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Abstract

Interactions between stressed organisms and their microbiome environments may provide

new routes for understanding and controlling biological systems. However, microbiomes are

a form of high-dimensional data, with thousands of taxa present in any given sample, which

makes untangling the interaction between an organism and its microbial environment a chal-

lenge. Here we apply Latent Dirichlet Allocation (LDA), a technique for language modeling,

which decomposes the microbial communities into a set of topics (non-mutually-exclusive

sub-communities) that compactly represent the distribution of full communities. LDA pro-

vides a lens into the microbiome at broad and fine-grained taxonomic levels, which we show

on two datasets. In the first dataset, from the literature, we show how LDA topics succinctly

recapitulate many results from a previous study on diseased coral species. We then apply

LDA to a new dataset of maize soil microbiomes under drought, and find a large number of

significant associations between the microbiome topics and plant traits as well as associa-

tions between the microbiome and the experimental factors, e.g. watering level. This yields

new information on the plant-microbial interactions in maize and shows that LDA technique

is useful for studying the coupling between microbiomes and stressed organisms.

Author summary

Host-microbe interaction may be an important factor determining the performance and

survival of an organism under stress. Understanding how microbiomes influence organ-

isms under stress is a challenging new area of research because microbiomes are complex

with the potential for complex responses and adaptations to stress that influence their

interactions with the other stressed organisms. We show the use of LDA, a data-science

technique in the context of environmental microbial datasets to break down the thou-

sands of microbes present in samples into groups called topics; each topic is a group of

organisms that occur together as a common pattern in the dataset. We show that this tech-

nique, combined with correlation analyses, provides a way to view a very large set of

microbes in a sample as a smaller, more manageable set of communities of microbial taxa

related to experimental conditions and plant traits. In this way, LDA helps to unravel

complex interactions between organisms and their microbiome, which could help to
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better predict the behavior of real-world ecological systems, and perhaps support them

through many challenges brought by changing climate and environment.

This is a PLOS Computational BiologyMethods paper.

1 Introduction

Many interacting factors, such as microbiome community composition, soil chemistry, plant

traits, and plant chemistry, may play a crucial role in plant ability to withstand limited water

availability. As part of these systems, the microbiome plays a vital role in plant functioning and

development and can potentially improve the performance of many biological systems [1–3].

To understand plant-microbiome interaction and effectively reduce the dimensionality of

taxonomic microbial data, we use Latent Dirichlet Allocation (LDA) [4], which is a probabilis-

tic generative model developed for language modeling of a corpus, that is, a set of documents.

In LDA, each document is represented by the count of the words present in the document.

The key assumption behind LDA is that documents are represented as probabilistic mixtures

over latent topics, where each topic is characterized by a distribution of words. This factoriza-

tion of the data is a method to associate words with each other, and, at the same time, perform

dimensionality reduction on the documents. Topic modeling with LDA, widely applied for

text mining and image retrieval, has been successfully applied in a few biological studies pri-

marily to identify human gut microbial communities [5–8]. However, fewer topic modeling

studies are available on microbiomes of non-human organisms, which are primarily analyzed

with differential abundance analysis, clustering, dimensional reduction methods, and tests of

statistical significance [9–13].

LDA has an advantage over direct clustering techniques in biological settings, because it

does not assume that microbial species belong to only one of a set of mutually exclusive clus-

ters; LDA topic compositions may overlap with each other. In a microbial setting, the assump-

tion of exclusivity may oversimplify results because each species may play a different role in

different clusters of other microbial species. Instead, in LDA a species may be associated with

any number of topics. LDA also provides advantages over correlation analyses that examine

individual species; the topic decomposition of a sample provides an interpretable dimensional-

ity reduction, reducing the amount of variables to be analyzed from thousands to a far small

number (in our case, between 6 and 25 appeared optimal) by deciding what groups of distribu-

tions of components most succinctly explain the data. LDA may reveal topics that are responsi-

ble for different ecological functions in plant-microbiome interaction.

LDA can be used not only with 16s rRNA gene amplicon sequencing data but with other

types of -omics data, including metagenomics, transcriptomics, proteomics and metabolomics,

to find associations between genes/transcripts/metabolites and other metadata. LDA has been

previously used to classify RNAseq data and link gene expression profiles to healthy or cancer-

ous tissues [14]. LDA has also been used on a complex multi-omics dataset to identify probable

gut microbiota genes, proteins, and metabolites associated with autism [15].

Amplicon sequencing data typically requires some form of normalization due to uneven

sequence read depths across samples. Approaches commonly used to address this challenge

vary and are widely debated. In summary, normalizing by proportions or using rarefied data
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are regarded to perform best for community-level comparisons, but face difficulties with

spare/rare taxa and data loss; while approaches that transform data using models, such as

DESeq2, may perform better for differential abundance analyses, but may result in a higher

false-positive rate, overemphasize importance of rare taxa, and are less accurate for commu-

nity-level analyses [16–18]. While normalization can influence the results obtained from some

methods, LDA is not affected by this. LDA handles the count data in a probabilistic way by

computing conditional probability of a word given the topic and conditional probability of the

topic given a document.

In this work we analyze two datasets of environmental microbiomes of organisms under

stress. It is essential to consider the impact of environmental stress factors for a proper man-

agement of the plant-microbiome interactions. In the first analysis, to demonstrate the power

of LDA and its ability to reproduce analysis results obtained by other means, we performed

LDA on a dataset from the literature of coral microbiomes [19] from an experiment to probe

disease susceptibility. This study was chosen on the basis of its sample size (95 samples) and

because the authors identified specific taxa linked to various traits of interest; it allows us to

assess the credibility of LDA analysis for a small dataset of non-human microbiomes. We

show that LDA readily reveals the same associations of specific microbial species with experi-

mental conditions as found in [19]. Furthermore, LDA identifies other groups of microbial

communities, suggesting further studies to probe their links to biological function (e.g., coral

disease susceptibility).

In the second analysis, we conduct LDA on maize microbiomes under drought. It is known

that microbial community composition is significantly impacted by drought. Several recent

studies on cotton, grass, rice, and peanut root microbiomes have revealed certain phyla that

are enriched in water-limited soil [12, 20–22]. Bacterial responses to drought are generally well

conserved at the phylum level [23]. Across different soils and plant systems, if phylum has a

certain response to drought, this remains generally consistent at lower taxonomic levels due to

the broad characteristics, such as Gram +/- classification [23] that promote drought tolerance;

however, lineage specific adaptations that are not unique to certain phyla, including trophic

strategy, resting stages, or osmolyte production [21, 24], and environmental context [25]

explain differing trends between broad and specific taxonomic scales across different soils.

The variability in trends at different taxonomic levels highlights the challenges of analyzing the

large set of taxa found in microbiome samples. This motivates the use of data-science tech-

niques to view the data en masse.

The dataset of maize microbiomes (119 samples) contains more than 3946 unique bacterial

taxa (ASVs) from 27 phyla, 63 classes, 152 orders, and 247 families. We find many significant

links between LDA topics, experimental conditions, and plant functional traits. We then iden-

tify which taxa contribute most to the topics that can be associated with treatment conditions

and plant traits at multiple taxonomic levels.

2 Methods

2.1 Coral dataset and experiment

The experimental design and detailed results of the coral dataset we performed LDA on can be

found in [19]. The following few sentences summarize the key experimental features and study

goals by Rosales et al. [19], who identified bacterial taxa linked to resistance and susceptibility

to White Band Disease (WBD) in two species of Acropora coral. In their experiment, diseased

tissue was grafted to healthy Acropora cervicornis and Acropora palmata to induce a diseased

state. Bacterial communities were sampled prior to grafting (control) and seven days after

inoculation (treated). Seven days after inoculation, corals were also examined for visual signs
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of disease lesions and classified based upon their disease status (diseased or visually unaffected)

and severity (low, mid, or high disease susceptibility). Microbial community composition at

the ASV level was then compared across treatment and outcome groups using “traditional”

community-based methods, including ordinations, differential abundance of taxa, and core

microbiome analysis, to identify taxa that 1) may cause WBD, 2) are associated with micro-

biome changes during disease, and 3) potentially increase Acropora resistance to WBD.

Rosales et al. [19] used pairwise comparisons with a Kruskal-Wallis test to assess the signifi-

cance of Shannon diversity and evenness in host species. ANOVA and PERMANOVA were

used to test the significance of dispersion of the samples and to find significant interactions

between groups, respectively. The authors also present beta-diversity (PCA with Euclidean dis-

tance were used for visualization) and microbial differential abundance plots to identify the

difference between treatments.

2.2 Maize dataset and experiment

The maize dataset for this work comes from a serial microbiome propagation studying on how

microbiome composition in soil can affect performance of maize and which plant traits are

most affected by the microbiome. In this experiment we were interested in understanding the

behavior of several plant traits such as stomatal closure point, water use efficiency, maximum

rate of photosynthesis, rate of stomatal conductance, drought time (time to permanent stoma-

tal closure from the beginning of the drought treatment), percentage of leaf water content, leaf

mass per area, stem diameter, stem height, and root biomass to see if microbiomes that sup-

port these traits will improve plant performance under drought and help to find stable micro-

biomes that help plants to withstand water-limited conditions. While all plant traits are

relevant for assessing plant health under drought conditions, we are mainly interested in

behavior of stomatal closure point and water use efficiency. Stomatal closure point (SCP) is an

important plant desiccation tolerance metric that is linked to plant hydraulics and productivity

under drought [26–29]. Water use efficiency (WUEi), on the other hand, is a traditional metric

of plant productivity and drought resistance, and it measures the carbon gain of a plant per

water lost [30]. Based on the known influence of rhizosphere microbiomes on plant nitrogen

availability [31], and the connection between improved nitrogen availability and higher water

use efficiency [32, 33], it is plausible to expect that WUEi and SCP could be influenced by the

rhizosphere microbiome.

In this work, we present results from data on 119 plant microbiomes from two generations

(called generation 0 and 1) of serial microbiome propagation (Fig 1). These analyses on two

generations were performed in order to understand the effect of different water treatments on

plant-microbiome interactions with the system. In each generation, 64 maize plants were

grown in a greenhouse setting between January and May 2020 in individual 2.6 gal (9.8 L) pots

filled with 6L of fritted clay (GreensGrade, 20–50 mesh size: Profile (Buffalo Grove, IL, USA)).

The plant seed for each pot in each generation was randomly drawn from a stock of an experi-

mental strain of maize, USDA seed bank inbred line “B73”. For generation 0, 48 of the seeds

were inoculated using methods described by [34] by microbial communities originating from

one of two natural soils: one collected from an agricultural field near Akron, CO, USA and the

other collected from a ponderosa pine forest near Los Alamos, NM, USA, and 16 seeds were

planted without inoculation to form a control treatment. After seed germination, the plants

were divided into two water treatments: full-water (up to 65% volumetric water content 3

times a week) and half-water (up to 45% volumetric water content 3 times a week). After the

plants had grown to a stage showing 9 fully grown leaves (* 8 weeks), the watering was

stopped and the plants were allowed to dry under complete water withdrawal until stomatal
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closure occurred (terminal drought). Before the terminal drought, the soil in each pot was

sampled for microbiome and soil chemistry analyses, plants were sampled for leaf chemistry

analysis, and measured for height, stem diameter, maximum photosynthesis rate, and stomatal

conductance (infrared gas analyser; Licor 6400, Licor Inc. (Lincoln, NE, USA)) from which

water use efficiency was calculated by dividing the maximum photosynthesis rate by the mea-

sured stomatal conductance. During terminal drought, stomatal conductance of each plant

was measured daily. When stomatal conductance reached zero, a leaf was cut for leaf water

potential measurements (pressure chamber method, PMS Instruments (Al bany, OR, USA)) to

determine the stomatal closure point (leaf water potential at which the plant closes stomata),

and the time since the beginning of the terminal drought was recorded (drought time). For

generation 1, new pots with fritted clay were set up, and new seeds were inoculated by serially

transferring the microbial communities from the generation 0 pots with no selection with sim-

ilar microbiome extraction as for generation 0. Therefore, plants in generation 1 were growing

with the microbiomes that were direct descendants of those from generation 0. Due to the

high density of roots in the pot, all of the soil was considered “rhizosphere”, thus we chose to

use soil cores to sample the rhizosphere community in the pots, rather than performing a sepa-

rate analysis on soil directly adhered to roots, and because they were a more appropriate reflec-

tion of the communities we transferred to the next generation. The same water treatments as

in generation 0 were imposed after seed germination, but now so that for half of the plants in

each treatment the water treatment was switched. This created two additional treatment cate-

gories (stable watering vs. switched watering) for microbiomes from each original soil source

and the non-inoculated controls. Similarly to generation 0, generation 1 plants were grown to

a stage showing 9 fully grown leaves (* 8 weeks), and the plant performance measurements

and the terminal drought treatment were conducted as for generation 0. For more detailed

Fig 1. Experimental design for maize. Two generations (G0, G1) of maize experiment were grown in the greenhouse

with microbiomes extracted from agricultural (MAg) and forest (MForest) soils. Generation 1 plants were grown with

microbiomes that were direct descendants of those from generation 0. full-water (Ww) and half-water (Lw) treatments

were imposed to plants during generation 0. The same water treatments were imposed in generation 1 after seed

germination, but now so that for half of the plants in each treatment the water treatment was switched.

https://doi.org/10.1371/journal.pcbi.1011075.g001
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information on the experimental setup, plant growing conditions, and plant trait measure-

ments see S1 Text.

Of our original 128 microbiome samples, 9 samples were omitted from the final analysis

due to insufficient DNA, sequencing failures, or low read quality and quantity, resulting in the

analysis of communities from only 119 plants.

In this paper, we analyze microbiome composition with a focus on the links between micro-

biomes and watering conditions, initial microbiome soil source, and generation of the

experiment.

2.3 DNA extraction and microbiome sequencing

Microbial DNA was extracted from homogenized soil core samples using the Qiagen DNeasy

PowerSoil kit, with modifications to improve yield from clay soils [35]. 16s rRNA gene ampli-

con sequencing (V4 region) was used to profile bacterial communities. DNA amplicons were

generated using 515F-R806 previously described primers [34] and then sequenced using an

Illumina MiSeq (300bp, paired end reads). Raw sequencing reads were demultiplexed using

USEARCH11 [36] and dada2 was used to perform quality filtering, primer removal, and read

denoising [37]. Default settings were used for dada2 according to the dada2 tutorial (v1.8),

except the filterAndTrim function used the following settings to remove primers: truncLen = c

(240, 200), truncQ = 2, trimLeft = c(25, 26), maxEE = c(2, 4); only paired reads with a mini-

mum overlap of 100bp were merged, and merged sequences between 250 and 260bp were used

to generate the sequence abundance table. Taxonomic classifications were assigned to each

unique sequence at the 80% confidence level using the SILVA v138.1 database [38, 39]. Unpro-

cessed sequence data have been deposited to the NCBI Sequence Read Archive under the proj-

ects PRJNA780613 (generation 0 samples) and PRJNA780954 (generation 1 samples).

2.4 Topic modeling

LDA, commonly used in text analysis, is fully described in [4]. Sankaran et al. [5] developed

some guidelines of the application of probabilistic latent variable models including LDA to

human microbiome data. Before we start to discuss our LDA results, let us introduce the anal-

ogy between text and soil microbiome analysis we used: the pot samples, bacterial species

(taxa), microbial communities are viewed as the documents, words, and topics, respectively.

Therefore, the bacterial abundance counts matrix is viewed as the document-term matrix.

That is to say that individual pot microbiomes (documents) are broken down into a distribu-

tion of topics, and these topics are distributions of taxa (words). A topic is described as a

microbial community that may share similar biological functions.

Fig 2 shows a flow chart of LDA topic modeling at phylum level for K = 3 topics. After soil

microbiomes were sequenced, microbiome composition was aggregated to a certain taxo-

nomic level, in this case to the phylum level. The desired number of topics K (we chose the

optimal number as described in Results section) was specified in advance and the bacterial

counts matrix was used as an input for the LDA algorithm. LDA infers taxa distribution for

each topic and topic distribution for each sample. In this analysis, we used the LDA method

implemented in the MALLET software [40] to identify topics at different taxonomic levels. To

learn the model, we used Gibbs sampling [41]. We ran LDA for 10,000 iterations to allow log-

likelihood per word to stabilize.

2.5 Data analysis

Our data is high-dimensional and sparse with a large amount of ASV sequences for which no

complete taxonomic classification can be assigned. Due to the differences between text data
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and microbiome data, some pre-processing approaches and evaluation metrics, such as the

removal of common words (stop words) which are assumed not to be useful in describing the

document, used for text data were not appropriate in our case. We pre-processed the data by

aggregating ASVs to identified taxonomic descriptions associated with the ASV (phylum,

class, family, order, and ASV (no aggregation here)), and handled incomplete taxonomic spec-

ification for some ASVs by aggregating to the highest known taxonomic level.

Many bacterial taxa present in soils remain unidentified at some taxonomic levels. Despite

advances in sequencing technology that allow deep profiling of the taxonomic composition

and functional potential of soil microbial communities, databases containing information

about environmental microbes remain sparse. Nevertheless, unidentified taxa, also known as

“microbial dark matter” are sometimes in high abundance, and can be essential to microbial

community interaction networks where they are often found to be major hubs or keystone

taxa in these networks, suggesting that they provide important functions and stability to the

community [42, 43]. We elected to include unidentified taxa in our analyses, and aggregated

these by the most specific known taxonomic classification. Analysis at the ASV taxonomic

level (using ASVs directly) avoids the issue of incomplete taxonomic classification. Using this

approach, we could perform the analysis on the complete community, rather than only on the

classified subset, which may have changed community network structure [43], and thus the

outcomes of the LDA analysis.

We omitted the analysis at genus and species levels because more than half of the taxa were

unidentified and thus aggregation was harder to perform at these levels. However, we

Fig 2. Flowchart of the study design. Schematic LDA topic modeling for K = 3 topics.

https://doi.org/10.1371/journal.pcbi.1011075.g002
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performed the analysis at the ASV (“deepest”) level which allowed us to determine which

ASVs (that belong to certain genera/species) were probable in the LDA topics. When analyzing

at certain taxonomic level (except at ASV level), we removed taxa with aggregated count of less

than 4. We then performed the same analysis described below for each taxonomic level.

The main parameter of LDA that adjusts the level of detail in the resulting model is the

number of topics. If one chooses far too many topics, the main drawback is that the factori-

zation becomes less well-conditioned, resulting in redundant topics and an ambiguous doc-

ument-topic matrix. With too few topics, not all patterns in the data are captured. We

chose the number of topics carefully based on topic selection metrics and also checked that

using a different number of topics does not reduce the number of associations significantly.

We ran 5-fold cross-validation, measured several metrics, and calculated averaged results

as a function of the number of topics. We repeated all calculations five times to account for

the method’s stochastic nature. We examined the metrics of perplexity, pairwise cosine

similarity, coherence, and exclusivity [40] to help us decide how many topics to use at each

level of taxonomic identification (S1 Fig). The perplexity score was calculated to see how

well a model performs on the unseen held-out test data (20%). A lower perplexity score

indicates better generalization performance. A pairwise cosine similarity was calculated

between taxa in topics to determine how distinct were the distributions of taxa between

topics. We used coherence [44] to measure whether the most probable taxa in a topic

tended to co-occur in other topics. The exclusivity metric [40, 45] we report, finds the num-

ber of most unique taxa for each topic.

After selecting the number of topics, we ran LDA once again on the full dataset. We then

discussed the weighting of topic abundances in terms of experimental conditions, such as

water treatment, watering stability treatment, soil source microbiome inoculation type, and

generation. We also calculated the number of topics that had strong or moderate association

with experimental conditions at each taxonomic level. A topic was moderately associated with

the experimental condition (e.g., half-water treatment) if average topic abundance in all pots

treated under this condition (e.g., half-water treatment) was at least twice as large (67–80%

abundance) but less than four times larger than the average topic abundance under alternative

condition (e.g., full-water treatment). A topic was strongly associated with the experimental

condition if average topic abundance in all samples treated under this condition was at least

four times larger (80–100% abundance) than the average topic abundance under alternative

condition. If there were two alternative conditions (e.g., three soil source microbiome inocula-

tion types) then the strength of topic abundance was determined by comparing it to topic

abundances under both alternative conditions. We present topic abundance weighting plots

that show topics related to different treatments. The weighting was determined by how much

the average topic abundance under one treatment was smaller than that under the alternative

treatment on a 0–1 scale. LDA outputs probability distribution over topics for each document

(sample). To determine topic weighting in case of two treatments (e.g., half-water vs. full-

water) for each topic i and treatment t we first calculated fi;t ¼
Pnt

j¼1
rj, where rj is a contribu-

tion of the topic in document j and nt is the number of samples under a certain treatment (e.g.,

half-water). For each topic i we defined xi;t ¼
fi;tPK

j¼1
fj;t

, where K is the number of topics in the

model. We then obtained topic weighting wi,t for each treatment t by normalizing xi,t values

across two treatments so that the sum of the contributions for all topics for each treatment is

one. To obtain topic abundance weighting plots we calculated plot coordinates where treat-

ment t1 is located at the bottom or left half of the plot (e.g., half-water, generation 0) and treat-

ment t2 is located at the top or right half of the plot (e.g., full-water, generation 1) as follows. If
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wi;t1
> wi;t2

;wi;t1
þ wi;t2

¼ 1, then topic coordinate on the plot is
1� 2wi;t1
wi;t1

, otherwise if

wi;t1
< wi;t2

;wi;t1
þ wi;t2

¼ 1, then topic coordinate on the plot is
2wi;t2 � 1

wi;t2
.

Each LDA microbial community topic is characterized by the distribution of taxa. This

allowed us to detect which topics were more associated with pots that were exposed to water-

limited treatment or pots with inoculated microbiomes from different soil sources, etc. To

determine which taxa abundances were most amplified (exclusive) in the topic in comparison

to their abundances in the overall dataset, we defined the term relative amplification (also

known as lift in text analysis [46]) of each taxon within each topic. It is defined as the probabil-

ity of the taxon given the topic divided by the frequency of that taxon in the overall dataset,

and then we normalized each topic across all taxa so that the sum of the relative amplifications

for all taxa in each topic is one. In other words, the relative amplification shows which taxon’s

abundance is most amplified in the topic in comparison to its abundance in the overall dataset.

We also calculated effective number of words for each topic [40], which is computed for each

topic as the inverse of the sum of the squared probability of each word in the topic. This metric

counts how many taxa are important contributions to each topic, that is the number of taxa

that the topic is effectively spread across.

We tested if topics had statistically significant relationships with plant traits. To do this, we

calculated a Spearman’s rank correlation coefficient between each topic and each continuous

plant trait. Tests were performed at 5% statistical significance level with Holm–Bonferroni cor-

rection, which is uniformly more powerful than the Bonferroni correction, to control the fam-

ily-wise error rate.

To compare the LDA approach with traditional microbiome analysis, we ran Spearman’s

rank correlation tests and Indicator Species analysis [47–49] to find significant relationships

between individual taxa and plant traits. Indicator Species analysis (using themultipatt func-

tion in the IndicSpecies v1.7.9 R package) did not identify any taxa significantly associated with

any treatment following multiple test correction. Differential abundance analysis was con-

ducted using Corncob R package [50]. It identified numerous taxa that significantly differed in

abundance between treatments. Corncob uses a beta-binomial model to compare taxa abun-

dances using un-normalized sequencing data.

To test the robustness of our LDA results that might vary due to the randomness of LDA,

we compared results from three different LDA runs at the phylum level. Cosine similarity

between taxa in topics obtained from the different runs was calculated to determine the consis-

tency of the topics from run to run. S5 Table shows the consistency of the topics between three

different runs. Although topics related to the watering treatments have lowest cosine similarity

between runs, the most probable taxa in these topics were the same.

We also fitted different number of topics at the phylum level to see if this significantly affects

the results (S6 Table). Even if using more topics can result in more associations between topics

and treatments, cosine similarity between topics within a model can be used to avoid overfitting.

3 Results

3.1 LDA results on coral dataset

To assess the performance of LDA-based microbiome analysis prior to analyzing our own

maize dataset, we performed LDA analysis on a previously published dataset [19] that used

“traditional” microbiome analysis methods.

By running LDA with 20 topics, we found 7 and 11 topics that were strongly associated

with Acropora cervicornis and Acropora palmata species, respectively. Most of the topics were

linked to some experimental conditions such as treatment (control and inoculated), outcome
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(control, visually unaffected, and diseased), and disease susceptibility (low, mid, and high)

(Figs 3 and 4). We found thatMidichloriaceae was the dominant family in topics relevant to A.
cervicornis species, and the families Spirochaetaceae and Endozoicomonadaceae were found to

be dominant in topics abundant in samples from A. palmata species (Fig 5).

Two topics 4 and 16, each representing different Acropora species, were connected to con-

trol samples. Topic 4, linked to Acropora cervicornis, was dominated by the presence of ASVs

from the families Midichloriaceae, P3OB-42, Endozoicomonadaceae, Nannocystaceae, and sev-

eral ASVs from to the order Phormidesmiales. On the other hand, topic 16, representing con-

trol samples from A. Palmata species, was dominated by the presence of ASVs from

Rhodobacteraceae, Colwelliaceae, and Phormidesmiaceae families.

We found three topics related to visually unaffected samples, ASVs from the familiesMidi-
chloriaceae, Spirochaetaceae, Francisellaceae, Kiloniellaceae, and Endozoicomonadaceae in A. cer-
vicornis were dominant in topic 10, and ASVs fromHalobacteroidaceae, Rhodobacteraceae,
Spirochaetaceae, Desulfobacteraceae, Clostridiaceae, Lachnospiraceae, and Vibrionaceae families

were more probable in topic 2 related to visually unaffected A. palmata species. Topic 20 was

the only topic associated with A. cervicornis species and low disease susceptibility. It was mainly

dominated by the ASVs fromMidichloriaceae and Rhodobacteraceae families and ASVs from

the ordersNostocales and Alteromonadales. These results suggest that these taxa may promote

resistance to disease in Acropora species. On the contrary, topic 19, associated with A. cervicornis
species and high disease susceptibility, was dominated by the presence of ASVs mainly from

Endozoicomonadaceae, Midichloriaceae, and P3OB-42 families. Several topics were relevant to

A. palmata species and high disease susceptibility and were dominated by the presence of ASVs

from Fulvivirga, Arcobacter, Oscillatoria genera, Nostocales order, and Alphaproteobacteria class.

Fig 3. Topic abundance weighting for the treatment and species types. All topics to the left of topic 9 are associated

with Acropora cervicornis species. All topics to the right of topic 8 are associated with Acropora palmata species. All

topics below topic 11 are associated with Control treatment whereas all topics above topic 15 are associated with

Inoculated (diseased or visually unaffected) treatment. Topics in color are topics associated with an experimental

outcome. Topic 20 is associated with Low disease susceptibility; topics 5 and 14 are associated with Medium disease

susceptibility; topics marked with triangle up symbols are associated with High disease susceptibility.

https://doi.org/10.1371/journal.pcbi.1011075.g003
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The LDA results with the most probable taxa in each topic associated with one of two spe-

cies, certain treatment or outcomes mostly agreed (Table 1) with the findings in [19]. LDA

results agreed with the authors findings of the dominant families related to both species, con-

trol samples in Acropora cervicornis species, and low and high disease susceptibilities in Acro-
pora cervicornis species. Rosales et al. [19] found a core bacteria member in both species from

the orderMyxococcales (P3OB-42) at relatively higher abundances in corals with lower rates of

disease development following grafting. Though P3OB-42 was not found among most proba-

ble families in topics 2 and 10, it was the most probable family in topic 8 which was related to

visually unaffected samples without being ascribed to either species. A single ASV, designated

Sphingobium yanoikuyae (family Sphingomonadacea), was significantly detected in both spe-

cies of disease-exposed and visually unaffected samples [19]. LDA results in agreement with

this finding, Sphingobium yanoikuyae was found in topics 17, 19 (diseased) and 8 (visually

unaffected). Rosales et al. [19] found Ralstonia genus at higher relative abundances in negative

control samples. This genus was the most dominant taxon (22.4%) in LDA topic 9 associated

with only control samples and nothing else.

There were some taxa-treatment associations identified by Rosales et al. [19] that LDA

failed to identify. In particular, LDA did not detect Spirochaetaceae and Endozoicomonadacea
as most dominant families in control samples of A. Palmata species. Rosales et al. [19] found

relatively higher abundances of the genus Vibrio in visually unaffected and diseased corals

compared to control corals in A. cervicornis. LDA topic associated with visually unaffected cor-

als did not show higher abundances of this genus compared to that in the topic associated with

control samples. However, genus Vibrio was the most dominant taxon in topic 5 associated

with medium disease susceptibility. For outcome in A. palmata, the families Rhodobacteraceae
(genus HIMB11) and Cryomorphaceae (uncultured genus) were significantly abundant and

highly associated with visually unaffected and diseased corals [19]. LDA found higher associa-

tions of these genera in topic 6 associated with high disease susceptibility. Therefore, the

Fig 4. Ternary plot of topic abundances for the outcome type (control, diseased, visually unaffected).

https://doi.org/10.1371/journal.pcbi.1011075.g004
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biggest disagreement between LDA results and relative/differential abundances analyses

results from [19] was related to diseased samples in both coral species and to control samples

in A. palmata species (Table 1). It should be noted that the standard deviations in relative

abundance analysis were very high which made the comparison of average relative abundances

in samples with LDA probabilities harder.

Though LDA did not detect all associations present in [19], LDA results revealed additional

taxa that were linked to certain treatments, outcomes and disease susceptibility that were not

previously discussed. Specifically, Rosales et al. [19] did not find any strong associations of

taxa and high disease susceptibility in A. palmata species samples, while LDA did.

This suggests that LDA was capable not only to detect most associations as were found by

the researchers in the previous study but also complement the results with taxa that were less

abundant in data but still may interact with other taxa towards the White Band disease

resistance.

3.2 LDA results from our maize experiment

LDA results provide a window into which taxa might function together as a system and be

related to different experimental conditions and plant traits. In this section, we present the

analysis results at phylum, class, order, family, and sequence (ASV) taxonomic levels from the

Fig 5. Distribution of ASV sequences in each learned LDA topic. Topics to the left of topic 9 are strongly associated with Acropora cervicornis species,

and topics to the right of topic 8 are strongly associated with Acropora palmata species. The labels are written in the phylum_class_order_family format,

the names of genera, species, and ASVs are not shown. Only probabilities (color circles) greater than 0.1 are shown. Smaller circles are displayed on the

top of larger circles.

https://doi.org/10.1371/journal.pcbi.1011075.g005
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microbiome sequential propagation experiment with maize. Based on the topic selection met-

rics mentioned above, we decided to use K = 6, 8, 10, 20, and 25 topics at the phylum, class,

order, family, and ASV levels, respectively, as we did not observe significant improvement in

metrics behaviors for larger topic counts. At the phylum level we observed that perplexity

dropped at K = 6, cosine similarity was the same for K< 7 (S1(a) Fig), and coherence was not

changing much for K = 5, 6, 7 (S1(b) Fig). Therefore, we decided to use K = 6 topics at the phy-

lum level. Detailed plots and tables for each taxonomic level are available in S2–S14 Figs and

S1–S19 Tables, including explicit lists of all topic compositions and their associations with

treatment conditions and interactions with plant traits. We present summary tables (Tables 2,

3, 4 and 5) that capture the main results of the analyses at all taxonomic levels.

When analyzed at different taxonomic levels, LDA allowed us to identify topics moderately

and strongly related to the experimental conditions at each level (Table 2). We found that

microbiome topics were more associated with experimental conditions at lower taxonomic

levels than at higher taxonomic levels as expected based on high functional diversity that can

be present in groups belonging to the same high taxonomic level (Table 2). Topics were associ-

ated mostly with water treatment and plant generation, and less with soil microbiome inocula-

tion source type and stability of the watering treatment. We found that at each taxonomic level

there was at least one topic that was associated with the full- or half-water treatments, however,

strong associations were only observed starting from the order taxonomic level. Strong topics

associations with the generation and particular soil microbiome inoculation source type were

detected only at order level and lower. We observed significant skewness of topics toward the

stability of watering treatment only at the lowest ASV taxonomic level. At the order level and

Table 1. Comparison of LDA results and results obtained from the relative abundance analysis (Tables 2 and 3 in [19]). Table shows mean and standard deviation

(SD) relative abundances (RA) in % by taxon of core microbiomes per experimental outcome and coral-host [19] as wells as probability % of these taxa in LDA topics asso-

ciated with corresponding outcome and coral species. Multiple LDA topics were associated with Diseased outcome in both coral species. Topic 20 and topic 5 were associ-

ated with low and medium disease susceptibility, respectively, whereas topics 19, 1, 6, and 18 were associated with high disease susceptibility.

Coral species Outcome Taxon Mean/SD RA LDA probabilities

Acropora cervicornis Control Topic 4 Midichloriaceae 93.2/18.6% 79.5%

P3OB-42 4.6/17.7% 6.2%

Endozoicomonadaceae 2.2/2.6% 2.1%

Visually unaffected Topic 10 Midichloriaceae 83.6/33.1% 86.6%

P3OB-42 14.2/32.9% 0.15%

Endozoicomonadaceae 2.2/2.9% 0.6%

Diseased Topics 20/5/19 Midichloriaceae 97.4/3.9% 26.5/0.002/32.1%

Endozoicomonadaceae 1.3/3.6% 0.0002/0.07/55.6%

P3OB-42 0.8/1.2% 0.03/0.007/2.8%

Acropora palmata Control Topic 16 Spirochaetaceae 65.1/37.4% 0.19%

Endozoicomonadaceae 26/33.4% 0.03%

Midichloriaceae 8.8/23.2% 0%

Visually unaffected Topic 2 Spirochaetaceae 57/51.3% 15%

Proteobacteria 21.4/42.5% 23.3%

P3OB-42 17.6/39% 0.03%

Midichloriaceae 2.8/2.5% 0.001%

Cryomorphaceae 0.76/1.23% 0.04%

Diseased Topics 3/1/6/18 Spirochaetaceae 79.2/29.1% 0.29/25.4/0/8.4%

Endozoicomonadaceae 13.1/18.1% 0.0002/0.01/0.7/0.07%

Midichloriaceae 1.9/2.6% 0/0/0/0.001%

Cyanobiaceae 4.7/11.9% 0.05/1/5.6/0.07%

https://doi.org/10.1371/journal.pcbi.1011075.t001
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lower, several topics that were simultaneously strongly associated with multiple experimental

conditions appeared. For example, one of the topics was strongly associated with half-water

treatment and was more prevalent in generation 1 plants with agricultural microbiome inocu-

lation. At both family and ASV taxonomic levels, all topics were moderately or strongly related

to at least one experimental condition. We also detected many moderate associations of topics

with experimental conditions at each level.

We found statistically significant relationships between learned topics and plant structural

traits, including stem diameter, height, and root biomass at each taxonomic level (Table 3).

We did not observe any statistically significant relationships between learned topics and func-

tional plant traits (stomatal closure point (SCP) and water use efficiency (WUEi)) except at the

ASV taxonomic level where we found a significant relationship of one topic with WUEi. Over-

all at each taxonomic level, some relationships were significant (p-value (SCP) < 0.001 and p-

value (WUEi) < 0.05), but the corrections for multiple testing precluded their significance.

3.3 Identifying taxa related to experimental conditions

We present taxa along with their probabilities and relative amplifications in several selected

topics strongly and moderately associated with at least one experimental condition in Tables 4

and 5. For each topic we calculated the effective number of taxa, and we highlighted the taxa

whose ranks are under this threshold in bold (S1, S7 and S10 Tables), indicating which taxa

are the most important contributions to the content of this topic. For phylum-level analysis,

this was the top 2–4 taxa for each phylum in the topic. For the ASV level, each topic was spread

across several dozen taxa.

Table 3. Number of topics at each taxonomic level that showed statistically significant relationships between topics and plant traits based on a Spearman’s rank cor-

relation coefficient with Holm–Bonferroni correction. The numbers in parentheses represent number of different topics associated with significant relationships and

overall number of topics used in LDA at taxonomic level. The last four columns are Leaf mass per area, % Leaf water content, Stomatal conductance, and Water use

efficiency.

Taxonomic level Stem height Stem diameter Root biomass LMA LWC Cond WUEi

Phylum (3/6) 1 3 1 1 0 1 0

Class (3/8) 2 1 1 1 0 0 0

Order (6/10) 4 1 3 2 0 0 0

Family (11/20) 5 3 5 1 3 0 0

ASV (15/25) 13 5 8 0 0 0 1

https://doi.org/10.1371/journal.pcbi.1011075.t003

Table 2. Number of topics associated with experimental conditions at each taxonomic level. Strong (topic abundance is four times (×4) larger than for other treatments)

and moderate (topic abundance is twice (×2) as large but less than four times larger than that for other treatments) topic associations are shown for each experimental con-

dition. The numbers in parentheses represent number of topics associated with at least one experimental condition and overall number of topics used in LDA at taxonomic

level.

Experimental conditions Generation Watering Stability Soil source

0 1 Half Full Stable Switched Agricultural Forest None

×4 ×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4 ×2

Phylum (3/6) 1 1 1

Class (6/8) 1 2 1 1 1

Order (9/10) 1 2 1 2 1 2 1 3 2 1 1 1

Family (20/20) 4 2 8 2 3 4 4 3 4 1 3 1 2 1 2

ASV (24/25) 4 2 15 1 8 3 10 5 1 4 3 8 1 8 4 1

https://doi.org/10.1371/journal.pcbi.1011075.t002
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Table 4. Most probable and amplified taxa in some topics associated with experimental conditions at phylum, class, and order taxonomic levels. Left: average per-

centages of most abundant taxa in pots for each taxonomic level. Middle: topic association with experimental conditions (HW: half-water, FW: full-water, G0: generation

0, G1: generation 1, AG: agricultural soil source). Right: most probable taxa in topic with probabilities are displayed in each upper row; most amplified taxa with its value

(see Methods) are displayed in each lower row, some taxa were unidentified at lower levels. Note that unidentified taxa were aggregated to the highest known taxonomic

level, meaning that they may represent one or several classes, orders, etc. Not all topics are listed.

Most abundant taxa in data Experimental

conditions

Most probable taxa (upper row) followed by the most

amplified taxa (lower row)

Phylum Proteobacteria 44.15%, Bacteroidota 13.67%, Actinobacteriota 13.08%,

Verrucomicrobiota 9.05%, Cyanobacteria 8.01%
HW Actinobacteriota 0.71, Bacteroidota 0.15, Patescibacteria

0.04.

Fibrobacterota 0.16, Patescibacteria 0.15, Crenarchaeota
0.15, Actinobacteriota 0.14, Firmicutes 0.12.

FW Proteobacteria 0.49, Verrucomicrobiota 0.34, Bacteroidota
0.11.

WPS-2 0.13, Verrucomicrobiota 0.13, Sumerlaeota 0.12,

Desulfobacterota 0.12, Gemmatimonadota 0.11.

Class Gammaproteobacteria 25.65%, Alphaproteobacteria 18.73%, Bacteroidia
13.52%, Actinobacteria 12.41%, Verrucomicrobiae 8.83%, Cyanobacteriia
7.21%

HW Actinobacteria 0.62, Alphaproteobacteria 0.26,

Bacteroidia 0.05.

Bacilli 0.09, Nitrososphaeria 0.09, Proteobacteria_NA
0.09, Ktedonobacteria 0.09, Actinobacteria 0.09.

FW Verrucomicrobiae 0.46, Alphaproteobacteria 0.20,

Bacteroidia 0.17, Planctomycetes 0.06
WPS-2_NA 0.11, Gemmatimonadetes 0.10,

Verrucomicrobiae 0.09, Bacteroidota_NA 0.09,

Planctomycetes 0.09
Order Burkholderiales 18.96%, Rhizobiales 9.68%, Micrococcales 8.1%,

Verrucomicrobiales 6.01%, Sphingobacteriales 5.83%, Deinococcales 4.95%,

Sphingomonadales 4.13%

G0 Chitinophagales 0.16, Burkholderiales 0.16, Rhizobiales
0.11, Azospirillales 0.11.

Steroidobacterales 0.05, Nannocystales 0.05,

Thermoanaerobaculales 0.05, Azospirillales 0.04,

Isosphaerales 0.04.

G1 c_Cyanobacteriia_NA 0.42, Rhizobiales 0.10,

Burkholderiales 0.08, Sphingomonadales 0.06.

c_Parcubacteria_NA 0.08, c_Cyanobacteriia_NA 0.08.

HW Micrococcales 0.36, Rhizobiales 0.18, Sphingobacteriales
0.11, Propionibacteriales 0.06.

Fibrobacterales 0.04, c_MB-A2–108_NA 0.03,

Solibacterales 0.03, PeM15 0.03, Saccharimonadales 0.03.

FW Verrucomicrobiales 0.47, Burkholderiales 0.19, Rhizobiales
0.08.

c_Actinobacteria_NA 0.09, Immundisolibacterales 0.09,

Verrucomicrobiales 0.08, p_WPS-2_NA 0.07.

FW Chloroplast 0.33, Burkholderiales 0.14, Rhizobiales 0.11,

Chthoniobacterales 0.09, Sphingobacteriales 0.05.

Chloroplast 0.06, Bacillales 0.05, RBG-13–54-9 0.05,

Ga0077536 0.04, Silvanigrellales 0.04.

G0, FW Burkholderiales 0.13, Cytophagales 0.13,

Sphingomonadales 0.10, Rhodobacterales 0.08,

Verrucomicrobiales 0.07.

VC2.1_Bac22 0.04, Chloroflexales 0.04, Spirochaetales
0.03, R7C24 0.03.

G1, FW Xanthomonadales 0.40, Diplorickettsiales 0.07,

Planctomycetales 0.07, Rhizobiales 0.06, Cytophagales
0.06.

Xanthomonadales 0.08, Diplorickettsiales 0.08,

Puniceispirillales 0.06, Coxiellales 0.06, Pirellulales 0.05.

G1, HW, AG Streptomycetales 0.19, Burkholderiales 0.16, Rhizobiales
0.12, Cytophagales 0.08, Vampirovibrionales 0.07.

Streptomycetales 0.10, Vampirovibrionales 0.90,

Caedibacterales 0.08, Nitrososphaerales 0.08.

https://doi.org/10.1371/journal.pcbi.1011075.t004
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Table 5. Most probable and amplified taxa in topics strongly associated with experimental conditions at family and ASV taxonomic levels. Left: average percentages

of most abundant taxa in pots for each taxonomic level. Middle: topic association with experimental conditions (HW: half-water, FW: full-water, G0: generation 0, G1: gen-

eration 1, AG: agricultural soil source, FR: forest soil source, ST: stable watering, SW: switched watering). Right: most probable taxa in topic with probabilities are displayed

in each upper row; most amplified taxa with its value (see Methods) are displayed in each lower row, some taxa were unidentified at lower levels. Note that unidentified

taxa were aggregated to the highest known taxonomic level, meaning that they may represent one or several classes, orders, etc. Not all topics are listed.

Most abundant taxa in data Experimental

conditions

Most probable taxa (upper row) followed by the most

amplified taxa (lower row)

Family Comamonadaceae 7.78%, Micrococcaceae 7.21%, Oxalobacteraceae 6.20%,

Deinococcaceae 4.95%, Sphingomonadaceae 4.13%, Rhizobiaceae 3.96%,

Verrucomicrobiaceae 3.90%

HW Micrococcaceae 0.51, env.OPS_17 0.10,

Sphingomonadaceae 0.05.

Solibacteraceae 0.07, Oligoflexales 0.05,

Micromonosporaceae 0.05.

FW Xanthomonadaceae 0.50, Comamonadaceae 0.12,

Verrucomicrobiaceae 0.07.

Xanthomonadaceae 0.14, Coxiellaceae 0.08, Pirellulaceae
0.07.

FW Verrucomicrobiaceae 0.44, Comamonadaceae 0.10,

Crocinitomicaceae 0.07.

Verrucomicrobiaceae 0.12, Rickettsiaceae 0.08,

Crocinitomicaceae 0.07.

G0 Chitinophagaceae 0.18, Azospirillaceae 0.11,

Pseudomonadaceae 0.09, Micrococcaceae 0.09,

Rhizobiaceae 0.06.

Nannocystaceae 0.04, Alcaligenaceae 0.04,

Steroidobacteraceae 0.04.

G1 o_Verrucomicrobiales_NA 0.37, Oxalobacteraceae 0.10,

Micrococcaceae 0.08.

o_Verrucomicrobiales_NA 0.12, o_Armatimonadales_NA
0.09, o_NRL2_NA 0.07.

G1, HW, AG Streptomycetaceae 0.27, Comamonadaceae 0.12,

Oxalobacteraceae 0.12, Microscillaceae 0.06.

Streptomycetaceae 0.11, c_Oligoflexia_NA 0.08,

Nitrososphaeraceae 0.07.

G1, HW, FR Burkholderiaceae 0.46, Micrococcaceae 0.07,

Sphingomonadaceae 0.04, Pseudonocardiaceae 0.03.

Burkholderiaceae 0.10, Nakamurellaceae 0.09,

Kineosporiaceae 0.06.

ASV genus_Pseudarthrobacter 6.75%,class_Cyanobacteriia 4.06%,
genus_Deinococcus 3.69%,family(ies)_Verrucomicrobiaceae 2.74%,
family_Comamonadaceae 2.72%

G1, HW, AG, ST g_Streptomyces 0.16 f_Comamonadaceae 0.08,

g_Pseudarthrobacter 0.06, f_Microscillaceae 0.04.

g_Psychroglaciecola 0.02, g_Gordonia 0.02, g_Opitutus
0.02.

G1, FW, AG, ST f_Verrucomicrobiaceae 0.07, g_SH-PL14 0.05,

o_Burkholderiales 0.04.

f_Parachlamydiaceae 0.01, f_Holosporaceae 0.01,

g_Gaiella 0.01.

G1, HW, FR g_Pseudarthrobacter 0.12, f_env.OPS_17 0.04,

g_Methylorubrum 0.04.

o_Cytophagales 0.01, g_Opitutus 0.01, s_aurantiaca/
mikuniensis 0.01.

G1, FW, FR, ST o_Chloroplast 0.21, f_Rubritaleaceae 0.08, s_aerilata/
phosphatilytica 0.05, s_spinosum 0.04.

Rickettsiaceae 0.01, Chlamydiales 0.01, 67–14 0.01.

G1, HW, AG, SW g_Pseudarthrobacter 0.08, f_env.OPS_17 0.06,

c_Cyanobacteriia 0.06.

f_Azospirillaceae 0.02, g_Conexibacter 0.02, f_KD3–93
0.02.

G1, FW, FR, SW f_Verrucomicrobiaceae 0.15, f_Comamonadaceae 0.07,

f_Dyadobacter 0.04, g_Pseudarthrobacter 0.04.

g_Peredibacter 0.01, g_Noviherbaspirillum 0.01,

g_Aminobacter 0.01.

https://doi.org/10.1371/journal.pcbi.1011075.t005
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According to the previous studies conducted on different host plants across different soils,

Actinobacteriota and Firmicutes tend to increase in response to drought, Bacteroidota and Ver-
rucomicrobiota decrease, and Proteobacteria, Planctomycetota, and Acidobacteriota composi-

tions change [21, 25]. LDA results at phylum taxonomic level mostly agreed with these trends.

In particular, Proteobacteria and Verrucomicrobiota were dominant in the topic linked to full-

water treatment, whereas Actinobacteriota was dominant phyla in the topic related to half-

water treatment. Bacteroidota was dominant in both half and full-water associated topics. Fir-
micutes phylum was present only in 1% of data, as expected it did not showed up among most

probable phyla in any topic. However, Firmicutes was the one of the most amplified phyla in

the topic related to half-water treatment (Table 4).

Microbial communities detected in class-level topics related to water treatment followed

the same trends as at the phylum level. In particular, Actinobacteria was the most probable

class at half-water associated topics, and Verrucomicrobiae was the most dominant class at full-

water associated topics. Classes Alphaproteobacteria and Bacteroidia were dominant in both

half- and full-water associated topics. Bacilli in Firmicutes phylum was the most amplified class

in the topic related to half-water treatment.

Starting from order taxonomic level, most topics have become associated with multiple

experimental conditions, and therefore it became more difficult to highlight orders that were

only associated with one of the conditions. We note that several most amplified orders were

unidentified ones. This result highlights an importance of keeping unidentified taxa in the

analysis. OrdersMicrococcales in Actinobacteria class, Sphingobacteriales in Bacteroidia class,

and Rhizobiales in Alphaproteobacteria class formed a microbial community associated with

water-limited soil. On the other hand, orders Burkholderiales (Gammaproteobacteria) and Rhi-
zobiales (Alphaproteobacteria) were dominant in the topic linked to full-water treatment.

Another Verrucomicrobiae order, Verrucomicrobiales, was the most probable in the topic

linked to full-water treatment and to plants without soil microbiome inoculation.

Analysis at family level showed that family Micrococcaceae (Actinobacteria) together with a

few families from Sphingobacteriales order formed a community linked to half-water treat-

ment. Topics mainly consisted of families Verrucomicrobiaceae (Verrucomicrobiae) and Coma-
monadaceae (Gammaproteobacteria) were linked to full-water treatment.

All topics at ASV taxonomic level were moderately or strongly related to at least one experi-

mental condition (Fig 6). An ASV from Pseudarthrobacter genus (from 5 to 18% in LDA top-

ics) along with an ASV fromMethylobacterium-Methylorubrum genus (Alphaproteobacteria
class) (3.5–9%) were found in topics linked to half-water treatment (Fig 7). Several ASVs from

Verrucomicrobiales order (from 5 to 18% in LDA topics) along with an ASV in Comamonada-
ceae family (Gammaproteobacteria class) (3.5–11%) formed a community linked to full-water

treatment. The microbial community consisted mainly from three ASVs in Streptomyces
genus (18.2%), autotrophicum/hiltneri/lusitanum species (19.2%), and Opitutaceae family

(16.2%), respectively, was associated with half-water treatment and generation 1 plants with

agriculture soil microbiome inoculation.

The analyses on different taxonomic levels gave insights into the homogeneity of the function

of the lower level microbial communities that compose higher level taxonomic communities.

Certain taxa were highly probable in topics associated with the same treatments at each taxo-

nomic level. This happened either because a certain ASV was highly abundant in the data and

was linked to a certain treatment which caused the same associations at higher taxonomic levels,

or because multiple ASVs had the same treatment associations at higher taxonomic levels.

In some cases, single ASVs were associated with the same experimental conditions at differ-

ent taxonomic levels. An ASV belonging to Ralstonia genus (Gammaproteobacteria class) was

highly probable in one single topic that did not show any associations with treatments at
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phylum, class, and order levels. However, at family and ASV levels this ASV was the most

probable (45.94% at family and 49% at ASV levels) in the topic linked to half-water treatment

and generation 1 plants with forest soil microbiome inoculation. An ASV from autotrophi-
cum/hiltneri/lusitanum species (Gammaproteobacteria class) was detected in topics related to

half-water treatment at ASV (19.2%), family (8.6%) and order (16.3%) levels. An ASV from

Rhodobacter genus (Alphaproteobacteria class) was prevalent in topics related to generation 0

and full-water treatment at ASV (7.1%), family (19.5%) and order (8.4%) levels. An ASV from

Vampirovibrio genus (Cyanobacteria phylum) was detected in topics related to plants with

agricultural soil microbiome inoculation at ASV (5.3 and 7.1%), family (37.5%), order (7.01%),

and class (18.7%) levels. An ASV from Pseudarthrobacter genus (Actinobacteria class) was

highly probable in topics associated with half-water treatment. There were several other ASVs

fromMicrococcales order that contributed to half-water associated topics but their probabili-

ties were much smaller than that of Pseudarthrobacter.
Multiple ASVs appeared in the same topics associated with certain experimental conditions.

Two ASVs from Deinococcus genus were highly probable in only one topic associated with

generation 0 at each taxonomic level. Three ASVs from Streptomyces genus (Actinobacteria
class) were abundant in the topic related to stable half-watering treatment and generation 1

plants with agricultural soil microbiome inoculation at order taxonomic level and lower. Four

ASVs from Sphingobacteriales order (Bacteroidia class) were highly abundant in topics linked

to half-water treatment and plants without soil microbiome inoculation at family and ASV tax-

onomic levels. Starting from order level, five ASVs in Chitinophagacea family (Bacteroidia
class) were found in topics associated with half-water treatment, whereas two ASVs in Dyado-
bacter genus (Bacteroidia class) were found in topics associated with full-water treatment. At

Fig 6. Topic abundance weighting for the water treatment and generation on a 0–1 scale. All topics to the left of topic 5 are associated with generation 0. All

topics to the right of topic 25 are associated with generation 1. All topics below topic 25 are associated with half-water treatment whereas all topics above topic

15 are associated with full-water treatment. Topics are colored according to the soil microbiome inoculation source. The shapes of the markers corresponding to

the topic association with stability of watering treatment. Note: the weighting was calculated by how much average topic abundance under one treatment was

different from that under alternative one (see Methods).

https://doi.org/10.1371/journal.pcbi.1011075.g006
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family and ASV taxonomic levels, two ASVs inMicroscillaceae family (Bacteroidia class) were

linked to topics related to plants with agricultural soil microbiome inoculation.

3.4 Correlation and differential abundance analysis

We saw significant Spearman’s correlations between learned topics and some plant morpho-

logical traits at each taxonomic level (Table 3). However, we did not find any statistically sig-

nificant correlations between topics and plant functional traits, such as SCP and WUEi, except

for one topic at ASV taxonomic level that was correlated with WUEi.

To compare the LDA approach with traditional microbiome analysis, we ran Spearman’s

rank correlation tests between taxa and plant traits at both phylum and ASV levels. We used an

indicator species analysis to find significant relationships between individual taxa and plant

traits. We also conducted differential abundance analysis to identify taxa that significantly dif-

fered in abundance between treatments. Indicator species analysis did not identify any taxa sig-

nificantly associated with any treatment following multiple test correction. Both correlation

analyses done for individual phyla and on LDA topics mostly agreed with each other. Out of

3946 ASVs, 108 of them were found to have significant correlations with root biomass, drought

time, stem height, stem diameter, and leaf mass per area (S19 and S20 Tables). At the phylum

level, out of 27 phyla, 11 were found to have significant correlations with root biomass, drought

Fig 7. Distribution of ASVs in each learned LDA topic. Topics to the left of topic 10 are associated with half-water treatment, and topics to the right

of topic 15 are associated with full-water treatment. The labels are written in the phylum_class_order_family_genus_species format, the names of genera,

species, and ASV are not shown. Only probabilities (color circles) greater than 0.025 are shown. The sizes of the circles representing probabilities are

multiplied by 4 for visualization purposes. Smaller circles are displayed on the top of larger circles.

https://doi.org/10.1371/journal.pcbi.1011075.g007
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time, stem height, and stem diameter (S3 Table). We expect to see taller plants, plants with

increased leaf mass per area, and plants with the smaller values of the drought time and stem

diameter for the plants grown under half-water treatment than under full-water treatment.

Therefore, taxa abundant in water-limited soil were expected to be positively correlated with the

stem height and negatively correlated with the drought time, stem diameter, and root biomass,

and show the opposite behavior under the full-water treatment. On average, plants in generation

0 were taller, had thicker stems and larger root biomasses than generation 1 plants. Correlation

analysis at the phylum level showed that Actinobacteriota was negatively correlated with the

drought time. Both Crenarchaeota and Bdellovibrionota were negatively correlated with the

stem diameter, Crenarchaeotawas also negatively correlated with the root biomass, and Bdellovi-
brionotawas positively correlated with the stem height. Thermoplasmatota was positively corre-

lated with the stem diameter and root biomass and negatively correlated with the stem height.

Gemmatimonadota and Verrucomicrobiota were positively correlated with the stem diameter

and the drought time.WPS-2 was positively correlated with the stem diameter andDeinococcota
was positively correlated with the root biomass. These results obtained from the correlation

analysis performed on individual taxa were in agreement with the results from LDA analysis.

Actinobacteriota, Bdellovibrionota, Crenarchaeota amplified in half-water associated topic were

negatively correlated with the stem diameter and positively correlated with the leaf mass per

area. Gemmatimonadota, Verrucomicrobiota, andWPS-2were amplified only in the full-water

treatment associated topic and this topic was negatively correlated with the leaf mass per area.

Deinococcota was found probable in generation 0 associated topic which was positively corre-

lated with root biomass and stem diameter, and negatively correlated with the stem height. LDA

topic results mostly agreed with the results obtained from the correlation analysis performed on

individual taxa and agreed with the bacteria abundance trends observed in other studies. Instead

of analyzing individual taxa, LDA learned topics (groups of microbial communities) that may be

associated with experimental conditions and correlated with plant traits. LDA analysis directly

highlights communities in the microbiome that can be generically expected to be related to the

conditions of the plant and the response of the plant to those conditions.

Differential abundance analysis showed plenty of significant ASVs that differ in abundance

between treatments (Figs 8 and S12, S13 and S14). Both LDA and differential abundance anal-

yses showed the same ASVs that were related to certain treatments. ASVs from genera such as

Pseudarthrobacter, Methylobacterium-Methylorubrum, Noviherbaspirillum, Pedobacter, Nias-
tella, Ralstonia, SH-PL14 and ASV fromMicroscillaceae family were abundant in the half-

water treatment relative to the full-water treatment in both LDA and differential abundance

analyses. On the other hand, ASVs from genera such as Rhodobacter, Sphingopyxis, Luteimo-
nas, Caulobacteraceae, ASV from Comamonadaceae, Verrucomicrobiaceae families, and ASV

from Burkholderiales, Cyanobacteria orders were abundant in the full-water treatment relative

to the half-water treatment in both LDA and differential abundance analyses. When compar-

ing differential abundance analysis results with that from LDA we only considered ASVs with

the probabilities larger than 0.025.

4 Discussion

To show the utility of LDA for analyzing environmental microbiomes, we performed analysis

on two datasets: coral and maize microbiomes. The coral dataset was previously analyzed by

Rosales et al. [19] using traditional methods for microbiome analysis. The results from LDA

analysis mostly agreed with findings in [19]. We identified most of the same taxa linked to dis-

ease resistance. In particular,Myxococcales (P3OB-42) was dominant bacteria linked to visually

unaffected samples. Sphingobium yanoikuyae was detected in topics related to disease-exposed
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and visually unaffected samples. LDA showed that even when a putative pathogen (Sphingo-
bium yanoikuyae) was abundant, certain community structures could favor disease resistance

compared to others. LDA also revealed additional associations of several taxa not mentioned

by Rosales et al. [19] with disease resistance and susceptibility. The ASV from theHalobacter-
oidaceae family was the most probable bacteria in topic ascribed to visually unaffected samples

from A. Palmata species. LDA showed that Fulvivirga, Arcobacter, and Oscillatoria genera

were more dominant in topics related to high disease susceptibility in A. Palmata species.

The LDA analysis on our own maize dataset showed that microbial community topics were

associated with the water treatment at each taxonomic level. In general, we found stronger

relationships between topics and experimental conditions at lower taxonomic levels. This is to

be expected because analysis at a high taxonomic level is not able to distinguish potential dif-

ferences between groups belonging to the same high-level classification. Identifying taxonomic

groups associated with the environmental conditions at the phylum level does not account for

potential heterogeneity of plant traits when analyzing the microbiome at finer taxonomic lev-

els; e.g. not all classes in a given phylum may have the same association to experimental treat-

ments or responses. LDA analysis at finer taxonomic levels thus offers a way to characterize

the uniformity of the function and environmental preferences of microbial groups (e.g. classes)

belonging to a corresponding higher taxonomic group (e.g. phylum). We found that more

Fig 8. Difference in abundances of ASVs in the half-water treatment relative to the full-water (dashed middle line). Dots represent the differential

abundance coefficient and the error bars are standard errors. The taxa shown are only those that are significant after a p-value correction with the FDR

set to 0.05. Plots were produced using corncob R package [50]. The dots colored in red show taxa that were abundant in half-water related LDA topics.

The dots colored in blue show taxa that were abundant in full water related LDA topics. Note that the comparison was made with the Fig 7 where only

ASVs with p> 0.025 are shown. The second half of the plot with other significant taxa is shown in S12 Fig.

https://doi.org/10.1371/journal.pcbi.1011075.g008
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topics were associated with generation 1 rather than generation 0. Between each generation,

community composition was shifted; and some topics were strongly associated with one gen-

eration or another. We believe that was likely due to microbial communities adapting to the

pot environment and selection upon the communities by maize [51]. Therefore, topics most

associated with generation 1 could be a consequence of adaptation to the maize system, in

response to drought stress, or a combination of both factors.

Most of the topics at lower taxonomic levels were associated with some treatment in the

maize experiment. This may raise concerns about overfitting. However, the concept of overfit-

ting has some subtitles for LDA. This is because LDA is an unsupervised method—the algo-

rithm that constructs topics from microbiomes does not take experimental treatments and

plant trait measurements into account whatsoever. LDA topics therefore cannot overfit to

these variables, rather, the LDA topics are a representation of the data which is, in some sense,

parsimonious, approximating the data matrix with a factorization into sparse sub-matrices.

We have used arbitrary thresholds to determine whether topics are moderately (2:1) or

strongly (4:1) associated with an plant characteristic or experimental condition. Even though

we used a 4:1 ratio, many topics ended up very strongly associated with experimental treat-

ments at a 20:1 ratio (Fig 6), especially with water treatment, which is not surprising as water

treatment affected maize far more than other experimental variables. By adjusting this thresh-

old, one may see the different number of topic associations with experimental treatments or

plant traits. We leave the careful mathematical establishment of a significant threshold for

association to further work.

In addition to finding microbial communities associated with experimental conditions,

LDA allowed us to connect the expression of certain plant traits to the topic distributions for a

better understanding of plant-microbiome interaction. Statistically significant relationships

were found between learned topics and plant structural traits. No statistically significant rela-

tionships were observed between learned topics and functional plant traits, except only one

topic at ASV taxonomic level that was found to be statistically significant with WUEi. WUEi is

a composite trait calculated as a ratio of the maximum rate of photosynthesis over the stomatal

conductance, which were each measured separately. As such, the combination of measurement

errors made it difficult to resolve functional differences in the plants, and this may explain why

no significant microbiome associations were found for WUEi. As for SCP, we were unable to

measure SCP values in more than half of the plants in generation 0. This might partially

explain why no statistically significant relationships were observed between topics and SCP.

Our results are in agreement with the literature where data is available, mostly at the phy-

lum level; for example Gram-positive phyla Actinobacteriota and Firmicutes were present in

topics more abundant in samples exposed to half-water treatment, whereas Verrucomicrobiota
was dominant in topics connected to full-water treatment. Previous studies have shown that

these phyla are associated with these watering conditions in different host plants [21, 25].

There is limited information about which taxa are more associated with water-limited soil at

lower taxonomic levels and therefore, verifying our results against previous studies is difficult.

We note that even if some information about drought enriched taxa is available from several

experiments for different plant hosts, it is not clear how such information relates to our experi-

ment. Nevertheless, our analysis gives some results similar to previous studies of plant micro-

biomes at the phylum taxonomic level and gives rise to a host of hypotheses that might be

tested in more targeted experiments.

In LDA, every topic contains everything but the probability distribution is different. We

assessed the number of important taxa for each topic by examining the effective number of

words metric, which quantifies how many taxa the topic is effectively spread across. Taxa

below this rank are less important to the topic. While we found many significant relationships
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between topics and traits related to the size of the plant, it is not easy to conjecture what spe-

cific ecological functions to associate with each topic. Previous studies revealed links between

microbiome content and chemical processes related to plant function both in droughted

maize and tropical forests, including enzyme activites related to nitrogen cycling and the deg-

radation of complex plant C, such as cellulose and lignin [52, 53]. Our results allow forming

hypotheses on which microbes or microbial communities to choose for target experiments

designed to identify the function of the microbial communities. We can only hypothesize how

exactly identified microbial species within a topic, strongly associated with specific experimen-

tal conditions, may act synergistically towards a biological function across multiple environ-

ments. Microbial communities can improve the environmental adaptability and plant

performance by contributing to plant protection against stress factors. The one question that

may arise is whether the water treatment or the microbiome itself was the main driver of plant

traits in our experiment. It is well known that water availability influences plant size [54], but

the water treatment also affects the soil microbiome [55, 56]. Further controlled experiments

may be useful to disentangle cause and effect between microbiome and plant response to

drought.

In our experiment we analyzed 16S rRNA gene amplicon sequencing data. However, LDA

can analyze different types of -omics data. LDA also avoids controversial data normalizations

because normalization does not affect LDA results. LDA performs dimensionality reduction in

a highly interpretable way, relating each sample to a position in low-dimensional “topic”

space. Each learned LDA topic represents a probability distribution of microbial taxa that tend

to co-occur together in data consistently. LDA analysis provides a different view into the host-

microbiome interaction problem compared to the traditional microbiome correlation analysis

which identifies relationships between the individual taxa and traits of the organism. LDA is

able to affordably and conveniently find significant relationships without using only the most

abundant taxa, as it correlates compressed individual microbiome abundances in topics with

variables of interest (the longest analysis, at the ASV level, took about 10 hours on a single

compute node). This illustrates how the LDA analysis directly highlights communities in the

microbiome that can be generally expected to be related to the conditions of the environment

and the response of the organism to those conditions. In this way, we may find the relation-

ships that are significant in a different way than that when going through each taxon individu-

ally, paving way to effective identification of connections between microbial community

composition and ecosystem function.

LDA infers topics representing taxa along with their probabilities, the taxa in each topic

are non-mutually exclusive which is more appropriate in biological settings. This is because

even if taxa are taxonomically related, they may or may not perform the same ecological

function when clustered with other species [57–60]. Rather than looking at the taxa that are

genetically similar that is belonging to the same taxonomic groups, LDA aggregates taxa

and constructs topics according to co-occurence patterns in data. There is a lot of variability

in microbiomes across samples coming from different environments. Compared to tradi-

tional microbiome analysis approaches which target individual taxa, the LDA analysis is

capable of identifying groups of multiple taxa, that together, may form a cohesive module

that is essential for an ecological function of interest, not only in one environmental context,

but also perhaps across multiple environments, where the relevance of single taxa may

change [61].

We note that in terms of systematic treatment-control experiments, it may be better to use

a supervised approach such as hypothesis testing or to explore nonlinear regression using

machine learning algorithms. LDA is more appropriate to observational datasets (such as the

relationship between maize microbiome and plant trait) where the correlations are not
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between controlled variables—this is one of its strengths. LDA is useful for untangling the

interaction between stressed organisms and their microbiomes, but precise procedures for

doing so have not been firmly established in the literature, and future work may refine the

workflow we present here.

5 Conclusions

We explored how data-driven Latent Dirichlet Allocation and taxonomic classification can be

combined to explore the content of complex datasets of coral microbiomes and maize soil

microbiome samples. By showing the successful LDA application on a previously published

coral microbiome data, we then analyzed our maize data at different taxonomic levels. We

detected microbial community topics that were associated with different experimental condi-

tions, such as water-limited soil or soil source type, and found multiple topics that were con-

nected to plant traits.

LDA represents data in a compact, unsupervised way and is able to conveniently find rela-

tionships between microbial community topics and traits of organism and environmental con-

ditions. This is far simpler than exploring each taxon individually. The main advantage of

using LDA is that this method not only identifies bacteria that are enriched or depleted under

under certain conditions; but rather non-mutually exclusive communities of microbial species

that are not necessarily taxonomically related but may act together towards some ecological

function. This study shows that LDA is a powerful tool for analyzing environmental microbial

communities as it can generate novel insights from biodiversity data.
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