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Abstract

Cancer chemotherapy combines multiple drugs, but predicting the effects of drug combina-

tions on cancer cell proliferation remains challenging, even for simple in vitro systems. We

hypothesized that by combining knowledge of single drug dose responses and cell state

transition network dynamics, we could predict how a population of cancer cells will respond

to drug combinations. We tested this hypothesis here using three targeted inhibitors of dif-

ferent cell cycle states in two different cell lines in vitro. We formulated a Markov model to

capture temporal cell state transitions between different cell cycle phases, with single drug

data constraining how drug doses affect transition rates. This model was able to predict the

landscape of all three different pairwise drug combinations across all dose ranges for both

cell lines with no additional data. While further application to different cell lines, more drugs,

additional cell state networks, and more complex co-culture or in vivo systems remain, this

work demonstrates how currently available or attainable information could be sufficient for

prediction of drug combination response for single cell lines in vitro.

Author summary

Cancer chemotherapy combines multiple drugs, but determining which drugs would be

efficacious for particular patients remains extremely challenging. Experimental solutions

to this problem are not yet possible due to the large space of possible combinations of

hundreds of anti-cancer drugs. Computational models may help, but it is not yet clear

how such models should be built and what elements they need to capture to predict drug

combination response. In this work, we explored the idea that if we knew something

about the proportions of different types of cancer cells in a population, how fast transi-

tions happen between the different types, and how individual drugs affect those transi-

tions, that we might be able to build a computational model that predicts drug

combination responses based only on feasible single drug response experiments. We
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tested this idea using simple cell culture systems with two different cancer cell lines and

three different anti-cancer drugs, and found surprisingly good agreement between

computational model predictions and experimentally measured drug combination

responses. While further application to different cell lines, more drugs, and more complex

experimental systems remain, this work demonstrates how currently available or attain-

able information could be sufficient for prediction of drug combination responses.

Introduction

Matching chemotherapy regimens to cancer patients remains a grand challenge of oncology

and personalized medicine. Targeted drugs often have genetic biomarkers, such as

BRAFV600E for vemurafenib [1,2], EGFR mutations and copy number amplification for gefi-

tinib [3–5], BCR-ABL fusion for imatinib [6,7], and HER2 copy number amplification for tras-

tuzumab [8,9]. However, such matched patients often do not respond to therapy and/or

eventually develop resistance. Why? One major driver is tumor heterogeneity; cells in different

“states” that have different drug sensitivities. Genomic status (and mutational heterogeneity

across a population)[10] is one dimension of cell state, but cell states are also defined by their

histology or transcriptomics (through for example single cell RNAseq experiments) [11–17],

and it is becoming appreciated that cells can transition between such states in development-

like networks, sometimes called cell state networks [13,18]. Such plasticity between cell states

can contribute to drug resistance [19–21], and combinations of drugs targeting different path-

ways and factors involving phenotype transition have been proposed to prevent such resistance

[19]. Another is the multi-variate complexity of biochemical networks within which drug tar-

gets reside and by which chemotherapy drugs exert their action [22–27]. These networks can

differ between cell states, adapt to therapy, and also give rise to non-intuitive therapy results,

such as feedback loops and compensatory pathways underlying the efficacy of combining Raf

and MEK inhibitor combinations, which lie in the same genetic pathway [28–31].

Massive agnostic efforts have screened thousands of cancer cell lines for sensitivity to hun-

dreds of anti-cancer drugs, with matched multi-omic data to mine for biomarkers predictive

of drug response [32–39]. These efforts, while substantial, still have not solved the problem of

how to match patients to drugs. Moreover, many chemotherapy regimens comprise combina-

tions of 3–4 drugs. Comprehensive experimental exploration of just 2-way drug combinations

for hundreds of anti-cancer drugs across a representative cohort is infeasible clinically, and

currently unreachable even in cell culture systems.

The inability to obtain an experimental solution to the problem of matching drug combina-

tions to patients has motivated computational modeling approaches. In principle, more com-

prehensive exploration of drug combination space could be achieved in silico. Various

computational methods including mechanistic models and machine learning approaches have

shown promise in predicting drug combination responses, especially taking into consideration

context specific pathology and omics data as well as identifying specific biomarkers and drug-

targets [40–45]. Regardless of the modeling methods being used, there is a widespread focus

on using information about biochemical networks to facilitate drug combination response pre-

diction [27,46–48]. Despite advanced methods being applied to integrate such information

into models, building predictive drug combination response models remains an unsolved chal-

lenge. Any solution to this problem must invariably rely on experimental data that is already

existing or is realistically attainable, such as single drug dose responses.

In this paper, rather than focus on modeling biochemical networks, we test the hypothesis

that by combining knowledge of single drug dose responses and cell state transition network
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dynamics, we could predict how a population of cancer cells will respond to drug combina-

tions. Although this hypothesis runs contrary to the predominant biochemical network-cen-

tered view of this problem, cell state transitions are largely governed by biochemical networks

in which drug targets are embedded, so in a sense this idea is encompassing prior logic. We

test this hypothesis by focusing on three drugs that target cell cycle transitions in two different

cell lines in vitro. A Markov model is developed to capture population growth dynamics and

single drug dose responses, and then this model is used to predict all two-way drug combina-

tion responses with no further adjustment. Comparison of these model predictions to experi-

mental tests shows surprisingly good agreement, despite the simplicity of the model. These

results suggest a sufficient formulation for predicting how single cell line population growth

dynamics in vitro respond to drug combinations, relying only on currently available and/or

attainable information. If this idea scales upon more extensive testing with additional cell

lines, drugs, and more complex biological scenarios such as co-culture or in vivo systems it

could have widespread impact on precision oncology efforts.

Results

To test our hypothesis that knowledge of single drug dose responses combined with cell state

transition network dynamics could enable prediction of drug combination responses (Fig

1A), a model system is needed. There are a variety of choices for cell state transition networks

and drugs which modulate them; here we focus on the cell cycle and three targeted kinase

inhibitors (Fig 1B). Specifically, we focus on a MEK1/2 inhibitor (PD0325901) that primarily

blocks transition of G0/G1 cells [49], a CDK4/6 inhibitor (abemaciclib) that primarily blocks

transition of (late)G1/S cells [50–53], and a PLK1 inhibitor (TAK-960) that primarily blocks

transition of G2/M cells [54–57]. Drug dose response experiments evaluating cell number after

3 days of treatment show that both U87 and U251 cells are responsive to these drugs as single

agents (Fig 1D). These cell lines and drugs were chosen as a subset of a larger ongoing project;

however, the hypothesis under investigation is agnostic to the particular cell lines and drugs

chosen. Wider application beyond this initial set would enable more extensive evaluation of

how substantial differences between cell lines and drugs impact the hypothesis.

Before accounting for drug effects, we first constructed and parameterized a temporal cell

state network model based on Markov formalisms that describes cell population growth

dynamics in the absence of drug for U87 and U251 cells. The reader is referred to the Methods

section for full details of model assumptions, development, and parameter estimation. Cells in

the G0/G1 state can transition to the (late)G1/S state, which can then transition to the G2/M

state. Upon transition from G2/M to G0/G1, cell division occurs, increasing cell number by

one. For this case without drug, we consider cell death transitions (which decrease cell number

by one) to be negligible. In each time step (chosen to be 1 hr), cells can either remain in their

current state, or transition. We estimated the three unknown transition probabilities for each

cell line by requiring agreement with population doubling time (31.13 hours-U87 [58–60] and

24.93 hours-U251 [61–63] and the steady-state cell state ratios (60:24:16 for U87 [64–68] and

58:23:19 for U251 [69–71]) (Fig 1C and Table 1). Simulations recapitulate these features.

There is variability reported in the literature for the doubling time and steady-state cell state

ratios; below we evaluate the effects of this variability on drug combination response

predictions.

Drug action was modeled by assuming the transition probabilities are a sigmoidal function

of drug dose (see Methods). Biologically, we assume that PD0325901 blocks transition of G0/

G1 cells [49], Abemaciclib blocks transition of (late)G1/S cells [50–53], and TAK-960 blocks

transition of G2/M cells [54–57]. Fitting to the single drug dose response data yielded
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reasonable agreement between model and data for most drug doses, but with some systematic

variation at high drug doses (Fig A in S1 Text). The reason for this systematic variation was

that cell counts for high drug doses were lower than the initial cell count, implying cell death

Fig 1. Modeling temporal cell states and single drug dose responses. (a) Graphical abstract. Schematic showing the

idea that integration of single drug dose response experiments with temporal cell state network models might enable

prediction of drug combination responses. (b) Schematic of the temporal cell state network comprising G0/G1, late

G1/S and G2/M states and the activity of the drugs PD0325901, Abemaciclib and TAK-960 in each state. In this work,

we assume that the action of each drug is specific to the state indicated by color. Cells exiting G2/M divide when they

re-enter G0/G1. (c) Time courses of cell number in the temporal cell state model for U87 and U251 cells starting with

100 cells for 72 hours. Cell proportions at G0/G1, late G1/S and G2/M states are also shown, which remain constant.

(d) Single drug dose responses for PD0325901, Abemaciclib and TAK-960 in U87 and U251 cells at 72 hours (points)

compared to model predictions (lines). Error bars denote standard error.

https://doi.org/10.1371/journal.pcbi.1011082.g001
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occurred. Therefore, we allowed the drugs to induce cell death (see Methods). This refined

model could account for responses at high drug doses with improved agreement overall

(r~0.99, ΔAIC = -160.1, Fig 1D and B in S1 Text). Overall, these results demonstrate that the

Markov model of cell state transition dynamics can capture cell population growth and single

drug responses for the investigated system.

Now that we had a model that could take as input any of the three drugs at any dose and

simulate cell population dynamics, we could predict how drug combinations would affect cell

number for all pairwise combinations of the three drugs (Fig 2, left). These predictions dem-

onstrate reasonable agreement with independent experimental data for every drug combina-

tion for each cell line (r~0.92–0.99; Fig 2-middle and right). The largest discrepancies were

evident for TAK-960, particularly for U251 cells (Fig 2-bottom two rows). These discrepan-

cies seem to be predominantly due to experiment showing decreased sensitivity to TAK-960 as

a single agent relative to the model (lighter color further to the right). This may be a result of

(i) the steep dose response of these cells to TAK-960 (n>1, Table 2) combined with (ii) finer

dose ranges used in the combination experiments around the responsive ranges (see Methods

and Fig 2 legend), leading to greater uncertainty in these dose ranges based only on the single

drug responses. Notably, no modifications were made to the model—only information about

the cell state transition network dynamics and single drug dose responses were needed to per-

form this prediction. We evaluated the ability of the model to account for drug combination

response data when the input doubling time and cell state ratio data were varied between max-

imum and minimum reported values (Fig C in S1 Text). The agreement between model and

data was robust to this variation (r~0.92–0.99, similar to previous).

Analysis of drug combination responses often includes assessment of drug synergy or

antagonism, a more qualitative and categorical analysis. A common analysis is excess over

Bliss (EOB) [72], which captures how much of the observed drug response is beyond statisti-

cally independent action by each drug. In particular, we used a variation of excess over Bliss

that is more robust and reproducible because it uses sigmoidal fits to data to mitigate the

impact of experimental noise in any single data point [73]. Values close to zero indicate non-

interacting combinations, positive values indicate synergistic combinations and negative val-

ues indicate antagonistic combinations. We calculated EOB for model and experiment, yield-

ing an averaged single score for each drug combination / cell line pair, and evaluated

agreement between the two (Fig 3). Both model and experiment show drug combinations

were predominantly mildly antagonistic or non-interacting with co-localization in the bottom

left quadrant. Overall, these results provide support for the hypothesis that responses to anti-

cancer drug combinations can be predicted with a model of cell state transition dynamics and

knowledge of single drug dose responses, for single cell lines in vitro.

Discussion

Predicting how varied drug combinations control cancer cell population growth is key to

improving cancer precision medicine. Experimental solutions alone cannot cover the vast

combinatoric space comprising drug combinations and different cancer cell types,

Table 1. Best Fit Markov Transition Parameters.

U87 U251

M1 (hr-1) 0.05 0.07

M2 (hr-1) 0.11 0.15

M3 (hr-1) 0.14 0.15

https://doi.org/10.1371/journal.pcbi.1011082.t001
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Fig 2. Model prediction vs experiments for drug combination responses. Predicted and measured combination

drug dose responses for Abemaciclib/PD0325901, Abemaciclib/TAK-960 and PD0325901/TAK-960 for U87 cells (top)

and U251 cells (bottom). First column is relative cell counts for model simulations, second column is relative cell

counts for experiments, and the third column is a scatterplot for model vs experiment for relative cell counts. The drug

concentrations (nM) for Abemaciclib and PD0325901 are 0, 1.22, 4.88, 19.53, 78.13, 312.5, 1250, and 5000, and for

TAK-960 are 0, 0.012, 0.049, 0.20, 0.78, 3.13, 12.5, and 50. The correlation coefficient for agreement between model

and experiment for each cell line/drug combination pair is indicated. Error bars denote standard error.

https://doi.org/10.1371/journal.pcbi.1011082.g002
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necessitating computational approaches. Any computational approach should rely only on

data that is available and/or feasibly attainable. Here, we explore the use of a computational

approach that, rather than focus on biochemical networks in which drug targets reside, focuses

on cell state networks where drugs influence transitions. By combining information about the

cell state network dynamics with single cell drug dose responses, we were able to predict com-

bination responses for three different targeted anti-cancer drugs in two different cell lines with

no additional model modifications, with reasonable agreement between model and experi-

ment (r~0.92–0.99). We expect this finding to be impactful to inform expansion to different

drugs, cell types, and more complex biological systems such as co-culture or in vivo models.

The drugs studied here were found to be mildly antagonistic and have not been evaluated

as combinations in other studies to our knowledge, including large-scale screening studies

[38,74,75]. Interestingly, these previous large-scale screening studies suggest most drug combi-

nations are non-interacting or antagonistic. The fact that the particular drugs studied were

found to be antagonistic could be interpreted as a consequence of sequential action on

Table 2. Best Fit Drug Response Parameters.

PD0325901 Abemaciclib TAK-960

U87
EC50 (μM) 0.10 0.01 0.0073

n 0.50 0.65 2.88

Emax,φ (hr-1) 0.011 0.0028 0.0025

EC50,φ (μM) 0.40 0.033 0.28

U251
EC50 (μM) 0.56 0.19 0.0025

n 0.40 0.76 1.69

Emax,φ (hr-1) 0.034 0.026 0.022

EC50,φ (μM) 2.77 0.042 0.0070

https://doi.org/10.1371/journal.pcbi.1011082.t002

Fig 3. Excess Over Bliss Analysis. Excess over Bliss (EOB) for each drug combination dataset in simulations and

experiments were calculated as described in Methods, and mean summarized to obtain as single EOB score for each

cell line / drug combination pair. Positive scores denote synergy while negative scores denote antagonism. Error bars

are standard error.

https://doi.org/10.1371/journal.pcbi.1011082.g003
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different cell cycle stages, with treatment of one stage resulting in fewer cells available to

respond to other drugs, similar to a classical interpretation of negative cooperativity. Yet, a

general theory for understanding how cell state or drug target network structure gives rise to

drug combination behavior is not yet established, and future studies on this topic would be

beneficial.

Combination therapy for the analogous drug targets of MEK1/2, CDK4/6, and PLK1 have

been reported but paint an incomplete and inconsistent picture, which may be due to the lack

of consistent experimental and analytical systems for evaluating synergy, as well as the large

variation between different tumor and cancer cell line types. In KRAS mutant colorectal can-

cer, combinations of CDK4/6 and MEK inhibitors have been found to be synergistic in reduc-

ing in vitro cell growth, and to be effective in patient-derived xenograft models [76]. They were

reported to cooperate in pancreatic cancer models as well [77]. The rationale was that resis-

tance to the MEK inhibitor by reactivating the pathway could be blunted by also blocking

downstream with the CDK4/6 inhibitor, similar to combined BRAF and MEK inhibition in

melanoma [28]. Similarly, multiple cancers that had become resistant to CDK4/6 inhibition

were found to be sensitized to MEK inhibition [78]. In a single NRAS mutant melanoma

patient, this combination was found to be effective, perhaps related to CDKN2A mutation sta-

tus [79]. A PLK inhibitor showed synergy with only one of two BRAF (upstream of MEK)

inhibitors studied in a panel of melanoma cell lines [80], and demonstrated efficacy in a NRAS

mutant melanoma [81]. PLK inhibitors were shown to be effective in ER-positive breast can-

cers that were resistant to CDK4/6 inhibition [82], however other studies showed antagonism

in pancreatic cancer [77].

While this study provided support for the idea that drug combination response could be

predicted from knowledge only of cell state networks and single drug dose response, it was

limited to single cell lines in vitro, and only to three drugs and two cell lines. An obvious next

step is scaling tests to more single cell lines and drugs. We expect that such scaling would

reveal more difficult scenarios where a single drug may target multiple cell state transitions, or

where multiple drugs may target the same cell state transition. New methodology would be

needed to specify and constrain such mapping; mechanistic modeling of drug target networks

could be of use here [22–26,38,41,83].

A single cell line in vitro is an extremely simple situation that neglects the impact of, for

example, multiple non-tumor cell types, different tumor cell subclones, 3D environments,

non-exponential (e.g. Gompertz-like) growth, and long-term development of drug resistance.

More cell fates such as apoptosis (and variants such as ferroptosis and necroptosis), senes-

cence, and movement should be considered. The model employed here also does not consider

spatial phenomena that could influence cell-cell communication, both physical and chemical.

The presence of multiple subclones and non-cancer cell types within a tumor could create cell

populations and niches with different drug or immune sensitivities. Multiple agent-based

modeling approaches have been described that are suitable for capturing these important phe-

nomena [84–88]. Evolutionary dynamics on larger time scales are critical to capturing resis-

tance, a major focus of combination therapy. Ecological and game theory models have been

proposed to describe such effects, by proposing “adaptive therapy” regimens that intelligently

(and in a sense optimally) switch between drugs to maintain tumor burden at manageable lev-

els [89–93]. These types of models seem in principle compatible with the models and ideas

described in this paper.

Pharmacokinetics are another important aspect that remains to be explored. Drugs are

often given in different temporal sequences but here we only investigated simultaneous admin-

istration. The proposed cell state network models do have the ability to explore drug temporal

sequence, and this is straightforward to implement with in vitro experiments, so this is a logical
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next step for exploring how to better administer drug combinations. For eventual in vivo situa-

tions, drug concentration is not constant, but again, the dynamic nature of the cell state models

is amenable to handling such changes. Lastly, drug concentration is not constant across spatial

dimensions of the tumor. Integration with existing partial differential equation or agent-based

models could help account for spatially-varying drug concentration [84–88].

While we do not explicitly consider the role of biochemical networks in drug combination

response, in a sense, they are implicitly accounted for in the mapping of drug concentration to

cell state transition rates. In the investigated case, there was an arguably clean mapping of drug

concentration to single transition rates, which simplified the effort. In other cases, such map-

ping may not be known a priori and/or more complex, i.e., a single drug may influence multi-

ple transition rates, or two drugs may impact the same transition rate. Biochemical network

models that capture such complexities or mapping may prove useful in such situations [22–

26,38,41,83]. Assumptions regarding the additivity (or not) of multi-drug action on transition

probabilities would have to be asserted. The current availability of drug combination response

data sets [74,75,94,95] could facilitate the testing of such methods. Such future work could

explore drug combination features we did not consider here, such as combining drugs that are

not effective as single agents. They could also explore conditions that lead to drug combination

synergy; the systems chosen here exhibited predominantly antagonistic behavior. Avoiding

antagonism, however, is likely an important goal. It is thought that a small fraction of all drug

combinations lead to synergistic behavior [38,74,75], but finding them, and how synergy is

controlled by cell type, is of critical importance for precision oncology.

Application of this approach to other systems requires identification of cell state network

models. Again, in our case the cell cycle is well established in terms of cell state network struc-

ture, but other such networks may not be. For example, gliomas are thought to comprise a net-

work of four fundamental subtypes that can transition between each other, and whose

differential growth and drug response characteristics are important for predicting response to

therapy [96]. Studies have also confirmed the factors behind certain other cell state transitions-

for instance, the transcriptomic factors and signaling molecules in different epithelial to mes-

enchymal transitions [26,97–99]. Cell state transition networks have been identified for multi-

ple cancer types [11–15,17,18,100–102], generally by combining single cell measurements (e.g.

single cell RNAseq), with perturbation time courses, such as enriching for one cell state and

then observing the fractional composition dynamics. Recently, we proposed a general theory

built upon modular response analysis [103–106] that allows one to reconstruct cell state net-

works from such perturbation time course data [107]. This theory is compatible with the Mar-

kov formalisms used here. Such Markov formulation may have further applicability to other

cell state systems [18,101,102,108–110], but other approaches have been used [111–114]. Cell

state transitions are subject to inherent stochasticity and describing the cell transitions as a

Markov process is a common tool to capture this probabilistic aspect. However, this also relies

on the assumption that the transition probabilities and the underlying variables are known

and that the cell states are properly sampled and well classified. There could be several knowl-

edge gaps in these assumptions including that cells may be transcriptomically intermediate

between canonically defined states [115] and biological data may be sparse [116]. Inclusion of

methods such as lineage tracing and methods able to handle sparse data [113] may help

address some of these gaps.

Overall, we have tested a relatively simple hypothesis that knowledge of single drug dose

responses combined with cell state network dynamics is sufficient for prediction of drug com-

bination responses. This hypothesis seems to hold true at least for the three drugs and two cell

lines tested here in vitro, providing a potentially powerful rationale for guiding drug combina-

tion response modeling efforts. Expansion to more cell lines, cell state systems, and drugs will
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of course be important for further testing. Our findings here provide an important step

towards being able to predict how cancer cell populations will respond to combinations of

anti-cancer drugs, a key capability for cancer precision medicine.

Methods

Experimental Methods

Cell culture. U87 and U251 cells (both STR verified) were cultured in full growth medium

comprising DMEM (Gibco #10313039) supplemented with 10% FBS (Corning #35-011-CV)

and 2 mM L-Glutamine (Corning #25–005-CI). The cells were cultured at 37˚C in 5% CO2 in

a humidified incubator and passaged every 2–3 days with 0.05% trypsin (Corning #25–052-Cl)

to maintain sub-confluency.

Single drug dose response experiments. U87 and U251 cells were seeded in 96 well plates

(Corning-Falcon #353072) with 500 cells per well, counted with a hemocytometer. Cells were

seeded in 90 μl full growth media and cultured overnight. The next day, 10 μl of media con-

taining 10X the final drug concentration was added and the plates cultured for 72 hours.

Experiments were done in biological duplicate with technical triplicates for each.

The three drugs were procured from the following sources—PD0325901 (Selleckchem

#S1036), Abemaciclib (Selleckchem #S5716) and TAK-960 (Tocris #5403). The quantities of each

drug-PD0325901 (25 mg, molar mass-482.19g), Abemaciclib (25 mg, molar mass-506.59g) and

TAK960 (10 mg, molar mass-598.06g) corresponded to 0.0518 millimoles, 0.0493 millimoles and

0.0167 millimoles respectively and were diluted in 5.18 mls, 4.18 mls and 1.67 mls of sterile filtered

DMSO to bring the final concentration to 10 mM for each drug. These dilutions were then ali-

quoted into 10 μL batches. Before adding to cells, 990μL of full growth media was added to a

10 μL drug aliquot, diluting it to 100 μM, 10X times the highest desired dose. This concentration

was further serially diluted 8 more times in full growth media containing 1% DMSO (to maintain

the same DMSO concentration in each dilution) and by a factor of 3.16 each time. This results in

9 dilutions with the drug concentrations between 10 nM-100 μM. In 9 wells with cells seeded

overnight in 90 μL media, 10 μL of the serially diluted drugs are added. In the 10th well, 10 ul of

full growth media containing 1% DMSO was added as the vehicle control dose.

Drug combination response experiments. U87 and U251 cells were seeded in 96 well

plates (Corning-Falcon #353072) with 500 cells in each well. Eight by eight wells were seeded

in 150 μl full growth media and cultured overnight. The next day, 25 μl of media was added

twice to each well, each containing 8x of the final drug concentration and cultured for 72

hours. The final drug concentrations were chosen to reflect their responsive range for the cell

lines (1.22 nM-5μM for PD0325901 and Abemaciclib, 0.0122nM-50nM for TAK960, with a

factor of 4 spacing). Before adding the drugs to cells, as above, full growth media was added to

a 10 μL drug aliquot, diluting it to 8X times the highest desired dose. This concentration was

further serially diluted 6 more times in full growth media containing 1% DMSO (to maintain

the same DMSO concentration in each dilution) and by a factor of 4 each time. Experiments

were done in biological triplicate.

Staining and computational image analysis. After 72 hours of treatment with the drugs,

the cells were stained with Hoechst (BDBiosciences #BD 561908) and Propidium Iodide

(Millipore Sigma #P4170) at a final concentration of 1 μg/ml and 2 μg/ml to stain all cells and

dead cells, respectively. After 30 minutes, the wells were imaged using the TagBFP (Excitation-

390/18 nm, Emission-447/60 nm) and RFP filters (Excitation-531/40 nm, Emission-593/40

nm) in a Cytation 5 (Biotek). Each image was flatfield corrected and background subtracted

using CellProfiler. The nuclei were then identified using the IdentifyPrimaryObjects
feature, and a pseudo image was generated. The number of all counts of cell nuclei stained
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with Hoechst and Propidium Iodide were compiled by CellProfiler and exported as csv files

(provided in the code). The Propidium Iodide-stained nuclei counts were subtracted from the

Hoechst stained nuclei counts for each well, and this was taken as the live cell counts which

were the primary data.

Computational methods

Biological assumptions. We assume that cells in the G0/G1 state can transition to the

(late)G1/S state, which can then transition to the G2/M state. Upon transition from G2/M to

G0/G1, cell division occurs, increasing cell number by one. Without drug, we consider cell

death transitions (which decrease cell number by one) to be negligible. In each time step (cho-

sen to be 1 hr), cells can either remain in their current state, or transition. Drug action was

modeled by assuming the transition probabilities are a sigmoidal function of drug dose (see

below). PD0325901 blocks transition of G0/G1 cells [49], Abemaciclib blocks transition of

(late)G1/S cells [50–53], and TAK-960 blocks transition of G2/M cells [54–57]. We allow for

each drug to also induce cell death since a model without this could not account for data at

high drug dose (Fig A in S1 Text).

Markov model of temporal cell state transitions. Consider a Markov transition model

comprising three nodes, representing cell states G0/G1, late G1/S and G2/M, denoted 1, 2, and

3 in short. M1, M2 and M3 are the proportions of cells transitioning from states 1–2, 2–3 and

3–1 respectively, within a given timestep, taken to be one hour. M11, M22 and M33 are the pro-

portion of cells that do not transition from states 1, 2 and 3 respectively, in that hour. A cell in

state 3 undergoes cell division which gives rise to two cells in state 1. We formulate this sce-

nario using a jump Markov process model as follows:

x1;tþ1 ¼ M11x1;t þ 2�M3x3;t

x2;tþ1 ¼ M22x2;t þM1x1;t

x3;tþ1 ¼ M33x3;t þM2x2;t ð1Þ

where, xi,t, are the numbers of cells in state i at time point t. We set the time interval between

two Markov jumps at 1 hour and simulate the model for a total of 72 hours.

These equations are subject to the constraints that the proportion of cells within a state

must add to 1. Therefore,

Mii þMi ¼ 1 ð2Þ

or

Mii ¼ 1 � Mi ð3Þ

Incorporating this in the above equation enables representation of the system in terms of

M1, M2 and M3 only:

x1;tþ1 ¼ ð1 � M1Þx1;t þ 2�M3x3;t

x2;tþ1 ¼ ð1 � M2Þx2;t þM1x1;t

x3;tþ1 ¼ ð1 � M3Þx3;t þM2x2;t ð4Þ
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In short this may be represented as follows

xi;tþ1 ¼ ð1 � MiÞxi;t þ f �Mjxj;t

if i ¼ 1 : f ¼ 2; j ¼ 3

if i ¼ 2; 3 : f ¼ 1; j ¼ i � 1 ð5Þ

We estimated the unknown transition rate parameters M1, M2, and M3 based on experimental

data for cell doubling times of 31.13 and 24.93 hours and cell state ratios (G0/G1:G1/S:G2/M) of

0.602:0.235:0.163 and 0.581:0.225:0.194 for U87 and U251 cells respectively (data references in

Results). For U87, max/min values were 37.1/25.5 and 0.668:0.263:0.069 / 0.54:0.23:0.23. For U251

max/min values were 27.8/23.0 and 0.716:0.204:0.08 / 0.482:0.237:0.281 (Fig C in S1 Text). We

used the doubling time (τd) to estimate how many cells should be present after 72 hours starting

from 100 cells (100e72∗lnð2Þ=td ), and multiplied this number by the cell state ratios to estimate x1,72,

x2,72, and x3,72. We used fmincon in MATLAB with a least squares formulation to estimate M1,

M2 and M3 based on these constraints. We repeated this estimation 5 times with random initial

guesses, each converging to the same values, demonstrating uniqueness of the estimates. The best

fit values are given in Table 1 below.

Drug dose response modeling. Each of the drugs, PD0325901 (MEK1/2 inhibitor—i = 1),

Abemaciclib (CDK4/6 inhibitor—i = 2), and TAK-960 (PLK1 inhibitor—i = 3), were modeled

as having an inhibitory effect on the respective Markov parameters M1, M2 and M3. We used a

sigmoidal hill-type function to describe the effect of drug concentration on transition rates as

follows

Mi ¼ Mio � 1 �
ðDi=EC50iÞ

ni

1þ ðDi=EC50iÞ
ni

� �

ð6Þ

where Mio is the best fit transition parameter from above, Di is drug dose, and unknown

parameters are EC50i and ni.

To model the effect of drug on cell death and account for data at high drug doses, we added

the following term to the model

Mi;φ ¼
Emaxi;φðDi=EC50i;φÞ

1þ ðDi=EC50i;φÞ
ð7Þ

where, Emaxi,φ and EC50i,φ are parameters to be estimated as above, with Eq 5 changing as fol-

lows:

xi;tþ1 ¼ ð1 � Mi � Mi;φÞxi;t þ f �Mjxj;t

if i ¼ 1 : f ¼ 2; j ¼ 3

if i ¼ 2; 3 : f ¼ 1; j ¼ i � 1 ð8Þ

We used lsqnonlin in MATLAB to estimate these unknown parameters by minimizing

the sum of squared errors between model predicted and measured relative cell counts at 72

hours post drug treatment. The best fit parameters are summarized in Table 2 below. AIC cal-

culations for cases of death (24 free parameters) or no death terms (12 free parameters)

assumed standard normal distributed errors (residuals normalized by experimental standard

deviation). We used normpdf in MATLAB to calculate likelihood function contributions.
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Excess over Bliss analysis. We used a robust excess over Bliss (EOB) [73] as the basis for

these calculations. Consider each row in the combination drug dose response matrix. One of

the drug’s doses would be constant across the row but the dose of the other drug increases

from left to right. This can be captured by a 4-parameter logistic model [73,117]-

y ¼
Emin þ EmaxðD=EC50Þ

n

1þ ðD=EC50Þ
n ð9Þ

where y is the inhibition effect (1—the measured relative cell number), Emin is the minimal

possible inhibition effect, Emax is the maximum possible inhibition effect, EC50 is the half maxi-

mal parameter and n is the Hill coefficient.

We used lsqcurvefit in MATLAB to obtain least-squares estimates for the four-

parameters for each of the 8 rows and 8 columns. For a particular drug combination point, the

average of the two fitted inhibition values from its row and column estimates was taken as the

final fitted inhibition value (yAB). Consider the fitted inhibition values for particular doses of

drug A alone (yA), drug B alone (yB) and their combination (yAB). The Bliss independence

scores [33,72,73] are calculated by

yBliss;AB ¼ yA þ yB � yAyB ð10Þ

and the EOB scores are calculated by

EOBAB ¼ yAB � yBliss;AB: ð11Þ

These scores evaluated at each dose combination are averaged across the dataset for a single

EOB score for each drug combination / cell line pair.

Supporting information

S1 Code. This file contains all the MATLAB code necessary to reproduce the figures and

analyses in the manuscript (see also Methods).

(ZIP)

S1 Text. Which contains the following Figures: Fig A. Single Drug Dose Response Fits for

a Model with No Drug-Induced Cell Death. The model was fit as described in Methods, but

there was no ability for drugs to influence cell death. This model could not account for much

of the drug action at high concentrations. Fig B. Goodness-of-Fit for Single Drug Dose

Responses. For each fit shown in Fig 1D, relative cell number for model simulations was plot-

ted vs experimental data. The correlation coefficient was calculated and is shown within each

plot. Fig C. Goodness-of-Fit for Drug Combination Responses for Varying Ranges of Dou-

bling Time and Cell State Ratios. The doubling times and cell state ratios for cell lines can

vary from lab-to-lab, and we used reported ranges for U87 and U251 cells to perform drug

combination response simulations as in the manuscript. The correlation between model simu-

lations and experimental data for drug combination responses is shown, and variation in these

parameters has minimal effect. Error bars denote standard error. Correlation coefficients are

shown in each plot.
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