent processing and changes in training

regimes [20,23]. But does the representational hierarchy learnt by DCNNs mimic the informa-

tion transformation emerging through the human visual hierarchy? The presence of object-

scene regularities potentially provides a critical test of this correspondence. Many DCNNs

employed in computational vision are trained on object recognition which is considered the

main computational goal of visual cortex [24] and employ large image sets in which each
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image is attached to a single label [25]. In such scenario, DCNNs trained in object recognition

do not need to explicitly separate objects from background scene; short cuts are available and

sufficient to solve the problem. In other words, visual information from image background

might be equally useful to succeed at the task at hand, thus shaping the learnt object space.

This suggests that DCNNs might very well mimic the ability of the human perceptual system

to take advantage of image statistical and contextual regularities experienced during lifetime

[11,14,26], but these artificial models might find this solution in a different way without explic-

itly segregating object and scene information.

Here, we compare “neural” representations in the human brain and in artificial DCNNs

using an original stimulus set that includes object images and background images with a vari-

ety of object/scene domain specific properties, as well as a manipulation of object-background

co-occurrence in real-world images. The results show that DCNNs in a quite remarkable way,

appear capable of mimicking conceptual-like human knowledge of the world such as capturing

the conceptual similarity for a specific object-scene pair (gorilla and jungle forest) as well as

the hierarchical representations observed along the human visual pathway, all the way up to

frontoparietal areas. At the same time, results suggest difference in the underlying computa-

tional strategy implemented by the two systems.

Results

To test how the biological or artificial brain represent object within-domain and cross-domain

regularities through their computational hierarchy, we created a stimulus set which includes

two category domains of contextually related pairs of images (Fig 1). Each pair includes one

animal (clownfish, ladybug, passerine bird, seagull, polar bear, and gorilla) and its associated

background scene (anemone, leaves, tree branches, seashores, ice landscapes, and jungle for-

ests). We carefully selected images of animals that have a neutral background (e.g., the polar

bear and the gorilla have a similar grayish background) to avoid possible confounds where the

object background might be informative for recognition.

This unique stimulus set allows us to differentiate between alternative hypotheses about

how objects and scenes might be represented (Fig 2). The domain model predicts a separation

between animals and scenes. On the contrary, the co-occurrence model predicts contextually

related associations between each animal and its specific background scene. These two models

are orthogonal to each other (r = -0.05). Two additional control models rule out the role of

visual factors: (1) The GIST model [27], a good descriptor of scene statistics [13], well describes

responses in lower visual areas [28]; (2) the condition model captures within-category similari-

ties for each animal and scene condition. Representational similarity analysis [RSA; 29] allows

to test each model’s ability to capture the object space in the brain and DCNNs.

Object and scene information is processed in separate visual pathways,

with contextual effects emerging in frontoparietal areas

How does the human brain encode both object-scene separation and interaction? To test this,

we analyzed fMRI scans from participants (N = 19; two long scan sessions per participant)

while they watched the stimuli from Fig 1A in an event-related design. Participants were asked

to indicate to what extent each image would normally co-occur with the previous image. This

task allows us to investigate representations in both task-independent and task-dependent

areas [30,31]. We investigated the representational structure along the hierarchy of visual

regions from the primary visual cortex over regions involved in object and scene perception

up to regions in the frontoparietal cortex that encode flexible goal-directed representations

[32] and that are known to be connected to domain-specific regions [33].
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Results in visual cortex reveal a clear separation between animal and scene representations,

despite their co-occurrence in our visual experience. The domain model captures most vari-

ance in many areas from posterior to anterior temporal cortex but, importantly, not in early

visual cortex BA17 where only the GIST model reached significance (z = 0.14; p = 0.0001, Fig

2A). The separation between animals and scenes is particularly evident in animal-selective

areas (domain model: z> 0.84; for all ROIs, p< 0.0001, Fig 2A) with an additional minor con-

tribution of the GIST model in posterior VTC (z = 0.17; p< 0.0001, Fig 2A). This separation is

also very obvious when visually inspecting the dissimilarity matrices displayed in Fig 2 (bot-

tom). In scene-selective areas, the domain model also best captures the representational struc-

ture in 2 out of 3 ROIs (PPA: z = 0.46; OPA: z = 0.29; both p< 0.0001, Fig 2A). The remaining

models did not explain any additional variance in these areas. The very same results were

observed using single-subject data (Fig 2B).

The information comes together again when moving downstream, with a small but signifi-

cant effect of the co-occurrence model in frontoparietal areas (IPS: z = 0.18; DPFC: z = 0.16,

both p< 0.0001, Fig 2A), thus shifting the representational content in these ROIs from object-

scene separation to object-scene contextual association. When using individual subject data,

the effect for the co-occurrence model in these ROIs is relatively small but highly significant

Fig 1. Experimental design. (A) The stimulus set includes 2 domains: animals and scenes, each including 6 different identity

conditions (4 images for each condition). Due to copyright restrictions, the images shown here are royalty-free examples of

images downloaded from https://unsplash.com/ chosen based on same criteria used to select the original stimuli. The

pictures of animals were carefully selected to avoid that background information could be informative for object

identification (e.g., the polar bear and the gorilla have a very similar neutral background). To control for shape, we further

divided the animal categories in three subsets along the animacy continuum (2 mammals, 2 birds, and 2 small rounded

animals). Within each subset, animals are matched for body shape (e.g., gorilla and polar bear) but each animal is paired with

a different scene. As an example, the passerine bird and the seagull have similar body shape but are associated with two

different backgrounds. As for the pictures of scenes, 3 of the backgrounds are characterized by rich navigational properties

where there is no object in focus in the middle of the image: seashores, ice landscapes, and jungle forests. The other 3

backgrounds are object-like scenes with little navigational layout properties: anemones, leaves, and tree branches.

Concurrently, animals and scenes conditions were selected based on their frequent co-occurrence in real-world images: polar

bears live in ice landscapes and gorilla live in forest jungles, thus allowing the creation of 6 specific object-scene contextual

pairs (B) The ROIs included in the brain RSA analysis included visual areas (for their relevance in object recognition) and

frontoparietal areas (for their relevance in goal-directed behavior): BA17, posterior ventral-temporal cortex (VTC), anterior

VTC, lateral VTC, occipital place area (OPA), parahippocampal area (PPA), retrosplenial cortex (RSC), intraparietal sulcus

(IPS), and dorsal prefrontal cortex (DPFC). See Methods for details on the localization procedure. (C) Four models were

tested: GIST, condition, domain, and co-occurrence.

https://doi.org/10.1371/journal.pcbi.1011086.g001
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(DPFC and IPS: z > 0.04, both p< 0.005, Fig 2B). It also reaches reliability boundaries (IPS:

0.09; DPFC: 0.04), which indicates the highest expected correlation in a brain region after

accounting for signal noise [34]. In DPFC, the remaining models did not explain any signifi-

cant variance in the patterns, while in IPS there were significant correlations for the domain

model (z = 0.18; p< 0.0001, Fig 2A; z = 0.05; p< 0.0001, Fig 2B) and condition model

(z = 0.03; p = 0.001, Fig 2B). Together, these results show that the overall representational con-

tent in visual cortex largely distinguishes category information at domain level (object vs

scene), with interaction of these components emerging at a later processing stage in regions

known to support goal-directed behavior [32]. The whole-brain RSA confirmed these results

revealing that the domain model strongly activates regions in the ventral and dorsal visual

pathways, whereas the co-occurrence effect for animals and matching scenes is confined

within frontoparietal areas (Fig 2C). We note that, although the distribution of strongest effects

in Fig 2C suggests a shift in emphasis towards frontoparietal cortex for the co-occurrence rela-

tive to the other models, this shift did not result in significant differences in a whole-brain

analysis. Finally, to evaluate the potential impact of metrics’ choice, we re-run the RSA with

two alternative distance measures: the cross-validated Mahalanobis distance (following [35])

and the Euclidean distance. Results confirmed the RSA analysis performed with 1 minus corre-

lation (S1 Fig). In line with results reported in [36], these three metrices tend to give similar

results, and discrepancies are only noted in very specific designs.

Fig 2. The representational hierarchy for separation and interaction of objects and scenes in the brain. The ROI-based

(A, B) and whole-brain (C) RSA results for the 4 models (GIST, condition, domain, co-occurrence) are shown for brain data.

Results reveal a strong separation for domain (scene and animal) representations in most ventral regions. The effect for

animal-scene co-occurrence emerges in frontoparietal areas. (A) For group-averaged results, filled bars indicate significant

values against baseline (p< 0.001) computed with permutation tests (10,000 randomizations of stimulus labels). (B) For

individual subject results, reliability boundaries (in gray) indicate the highest expected correlation considering signal noise

(see Methods) and error bars indicate SEM. Filled bars indicate significant values against baseline (p<0.005, corrected for n.

or ROIs) calculated with pairwise t-tests across subjects (n = 19). For each ROI, the neural dissimilarity matrix (1—r) is

shown below. (C) The random-effects whole-brain RSA results corrected with Threshold-Free Cluster Enhancement [TFCE;

37] are displayed separately for each individual model against baseline [BrainNet Viewer; 38]. Note that for some of these

maps (e.g., co-occurrence vs domain), the direct contrast did not reveal a significant difference.

https://doi.org/10.1371/journal.pcbi.1011086.g002
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The representational hierarchy in DCNNs mimics representational

transformations observed in the human brain

DCNNs widely employed in image classification [39], are now considered a promising venue

to explain biological object vision at the neural level, proving to match human object recogni-

tion abilities in several benchmarks [40–42]. Yet, it is unclear the extent to which machine

vision learns brain-like representational hierarchy and computational strategies [43]. To test

this, we use RSA to evaluate the predictive power of our models in four DCNNs: Alexnet,

VGG16, GoogLeNet, and ResNet-50. All models are trained in object recognition (ImageNet)

which is widely considered the main computational goal of ventral visual cortex [24] and are

the most frequent benchmarks used in the literature that suggests similarities in representa-

tional structure between human and computational vision [44,45].

Quite remarkably, results revealed high similarity between biological and artificial systems

in their representational hierarchy (Fig 3A). At an early stage of computational processing, the

Fig 3. Similar representational hierarchy in the brain and DCNNs. (A) The DCNNs RSA results for the 4 models (GIST, condition, domain, co-

occurrence) are shown for 4 DCNNs (AlexNet, VGG16, GoogLeNet, ResNet-50). The network’s depth is shown on the x axis. For each graph and each

model, color-coded lines indicate significant effects relative to all remaining models (p< 0.001) computed with pairwise permutations tests (10000

randomizations of stimulus labels). For each DCNN, the representational dissimilarity (1—r) is shown for the last fully connected layer. (B)

Correlational matrices show second-order relationships among representational patterns in the brain’s ROIs and individual DCNNs’ layers. Color-

coded line boxes highlight the ROIs and DCNNs’ layers where each model reaches significance. For brain areas, significance for each model is shown

relative to baseline (p <0.0001), calculated with permutation tests (10,000 randomizations of stimulus labels). The order in which ROIs are shown does

not imply a strict correspondence with the computational hierarchy in the brain. For DCNNs’ layers, significance for each model is shown relative to all

remaining models (p< 0.001), calculated with permutation tests (10000 randomizations of stimulus labels). Both systems show similar transformations

in the representational space. Early on, the object space reflects image low-level visual properties (GIST model, yellow color-coded), it then shifts

towards animal-scene domain division (domain model, light-blue color-coded), to finally reveal animal-scene co-occurrence effects (co-occurrence

model, purple color-coded).

https://doi.org/10.1371/journal.pcbi.1011086.g003
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GIST model best predicts representations in all neural networks (p< 0.001 relative to all mod-

els). At mid/high-level layers, when the GIST model drops in performance, the domain model

increases and reaches significance relative to the remaining models (p< 0.001). Finally, the

representational space at the latest processing stage shows a salient object-scene association.

For all networks, the co-occurrence model peaks at the final processing stages (i.e., fully con-

nected layers) and, relative to the remaining models, explains significantly better the DCNNs’

representational space (p< 0.001 relative to all models; for summary statistics, see Fig 3B).

This structure is also visible in the secondary diagonal emerging in the lower left and upper

right quadrant of the networks’ representational dissimilarity matrices (Fig 3A). The entangled

animal-scene representation emerges later through the network’s hierarchy, ruling out the

contribution of low-level image properties best captured by low-level visual models such as the

GIST (e.g., visual similarities between each animal category and its associated environment).

Overall, these results suggest that DCNNs are able to capture the way visual information is

transformed through the human brain visual hierarchy, from early visual cortex encoding low-

level visual properties, through VTC encoding domain specific information in separate chan-

nels, all the way up to frontoparietal areas where information from the different domains is

combined to support goal-directed behavior focused upon object-scene regularities (Fig 3B).

These results were also confirmed in an follow up exploratory analysis where we directly corre-

lated the hierarchical representational space for each DCNNs with the representational space

in the selected ROIs as well as across the whole brain (S2 Fig).

DCNNs capture humans’ conceptual knowledge of object-scene co-occurrence

An object code that incorporates statistical regularities of an object in its background might be

relevant to mimic human-like object recognition behavior, which indeed is influenced by the

object-scene interaction [10,11]; context facilitates object recognition and vice versa [14].

Given that DCNNs representations at their final layers appear to capture a degree of contextual

regularities between an object and its recurring background scene, we might expect similarities

with human behavior when humans judge image similarities in terms of co-occurrence (see

Methods).

Results confirm this prediction. The correlation between human co-occurrence judgments

and DCNNs’ object space (Fig 4A) increases throughout the DCNNs’ processing hierarchy to

reach its peak at the final processing stages for all DCNNs (AlexNet: z = 0.46; VGG16: z = 0.59;

GoogLeNet: z = 0.65; ResNet-50: z = 0.56). The DCNNs’ ability to capture human behavior is

also visible when inspecting the MDS’s space (Fig 4B). In a similar fashion as the object space

generated by behavioral judgments, the DCNNs object space in their final layer shows an

orderly structure: each animal (e.g., yellow circle) sits close to its semantically associated scene

(e.g., yellow square), thus revealing a clear contextual effect. To confirm this observation statis-

tically, we tested similarities for congruent pairs (polar bear and iceberg) versus the average of

all remaining incongruent pairs (polar bear and jungle). We observed significantly higher sim-

ilarity for congruent relative to incongruent pairs in behavioral (p< 0.0001; Fig 4C) as well as

DCNNs data (for all models, p< 0.001). Thus, DCNNs’ sensitivity to image statistical regulari-

ties of objects occurring in typical environments results in the acquisition of a “representation

of the world” that closely resembles humans’ conceptual judgments.

Knowledge about object-scene co-occurrence is reached through different

computational strategies in DCNNs

The ability of DCNNs to capture human high-level conceptual knowledge about the world is

striking, but does this prove that the artificial networks have a real understanding of objects
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Fig 4. DCNNs acquire human-like conceptual biases. (A) The correlational plot shows the degree of similarity

between behavioral judgments and each of the four DCNN architectures. (B) MDS spaces (metric stress) show
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and scenes? One possibility is that object-background segregation might be less optimized in

DCNNs architectures trained with natural images (e.g., ImageNet) where regularities between

objects and backgrounds are common. For instance, a whale lives in open water, not on the

street. As such, any image feature (e.g., not necessarily object-specific) might become a useful

piece of information to recognize the object [46]. Here, we test this hypothesis by systemati-

cally manipulating object/background co-occurrence during DCNNs training (see Methods):

from 0% co-occurrence (objects within the same category were no more likely to occur on the

same background type than objects from different categories) to 100% co-occurrence (objects

within the same category were always presented on the same background). Confirming the

role of image regularities in facilitating object recognition (Fig 5A), the model’s validation test

revealed significantly higher model performance for the 100% co-occurrence condition (accu-

racy: 0.85) relative to remaining conditions (accuracy < 0.72; t(4) 3.95, p< 0.02, for all pair-

wise t-tests). Furthermore, we predicted an increasing representational bias towards human-

like conceptual object-scene associations in accordance with increasing object-scene co-occur-

rence. We run an RSA analysis with each of our predicting models and tested correlations for

fully connected layer 7 in a 4x4 ANOVA within Co-occurrence (0%, 58%, 83%, 100%) and

Model (GIST, condition, domain, co-occurrence) as within-subject factors. Results revealed a

significant Co-occurrence x Model interaction (F(9,36) 11.82, p< 0.0001; Fig 5B) showing

that different levels of object-background regularities in the training set result in differences in

DCNN’s representational content (fc7) as captured by our models. These results are important

to also confirm the effects observed in DCNNs (Fig 3) through a much larger stimulus set.

consistent object-scene clusters in human behavioral judgments as well as DCNNs (last fully connected layer). (C) The

object-scene cluster analysis (right) for behavioral and DCNNs (last layer) data, show a consistent significant effect of

congruency (lower distance) for object-scene stimulus pairs. Dashed bars show the averaged data for the 6 stimulus

pairs.

https://doi.org/10.1371/journal.pcbi.1011086.g004

Fig 5. The effect of increasing levels of object-scene co-occurrence in DCNN object space. We trained a DCNN multiple times

(N = 5) in 4 training conditions with increasing levels of object-background regularity from 0% to 100%. (A) Accuracy results for the

model’s validation test. (B) The RSA results for the 4 models (GIST, condition, domain, co-occurrence) are shown for AlexNet’s fc7

that underwent different training regimes with increasing co-occurrence (0%, 58%, 87%, 100%) between objects and backgrounds

(n = 6). Error bars indicate SEM. In the dissimilarity matrices, orange represents animal conditions and red represents background

conditions.

https://doi.org/10.1371/journal.pcbi.1011086.g005
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Follow-up analyses revealed that the contextual-related effect is absent when the training is

based on random object-scene associations (0% co-occurrence: z = 0.01) but emerges when

regularities in the training set increase (58%: z = 0.20; 83%: z = 0.27; 100%: z = 0.32). This effect

is already significantly higher for the 58% condition relative to 0% condition (t(4) 3.68,

p = 0.02) and it increases for higher levels of object-scene co-occurrence (83%: t(4) 6.51,

p = 0.003; 100%: t(4) 20.22, p< 0.0001; both relative to 0%). Interestingly, the effect of the con-

dition model is significantly high when the network cannot rely on scene information (0%:

z = 0.17), but strongly decreases when regularity increases (58%-100%: z< 0.06; t(4), > 6.24,

p< 0.004, for all 3 comparisons). In the 100% co-occurrence condition, the correlation with

the GIST model reaches significance (z = 0.18; t(4), > 5.78, p = 0.004), probably because in this

condition there is an increase of lower-level background features that can be relied upon. This

last condition shows that finding a representation of object-scene correspondences can be

obtained through various processing strategies. This motivated us to take closer look at the

processing stages right before the stage at which object-scene correspondences are

represented.

Multiple object (domain-specific) spaces in the visual cortex but not in

DCNNs

In visual cortex, the domain model captures most of the variance in animal as well as in scene

areas, but the dissimilarity matrices (Fig 2A) reveal a marked difference between the two sets

of regions that likely reflect differential domain-specific object spaces [7–9,47,48]. This rich

dimensionality can support the need of our brain to employ different representations for dif-

ferent behavioural needs [49]. For instance, in scene selective areas, the degree of navigational

layout well characterizes its representational content which is relevant for naviation [7,8]. In a

similar fashion, in animal selective areas, the degree of animacy [47,48], and the animal-spe-

cific features [4,5] might be relevant to support social-related computations. In our results,

DCNN’s mid-layers show domain division for animals and scenes (Fig 3A), but does this divi-

sion embed rich domain-specific object spaces like those observed in the human visual cortex?

We tested two domain-specific dimensions that well characterize the object space in animal

and scene areas: the animacy continuum for the animal domain and navigational layout infor-

mation for the scene domain. These two dimensions were included in our stimulus set

(Fig 6A) and are captured by the animacy continuum and the navigational layout model,

respectively (see Methods). To test the ability of DNNs, trained on object recognition, to cap-

ture domain-specific object spaces in scene and animal selective areas, as above we used RSA

to test the two domain-specific models (animacy continuum and the navigational layout) and

two control models (condition and GIST) in brain and DCNNs data. To account for the differ-

ent domains we tested two instances of the same DCNNs architecture (GoogLeNet), trained to

classify the basic level category in the two domains: objects (ImageNet) and scenes (Scene

365).

As expected, the RSA on the brain data (Fig 6B, left) confirms differential representational

spaces reflecting domain-specific object spaces in visual cortex. Whereas VTC areas show a

significant preference for the animacy continuum model (VTC post: z = 0.76; VTC lat:

z = 0.84; VTC inf: z = 0.70; all p< 0.001, relative to the remaining models), scene-selective

PPA and OPA show a significant preference for the navigational layout model (OPA: z = 0.47;

PPA: z = 0.38; both p< 0.001, relative to the remaining models). Results were replicated in a

follow-up analysis, where each domain-specific space (upper quadrant RDM for animals and

lower quadrant RDM for scenes) was tested separately (S3 Fig). Together, these results high-

light the functional specialization of the human brain for multiple domain-specific
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computations and it highlights a representational richness that is exactly what one expects in a

system with separate streams to process animal and scene information relevant to support

domain-specific computations.

Do DCNNs trained on category (objects or scenes) recognition learn representations that

mimic brain domain-specific object spaces? To address this question, we tested the same archi-

tecture (GoogLeNet) trained either on object or scene recognition. The RSA for DCNN data

trained on object recognition (GoogLeNet trained on ImageNet) partially replicates results

observed in VTC showing a significant effect for the animacy relative to all remaining models

in those same layers that revealed a domain-division effect in the previous RSA analysis (Fig

6B, gray-shaded areas). Interestingly, at the latest processing stage the representation was best

predicted by the condition model which reflects the representation expected when a network

learn to distinguish the different conditions at the basic-level. Overall, this result reveals higher

sensitivity for the dimension DCNNs were trained on (note that the Imagenet dataset contains

a high % of animal images) and points to a potentially critical role that training tasks play in

Fig 6. Multiple domain-specific object spaces. The RSA results for the 4 models (GIST, condition, animacy continuum,

navigational layout) are shown for group-averaged brain (left) data and DCNNs (right). For the neural data, only ROIs where

the domain model reached significance were included (see Fig 2A). The same DCNN architecture (GoogLeNet) was trained

either on object recognition (ImageNet), or scene recognition (Scene 365). For comparison with the first RSA analysis (see

Fig 3A), gray shaded areas indicate the network’s layers in which the domain model significantly outperformed the

remaining models. Color-coded lines on top of bar/graphs indicate the network’s layers/ROIs where each model significantly

outperformed the remaining models (p< 0.001) computed with pairwise permutations tests (10000 randomizations of

stimulus labels).

https://doi.org/10.1371/journal.pcbi.1011086.g006
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developing domain-specific spaces in DCNNs. On the contrary, the DCNN trained in scene

recognition (GoogLeNet trained on Scene 365), throughout its layers, did not reveal any simi-

larity with the object space observed in scene-selective areas (Fig 6B). It did not learn a repre-

sentational space that reflects the amount of navigational layout features present in the image.

This result is not totally unexpected; scene recognition tasks require the elaboration of infor-

mation that substantially differs from the information necessary to support scene navigation

computations, thus questioning the role of purely recognition-based training tasks in captur-

ing the richness of object space observed in visual cortex. We note that the methods employed

here allow us exploring the dominant dimensions that diverge/converge across brain and

DCNNs data. Alternative methods [e.g., 50] might be more sensitive to detect less preponder-

ant dimensions yet present in the data. Finally, the different training task did not influence the

representations learnt in the early layers. In early layers, both object and scene recognition

DCNNs showed a representational space that was best captured by the GIST model relative to

the remaining models (Fig 6B). These results were replicated when the representational space

for animals (RDM upper quadrant) and scenes (RDM lower quandrant) was tested separatedly

(S3 Fig).

Discussion

We investigated how human and machine object vision represent within-domain and across-

domain information of animals and scenes matched for contextual regularities and to what

extent the latter mimics human object vision computations. We measured the representational

similarity within domain (for animals and scenes) as well as across domains (animal-scene

association), in a stimulus set that includes object-scene pairs that often co-occur in the visual

environment. Results revealed that DCNNs employed in computational vision are able to cap-

ture conceptual representations humans have about object-scene correspondences. Not only

DCNNs trained to perform object recognition are able to capture human judgments about

contextual associations between and animal and its typical scene, but most importantly, they

show a good hierarchical correspondence at the neural level. Nevertheless, our results do also

show differences in terms of implemented computational strategies. In the visual cortex, object

and scene information is processed in separated pathways, which reveal domain-specific rep-

resentational contents for animal (animacy continuum) and scene (navigational layout) pro-

cessing. Interaction between object and scene components was observed at a later processing

stage in areas that contribute to goal-directed behavior. DCNNs’ mid-layers showed a similar

degree of object/scene separation, but its information content shows reduced domain-specific-

ity even when DCNNs were trained on domain-specific recognition tasks (i.e., scene recogni-

tion). Further, the emergence of human-like high-level conceptual representation of object-

scene co-occurrence in DCNNs depends upon the amount of object-scene co-occurrence pres-

ent in the image-set thus highlighting the fundamental role of training history. In sum, despite

the remarkable achievements shown by convolutional object recognition trained DCNNs,

when aiming to mimic the rich and multiple representational spaces observed in the human

brain, future brain models should extent their focus beyond recognition tasks.

The primate brain is, at least in part, characterized by separated modules for domain-spe-

cific processing [51]. These modules are relatively independent such that confined lesions dis-

rupt computations for one domain (e.g., animate entities) leaving unaffected other domains

[e.g., inanimate objects; 52]. In visual cortex, domain-specific areas encode object dimensions

tailored to support specific computations [33,53,54]. As an example, view-invariant features

represented in face- [54,55] and hand-selective regions [56,57] reflect domain-specific compu-

tations: the former to support identity recognition [58], the latter to support action
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understanding [56]. In agreement, our results show that in addition to a large division between

animal and scene representations, within each domain, representational content reflects the

type of computations these networks support: animacy features in animal-selective areas

[4,5,59] and layout navigational properties in scene-selective areas [7,60]. We can show this

representational diversity because in our study we included separate behavioral-relevant

dimensions for objects (i.e., animacy continuum) and background scenes (i.e., navigational

properties), while this was typically not done in previous studies. Furthermore, by including

objects and backgrounds that co-occur in the environment, we also demonstrate that at the

level of domain-specific representations there is not yet a strong effect of such statistical regu-

larities. This is not to say that there is no interaction between object and scene representations

in human object vision, which in fact, has been reported in previous studies [12,15,61,62]. Rep-

resentations of scenes and objects are modulated by various statistics, including the extent to

which objects co-occur in the same scene [18,63]. However, in these studies the neural

responses to objects and scene were tested separately, and never directly compared across

domains (e.g., from objects to scenes). Thus, the nature of such an interaction is still debated

and it might occur on top of domain modularity for objects and scenes [64,65]. Our study

points in this direction, showing that, ultimately, all such interaction effects ride on top of a

fundamental division of labor for animal versus scene properties, in those areas supporting

flexible goal-directed representations [30,31].

In a quite remarkable fashion, DCNNs capture both human behavior as well as the hierar-

chical representations observed in the human brain. When it comes to behavior, DCNNs pick

up typical object-background regularities reflecting conceptual knowledge we have about the

world, thus reaching the human-unique conceptual knowledge level. However, the informa-

tion processing strategy might be very different in DCNNs. Indeed, when we manipulated

object-background systematically in a smaller-scale training regime, even arbitrary object-

background associations resulted in strong effects of such associations upon the representa-

tions that these networks develop (Fig 5). This result highlights the critical role played by train-

ing on the resulting object space. In the context of a one-image, one-label approach, any pixel

in the image might contain features useful to recognize objects. When such regularities are

prevalent in a dataset, as it is for natural image databases, shortcuts can be taken [66]. In these

situations, background information becomes as relevant (or even more relevant) as the object

to be recognized [67]. This points to a substantial difference between human vision and feed-

forward DCNNs. Although, faciliatory effects on object recognition have been observed when

an object and its background are congruent [14], thus highlighting the potential role of statisti-

cal regularities in the environment in supporting human behavior [26], the ability to separate

foreground objects from background information is a prerequisite to object recognition, for

which the VTC plays a critical role. On the contrary, the object recognition DCNNs tested

here, which are widely used in computational vision, in their final layers, do integrate back-

ground information in their learnt object space.

The effect of background on the object space in DCNN’s fully connected layers raises the

question of how much of the previously reported domain-specific effects (e.g., animacy divi-

sion) observed in these same layers are due to the sensitivity of these layers to represent back-

ground information in addition to objects [68–70]. Such questions arise because apparently

DCNNs in their final layers, learn representations in which object and scene information is

more entangled than what we observe in the human visual cortex. In other words, the final

DCNNs layers, represent both the animal and its associated scene (e.g., polar bear and ice land-

scape), whereas VTC represents animals and scenes in separated areas. One possibility is that

DCNNs represent animals separated from inanimate objects because the former is typically

seen in specific backgrounds. Taking such shortcuts can be advantageous such as the case
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shown here, where DCNNs acquired human-like “knowledge” on which they were not trained.

However, in general, studies show that relying too much on background information can

result in remarkable non-human-like errors. Examples have been reported where DCNNs

accuracy for animal recognition drops in unfamiliar backgrounds [71], large animals go unde-

tected in unlikely environments such as a living room [72], or more simply, object classifica-

tion might be primarily driven by object-irrelevant information present in the image, which

happen to correlate with categorization-relevant features [46].

Previous studies have shown that DCNNs learn a hierarchical representational space that

mimics the visual hierarchy observed in the ventral pathway, where the top DCNNs layers are

those that best fit with VTC representations [22,73]. Our results go beyond previous observa-

tions and show that VTC domain-specific representations are well captured by mid-level layers

instead, because final layers appear to even be able to predict high-level representations

observed in downstream frontoparietal areas, generally associated to goal-directed behavior

[32]. How can we explain these findings? We believe that the answer lies in the selection of the

stimulus set. Previous studies have mainly focused on independent category representations

(e.g., animate-inanimate), here instead we created a stimulus set that in addition to within-

domain relations allows to test similarities across domains that can be found in the co-occur-

rence of an object in its typical scene. Thus, the crucial difference between our design and that

of previous studies is that we manipulated scene congruence, which results in a remarkable

dissociation between late DCNN layers (which incorporate this congruence) and VTC regions

(which do not).

Although DCNNs might implement different computational strategies they do still develop

“rich” internal representations for different object categories [e.g., faces, objects; 74,75,76], and

their features [e.g., eyes for faces; 43]. These representations/features are the result of specific

tasks DCNNs are trained on (e.g., object recognition). Already in our study, the object space in

mid-layers, revealed evidence for a degree of animacy continuum on top of object-scene divi-

sion. What these representations lack, however, is the diversity and division of labor that we

see in the human brain (Fig 6). The representational diversity observed in visual cortex is likely

to result from the need of our brain to employ visual information to support diverse behavioral

goals over and above object recognition: from recognizing the identity and mental states of

people we constantly interact with, to the ability to navigate in the surrounding environment.

These computations are implemented in parallel brain networks and the representations in

domain-specific networks are optimized to support the different computational goals our

brain constantly deals with. Thus, for instance, in visual cortex, scene-selective areas represent

scene layout information relevant to support navigation which is not captured by DCNNs

trained on scene recognition tasks (Fig 6). DCNNs can be trained in separate domains though.

Training a network on a specific object domain (e.g., faces and objects) leads to diverging

object spaces in late DCNNs’ layers [77], which however, do not generalize well to other

domains [74,78,79]. Together, this highlights the advantages of domain-specialized modules

evolved by biological vision [51]. We suggest that future DCNNs that aim to capture the rich

and diverse representational space found in VTC need to employ tasks that go beyond stan-

dard object recognition tasks and target the diverse computational goals our visual system sup-

ports [49].

For our DCNNs analyses, we employed a relatively small dataset in comparison with dataset

available in computer vision. We acknowledge that this might be a limitation but at the same

time, the dataset we tested has the advantage to be carefully controlled for many factors. This is

why we can compare multiple competing models. The problem with many datasets of natural

images is that many dimensions of interests are naturally correlated. Therefore, in many cases, it

becomes difficult to disentangle the relevant dimensions unless creating an ad-hoc stimulus set
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which despite its size limitation, allows to tackle specific experimental hypotheses. We therefore

believe that to complement results based on big data sets, the need for well controlled (but inevita-

bly small) data sets is of great added value to test cognitive/psychological theories/hypotheses.

In sum, our study confirms and goes beyond previous studies showing a quite remarkable

ability of DCNNs to mimic human object vision at the behavioral and neural representational

level in a previously unexplored aspect: the representation of object-scene correspondences. At

the same time, it demonstrates the importance of a unique aspect of human information pro-

cessing relative to machine vision: human information processing represents rich and diverse

object spaces. Most likely, this is related to the fact that the human brain has evolved and has

been trained to implement a wide variety of tasks that require to extract different information

type from the different domains present in the visual scene: object information might be more

relevant for computations that pertain human-object interactions, whereas information from

the background is more relevant to spatial computations such as navigation in the environ-

ment. As a consequence, humans understand that an object is not just a collection of features,

which could erroneously lead to the assumption that green leaves are inherently linked to lady-

bugs or to adversarial errors such as classifying a set of yellow and black stripes as a school bus

[80]. While the human brain is definitely also prone to the use of shortcuts and heuristics [81],

the presence of multiple streams of processing and of a multitude of modular systems has the

potential of limiting the impact of such shortcuts. It is a major challenge for the future to

develop neural network models with a similar richness of representational content.

Methods and materials

Ethics statement

All participants signed the informed consent approved by the ethic committee at the Katho-

lieke Universiteit of Leuven (B322201630276).

Participants

We recruited 21 participants (7 females, mean age 29). All participants took part in the behav-

ioral test and in 2 functional neuroimaging sessions. Due to technical problems, 1 session from

2 participants and 2 sessions from 1 participant went lost. Additionally, due to excessive head

motion, all data from 1 participant and 4 runs from an additional participant were excluded

from the data analyses. The head motion exclusion criterion was set to 2 mm (equal to 1 voxel

size) and defined before data collection.

Stimuli

We constructed a stimulus set with contextual-related pairs of images (Fig 1A). For each con-

textual pair (1 background and 1 animal), we selected 6 conditions, each containing 4 exam-

ples. The animal conditions were depicted on a neutral background to avoid low-level

associations between animals and their typical backgrounds. To balance the animals’ shape

information, we included 2 similarly colorful (red) rounded shaped and small size animals

(clownfish and ladybug), 2 birds (passerine and seagull) and 2 mammals with similar body

shape (polar bear and gorilla). Thus, conditions within each animal pair are matched in terms

of taxonomic and visual information (the two birds have a similar shape, visual features, and

both fly), but are specifically associated with a different background: one was associated with a

watery background (polar bear and ice landscapes) and one with a greenery background

(gorilla and jungle). Finally, each stimulus domain is characterized by a behaviorally relevant

dimension: the animacy continuum for the animal conditions [fish/bug, birds, mammals; 47]

PLOS COMPUTATIONAL BIOLOGY The representational hierarchy in the biological and artificial brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011086 April 28, 2023 15 / 25

https://doi.org/10.1371/journal.pcbi.1011086


and the degree of navigational properties [7,8] for the background conditions (seashore, ice

landscape, forest jungle versus anemones, leaves, tree branches).

fMRI data

The fMRI data was acquired in two separate sessions within 2 weeks. Each session comprised 8

runs for the main experiment and 2 runs for the functional localizer. For the main experiment,

each run lasted 6 min and 52 sec (206 volumes). For each run, the 48 image trials and 16 fixation

trials were presented twice in a random order. Each trial was presented for 1500 ms and followed

by a fixation screen for 1500 ms. Each run started and ended with 14 s of fixation. During scan-

ning participants performed a one-back task judging on a scale from 1 to 4 the degree of co-occur-

rence of each pair of stimuli (“How often do you see these images occurring together?”). The

response order was counterbalanced across runs. Before the first scanner session, participants

familiarized with the stimuli and performed a similarity judgments task [82] arranging the 48

images (Fig 1A) according to “the degree to which you see these images occurring together”. The

resulting behavioral dissimilarity matrices were averaged across participants.

Acquisition parameters. The fMRI scans were acquired on a 3T Philips scanner with a

32-channel coil at the Department of Radiology of the University Hospitals Leuven. MRI vol-

umes were collected using echo planar (EPI) T2*-weighted scans. Acquisition parameters were

as follows: repetition time (TR) of 2 s, echo time (TE) of 30 ms, flip angle (FA) of 90˚, field of

view (FoV) of 224 mm, and matrix size of 112 x 109 and voxel size of 2 x 2 x 2 mm. Each vol-

ume comprised 60 axial slices (0.2 mm gap) acquired with a multi-band factor of 2, covering

the whole brain. The T1-weighted anatomical images were acquired with an MP-RAGE

sequence, with 1 x 1 x 1 mm resolution.

Preprocessing. Before statistical analysis, functional images underwent a standard pre-

processing procedure (SPM 12, Welcome Department of Cognitive Neurology) including

three-dimensional head-motion corrected (2nd degree spine interpolation), coregistration to

the individual anatomical images and normalization to an MNI (Montreal Neurological Insti-

tute) template. Spatial smoothing by convolution of a Gaussian kernel of 4 mm full width at

half-maximum was applied to functional images [83]. For each participant, a general linear

model (GLM) was created to model the 48 conditions and the six motion correction parame-

ters (x, y, z for translation and for rotation). Each predictor’s time course was modeled for 3 s

(stimulus presentation + fixation) by a boxcar function convolved with the canonical hemody-

namic response function in SPM.

Regions of interest (ROIs). All ROIs were defined at the group level based on anatomical

masks defined with the Neuromorphometrics SPM toolbox, and functional masks defined

with an independent localizer. All visually active voxels (all 48 conditions vs baseline) exceed-

ing the uncorrected threshold p<0.0001 within the functional/anatomical masks were

included. The anatomical-based ROIs included 2 visual areas (V1, posterior VTC), and 2 fron-

toparietal areas, intraparietal sulcus (IPS) and dorsal prefrontal cortex (DPFC). The function-

ally defined ROIs included animal- and scene-selective areas defined with an independent

localizer. Whereas “scene-selective” is standard terminology, “animal-selective” is not. We

chose this terminology for the following reason. We know that medial VTC responds more to

inanimate objects including scenes, whereas the lateral VTC responds more to animate objects

including faces, bodies and animals more in general. For this reason, in a separated localizer,

we defined animal- and scene-selective areas based on the direct contrast between these two

conditions (animals versus scenes; scenes versus animals). This contrast successfully

highlighted animal-selective areas in lateral and ventral VTC and scene-selective areas in para-

hippocampal gyrus (PPA), retrosplenial cortex (RSC), and transverse occipital sulcus (TOS).

PLOS COMPUTATIONAL BIOLOGY The representational hierarchy in the biological and artificial brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011086 April 28, 2023 16 / 25

https://doi.org/10.1371/journal.pcbi.1011086


DCNN data

We extracted the vector spaces for images in our stimulus set from 4 recent DCNNs with dif-

ferent depth: Alexnet [84], VGG-19 [85], GoogLeNet [86] and ResNet 50 [87]. DCNNs consist

of various feedforward processing stages including (1) convolutional layers, (2) rectified linear

unit activation, (3) max pooling layers, and (4) fully connected layers (resembling a multilayer

perceptron). For each DCNNs and each convolutional and fully connected layer, we extracted

the vector space for all 48 stimuli by means of the Deep Learning Toolbox (https://uk.

mathworks.com/products/deep-learning.html) in MATLAB. All DCNNs were pre-trained in

object recognition on 1.2 million natural images belonging to 1000 classes for the ImageNet

dataset (http://www.image-net.org/). In addition, GoogLeNet was also pre-trained in scene

recognition on the Place365 dataset which contains 10 million images comprising more than

400 scene classes. Each scene contains between 5000 to 30,000 training images.

Statistical analysis

We used representational similarity analysis [RSA; 29] to compare the neural activity patterns

from the brain’s ROIs and DCNNs’ layers to our experimental models. CoSMoMVPA [88]

was used to create the representational dissimilarity matrices (RDMs) for brain and DCNNs

data. For neural data, for each voxel within a given ROI, GLM parameter estimates for each

stimulus condition (relative to baseline) were extracted for each participant and each run and

normalized by subtracting the mean response across all conditions. Similarly, for each

DCNNs, the vector features for each stimulus condition within each layer were normalized by

subtracting the mean feature activations across all conditions. Next, we computed Pearson’s

correlation across voxels (fMRI) or units (DCNNs) between all condition pairs and converted

the resulting correlation matrix into a representational dissimilarity matrix (RDM; 1 minus

Pearson’s r) and used it as input for the RSA analysis. We performed two main analyses. To

test our main experimental hypothesis, we run two RSAs for both brain and DCNNs data. The

first analysis tested two main models: the domain model which assumed high similarity for sti-

muli within each domain (animals and scenes) and the co-occurrence model which assumed

high similarity for each animal-scene contextual-related pair. These two models were derived

from our two alternative hypotheses and were orthogonal to each other (r = -0.05). Two addi-

tional control models were included: the GIST model [27] to capture low-level image informa-

tion and the condition model to account for within condition similarities. The correlations

between all models are the following: (domain and GIST: r = 0.11; domain and condition:

r = 0.27; co-occurrence and GIST: r = 0.16; co-occurrence and condition: r = 0.62; GIST and

condition: r = 0.23). For the neural data, the RSA was performed for group averaged data and

for single subject data. For the latter one we calculated reliability of RDMs which indicates the

highest expected correlation in a brain region given its signal-to-noise ratio. For each subject

and each ROI, the RDM was correlated with the averaged RDM of the remaining participants.

The resulting correlation values (averaged across participants) capture noise inherent to a sin-

gle subject as well as noise caused by inter-subject variability. For the second RSA (Fig 6), in

addition to the two control models, the following experimental models were included: the ani-

macy continuum model which captures the well-known animacy continuum described in

VTC and the navigational layout model which instead captures the degree to which a scene

contains features useful for navigation. The animacy continuum model [47] captures the

degree to which an animal is perceived as animate (within the animate/inanimate division

some animals are perceived more animate than others: mammals > birds, birds> fish/bugs).

The navigational layout model captures the degree to which scene layout provides relevant

information for scene navigation. 50% of scene images (jungle forests, ice landscapes, and
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beaches) contain high degree of layout information. These images are those associated with

large animals (e.g., gorilla) and can be considered typical scenes that convey information

enough about scene navigation. On the contrary, the remaining images contain little layout

information (e.g., leaves, anemoni, and tree brunches). In other words, these images represent

zoom-in scenes that from a human point of view provide little information to support naviga-

tion. Based on this consideration, the navigational layout model includes a binary distinction

between these 2 sets of backgrounds. The backgrounds with low-navigational layout properties

are also characterised by object-like properties, as justified by their labels (e.g., ‘leaves’), which

we also incorporated in the model by a partial similarity between these backgrounds and the

animal images. As for the first RSA, two control models were included: (1) the condition

model, is considered the default model for the classification tasks employed in computational

vision model which predicts classification at the level of basic category (e.g., polar bears,

beaches etc), and the GIST model to control for low-level image properties. For all RSAs, we

used partial correlation to account for any partial relationship between models. Before statisti-

cal analyses, results from the RSAs were Fisher transformed (0.5*log[(1 + r)/(1—r)]) and tested

with ANOVAs and pairwise t tests when individual-subject data were available, or permuta-

tion tests for DCNNs and fMRI group averaged data.

In addition to ROI-based RSAs we performed two whole-brain RSAs. The whole-brain RSA

was implemented in CoSMo MVPA (Oosterhof et al., 2016) using the volume-based searching

approach (Kriegeskorte et al., 2006). For each condition (relative to baseline), parameter estimates

were extracted for each participant and each run and normalized by subtracting the mean

response across all conditions. Resulting values were then averaged across all runs. For each brain

voxel, a searchlight was defined using a spherical neighborhood with a variable radius, including

the 100 voxels nearest to the center voxel. For each searchlight, the neural dissimilarity matrix was

computed for the 48 stimuli. The neural dissimilarity matrix (upper triangle) was then correlated

with the dissimilarity matrices derived from the 4 models (Fig 1C) and dissimilarity matrices

derived from all layers of AlexNet. The output correlation values were Fisher transformed and

assigned to the center voxel of the sphere. Resulting whole-brain correlation maps for each model

and layer were tested against baseline using random effects whole-brain group analysis corrected

with the threshold-free cluster enhancement (TFCE) method [37]. Voxelwise-corrected statistical

maps for each model/layer relative to baseline (z 1.96; p< 0.025, one-sided t test) are displayed on

a brain template by means of BrainNet Viewer [38].

DCNN experiment with congruency manipulation

Construction of the training datasets: Custom datasets were constructed by joining masked

images of objects with inverse-masked images of scenes obtained from two publicly available

datasets. Images of 6 object categories (’bus’, ’clock’, ’dog’, ’giraffe’, ’television’, ’umbrella’)

were obtained from the Microsoft COCO dataset that consists of over 300.000 images labelled

with more than 2 million object instances [89]. Each object instance is associated with a mask

which allows extraction of object-representing pixels. Objects of small size (ratio between

object size versus total image size smaller than 3%) were enlarged and objects of object-image

ratio smaller than 0.15% omitted in order to avoid unsatisfactory classification performance

on images with hardly any object-associated pixels [90]. Scene images of 6 categories (’church

indoor’, ’sand desert, ’glacier’, ’ocean underwater’, ’broadleaf forest’, ’landfill’) were obtained

from the Places dataset that consists of more than 2 million images of 205 scene categories,

most of them containing several thousand unique images [91]. This allowed generation of a

total of 10500 training images (1750 per object category) of 256 x 256 x 3 pixels per dataset, in

which each image showed an object of one of the 6 object categories embedded in a scene of
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one of the 6 scene categories. Note that with only 6 image classes with a total of 10500 training

images we are not claiming that the resulting DCNN models will be usable as state-of-the-art

models in image classification or as reference models to compare with neural representations.

Instead, these models are merely developed to provide a proof-of-principle showing how

strong the impact of scene-object congruency in a training set that is controlled in terms of

this congruency, in contrast to typical training sets such as ImageNet.

Four different datasets of 0%, 58.3%, 83.3% and 100% of object-scene co-occurrence were

constructed by manipulating the likelihood of objects being joined with their adhering back-

ground type. Each dataset was constructed out of the same set of object and background

images that were, however, joined in a different fashion. To illustrate this on the example of

83.3% object-scene co-occurrence dataset, backgrounds of every 1st, 2nd, 3rd and 4th image

were object-specific (80%) and background of every 5th image was belonging to either one of

the six background categories (20%). Thus, there is an additional 1/6 chance that randomly

chosen backgrounds will come from the object-specific category (adding additional 3.3% to

the total object-scene specificity of the dataset). In the 0% object-scene co-occurrence, none of

the 6 scene categories is more likely to be associated with a particular object category than the

other scene categories (all have a 16.7% chance).

Training of the models. Five individual DCNN models were trained on each of the con-

structed datasets. The models followed the standard AlexNet architecture with five convolu-

tional and three fully-connected layers with one minor difference in input layer accepting

images of size 256 x 256 x 3 instead of 224 x 224 x 3 pixels, as originally defined by Krizhevsky

and colleagues (2012)[84] to better fit the size of our image stimuli. All models were trained for

150 epochs in batches of 75 training images, with the Adam optimizer and categorical cross-

entropy loss function. A dropout regularization rate of 0.5 was added to the first two fully-con-

nected layers. Additionally, image augmentation was employed to improve generalization of the

trained models. At the end of the training, only the weights of the best performing epoch (lowest

validation loss calculated on a total 750 validation images, 125 per object category) were stored.

All models were implemented in Python utilizing functions of the Keras library.

Representational similarity analysis with congruency manipulation. Additionally, rep-

resentational similarity analysis was performed to compare patterns of inner neural represen-

tations of the trained networks with our experimental models. In order to do so, neural

activations of each networks’ 7th layer (fully connected) were extracted by presenting them

with 48 image stimuli, each sprouting 4096 neural activations. This set of stimuli consisted of

24 images of objects on neutralized backgrounds and 24 images of scenes without the object

entities (4 for each object category and 4 for each scene category). Neutralized backgrounds

were obtained by averaging pixels of 6 scene images randomly chosen from Places dataset [91],

each of them belonging to one of the above specified scene categories. This was done in order

to provide objects with a background that possessed no relevant scene information yet were

not too atypical/homogeneous and thus too different from training examples (usage of monot-

onous backgrounds was found to be problematic as it significantly impacted internal represen-

tations of the networks). Next, correlations between internal activations for each stimulus were

obtained by calculation of Pearson correlation coefficients. This resulted in a single similarity

matrix for each model which was in the end transformed into an RDM matrix by subtracting

it from a unit matrix (with all values equal one) of a matching dimension.

Supporting information

S1 Fig. Dissimilarity matrices computed with alternative distance metrics. The main brain

RSA analysis is replicated with alternative distance measures: (A) cross-validated Mahalanobis
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distance following [1] and (B) Euclidean distance. As for the main RSA, we tested 4 models:

GIST, condition, domain, co-occurrence. Results confirm data analysis performed with 1-corr

distance. Filled bars indicate significant values against baseline (p<0.005, corrected for n. or

ROIs) calculated with pairwise t-tests across subjects (n = 19).

(DOCX)

S2 Fig. VTC representations are best captured by mid-level DCNNs layers. (A) For each

DCNNs, the RSA results show the degree of similarity between the representational space of

individual layers in each brain area. (B) The random-effects whole-brain RSA results corrected

with Threshold-Free Cluster Enhancement [TFCE; 2] are displayed separately for each layer of

AlexNet against baseline [BrainNet Viewer; 3].

(DOCX)

S3 Fig. Domain-specific spaces tested within-domain data. The RSA results for the 4 models

(GIST, condition, animacy continuum, navigational layout) are shown for group-averaged

brain (left) data and DCNNs (right). The same DCNN architecture (GoogLeNet) was trained

either on object recognition (ImageNet), or scene recognition (Scene 365). For comparison

with the first RSA analysis (see Fig 3A), gray shaded areas indicate the network’s layers in

which the domain model significantly outperformed the remaining models. Color-coded lines

on top of bar/graphs indicate the network’s layers/ROIs where each model significantly out-

performed the remaining models (p< 0.001) computed with pairwise permutations tests

(10000 randomizations of stimulus labels).

(DOCX)
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