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Abstract

Interactions between stressed organisms and their microbiome environments may provide
new routes for understanding and controlling biological systems. However, microbiomes are
a form of high-dimensional data, with thousands of taxa present in any given sample, which
makes untangling the interaction between an organism and its microbial environment a chal-
lenge. Here we apply Latent Dirichlet Allocation (LDA), a technique for language modeling,
which decomposes the microbial communities into a set of topics (non-mutually-exclusive
sub-communities) that compactly represent the distribution of full communities. LDA pro-
vides a lens into the microbiome at broad and fine-grained taxonomic levels, which we show
on two datasets. In the first dataset, from the literature, we show how LDA topics succinctly
recapitulate many results from a previous study on diseased coral species. We then apply
LDA to a new dataset of maize soil microbiomes under drought, and find a large number of
significant associations between the microbiome topics and plant traits as well as associa-
tions between the microbiome and the experimental factors, e.g. watering level. This yields
new information on the plant-microbial interactions in maize and shows that LDA technique
is useful for studying the coupling between microbiomes and stressed organisms.

Author summary

Host-microbe interaction may be an important factor determining the performance and
survival of an organism under stress. Understanding how microbiomes influence organ-
isms under stress is a challenging new area of research because microbiomes are complex
with the potential for complex responses and adaptations to stress that influence their
interactions with the other stressed organisms. We show the use of LDA, a data-science
technique in the context of environmental microbial datasets to break down the thou-
sands of microbes present in samples into groups called topics; each topic is a group of
organisms that occur together as a common pattern in the dataset. We show that this tech-
nique, combined with correlation analyses, provides a way to view a very large set of
microbes in a sample as a smaller, more manageable set of communities of microbial taxa
related to experimental conditions and plant traits. In this way, LDA helps to unravel
complex interactions between organisms and their microbiome, which could help to
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1 Introduction

Many interacting factors, such as microbiome community composition, soil chemistry, plant
traits, and plant chemistry, may play a crucial role in plant ability to withstand limited water
availability. As part of these systems, the microbiome plays a vital role in plant functioning and
development and can potentially improve the performance of many biological systems [1-3].

To understand plant-microbiome interaction and effectively reduce the dimensionality of
taxonomic microbial data, we use Latent Dirichlet Allocation (LDA) [4], which is a probabilis-
tic generative model developed for language modeling of a corpus, that is, a set of documents.
In LDA, each document is represented by the count of the words present in the document.
The key assumption behind LDA is that documents are represented as probabilistic mixtures
over latent topics, where each topic is characterized by a distribution of words. This factoriza-
tion of the data is a method to associate words with each other, and, at the same time, perform
dimensionality reduction on the documents. Topic modeling with LDA, widely applied for
text mining and image retrieval, has been successfully applied in a few biological studies pri-
marily to identify human gut microbial communities [5-8]. However, fewer topic modeling
studies are available on microbiomes of non-human organisms, which are primarily analyzed
with differential abundance analysis, clustering, dimensional reduction methods, and tests of
statistical significance [9-13].

LDA has an advantage over direct clustering techniques in biological settings, because it
does not assume that microbial species belong to only one of a set of mutually exclusive clus-
ters; LDA topic compositions may overlap with each other. In a microbial setting, the assump-
tion of exclusivity may oversimplify results because each species may play a different role in
different clusters of other microbial species. Instead, in LDA a species may be associated with
any number of topics. LDA also provides advantages over correlation analyses that examine
individual species; the topic decomposition of a sample provides an interpretable dimensional-
ity reduction, reducing the amount of variables to be analyzed from thousands to a far small
number (in our case, between 6 and 25 appeared optimal) by deciding what groups of distribu-
tions of components most succinctly explain the data. LDA may reveal topics that are responsi-
ble for different ecological functions in plant-microbiome interaction.

LDA can be used not only with 16s rRNA gene amplicon sequencing data but with other
types of -omics data, including metagenomics, transcriptomics, proteomics and metabolomics,
to find associations between genes/transcripts/metabolites and other metadata. LDA has been
previously used to classify RNAseq data and link gene expression profiles to healthy or cancer-
ous tissues [14]. LDA has also been used on a complex multi-omics dataset to identify probable
gut microbiota genes, proteins, and metabolites associated with autism [15].

Amplicon sequencing data typically requires some form of normalization due to uneven
sequence read depths across samples. Approaches commonly used to address this challenge
vary and are widely debated. In summary, normalizing by proportions or using rarefied data
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are regarded to perform best for community-level comparisons, but face difficulties with
spare/rare taxa and data loss; while approaches that transform data using models, such as
DESeq2, may perform better for differential abundance analyses, but may result in a higher
false-positive rate, overemphasize importance of rare taxa, and are less accurate for commu-
nity-level analyses [16-18]. While normalization can influence the results obtained from some
methods, LDA is not affected by this. LDA handles the count data in a probabilistic way by
computing conditional probability of a word given the topic and conditional probability of the
topic given a document.

In this work we analyze two datasets of environmental microbiomes of organisms under
stress. It is essential to consider the impact of environmental stress factors for a proper man-
agement of the plant-microbiome interactions. In the first analysis, to demonstrate the power
of LDA and its ability to reproduce analysis results obtained by other means, we performed
LDA on a dataset from the literature of coral microbiomes [19] from an experiment to probe
disease susceptibility. This study was chosen on the basis of its sample size (95 samples) and
because the authors identified specific taxa linked to various traits of interest; it allows us to
assess the credibility of LDA analysis for a small dataset of non-human microbiomes. We
show that LDA readily reveals the same associations of specific microbial species with experi-
mental conditions as found in [19]. Furthermore, LDA identifies other groups of microbial
communities, suggesting further studies to probe their links to biological function (e.g., coral
disease susceptibility).

In the second analysis, we conduct LDA on maize microbiomes under drought. It is known
that microbial community composition is significantly impacted by drought. Several recent
studies on cotton, grass, rice, and peanut root microbiomes have revealed certain phyla that
are enriched in water-limited soil [12, 20-22]. Bacterial responses to drought are generally well
conserved at the phylum level [23]. Across different soils and plant systems, if phylum has a
certain response to drought, this remains generally consistent at lower taxonomic levels due to
the broad characteristics, such as Gram +/- classification [23] that promote drought tolerance;
however, lineage specific adaptations that are not unique to certain phyla, including trophic
strategy, resting stages, or osmolyte production [21, 24], and environmental context [25]
explain differing trends between broad and specific taxonomic scales across different soils.
The variability in trends at different taxonomic levels highlights the challenges of analyzing the
large set of taxa found in microbiome samples. This motivates the use of data-science tech-
niques to view the data en masse.

The dataset of maize microbiomes (119 samples) contains more than 3946 unique bacterial
taxa (ASVs) from 27 phyla, 63 classes, 152 orders, and 247 families. We find many significant
links between LDA topics, experimental conditions, and plant functional traits. We then iden-
tify which taxa contribute most to the topics that can be associated with treatment conditions
and plant traits at multiple taxonomic levels.

2 Methods
2.1 Coral dataset and experiment

The experimental design and detailed results of the coral dataset we performed LDA on can be
found in [19]. The following few sentences summarize the key experimental features and study
goals by Rosales et al. [19], who identified bacterial taxa linked to resistance and susceptibility
to White Band Disease (WBD) in two species of Acropora coral. In their experiment, diseased
tissue was grafted to healthy Acropora cervicornis and Acropora palmata to induce a diseased
state. Bacterial communities were sampled prior to grafting (control) and seven days after
inoculation (treated). Seven days after inoculation, corals were also examined for visual signs
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of disease lesions and classified based upon their disease status (diseased or visually unaffected)
and severity (low, mid, or high disease susceptibility). Microbial community composition at
the ASV level was then compared across treatment and outcome groups using “traditional”
community-based methods, including ordinations, differential abundance of taxa, and core
microbiome analysis, to identify taxa that 1) may cause WBD, 2) are associated with micro-
biome changes during disease, and 3) potentially increase Acropora resistance to WBD.
Rosales et al. [19] used pairwise comparisons with a Kruskal-Wallis test to assess the signifi-
cance of Shannon diversity and evenness in host species. ANOVA and PERMANOVA were
used to test the significance of dispersion of the samples and to find significant interactions
between groups, respectively. The authors also present beta-diversity (PCA with Euclidean dis-
tance were used for visualization) and microbial differential abundance plots to identify the
difference between treatments.

2.2 Maize dataset and experiment

The maize dataset for this work comes from a serial microbiome propagation studying on how
microbiome composition in soil can affect performance of maize and which plant traits are
most affected by the microbiome. In this experiment we were interested in understanding the
behavior of several plant traits such as stomatal closure point, water use efficiency, maximum
rate of photosynthesis, rate of stomatal conductance, drought time (time to permanent stoma-
tal closure from the beginning of the drought treatment), percentage of leaf water content, leaf
mass per area, stem diameter, stem height, and root biomass to see if microbiomes that sup-
port these traits will improve plant performance under drought and help to find stable micro-
biomes that help plants to withstand water-limited conditions. While all plant traits are
relevant for assessing plant health under drought conditions, we are mainly interested in
behavior of stomatal closure point and water use efficiency. Stomatal closure point (SCP) is an
important plant desiccation tolerance metric that is linked to plant hydraulics and productivity
under drought [26-29]. Water use efficiency (WUEi), on the other hand, is a traditional metric
of plant productivity and drought resistance, and it measures the carbon gain of a plant per
water lost [30]. Based on the known influence of rhizosphere microbiomes on plant nitrogen
availability [31], and the connection between improved nitrogen availability and higher water
use efficiency [32, 33], it is plausible to expect that WUEi and SCP could be influenced by the
rhizosphere microbiome.

In this work, we present results from data on 119 plant microbiomes from two generations
(called generation 0 and 1) of serial microbiome propagation (Fig 1). These analyses on two
generations were performed in order to understand the effect of different water treatments on
plant-microbiome interactions with the system. In each generation, 64 maize plants were
grown in a greenhouse setting between January and May 2020 in individual 2.6 gal (9.8 L) pots
filled with 6L of fritted clay (GreensGrade, 20-50 mesh size: Profile (Buffalo Grove, IL, USA)).
The plant seed for each pot in each generation was randomly drawn from a stock of an experi-
mental strain of maize, USDA seed bank inbred line “B73”. For generation 0, 48 of the seeds
were inoculated using methods described by [34] by microbial communities originating from
one of two natural soils: one collected from an agricultural field near Akron, CO, USA and the
other collected from a ponderosa pine forest near Los Alamos, NM, USA, and 16 seeds were
planted without inoculation to form a control treatment. After seed germination, the plants
were divided into two water treatments: full-water (up to 65% volumetric water content 3
times a week) and half-water (up to 45% volumetric water content 3 times a week). After the
plants had grown to a stage showing 9 fully grown leaves (~ 8 weeks), the watering was
stopped and the plants were allowed to dry under complete water withdrawal until stomatal
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Fig 1. Experimental design for maize. Two generations (G, G;) of maize experiment were grown in the greenhouse
with microbiomes extracted from agricultural (M4g) and forest (Mp,yes:) soils. Generation 1 plants were grown with
microbiomes that were direct descendants of those from generation 0. full-water (W,,) and half-water (L,,) treatments
were imposed to plants during generation 0. The same water treatments were imposed in generation 1 after seed
germination, but now so that for half of the plants in each treatment the water treatment was switched.

https://doi.org/10.1371/journal.pcbi.1011075.9001

closure occurred (terminal drought). Before the terminal drought, the soil in each pot was
sampled for microbiome and soil chemistry analyses, plants were sampled for leaf chemistry
analysis, and measured for height, stem diameter, maximum photosynthesis rate, and stomatal
conductance (infrared gas analyser; Licor 6400, Licor Inc. (Lincoln, NE, USA)) from which
water use efficiency was calculated by dividing the maximum photosynthesis rate by the mea-
sured stomatal conductance. During terminal drought, stomatal conductance of each plant
was measured daily. When stomatal conductance reached zero, a leaf was cut for leaf water
potential measurements (pressure chamber method, PMS Instruments (Al bany, OR, USA)) to
determine the stomatal closure point (leaf water potential at which the plant closes stomata),
and the time since the beginning of the terminal drought was recorded (drought time). For
generation 1, new pots with fritted clay were set up, and new seeds were inoculated by serially
transferring the microbial communities from the generation 0 pots with no selection with sim-
ilar microbiome extraction as for generation 0. Therefore, plants in generation 1 were growing
with the microbiomes that were direct descendants of those from generation 0. Due to the
high density of roots in the pot, all of the soil was considered “rhizosphere”, thus we chose to
use soil cores to sample the rhizosphere community in the pots, rather than performing a sepa-
rate analysis on soil directly adhered to roots, and because they were a more appropriate reflec-
tion of the communities we transferred to the next generation. The same water treatments as
in generation 0 were imposed after seed germination, but now so that for half of the plants in
each treatment the water treatment was switched. This created two additional treatment cate-
gories (stable watering vs. switched watering) for microbiomes from each original soil source
and the non-inoculated controls. Similarly to generation 0, generation 1 plants were grown to
a stage showing 9 fully grown leaves (~ 8 weeks), and the plant performance measurements
and the terminal drought treatment were conducted as for generation 0. For more detailed
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information on the experimental setup, plant growing conditions, and plant trait measure-
ments see S1 Text.

Of our original 128 microbiome samples, 9 samples were omitted from the final analysis
due to insufficient DNA, sequencing failures, or low read quality and quantity, resulting in the
analysis of communities from only 119 plants.

In this paper, we analyze microbiome composition with a focus on the links between micro-
biomes and watering conditions, initial microbiome soil source, and generation of the
experiment.

2.3 DNA extraction and microbiome sequencing

Microbial DNA was extracted from homogenized soil core samples using the Qiagen DNeasy
PowerSoil kit, with modifications to improve yield from clay soils [35]. 16s rRNA gene ampli-
con sequencing (V4 region) was used to profile bacterial communities. DNA amplicons were
generated using 515F-R806 previously described primers [34] and then sequenced using an
IMlumina MiSeq (300bp, paired end reads). Raw sequencing reads were demultiplexed using
USEARCH]11 [36] and dada2 was used to perform quality filtering, primer removal, and read
denoising [37]. Default settings were used for dada2 according to the dada2 tutorial (v1.8),
except the filterAndTrim function used the following settings to remove primers: truncLen = ¢
(240, 200), truncQ = 2, trimLeft = ¢(25, 26), maxEE = c(2, 4); only paired reads with a mini-
mum overlap of 100bp were merged, and merged sequences between 250 and 260bp were used
to generate the sequence abundance table. Taxonomic classifications were assigned to each
unique sequence at the 80% confidence level using the SILVA v138.1 database [38, 39]. Unpro-
cessed sequence data have been deposited to the NCBI Sequence Read Archive under the proj-
ects PRINA780613 (generation 0 samples) and PRJNA780954 (generation 1 samples).

2.4 Topic modeling

LDA, commonly used in text analysis, is fully described in [4]. Sankaran et al. [5] developed
some guidelines of the application of probabilistic latent variable models including LDA to
human microbiome data. Before we start to discuss our LDA results, let us introduce the anal-
ogy between text and soil microbiome analysis we used: the pot samples, bacterial species
(taxa), microbial communities are viewed as the documents, words, and topics, respectively.
Therefore, the bacterial abundance counts matrix is viewed as the document-term matrix.
That is to say that individual pot microbiomes (documents) are broken down into a distribu-
tion of topics, and these topics are distributions of taxa (words). A topic is described as a
microbial community that may share similar biological functions.

Fig 2 shows a flow chart of LDA topic modeling at phylum level for K = 3 topics. After soil
microbiomes were sequenced, microbiome composition was aggregated to a certain taxo-
nomic level, in this case to the phylum level. The desired number of topics K (we chose the
optimal number as described in Results section) was specified in advance and the bacterial
counts matrix was used as an input for the LDA algorithm. LDA infers taxa distribution for
each topic and topic distribution for each sample. In this analysis, we used the LDA method
implemented in the MALLET software [40] to identify topics at different taxonomic levels. To
learn the model, we used Gibbs sampling [41]. We ran LDA for 10,000 iterations to allow log-
likelihood per word to stabilize.

2.5 Data analysis

Our data is high-dimensional and sparse with a large amount of ASV sequences for which no
complete taxonomic classification can be assigned. Due to the differences between text data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011075  June 8, 2023 6/30


https://doi.org/10.1371/journal.pcbi.1011075

PLOS COMPUTATIONAL BIOLOGY Latent Dirichlet Allocation modeling of environmental microbiomes

Aggregation by Actinobacteriota
i taxonomic level Proteobacteria
Sequencing Cyanobacteria
 — i e
Phylum Bdellovibrionota
Class
Order
Family
Sequence
Perform Measure
Experiments lant traits . X
P P LDA topic modeling
Topic 1 Topic 2 Topic 3
Experimental conditions: Proteobacteria M@  Cyanobacteria I Deinococcota I
. Actinobacteriota Il  Proteobacteria I Proteobacteria I
gener?tlon of the pIant Bacteroidota Il Planctomycetota Actinobacteriota Il
watering treatment Myxococcotal Actinobacteriotall Cyanobacteria |
stability of watering treatment Associations Patescibacterial Myxococcotal Acidobacteriotal
. . o Bdellovibrionotal Acidobacteriotal| Myxococcotal
soil microbiome source type Nitrospirota| Dependentiae Abditibacteriota
Cyanobacterial Deinococcota Chloroflexi
Crenarchaeotal Chloroflexi Dependentiae
Fibrobacterota | Elusimicrobiota Armatimonadota
Topics distribution
1.0
Plant Traits: lntaractions 08
. >
stem height o6
. ]
stem diameter o4
root biomass .

. 0.2
stomatal closure point 1
water use efficiency 00 B
\.\ \rl/ \.’b \b‘ \(’)
QO QQ QO QQ QO

Fig 2. Flowchart of the study design. Schematic LDA topic modeling for K = 3 topics.

https://doi.org/10.1371/journal.pcbi.1011075.g002

and microbiome data, some pre-processing approaches and evaluation metrics, such as the
removal of common words (stop words) which are assumed not to be useful in describing the
document, used for text data were not appropriate in our case. We pre-processed the data by
aggregating ASVs to identified taxonomic descriptions associated with the ASV (phylum,
class, family, order, and ASV (no aggregation here)), and handled incomplete taxonomic spec-
ification for some ASVs by aggregating to the highest known taxonomic level.

Many bacterial taxa present in soils remain unidentified at some taxonomic levels. Despite
advances in sequencing technology that allow deep profiling of the taxonomic composition
and functional potential of soil microbial communities, databases containing information
about environmental microbes remain sparse. Nevertheless, unidentified taxa, also known as
“microbial dark matter” are sometimes in high abundance, and can be essential to microbial
community interaction networks where they are often found to be major hubs or keystone
taxa in these networks, suggesting that they provide important functions and stability to the
community [42, 43]. We elected to include unidentified taxa in our analyses, and aggregated
these by the most specific known taxonomic classification. Analysis at the ASV taxonomic
level (using ASVs directly) avoids the issue of incomplete taxonomic classification. Using this
approach, we could perform the analysis on the complete community, rather than only on the
classified subset, which may have changed community network structure [43], and thus the
outcomes of the LDA analysis.

We omitted the analysis at genus and species levels because more than half of the taxa were
unidentified and thus aggregation was harder to perform at these levels. However, we
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performed the analysis at the ASV (“deepest”) level which allowed us to determine which
ASVs (that belong to certain genera/species) were probable in the LDA topics. When analyzing
at certain taxonomic level (except at ASV level), we removed taxa with aggregated count of less
than 4. We then performed the same analysis described below for each taxonomic level.

The main parameter of LDA that adjusts the level of detail in the resulting model is the
number of topics. If one chooses far too many topics, the main drawback is that the factori-
zation becomes less well-conditioned, resulting in redundant topics and an ambiguous doc-
ument-topic matrix. With too few topics, not all patterns in the data are captured. We
chose the number of topics carefully based on topic selection metrics and also checked that
using a different number of topics does not reduce the number of associations significantly.
We ran 5-fold cross-validation, measured several metrics, and calculated averaged results
as a function of the number of topics. We repeated all calculations five times to account for
the method’s stochastic nature. We examined the metrics of perplexity, pairwise cosine
similarity, coherence, and exclusivity [40] to help us decide how many topics to use at each
level of taxonomic identification (S1 Fig). The perplexity score was calculated to see how
well a model performs on the unseen held-out test data (20%). A lower perplexity score
indicates better generalization performance. A pairwise cosine similarity was calculated
between taxa in topics to determine how distinct were the distributions of taxa between
topics. We used coherence [44] to measure whether the most probable taxa in a topic
tended to co-occur in other topics. The exclusivity metric [40, 45] we report, finds the num-
ber of most unique taxa for each topic.

After selecting the number of topics, we ran LDA once again on the full dataset. We then
discussed the weighting of topic abundances in terms of experimental conditions, such as
water treatment, watering stability treatment, soil source microbiome inoculation type, and
generation. We also calculated the number of topics that had strong or moderate association
with experimental conditions at each taxonomic level. A topic was moderately associated with
the experimental condition (e.g., half-water treatment) if average topic abundance in all pots
treated under this condition (e.g., half-water treatment) was at least twice as large (67-80%
abundance) but less than four times larger than the average topic abundance under alternative
condition (e.g., full-water treatment). A topic was strongly associated with the experimental
condition if average topic abundance in all samples treated under this condition was at least
four times larger (80-100% abundance) than the average topic abundance under alternative
condition. If there were two alternative conditions (e.g., three soil source microbiome inocula-
tion types) then the strength of topic abundance was determined by comparing it to topic
abundances under both alternative conditions. We present topic abundance weighting plots
that show topics related to different treatments. The weighting was determined by how much
the average topic abundance under one treatment was smaller than that under the alternative
treatment on a 0-1 scale. LDA outputs probability distribution over topics for each document
(sample). To determine topic weighting in case of two treatments (e.g., half-water vs. full-
water) for each topic i and treatment ¢ we first calculated f;, = Zj";l r,, where r;is a contribu-
tion of the topic in document j and n, is the number of samples under a certain treatment (e.g.,

it
S
model. We then obtained topic weighting w; , for each treatment t by normalizing x; , values
across two treatments so that the sum of the contributions for all topics for each treatment is
one. To obtain topic abundance weighting plots we calculated plot coordinates where treat-
ment t; is located at the bottom or left half of the plot (e.g., half-water, generation 0) and treat-
ment t, is located at the top or right half of the plot (e.g., full-water, generation 1) as follows. If

half-water). For each topic i we defined x,, = where K is the number of topics in the
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Each LDA microbial community topic is characterized by the distribution of taxa. This
allowed us to detect which topics were more associated with pots that were exposed to water-
limited treatment or pots with inoculated microbiomes from different soil sources, etc. To
determine which taxa abundances were most amplified (exclusive) in the topic in comparison
to their abundances in the overall dataset, we defined the term relative amplification (also
known as [ift in text analysis [46]) of each taxon within each topic. It is defined as the probabil-
ity of the taxon given the topic divided by the frequency of that taxon in the overall dataset,
and then we normalized each topic across all taxa so that the sum of the relative amplifications
for all taxa in each topic is one. In other words, the relative amplification shows which taxon’s
abundance is most amplified in the topic in comparison to its abundance in the overall dataset.
We also calculated effective number of words for each topic [40], which is computed for each
topic as the inverse of the sum of the squared probability of each word in the topic. This metric
counts how many taxa are important contributions to each topic, that is the number of taxa
that the topic is effectively spread across.

We tested if topics had statistically significant relationships with plant traits. To do this, we
calculated a Spearman’s rank correlation coefficient between each topic and each continuous
plant trait. Tests were performed at 5% statistical significance level with Holm-Bonferroni cor-
rection, which is uniformly more powerful than the Bonferroni correction, to control the fam-
ily-wise error rate.

To compare the LDA approach with traditional microbiome analysis, we ran Spearman’s
rank correlation tests and Indicator Species analysis [47-49] to find significant relationships
between individual taxa and plant traits. Indicator Species analysis (using the multipatt func-
tion in the IndicSpecies v1.7.9 R package) did not identify any taxa significantly associated with
any treatment following multiple test correction. Differential abundance analysis was con-
ducted using Corncob R package [50]. It identified numerous taxa that significantly differed in
abundance between treatments. Corncob uses a beta-binomial model to compare taxa abun-
dances using un-normalized sequencing data.

To test the robustness of our LDA results that might vary due to the randomness of LDA,
we compared results from three different LDA runs at the phylum level. Cosine similarity
between taxa in topics obtained from the different runs was calculated to determine the consis-
tency of the topics from run to run. S5 Table shows the consistency of the topics between three
different runs. Although topics related to the watering treatments have lowest cosine similarity
between runs, the most probable taxa in these topics were the same.

We also fitted different number of topics at the phylum level to see if this significantly affects
the results (S6 Table). Even if using more topics can result in more associations between topics
and treatments, cosine similarity between topics within a model can be used to avoid overfitting.

3 Results
3.1 LDA results on coral dataset

To assess the performance of LDA-based microbiome analysis prior to analyzing our own
maize dataset, we performed LDA analysis on a previously published dataset [19] that used
“traditional” microbiome analysis methods.

By running LDA with 20 topics, we found 7 and 11 topics that were strongly associated
with Acropora cervicornis and Acropora palmata species, respectively. Most of the topics were
linked to some experimental conditions such as treatment (control and inoculated), outcome
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Fig 3. Topic abundance weighting for the treatment and species types. All topics to the left of topic 9 are associated
with Acropora cervicornis species. All topics to the right of topic 8 are associated with Acropora palmata species. All
topics below topic 11 are associated with Control treatment whereas all topics above topic 15 are associated with
Inoculated (diseased or visually unaffected) treatment. Topics in color are topics associated with an experimental

outcome. Topic 20 is associated with Low disease susceptibility; topics 5 and 14 are associated with Medium disease
susceptibility; topics marked with triangle up symbols are associated with High disease susceptibility.

https://doi.org/10.1371/journal.pchi.1011075.g003

(control, visually unaffected, and diseased), and disease susceptibility (low, mid, and high)
(Figs 3 and 4). We found that Midichloriaceae was the dominant family in topics relevant to A.
cervicornis species, and the families Spirochaetaceae and Endozoicomonadaceae were found to
be dominant in topics abundant in samples from A. palmata species (Fig 5).

Two topics 4 and 16, each representing different Acropora species, were connected to con-
trol samples. Topic 4, linked to Acropora cervicornis, was dominated by the presence of ASV's
from the families Midichloriaceae, P30B-42, Endozoicomonadaceae, Nannocystaceae, and sev-
eral ASVs from to the order Phormidesmiales. On the other hand, topic 16, representing con-
trol samples from A. Palmata species, was dominated by the presence of ASVs from
Rhodobacteraceae, Colwelliaceae, and Phormidesmiaceae families.

We found three topics related to visually unaffected samples, ASVs from the families Midi-
chloriaceae, Spirochaetaceae, Francisellaceae, Kiloniellaceae, and Endozoicomonadaceae in A. cer-
vicornis were dominant in topic 10, and ASVs from Halobacteroidaceae, Rhodobacteraceae,
Spirochaetaceae, Desulfobacteraceae, Clostridiaceae, Lachnospiraceae, and Vibrionaceae families
were more probable in topic 2 related to visually unaffected A. palmata species. Topic 20 was
the only topic associated with A. cervicornis species and low disease susceptibility. It was mainly
dominated by the ASVs from Midichloriaceae and Rhodobacteraceae families and ASVs from
the orders Nostocales and Alteromonadales. These results suggest that these taxa may promote
resistance to disease in Acropora species. On the contrary, topic 19, associated with A. cervicornis
species and high disease susceptibility, was dominated by the presence of ASVs mainly from
Endozoicomonadaceae, Midichloriaceae, and P30B-42 families. Several topics were relevant to
A. palmata species and high disease susceptibility and were dominated by the presence of ASVs
from Fulvivirga, Arcobacter, Oscillatoria genera, Nostocales order, and Alphaproteobacteria class.
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Fig 4. Ternary plot of topic abundances for the outcome type (control, diseased, visually unaffected).

https://doi.org/10.1371/journal.pchi.1011075.9004

The LDA results with the most probable taxa in each topic associated with one of two spe-
cies, certain treatment or outcomes mostly agreed (Table 1) with the findings in [19]. LDA
results agreed with the authors findings of the dominant families related to both species, con-
trol samples in Acropora cervicornis species, and low and high disease susceptibilities in Acro-
pora cervicornis species. Rosales et al. [19] found a core bacteria member in both species from
the order Myxococcales (P30B-42) at relatively higher abundances in corals with lower rates of
disease development following grafting. Though P30B-42 was not found among most proba-
ble families in topics 2 and 10, it was the most probable family in topic 8 which was related to
visually unaffected samples without being ascribed to either species. A single ASV, designated
Sphingobium yanoikuyae (family Sphingomonadacea), was significantly detected in both spe-
cies of disease-exposed and visually unaffected samples [19]. LDA results in agreement with
this finding, Sphingobium yanoikuyae was found in topics 17, 19 (diseased) and 8 (visually
unaffected). Rosales et al. [19] found Ralstonia genus at higher relative abundances in negative
control samples. This genus was the most dominant taxon (22.4%) in LDA topic 9 associated
with only control samples and nothing else.

There were some taxa-treatment associations identified by Rosales et al. [19] that LDA
failed to identify. In particular, LDA did not detect Spirochaetaceae and Endozoicomonadacea
as most dominant families in control samples of A. Palmata species. Rosales et al. [19] found
relatively higher abundances of the genus Vibrio in visually unaffected and diseased corals
compared to control corals in A. cervicornis. LDA topic associated with visually unaffected cor-
als did not show higher abundances of this genus compared to that in the topic associated with
control samples. However, genus Vibrio was the most dominant taxon in topic 5 associated
with medium disease susceptibility. For outcome in A. palmata, the families Rhodobacteraceae
(genus HIMBI11) and Cryomorphaceae (uncultured genus) were significantly abundant and
highly associated with visually unaffected and diseased corals [19]. LDA found higher associa-
tions of these genera in topic 6 associated with high disease susceptibility. Therefore, the
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Fig 5. Distribution of ASV sequences in each learned LDA topic. Topics to the left of topic 9 are strongly associated with Acropora cervicornis species,
and topics to the right of topic 8 are strongly associated with Acropora palmata species. The labels are written in the phylum_class_order_family format,
the names of genera, species, and ASV's are not shown. Only probabilities (color circles) greater than 0.1 are shown. Smaller circles are displayed on the
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https://doi.org/10.1371/journal.pcbi.1011075.g005

biggest disagreement between LDA results and relative/differential abundances analyses

results from [19] was related to diseased samples in both coral species and to control samples
in A. palmata species (Table 1). It should be noted that the standard deviations in relative
abundance analysis were very high which made the comparison of average relative abundances
in samples with LDA probabilities harder.

Though LDA did not detect all associations present in [19], LDA results revealed additional
taxa that were linked to certain treatments, outcomes and disease susceptibility that were not

previously discussed. Specifically, Rosales et al. [19] did not find any strong associations of
taxa and high disease susceptibility in A. palmata species samples, while LDA did.

This suggests that LDA was capable not only to detect most associations as were found by
the researchers in the previous study but also complement the results with taxa that were less
abundant in data but still may interact with other taxa towards the White Band disease

resistance.

3.2 LDA results from our maize experiment

LDA results provide a window into which taxa might function together as a system and be
related to different experimental conditions and plant traits. In this section, we present the
analysis results at phylum, class, order, family, and sequence (ASV) taxonomic levels from the
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Table 1. Comparison of LDA results and results obtained from the relative abundance analysis (Tables 2 and 3 in [19]). Table shows mean and standard deviation
(SD) relative abundances (RA) in % by taxon of core microbiomes per experimental outcome and coral-host [19] as wells as probability % of these taxa in LDA topics asso-
ciated with corresponding outcome and coral species. Multiple LDA topics were associated with Diseased outcome in both coral species. Topic 20 and topic 5 were associ-
ated with low and medium disease susceptibility, respectively, whereas topics 19, 1, 6, and 18 were associated with high disease susceptibility.

Coral species Outcome Taxon Mean/SD RA LDA probabilities
Acropora cervicornis Control Topic 4 Midichloriaceae 93.2/18.6% 79.5%
P30B-42 4.6/17.7% 6.2%
Endozoicomonadaceae 2.2/2.6% 2.1%
Visually unaffected Topic 10 Midichloriaceae 83.6/33.1% 86.6%
P30B-42 14.2/32.9% 0.15%
Endozoicomonadaceae 2.2/2.9% 0.6%
Diseased Topics 20/5/19 Midichloriaceae 97.4/3.9% 26.5/0.002/32.1%
Endozoicomonadaceae 1.3/3.6% 0.0002/0.07/55.6%
P30B-42 0.8/1.2% 0.03/0.007/2.8%
Acropora palmata Control Topic 16 Spirochaetaceae 65.1/37.4% 0.19%
Endozoicomonadaceae 26/33.4% 0.03%
Midichloriaceae 8.8/23.2% 0%
Visually unaffected Topic 2 Spirochaetaceae 57/51.3% 15%
Proteobacteria 21.4/42.5% 23.3%
P30B-42 17.6/39% 0.03%
Midichloriaceae 2.8/2.5% 0.001%
Cryomorphaceae 0.76/1.23% 0.04%
Diseased Topics 3/1/6/18 Spirochaetaceae 79.2/29.1% 0.29/25.4/0/8.4%
Endozoicomonadaceae 13.1/18.1% 0.0002/0.01/0.7/0.07%
Midichloriaceae 1.9/2.6% 0/0/0/0.001%
Cyanobiaceae 4.7/11.9% 0.05/1/5.6/0.07%

https://doi.org/10.1371/journal.pchi.1011075.t001

microbiome sequential propagation experiment with maize. Based on the topic selection met-
rics mentioned above, we decided to use K = 6, 8, 10, 20, and 25 topics at the phylum, class,
order, family, and ASV levels, respectively, as we did not observe significant improvement in
metrics behaviors for larger topic counts. At the phylum level we observed that perplexity
dropped at K = 6, cosine similarity was the same for K < 7 (S1(a) Fig), and coherence was not
changing much for K =5, 6, 7 (S1(b) Fig). Therefore, we decided to use K = 6 topics at the phy-
lum level. Detailed plots and tables for each taxonomic level are available in S2-S14 Figs and
S1-S19 Tables, including explicit lists of all topic compositions and their associations with
treatment conditions and interactions with plant traits. We present summary tables (Tables 2,
3, 4 and 5) that capture the main results of the analyses at all taxonomic levels.

When analyzed at different taxonomic levels, LDA allowed us to identify topics moderately
and strongly related to the experimental conditions at each level (Table 2). We found that
microbiome topics were more associated with experimental conditions at lower taxonomic
levels than at higher taxonomic levels as expected based on high functional diversity that can
be present in groups belonging to the same high taxonomic level (Table 2). Topics were associ-
ated mostly with water treatment and plant generation, and less with soil microbiome inocula-
tion source type and stability of the watering treatment. We found that at each taxonomic level
there was at least one topic that was associated with the full- or half-water treatments, however,
strong associations were only observed starting from the order taxonomic level. Strong topics
associations with the generation and particular soil microbiome inoculation source type were
detected only at order level and lower. We observed significant skewness of topics toward the
stability of watering treatment only at the lowest ASV taxonomic level. At the order level and
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Table 2. Number of topics associated with experimental conditions at each taxonomic level. Strong (topic abundance is four times (x4) larger than for other treatments)
and moderate (topic abundance is twice (x2) as large but less than four times larger than that for other treatments) topic associations are shown for each experimental con-
dition. The numbers in parentheses represent number of topics associated with at least one experimental condition and overall number of topics used in LDA at taxonomic
level.

Experimental conditions Generation Watering Stability Soil source
0 1 Half Full Stable Switched | Agricultural Forest None

x4 x2 x4 x2 x4 x2 x4 x2 x4 x2 x4 x2 x4 x2 x4 x2 x4 x2
Phylum (3/6) 1 1 1
Class (6/8) 1 2 1 1 1
Order (9/10) 1 2 1 2 1 2 1 3 1 1 1
Family (20/20) 4 2 8 2 3 4 4 3 1 3 1 2 1
ASV (24/25) 4 2 15 1 8 3 10 5 1 4 3 8 1 8 4 1

https://doi.org/10.1371/journal.pcbi.1011075.1002

Table 3. Number of topics at each taxonomic level that showed statistically significant relationships between topics and plant traits based on a Spearman’s rank cor-
relation coefficient with Holm-Bonferroni correction. The numbers in parentheses represent number of different topics associated with significant relationships and
overall number of topics used in LDA at taxonomic level. The last four columns are Leaf mass per area, % Leaf water content, Stomatal conductance, and Water use
efficiency.

Taxonomic level Stem height Stem diameter Root biomass LMA LWC Cond WUEI
Phylum (3/6) 1 3 1 1 0 1 0
Class (3/8) 2 1 1 1 0 0 0
Order (6/10) 4 1 3 2 0 0 0
Family (11/20) 5 3 5 1 3 0 0
ASV (15/25) 13 5 8 0 0 0 1

https://doi.org/10.1371/journal.pcbi.1011075.t003

lower, several topics that were simultaneously strongly associated with multiple experimental
conditions appeared. For example, one of the topics was strongly associated with half-water
treatment and was more prevalent in generation 1 plants with agricultural microbiome inocu-
lation. At both family and ASV taxonomic levels, all topics were moderately or strongly related
to at least one experimental condition. We also detected many moderate associations of topics
with experimental conditions at each level.

We found statistically significant relationships between learned topics and plant structural
traits, including stem diameter, height, and root biomass at each taxonomic level (Table 3).
We did not observe any statistically significant relationships between learned topics and func-
tional plant traits (stomatal closure point (SCP) and water use efficiency (WUEI)) except at the
ASV taxonomic level where we found a significant relationship of one topic with WUEi. Over-
all at each taxonomic level, some relationships were significant (p-value (SCP) < 0.001 and p-
value (WUEI) < 0.05), but the corrections for multiple testing precluded their significance.

3.3 Identifying taxa related to experimental conditions

We present taxa along with their probabilities and relative amplifications in several selected
topics strongly and moderately associated with at least one experimental condition in Tables 4
and 5. For each topic we calculated the effective number of taxa, and we highlighted the taxa
whose ranks are under this threshold in bold (S1, S7 and S10 Tables), indicating which taxa
are the most important contributions to the content of this topic. For phylum-level analysis,
this was the top 2-4 taxa for each phylum in the topic. For the ASV level, each topic was spread
across several dozen taxa.
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Table 4. Most probable and amplified taxa in some topics associated with experimental conditions at phylum, class, and order taxonomic levels. Left: average per-
centages of most abundant taxa in pots for each taxonomic level. Middle: topic association with experimental conditions (HW: half-water, FW: full-water, GO: generation
0, G1: generation 1, AG: agricultural soil source). Right: most probable taxa in topic with probabilities are displayed in each upper row; most amplified taxa with its value
(see Methods) are displayed in each lower row, some taxa were unidentified at lower levels. Note that unidentified taxa were aggregated to the highest known taxonomic
level, meaning that they may represent one or several classes, orders, etc. Not all topics are listed.

Most abundant taxa in data

Phylum | Proteobacteria 44.15%, Bacteroidota 13.67%, Actinobacteriota 13.08%,

Verrucomicrobiota 9.05%, Cyanobacteria 8.01%

Class Gammaproteobacteria 25.65%, Alphaproteobacteria 18.73%, Bacteroidia
13.52%, Actinobacteria 12.41%, Verrucomicrobiae 8.83%, Cyanobacteriia

7.21%

Order | Burkholderiales 18.96%, Rhizobiales 9.68%, Micrococcales 8.1%,
Verrucomicrobiales 6.01%, Sphingobacteriales 5.83%, Deinococcales 4.95%,

Sphingomonadales 4.13%

https://doi.org/10.1371/journal.pcbi.1011075.1004

Experimental

conditions
HW

Fw

HW

FW

GO

Gl

HW

FW

FW

GO, FW

G1, FwW

G1, HW, AG

Most probable taxa (upper row) followed by the most
amplified taxa (lower row)

Actinobacteriota 0.71, Bacteroidota 0.15, Patescibacteria
0.04.

Fibrobacterota 0.16, Patescibacteria 0.15, Crenarchaeota
0.15, Actinobacteriota 0.14, Firmicutes 0.12.
Proteobacteria 0.49, Verrucomicrobiota 0.34, Bacteroidota
0.11.

WPS-2 0.13, Verrucomicrobiota 0.13, Sumerlaeota 0.12,
Desulfobacterota 0.12, Gemmatimonadota 0.11.

Actinobacteria 0.62, Alphaproteobacteria 0.26,
Bacteroidia 0.05.

Bacilli 0.09, Nitrososphaeria 0.09, Proteobacteria_NA
0.09, Ktedonobacteria 0.09, Actinobacteria 0.09.
Verrucomicrobiae 0.46, Alphaproteobacteria 0.20,
Bacteroidia 0.17, Planctomycetes 0.06

WPS-2_NA 0.11, Gemmatimonadetes 0.10,
Verrucomicrobiae 0.09, Bacteroidota_NA 0.09,
Planctomycetes 0.09

Chitinophagales 0.16, Burkholderiales 0.16, Rhizobiales
0.11, Azospirillales 0.11.

Steroidobacterales 0.05, Nannocystales 0.05,
Thermoanaerobaculales 0.05, Azospirillales 0.04,
Isosphaerales 0.04.

c_Cyanobacteriia_NA 0.42, Rhizobiales 0.10,
Burkholderiales 0.08, Sphingomonadales 0.06.

c_Parcubacteria_NA 0.08, c_Cyanobacteriia_NA 0.08.

Micrococcales 0.36, Rhizobiales 0.18, Sphingobacteriales
0.11, Propionibacteriales 0.06.

Fibrobacterales 0.04, c. MB-A2-108_NA 0.03,
Solibacterales 0.03, PeM15 0.03, Saccharimonadales 0.03.

Verrucomicrobiales 0.47, Burkholderiales 0.19, Rhizobiales
0.08.

c_Actinobacteria_NA 0.09, Immundisolibacterales 0.09,
Verrucomicrobiales 0.08, p_WPS-2_NA 0.07.

Chloroplast 0.33, Burkholderiales 0.14, Rhizobiales 0.11,
Chthoniobacterales 0.09, Sphingobacteriales 0.05.

Chloroplast 0.06, Bacillales 0.05, RBG-13-54-9 0.05,
Ga0077536 0.04, Silvanigrellales 0.04.
Burkholderiales 0.13, Cytophagales 0.13,
Sphingomonadales 0.10, Rhodobacterales 0.08,
Verrucomicrobiales 0.07.

VC2.1_Bac22 0.04, Chloroflexales 0.04, Spirochaetales
0.03, R7C24 0.03.

Xanthomonadales 0.40, Diplorickettsiales 0.07,
Planctomycetales 0.07, Rhizobiales 0.06, Cytophagales
0.06.

Xanthomonadales 0.08, Diplorickettsiales 0.08,
Puniceispirillales 0.06, Coxiellales 0.06, Pirellulales 0.05.

Streptomycetales 0.19, Burkholderiales 0.16, Rhizobiales
0.12, Cytophagales 0.08, Vampirovibrionales 0.07.

Streptomycetales 0.10, Vampirovibrionales 0.90,
Caedibacterales 0.08, Nitrososphaerales 0.08.
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Table 5. Most probable and amplified taxa in topics strongly associated with experimental conditions at family and ASV taxonomic levels. Left: average percentages
of most abundant taxa in pots for each taxonomic level. Middle: topic association with experimental conditions (HW: half-water, FW: full-water, GO: generation 0, G1: gen-
eration 1, AG: agricultural soil source, FR: forest soil source, ST: stable watering, SW: switched watering). Right: most probable taxa in topic with probabilities are displayed
in each upper row; most amplified taxa with its value (see Methods) are displayed in each lower row, some taxa were unidentified at lower levels. Note that unidentified
taxa were aggregated to the highest known taxonomic level, meaning that they may represent one or several classes, orders, etc. Not all topics are listed.

Most abundant taxa in data

Experimental
conditions

Most probable taxa (upper row) followed by the most
amplified taxa (lower row)

Family | Comamonadaceae 7.78%, Micrococcaceae 7.21%, Oxalobacteraceae 6.20%,
Deinococcaceae 4.95%, Sphingomonadaceae 4.13%, Rhizobiaceae 3.96%,
Verrucomicrobiaceae 3.90%

HW

Micrococcaceae 0.51, env.OPS_17 0.10,
Sphingomonadaceae 0.05.

Solibacteraceae 0.07, Oligoflexales 0.05,
Micromonosporaceae 0.05.

Fw

Xanthomonadaceae 0.50, Comamonadaceae 0.12,
Verrucomicrobiaceae 0.07.

Xanthomonadaceae 0.14, Coxiellaceae 0.08, Pirellulaceae
0.07.

FwW

Verrucomicrobiaceae 0.44, Comamonadaceae 0.10,
Crocinitomicaceae 0.07.

Verrucomicrobiaceae 0.12, Rickettsiaceae 0.08,
Crocinitomicaceae 0.07.

GO

Chitinophagaceae 0.18, Azospirillaceae 0.11,
Pseudomonadaceae 0.09, Micrococcaceae 0.09,
Rhizobiaceae 0.06.

Nannocystaceae 0.04, Alcaligenaceae 0.04,
Steroidobacteraceae 0.04.

Gl

o_Verrucomicrobiales_NA 0.37, Oxalobacteraceae 0.10,
Micrococcaceae 0.08.

o_Verrucomicrobiales_NA 0.12, o_Armatimonadales_NA
0.09, 0_NRL2_NA 0.07.

G1, HW, AG

Streptomycetaceae 0.27, Comamonadaceae 0.12,
Oxalobacteraceae 0.12, Microscillaceae 0.06.

Streptomycetaceae 0.11, c_Oligoflexia_NA 0.08,
Nitrososphaeraceae 0.07.

G1, HW, FR

Burkholderiaceae 0.46, Micrococcaceae 0.07,
Sphingomonadaceae 0.04, Pseudonocardiaceae 0.03.

Burkholderiaceae 0.10, Nakamurellaceae 0.09,
Kineosporiaceae 0.06.

ASV | genus_Pseudarthrobacter 6.75%,class_Cyanobacteriia 4.06%,
genus_Deinococcus 3.69%,family(ies)_Verrucomicrobiaceae 2.74%,
family_Comamonadaceae 2.72%

G1, HW, AG, ST

g_Streptomyces 0.16 f_Comamonadaceae 0.08,
g_Pseudarthrobacter 0.06, f_Microscillaceae 0.04.

g_Psychroglaciecola 0.02, g_Gordonia 0.02, g_Opitutus
0.02.

G1, FW, AG, ST

f_Verrucomicrobiaceae 0.07, g_SH-PL14 0.05,
o_Burkholderiales 0.04.

f_Parachlamydiaceae 0.01, f_Holosporaceae 0.01,
g_Gaiella 0.01.

G1, HW, FR

g_Pseudarthrobacter 0.12, f_env.OPS_17 0.04,
g_Methylorubrum 0.04.

o_Cytophagales 0.01, g_Opitutus 0.01, s_aurantiaca/
mikuniensis 0.01.

G1, FW, FR, ST

o_Chloroplast 0.21, f_Rubritaleaceae 0.08, s_aerilata/
phosphatilytica 0.05, s_spinosum 0.04.

Rickettsiaceae 0.01, Chlamydiales 0.01, 67-14 0.01.

G1, HW, AG, SW

g_Pseudarthrobacter 0.08, f_env.OPS_17 0.06,
c_Cyanobacteriia 0.06.

[f_Azospirillaceae 0.02, g_Conexibacter 0.02, f KD3-93
0.02.

G1, FW, FR, SW

f_Verrucomicrobiaceae 0.15, f_Comamonadaceae 0.07,
f_Dyadobacter 0.04, g_Pseudarthrobacter 0.04.

g_Peredibacter 0.01, g_Noviherbaspirillum 0.01,
g_Aminobacter 0.01.

https://doi.org/10.1371/journal.pcbi.1011075.t005
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According to the previous studies conducted on different host plants across different soils,
Actinobacteriota and Firmicutes tend to increase in response to drought, Bacteroidota and Ver-
rucomicrobiota decrease, and Proteobacteria, Planctomycetota, and Acidobacteriota composi-
tions change [21, 25]. LDA results at phylum taxonomic level mostly agreed with these trends.
In particular, Proteobacteria and Verrucomicrobiota were dominant in the topic linked to full-
water treatment, whereas Actinobacteriota was dominant phyla in the topic related to half-
water treatment. Bacteroidota was dominant in both half and full-water associated topics. Fir-
micutes phylum was present only in 1% of data, as expected it did not showed up among most
probable phyla in any topic. However, Firmicutes was the one of the most amplified phyla in
the topic related to half-water treatment (Table 4).

Microbial communities detected in class-level topics related to water treatment followed
the same trends as at the phylum level. In particular, Actinobacteria was the most probable
class at half-water associated topics, and Verrucomicrobiae was the most dominant class at full-
water associated topics. Classes Alphaproteobacteria and Bacteroidia were dominant in both
half- and full-water associated topics. Bacilli in Firmicutes phylum was the most amplified class
in the topic related to half-water treatment.

Starting from order taxonomic level, most topics have become associated with multiple
experimental conditions, and therefore it became more difficult to highlight orders that were
only associated with one of the conditions. We note that several most amplified orders were
unidentified ones. This result highlights an importance of keeping unidentified taxa in the
analysis. Orders Micrococcales in Actinobacteria class, Sphingobacteriales in Bacteroidia class,
and Rhizobiales in Alphaproteobacteria class formed a microbial community associated with
water-limited soil. On the other hand, orders Burkholderiales (Gammaproteobacteria) and Rhi-
zobiales (Alphaproteobacteria) were dominant in the topic linked to full-water treatment.
Another Verrucomicrobiae order, Verrucomicrobiales, was the most probable in the topic
linked to full-water treatment and to plants without soil microbiome inoculation.

Analysis at family level showed that family Micrococcaceae (Actinobacteria) together with a
few families from Sphingobacteriales order formed a community linked to half-water treat-
ment. Topics mainly consisted of families Verrucomicrobiaceae (Verrucomicrobiae) and Coma-
monadaceae (Gammaproteobacteria) were linked to full-water treatment.

All topics at ASV taxonomic level were moderately or strongly related to at least one experi-
mental condition (Fig 6). An ASV from Pseudarthrobacter genus (from 5 to 18% in LDA top-
ics) along with an ASV from Methylobacterium-Methylorubrum genus (Alphaproteobacteria
class) (3.5-9%) were found in topics linked to half-water treatment (Fig 7). Several ASVs from
Verrucomicrobiales order (from 5 to 18% in LDA topics) along with an ASV in Comamonada-
ceae family (Gammaproteobacteria class) (3.5-11%) formed a community linked to full-water
treatment. The microbial community consisted mainly from three ASVs in Streptomyces
genus (18.2%), autotrophicum/hiltneri/lusitanum species (19.2%), and Opitutaceae family
(16.2%), respectively, was associated with half-water treatment and generation 1 plants with
agriculture soil microbiome inoculation.

The analyses on different taxonomic levels gave insights into the homogeneity of the function
of the lower level microbial communities that compose higher level taxonomic communities.
Certain taxa were highly probable in topics associated with the same treatments at each taxo-
nomic level. This happened either because a certain ASV was highly abundant in the data and
was linked to a certain treatment which caused the same associations at higher taxonomic levels,
or because multiple ASVs had the same treatment associations at higher taxonomic levels.

In some cases, single ASVs were associated with the same experimental conditions at differ-
ent taxonomic levels. An ASV belonging to Ralstonia genus (Gammaproteobacteria class) was
highly probable in one single topic that did not show any associations with treatments at
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Fig 6. Topic abundance weighting for the water treatment and generation on a 0-1 scale. All topics to the left of topic 5 are associated with generation 0. All
topics to the right of topic 25 are associated with generation 1. All topics below topic 25 are associated with half-water treatment whereas all topics above topic
15 are associated with full-water treatment. Topics are colored according to the soil microbiome inoculation source. The shapes of the markers corresponding to
the topic association with stability of watering treatment. Note: the weighting was calculated by how much average topic abundance under one treatment was
different from that under alternative one (see Methods).

https://doi.org/10.1371/journal.pcbi.1011075.g006

phylum, class, and order levels. However, at family and ASV levels this ASV was the most
probable (45.94% at family and 49% at ASV levels) in the topic linked to half-water treatment
and generation 1 plants with forest soil microbiome inoculation. An ASV from autotrophi-
cum/hiltneri/lusitanum species (Gammaproteobacteria class) was detected in topics related to
half-water treatment at ASV (19.2%), family (8.6%) and order (16.3%) levels. An ASV from
Rhodobacter genus (Alphaproteobacteria class) was prevalent in topics related to generation 0
and full-water treatment at ASV (7.1%), family (19.5%) and order (8.4%) levels. An ASV from
Vampirovibrio genus (Cyanobacteria phylum) was detected in topics related to plants with
agricultural soil microbiome inoculation at ASV (5.3 and 7.1%), family (37.5%), order (7.01%),
and class (18.7%) levels. An ASV from Pseudarthrobacter genus (Actinobacteria class) was
highly probable in topics associated with half-water treatment. There were several other ASV's
from Micrococcales order that contributed to half-water associated topics but their probabili-
ties were much smaller than that of Pseudarthrobacter.

Multiple ASVs appeared in the same topics associated with certain experimental conditions.
Two ASVs from Deinococcus genus were highly probable in only one topic associated with
generation 0 at each taxonomic level. Three ASVs from Streptomyces genus (Actinobacteria
class) were abundant in the topic related to stable half-watering treatment and generation 1
plants with agricultural soil microbiome inoculation at order taxonomic level and lower. Four
ASVs from Sphingobacteriales order (Bacteroidia class) were highly abundant in topics linked
to half-water treatment and plants without soil microbiome inoculation at family and ASV tax-
onomic levels. Starting from order level, five ASVs in Chitinophagacea family (Bacteroidia
class) were found in topics associated with half-water treatment, whereas two ASVs in Dyado-
bacter genus (Bacteroidia class) were found in topics associated with full-water treatment. At
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https://doi.org/10.1371/journal.pcbi.1011075.g007

family and ASV taxonomic levels, two ASVs in Microscillaceae family (Bacteroidia class) were

linked to topics related to plants with agricultural soil microbiome inoculation.

3.4 Correlation and differential abundance analysis

We saw significant Spearman’s correlations between learned topics and some plant morpho-
logical traits at each taxonomic level (Table 3). However, we did not find any statistically sig-
nificant correlations between topics and plant functional traits, such as SCP and WUEi, except

for one topic at ASV taxonomic level that was correlated with WUEi.

To compare the LDA approach with traditional microbiome analysis, we ran Spearman’s

rank correlation tests between taxa and plant traits at both phylum and ASV levels.

We used an

indicator species analysis to find significant relationships between individual taxa and plant
traits. We also conducted differential abundance analysis to identify taxa that significantly dif-
fered in abundance between treatments. Indicator species analysis did not identify any taxa sig-
nificantly associated with any treatment following multiple test correction. Both correlation
analyses done for individual phyla and on LDA topics mostly agreed with each other. Out of
3946 ASVs, 108 of them were found to have significant correlations with root biomass, drought
time, stem height, stem diameter, and leaf mass per area (S19 and S20 Tables). At the phylum
level, out of 27 phyla, 11 were found to have significant correlations with root biomass, drought
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time, stem height, and stem diameter (S3 Table). We expect to see taller plants, plants with
increased leaf mass per area, and plants with the smaller values of the drought time and stem
diameter for the plants grown under half-water treatment than under full-water treatment.
Therefore, taxa abundant in water-limited soil were expected to be positively correlated with the
stem height and negatively correlated with the drought time, stem diameter, and root biomass,
and show the opposite behavior under the full-water treatment. On average, plants in generation
0 were taller, had thicker stems and larger root biomasses than generation 1 plants. Correlation
analysis at the phylum level showed that Actinobacteriota was negatively correlated with the
drought time. Both Crenarchaeota and Bdellovibrionota were negatively correlated with the
stem diameter, Crenarchaeota was also negatively correlated with the root biomass, and Bdellovi-
brionota was positively correlated with the stem height. Thermoplasmatota was positively corre-
lated with the stem diameter and root biomass and negatively correlated with the stem height.
Gemmatimonadota and Verrucomicrobiota were positively correlated with the stem diameter
and the drought time. WPS-2 was positively correlated with the stem diameter and Deinococcota
was positively correlated with the root biomass. These results obtained from the correlation
analysis performed on individual taxa were in agreement with the results from LDA analysis.
Actinobacteriota, Bdellovibrionota, Crenarchaeota amplified in half-water associated topic were
negatively correlated with the stem diameter and positively correlated with the leaf mass per
area. Gemmatimonadota, Verrucomicrobiota, and WPS-2 were amplified only in the full-water
treatment associated topic and this topic was negatively correlated with the leaf mass per area.
Deinococcota was found probable in generation 0 associated topic which was positively corre-
lated with root biomass and stem diameter, and negatively correlated with the stem height. LDA
topic results mostly agreed with the results obtained from the correlation analysis performed on
individual taxa and agreed with the bacteria abundance trends observed in other studies. Instead
of analyzing individual taxa, LDA learned topics (groups of microbial communities) that may be
associated with experimental conditions and correlated with plant traits. LDA analysis directly
highlights communities in the microbiome that can be generically expected to be related to the
conditions of the plant and the response of the plant to those conditions.

Differential abundance analysis showed plenty of significant ASVs that differ in abundance
between treatments (Figs 8 and S12, S13 and S14). Both LDA and differential abundance anal-
yses showed the same ASVs that were related to certain treatments. ASVs from genera such as
Pseudarthrobacter, Methylobacterium-Methylorubrum, Noviherbaspirillum, Pedobacter, Nias-
tella, Ralstonia, SH-PL14 and ASV from Microscillaceae family were abundant in the half-
water treatment relative to the full-water treatment in both LDA and differential abundance
analyses. On the other hand, ASVs from genera such as Rhodobacter, Sphingopyxis, Luteimo-
nas, Caulobacteraceae, ASV from Comamonadaceae, Verrucomicrobiaceae families, and ASV
from Burkholderiales, Cyanobacteria orders were abundant in the full-water treatment relative
to the half-water treatment in both LDA and differential abundance analyses. When compar-
ing differential abundance analysis results with that from LDA we only considered ASV's with
the probabilities larger than 0.025.

4 Discussion

To show the utility of LDA for analyzing environmental microbiomes, we performed analysis
on two datasets: coral and maize microbiomes. The coral dataset was previously analyzed by
Rosales et al. [19] using traditional methods for microbiome analysis. The results from LDA
analysis mostly agreed with findings in [19]. We identified most of the same taxa linked to dis-
ease resistance. In particular, Myxococcales (P30B-42) was dominant bacteria linked to visually
unaffected samples. Sphingobium yanoikuyae was detected in topics related to disease-exposed
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Fig 8. Difference in abundances of ASVs in the half-water treatment relative to the full-water (dashed middle line). Dots represent the differential
abundance coefficient and the error bars are standard errors. The taxa shown are only those that are significant after a p-value correction with the FDR
set to 0.05. Plots were produced using corncob R package [50]. The dots colored in red show taxa that were abundant in half-water related LDA topics.
The dots colored in blue show taxa that were abundant in full water related LDA topics. Note that the comparison was made with the Fig 7 where only
ASVs with p > 0.025 are shown. The second half of the plot with other significant taxa is shown in S12 Fig.

https://doi.org/10.1371/journal.pchi.1011075.g008

and visually unaffected samples. LDA showed that even when a putative pathogen (Sphingo-
bium yanoikuyae) was abundant, certain community structures could favor disease resistance
compared to others. LDA also revealed additional associations of several taxa not mentioned
by Rosales et al. [19] with disease resistance and susceptibility. The ASV from the Halobacter-
oidaceae family was the most probable bacteria in topic ascribed to visually unaffected samples
from A. Palmata species. LDA showed that Fulvivirga, Arcobacter, and Oscillatoria genera
were more dominant in topics related to high disease susceptibility in A. Palmata species.

The LDA analysis on our own maize dataset showed that microbial community topics were
associated with the water treatment at each taxonomic level. In general, we found stronger
relationships between topics and experimental conditions at lower taxonomic levels. This is to
be expected because analysis at a high taxonomic level is not able to distinguish potential dif-
ferences between groups belonging to the same high-level classification. Identifying taxonomic
groups associated with the environmental conditions at the phylum level does not account for
potential heterogeneity of plant traits when analyzing the microbiome at finer taxonomic lev-
els; e.g. not all classes in a given phylum may have the same association to experimental treat-
ments or responses. LDA analysis at finer taxonomic levels thus offers a way to characterize
the uniformity of the function and environmental preferences of microbial groups (e.g. classes)
belonging to a corresponding higher taxonomic group (e.g. phylum). We found that more
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topics were associated with generation 1 rather than generation 0. Between each generation,
community composition was shifted; and some topics were strongly associated with one gen-
eration or another. We believe that was likely due to microbial communities adapting to the
pot environment and selection upon the communities by maize [51]. Therefore, topics most
associated with generation 1 could be a consequence of adaptation to the maize system, in
response to drought stress, or a combination of both factors.

Most of the topics at lower taxonomic levels were associated with some treatment in the
maize experiment. This may raise concerns about overfitting. However, the concept of overfit-
ting has some subtitles for LDA. This is because LDA is an unsupervised method—the algo-
rithm that constructs topics from microbiomes does not take experimental treatments and
plant trait measurements into account whatsoever. LDA topics therefore cannot overfit to
these variables, rather, the LDA topics are a representation of the data which is, in some sense,
parsimonious, approximating the data matrix with a factorization into sparse sub-matrices.

We have used arbitrary thresholds to determine whether topics are moderately (2:1) or
strongly (4:1) associated with an plant characteristic or experimental condition. Even though
we used a 4:1 ratio, many topics ended up very strongly associated with experimental treat-
ments at a 20:1 ratio (Fig 6), especially with water treatment, which is not surprising as water
treatment affected maize far more than other experimental variables. By adjusting this thresh-
old, one may see the different number of topic associations with experimental treatments or
plant traits. We leave the careful mathematical establishment of a significant threshold for
association to further work.

In addition to finding microbial communities associated with experimental conditions,
LDA allowed us to connect the expression of certain plant traits to the topic distributions for a
better understanding of plant-microbiome interaction. Statistically significant relationships
were found between learned topics and plant structural traits. No statistically significant rela-
tionships were observed between learned topics and functional plant traits, except only one
topic at ASV taxonomic level that was found to be statistically significant with WUEi. WUEi is
a composite trait calculated as a ratio of the maximum rate of photosynthesis over the stomatal
conductance, which were each measured separately. As such, the combination of measurement
errors made it difficult to resolve functional differences in the plants, and this may explain why
no significant microbiome associations were found for WUEI. As for SCP, we were unable to
measure SCP values in more than half of the plants in generation 0. This might partially
explain why no statistically significant relationships were observed between topics and SCP.

Our results are in agreement with the literature where data is available, mostly at the phy-
lum level; for example Gram-positive phyla Actinobacteriota and Firmicutes were present in
topics more abundant in samples exposed to half-water treatment, whereas Verrucomicrobiota
was dominant in topics connected to full-water treatment. Previous studies have shown that
these phyla are associated with these watering conditions in different host plants [21, 25].
There is limited information about which taxa are more associated with water-limited soil at
lower taxonomic levels and therefore, verifying our results against previous studies is difficult.
We note that even if some information about drought enriched taxa is available from several
experiments for different plant hosts, it is not clear how such information relates to our experi-
ment. Nevertheless, our analysis gives some results similar to previous studies of plant micro-
biomes at the phylum taxonomic level and gives rise to a host of hypotheses that might be
tested in more targeted experiments.

In LDA, every topic contains everything but the probability distribution is different. We
assessed the number of important taxa for each topic by examining the effective number of
words metric, which quantifies how many taxa the topic is effectively spread across. Taxa
below this rank are less important to the topic. While we found many significant relationships
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between topics and traits related to the size of the plant, it is not easy to conjecture what spe-
cific ecological functions to associate with each topic. Previous studies revealed links between
microbiome content and chemical processes related to plant function both in droughted
maize and tropical forests, including enzyme activites related to nitrogen cycling and the deg-
radation of complex plant C, such as cellulose and lignin [52, 53]. Our results allow forming
hypotheses on which microbes or microbial communities to choose for target experiments
designed to identify the function of the microbial communities. We can only hypothesize how
exactly identified microbial species within a topic, strongly associated with specific experimen-
tal conditions, may act synergistically towards a biological function across multiple environ-
ments. Microbial communities can improve the environmental adaptability and plant
performance by contributing to plant protection against stress factors. The one question that
may arise is whether the water treatment or the microbiome itself was the main driver of plant
traits in our experiment. It is well known that water availability influences plant size [54], but
the water treatment also affects the soil microbiome [55, 56]. Further controlled experiments
may be useful to disentangle cause and effect between microbiome and plant response to
drought.

In our experiment we analyzed 16S rRNA gene amplicon sequencing data. However, LDA
can analyze different types of -omics data. LDA also avoids controversial data normalizations
because normalization does not affect LDA results. LDA performs dimensionality reduction in
a highly interpretable way, relating each sample to a position in low-dimensional “topic”
space. Each learned LDA topic represents a probability distribution of microbial taxa that tend
to co-occur together in data consistently. LDA analysis provides a different view into the host-
microbiome interaction problem compared to the traditional microbiome correlation analysis
which identifies relationships between the individual taxa and traits of the organism. LDA is
able to affordably and conveniently find significant relationships without using only the most
abundant taxa, as it correlates compressed individual microbiome abundances in topics with
variables of interest (the longest analysis, at the ASV level, took about 10 hours on a single
compute node). This illustrates how the LDA analysis directly highlights communities in the
microbiome that can be generally expected to be related to the conditions of the environment
and the response of the organism to those conditions. In this way, we may find the relation-
ships that are significant in a different way than that when going through each taxon individu-
ally, paving way to effective identification of connections between microbial community
composition and ecosystem function.

LDA infers topics representing taxa along with their probabilities, the taxa in each topic
are non-mutually exclusive which is more appropriate in biological settings. This is because
even if taxa are taxonomically related, they may or may not perform the same ecological
function when clustered with other species [57-60]. Rather than looking at the taxa that are
genetically similar that is belonging to the same taxonomic groups, LDA aggregates taxa
and constructs topics according to co-occurence patterns in data. There is a lot of variability
in microbiomes across samples coming from different environments. Compared to tradi-
tional microbiome analysis approaches which target individual taxa, the LDA analysis is
capable of identifying groups of multiple taxa, that together, may form a cohesive module
that is essential for an ecological function of interest, not only in one environmental context,
but also perhaps across multiple environments, where the relevance of single taxa may
change [61].

We note that in terms of systematic treatment-control experiments, it may be better to use
a supervised approach such as hypothesis testing or to explore nonlinear regression using
machine learning algorithms. LDA is more appropriate to observational datasets (such as the
relationship between maize microbiome and plant trait) where the correlations are not
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between controlled variables—this is one of its strengths. LDA is useful for untangling the
interaction between stressed organisms and their microbiomes, but precise procedures for
doing so have not been firmly established in the literature, and future work may refine the
workflow we present here.

5 Conclusions

We explored how data-driven Latent Dirichlet Allocation and taxonomic classification can be
combined to explore the content of complex datasets of coral microbiomes and maize soil
microbiome samples. By showing the successful LDA application on a previously published
coral microbiome data, we then analyzed our maize data at different taxonomic levels. We
detected microbial community topics that were associated with different experimental condi-
tions, such as water-limited soil or soil source type, and found multiple topics that were con-
nected to plant traits.

LDA represents data in a compact, unsupervised way and is able to conveniently find rela-
tionships between microbial community topics and traits of organism and environmental con-
ditions. This is far simpler than exploring each taxon individually. The main advantage of
using LDA is that this method not only identifies bacteria that are enriched or depleted under
under certain conditions; but rather non-mutually exclusive communities of microbial species
that are not necessarily taxonomically related but may act together towards some ecological
function. This study shows that LDA is a powerful tool for analyzing environmental microbial
communities as it can generate novel insights from biodiversity data.
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