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Abstract

The genetic code refers to a rule that maps 64 codons to 20 amino acids. Nearly all organ-

isms, with few exceptions, share the same genetic code, the standard genetic code (SGC).

While it remains unclear why this universal code has arisen and been maintained during

evolution, it may have been preserved under selection pressure. Theoretical studies com-

paring the SGC and numerically created hypothetical random genetic codes have sug-

gested that the SGC has been subject to strong selection pressure for being robust against

translation errors. However, these prior studies have searched for random genetic codes in

only a small subspace of the possible code space due to limitations in computation time.

Thus, how the genetic code has evolved, and the characteristics of the genetic code fitness

landscape, remain unclear. By applying multicanonical Monte Carlo, an efficient rare-event

sampling method, we efficiently sampled random codes from a much broader random

ensemble of genetic codes than in previous studies, estimating that only one out of every

1020 random codes is more robust than the SGC. This estimate is significantly smaller than

the previous estimate, one in a million. We also characterized the fitness landscape of the

genetic code that has four major fitness peaks, one of which includes the SGC. Further-

more, genetic algorithm analysis revealed that evolution under such a multi-peaked fitness

landscape could be strongly biased toward a narrow peak, in an evolutionary path-depen-

dent manner.

Author summary

The fitness landscape is a conceptual geometric structure that describes the relationship

between genotypes and fitness (i.e., reproductive success). The evolutionary dynamics of

a population can be viewed as an adaptive walk on the landscape toward a higher fitness

region. Thus, by analyzing the landscape, one can infer how evolution has shaped current

organisms, or which genotypes have high fitness. Here, we analyzed the fitness landscape

of the genetic code, the rule by which codons encode amino acid. The standard genetic
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code (SGC), shared by almost all organisms, has an apparently non-random structure,

implying that it has been subject to strong selection pressure. By applying multicanonical

Monte Carlo, a numerical method developed in statistical physics, we visualized the

genetic code fitness landscape. The landscape has four peaks, one of which contains the

SGC, with the other three representing genetic codes that potentially could have been the

current genetic code. Genetic algorithm analysis revealed that, in such a multimodal fit-

ness landscape, evolution could be strongly biased toward narrower peaks, in an evolu-

tionary pathway-dependent manner.

1 Introduction

The genetic code is the rule encoding the mapping between 64 codons and 20 different amino

acids or a terminal codon. The standard genetic code (SGC), shared by almost all organisms,

has an apparently non-random structure [1], in which the same amino acid is coded blockwise

across adjacent codons in the codon table (Fig 1A; a block corresponds to a set of codons cod-

ing the identical amino acid), and is thus thought to be subject to selection pressure. Based on

this, Woese [1] proposed the error-minimization hypothesis, which postulates that the SGC is

selected to enhance robustness against translational (or possibly mutational) errors. Several

subsequent theoretical studies, comparing the SGC to hypothetical random genetic codes in

terms of robustness, support this hypothesis [2–6]. These studies estimated robustness using a

simple formula [2–7] that can apply to any given genetic code, and the estimated robustness

Fig 1. The standard genetic code and randomly generated genetic codes. (A) The standard genetic code. (B) A random genetic code generated from a random

ensemble that Haig and Hurst [2] adopted. The block structure in the SGC where the same amino acid is coded is constrained to be maintained in the randomly

generated code (see also S2 Fig). (C) A random code generated from a fully random ensemble where each codon maps to any one of 20 amino acids. (D) Cost density-of-

states function for the proposed random genetic code ensemble. The blue line represents the estimates by the multicanonical Monte Carlo (multicanonical MC). The

orange crosses indicate estimates based on naive random sampling.

https://doi.org/10.1371/journal.pcbi.1011034.g001
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can be regarded as the genetic code fitness. By estimating the fitness for multiple possible

codes, this formula in principle enables analysis of the fitness landscape of the genetic code.

The fitness landscape is a useful concept to describe evolutionary dynamics since evolution

can be viewed as an adaptive walk on the landscape toward a higher-fitness region. The analy-

sis of the fitness landscape of the genetic code would thus provide a lot of information about

how the genetic code has evolved to the SGC and whether the evolution to the current SGC

was inevitable, or whether it could have evolved to a completely different genetic code. Two

different approaches have been used to analyze the fitness landscape of the genetic code: The

first is a random sampling-based approach, which has shown how unlikely a code with a high

fitness comparable to SGC appears by chance [2–6, 8, 9], or the existence of a huge number

of local fitness peaks [8], etc. The second is an optimization-based approach. For example,

studies using evolutionary algorithms have also demonstrated that the SGC is not at the global

optimum [10–13]. However, these studies have been restricted to exploring a rather limited

repertory of genetic codes due to high computational cost and thus analyzing only the local

structure of the landscape. Because of this, the code evolution to the current SGC has not yet

been clarified, as well as whether the high fitness codes all have a similar structure to the SGC

or can have a completely different structure from the SGC. To elucidate these, the global struc-

ture of the fitness landscape needs to be analyzed. A single prominent peak with many small

local peaks in the global structure of the fitness landscape would lead one to conclude that all

high-fitness codes have a structure similar to that of the SGC. On the other hand, if there are

multiple prominent peaks, each with many local peaks, it means that the current SGC occur-

rence is not a unique solution, but contains some coincidence.

A genetic code can be represented by a table with 64 entries, in which each entry corre-

sponds to a single codon, a sequence of three DNA bases (A, G, C, T) or RNA bases (A, G, C,

U). The genetic code maps each codon to one of 20 different amino acids or to a terminal sig-

nal (Fig 1A). Here, the code a is a 64-dimensional vector, where each entry a(c) for c = 1

(UUU), . . ., 64(GGG) takes one of 20 different amino acids or a terminal signal. If a translation

error causes codon c to be mistakenly recognized as c0, an incorrect amino acid a(c0) is intro-

duced into the protein. This error would cause an associated fitness reduction due to protein

misfolding or malfunction. It is natural to assume that the reduction in fitness depends on the

difference in physicochemical properties d(a(c), a(c0)) between amino acids a(c) and a(c0).
Given that hydrophobic interaction is the dominant driving force in protein folding, this dif-

ference in physicochemical properties can reasonably be represented as a difference in hydro-

phobicity or hydrophilicity. Indeed, Haig and Hurst [2] examined four amino acid’s properties

(polar requirement, hydropathy, molecular volume, and isoelectric point) and suggested that

the SGC has been under selection pressure to minimize changes due to misreading in the

polar requirement scale [14], a measure associated with hydrophilicity. Following these stud-

ies, we adopted d(a(c), a(c0)) as the square of the difference in the polar-requirement scale

between a(c) and a(c0). The polar-requirement values of each amino acid are illustrated by the

colors in Fig 1A, and described in S1 Text. The cost of misreading a codon associated with

code a is given by the average d(a(c), a(c0)) under the probability P(c0|c) of misreading c as c0

(see Method section).

The calculation of the cost (see Eq 1 in Method) for randomly generated codes provides

insights into how evolutionarily optimized the SGC is, in terms of robustness against transla-

tional error, and how unlikely it is that the current SGC evolved by coincidence (i.e., without

selection). In their seminal paper, Freeland and Hurst [3] generated random genetic codes

using a random sampling method, estimated the fraction of codes with lower costs (i.e., higher

robustness against translational error) than the SGC, and concluded that the probability of

obtaining equally or more robust genetic code is� 10−6. Although these studies provide an
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excellent basis for understanding genetic code evolution, they were limited in their search

space due to the high computational cost and considered only a random ensemble of codes

maintaining the codon block-structure of the SGC, in which a block corresponds to a set of

codons coding the identical amino acid (Fig 1B and S2 Fig). Most of the studies in this field

have considered similar random genetic code ensembles using limited search spaces. Such

studies have examined, for instance, evolutionary simulation of the genetic code [8], and meth-

ods to improve the cost function to incorporate protein amino-acid frequency [4, 15]. How-

ever, this choice of random genetic code ensemble is inconsistent with examples of the non-

standard genetic code [16–18], whereby the code differs in only a single or a few codons from

the SGC, altering the block structure of the SGC. A justifiable choice of the random genetic

code ensemble is such that each codon can take 20 possible amino acids, with the constraint

that the whole code contains 20 different amino acids (Fig 1C); thus, the number of possible

codes in the ensemble is approximately 2064� 1083, which is much larger than the number of

possible codes in the ensemble (20!� 1018) maintaining the same block structure of the SGC.

However, a fully random ensemble with 2064 states produces a 64-dimension search space.

Given this size of the search space, naive random sampling, in which all random genetic codes

are generated with equal probability, cannot be used to obtain a meaningful genetic code with

a cost as low as that of the SGC.

Here, we applied multicanonical Monte Carlo (MC) analysis, which can effectively sample

low-cost genetic codes even from an ensemble of fully random genetic codes, to reveal the

global structure of the fitness landscape. The resulting fitness landscape had four major peaks,

one of which includes the SGC. This indicates that there are four classes of high-fitness genetic

code and suggests that the current genetic code potentially could have been the other three

classes.

Method

The average cost of misreading a codon associated with code a is given by

costðaÞ ¼
X

c

X

c0
Pðc0jcÞdðaðcÞ; aðc0ÞÞ; ð1Þ

where P(c0|c) is the probability of misreading c as c0. For the computation of Eq (1), we adopted

the following P(c0|c) according to previous studies [3–6, 15] that are based on experimental

observation [19]:

Pðc0jcÞ /

1 for a change in the 3rd base

1 for a change in the 1st base by TS

0:5 for a change in the 1st base by TV

0:5 for a change in the 2nd base by TS

0:1 for a change in the 2nd base by TV

0 double=triple base changes

;

8
>>>>>>>>>><

>>>>>>>>>>:

ð2Þ

where TS represents a transition [an interchange between purines (A$G) or between pyrimi-

dines (C$U)], and TV denotes a transversion [an interchange of purines for pyrimidines

(A$ C, A$U, G$ C, G$ U)]. This P(c0|c) indicates that the most frequent errors are

mistranslations within the red box in Fig 1A, while misreading of a codon into a codon in an

adjacent red box, without crossing the black thick line at the center, is half as likely, and the

misreading of a codon by crossing the center line is 10 times less likely (S1 Fig). For misrecog-

nition of an amino acid as the terminal signal (where a(c0) is the terminal signal), a cost c0,
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independent of the polar requirement of a(c), is assigned. Likewise, for misreading the termi-

nal signal as an amino acid (that is, a(c) is the terminal signal) a constant cost c1 is assigned. As

the choice of c0 and c1 affects only the basal value of the cost, and does not alter the cost differ-

ence between any two codes, we adopted c0 = c1 = 0. Only a single base change is considered

here, because the probability of double or triple base changes are negligibly small.

Under this cost function Eq 1 with misreading probability Eq 2, we consider numerical con-

struction of random genetic codes with high robustness against mistranslation. We hypothe-

sized that the random codes are required to satisfy the following fundamental property of the

SGC: (1) Each codon can encode one of 20 amino acids. (2) The terminal signals should be

coded in the same position as the SGC, and their number is also the same as the SGC. (3) The

code must encode the full repertoire of amino acids (i.e., 20 amino acids). (4) The number of

aspartic acids (Asp) and glutamates (Glu) in the code should be two or more (i.e., at least the

same number as the SGC). (1) is our original condition and differs significantly from previous

studies [2–6, 8, 9] that assumed a block structure for the genetic code. Conditions (2) and (3)

are required to avoid generating biologically meaningless genetic codes, such as those compris-

ing only the terminal signal, which would obviously have the lowest cost. Further, we here

required an additional condition (4) because Asp and Glu have the highest polar-requirement

values, and the cost value depends critically on their numbers. Without this requirement,

almost all (� 99%) of the sampled genetic codes with low cost contain only a single Asp and

Glu, which is not compatible with our goal of visualizing the fitness landscape to which the

SGC belongs (see S1 Text and S5 Fig). This restriction enforcing to have two Asp and two Glu

each does not arise naturally from considerations of code robustness but is rather artificial. As

is discussed below in Results section, we confirmed that our main claims do not depend on

this condition, while the structure of a low-cost random code was dissimilar to the SGC under

the absence of the condition.

For sampling from such an ensemble, we apply a computational technique termed as rare

event sampling using multicanonical Monte Carlo [20, 21]. Multicanonical Monte Carlo has

been developed in statistical physics such as spin systems [20–22] and protein folding [23, 24].

This method enables efficient sampling of rare events, exemplified by low-energy states, with-

out becoming trapped in local minima. Furthermore, this method provides an estimate of the

density-of-state, which represents the energy distribution for all possible states in the system.

This method combines the advantages of an optimization algorithm (energy minimization)

and naive random sampling (calculation of energy distribution), and has been applied to a

variety of fields other than physics, such as random matrix theory [25], combinatorial optimi-

zation [26], and the generation of surrogate time-series data [27]. Recently, this method has

also been applied to gene regulatory network evolution [28–30].

Here, we consider the Markov chain sampling of random genetic code to be a! a0 ! . . .,

where a candidate state a0 is generated from a by flipping the c-th index of a, a(c), to another

amino acid a0(c) [6¼ a(c)]. The transition a! a0 is determined by accepting or rejecting the

candidate state a0 of the transition probability function, Pcost(a)!cost(a0) = min(1, w(cost(a0))/w
(cost(a)), where w is the “weight” function (a function of the cost). The sampled distribution of

the cost, Peq(cost), obeys the following detailed balance condition for a large sample size:

Pcost!cost0PeqðcostÞ ¼ Pcost0!costPeqðcost0Þ; ð3Þ

and thus depends crucially on the weight. While the Gibbs distribution of Peq(cost) is obtained

for the choice of an exponential function of cost in ordinary Metropolis sampling, multicano-

nical sampling adopts the multicanonical weight w(cost)/ 1/O(cost), where O(cost) is the
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density-of-state, leading to a uniform distribution of Peq(cost), since Peq(cost)/ ∑a w(cost(a))I
(cost(a) = cost) = w(cost)O(cost), where I(X = Y) is the function that takes I(X = Y) = 1 if the

equality is satisfied, and zero otherwise. Therefore, for multicanonical sampling, the sequence

of states a generated by the Markov chain is regarded as a random walk in cost space, ensuring

efficient sampling of rare events (i.e., low cost states) without becoming trapped in local min-

ima. Since O(cost) is not known a priori, one needs to numerically compose w(cost) that gives

rise to a flat sampling histogram of the cost space. Here, we used the Wang-Landau algorithm

[22] to construct and tune the weight function w(cost), subsequently performing multicanoni-

cal sampling with a fixed w(cost) [27].

We also performed a simple genetic algorithm with population size N = 100. Initially, ran-

domly generated N genetic code that satisfies the above (1)-(4) conditions are prepared. In

each generation, the top 50% of the population of genetic codes was selected according to the

cost in Eq (1) and copies of the selected population are generated by random sampling without

replacement until the total population reaches N = 100. In these copies, mutations in the

genetic code (i.e., from a(c) to another amino acid, a0(c)) occur with a mutation rate μ = 0.1 in

each element of a. The recombination (crossover) process [10–13] is not incorporated. When

the mutated code does not contain 20 different amino acids, or at least two instances of Asp

and Glu, the mutation process starts over. We performed 105 independent GA runs with 500

generations and analyzed the statistics of the trajectories.

2 Results

First, we computed the fraction of genetic codes having a lower cost than the SGC in a ran-

dom genetic code ensemble. The total number of possible genetic codes in the proposed

ensemble was� 1079, which is still much larger than that reported in previous studies [3–6,

8, 15]. Naive random sampling with a sample size 1010 could not generate a code with a

lower cost than the SGC (Fig 1D). We performed multicanonical sampling with 1011 steps

by fixing the weight function w(cost). The density of states O(cost) is obtained by O(cost) /
H(cost)/w(cost), where H(cost) is the sampling histogram of the cost. The estimates of O

(cost) (Fig 1D) were consistent with the naive random sampling results for a large cost,

revealing that the density of genetic codes having a cost lower than that of the SGC is ca.

10−20. Such a genetic code is virtually impossible to generate via naive random sampling.

This estimate is much smaller than the previous estimates,� 10−6, indicating that the SGC

is much more evolutionarily optimized for robustness against errors than previously

thought.

Next, we investigated the characteristics of genetic codes with low cost (i.e., high fitness).

Using the sampled data with costs comparable to, or lower than, those of the SGC (i.e.,

cost< 2.6 + Δ, where Δ = 0.1), we reduced the 64-dimensional code space to two-dimensional

space, via principal component analysis (PCA). This use of a subset of random codes for PCA

is based on our assumption that only low-cost random codes can form a meaningful low-

dimensional structure. PCA was performed for the set of 64-dimensional vectors a, in which

each entry contains the polar-requirement scale of the encoded amino acid at the codon. The

resultant scatter plot in the PC1-PC2 space for cost = 2.6 ±Δ (the same cost as the SGC) (Fig

2A) reveals that there are four clusters, among which the data are unevenly distributed (� 44%

in the red cluster,� 31% in the orange,� 23% in the green, and� 3% in the blue). No further

structures were found in the PC1-PC2-PC3 space (S3 Fig). To determine the number of clus-

ters, we used the k-means method with the elbow method (S3 Fig). By piling up a two-dimen-

sional scatterplot of different cost values on the vertical axis, we can visualize the cost

landscape, the counterpart of the fitness landscape, where low cost corresponds to high fitness,

PLOS COMPUTATIONAL BIOLOGY Rare-event sampling analysis uncovers the fitness landscape of the genetic code

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011034 April 17, 2023 6 / 14

https://doi.org/10.1371/journal.pcbi.1011034


and vice versa. Fig 2B clearly shows the multimodality of the fitness landscape, where the four-

peak structures in the low-cost region are connected to the high-cost region. Fig 2C–2F illus-

trate the average composition of the genetic codes within each peak for a genetic code with the

same cost as the SGC (cost = 2.6), and Fig 2C’–2F’ show three representative examples in each

cluster. Comparing Fig 2A and 2C–2F, we see that a genetic code with high PC1 values tends

to have high polar-requirement amino acids in the third column, whereas the larger the value

on PC2, the more high polar-requirement amino acids tend to be coded in the third and fourth

columns (the right half of the codon table). The green cluster in Fig 2A, to which the SGC

belongs, was further analyzed via PCA of the dataset belonging to the cluster. This revealed a

similar genetic code structure to the SGC (S4 Fig).

So far, we considered an ensemble containing at least two Asp and two Glu (i.e., condition

(4) in the Methods section). By performing additional simulations, we also confirmed that our

results do not depend on this condition. A closely similar fitness landscape with four peaks

appears even in the absence of the condition (see S1 Text and S5 Fig). Further, we performed

simulations with two different cost (fitness) functions: (1) the cost including amino acid fre-

quencies in the genome in extant organisms, and (2) the cost incorporating an empirical evo-

lution-based scoring function for amino acid substitution (BLOSUM62 score [31]). In both

cases, similar fitness landscapes with multi-peaks were confirmed (S6 and S7 Figs). In cost

incorporating BLOSUM score, the orange cluster in the original model (Fig 2: the cluster (d))

that codes high polar requirement amino acids at the fourth column is split into two clusters

(d) and (f) under this cost function (S7 Fig; the orange and purple clusters in (A)). However,

the amino acid configuration for each peak is similar to the original model (Fig 2C–2F).

Our use of multicanonical MC enabled unbiased sampling of random genetic codes,

enabling us to analyze and visualize the global structure of the genetic code fitness landscape.

In the reconstructed fitness landscape, the optimized codes were categorized into four clusters

(Fig 2A and 2B): the blue cluster, in which highly polar amino acids are located in the two left

columns, occupies only a small fraction (� 3%, for cost< 2.6 + Δ). Interestingly, genetic algo-

rithms (GAs), widely used evolutionary simulations, can cause large deviations from unbiased

sampling, because the evolutionary outcome could be strongly biased in an evolutionary path-

Fig 2. Fitness landscape under a random genetic code ensemble. (A) Genetic codes with comparable cost values to the SGC, where 2.6 − Δ< cost< 2.6 + Δ (Δ = 0.1) in

the PC1-PC2 space (the contribution ratios: PC1, 27%, PC2, 14%). Principal component analysis and k-means clustering were performed using the sampled data with a

cost value of cost< 2.6 + Δ. (B) Fitness landscape visualized by piling up the scatterplot on the PC1-PC2 plane, with costs decreasing on the vertical axis, where low cost

corresponds to high fitness. (C-F) Average structure of the genetic code in each cluster. (C’-F’) examples of samples belonging to the clusters (C-F) in (A).

https://doi.org/10.1371/journal.pcbi.1011034.g002
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dependent manner. To demonstrate this, we performed a GA under the cost in Eq (1) (see

details in Method section).

Fig 3A illustrates the resultant genetic codes that reached a cost of 2.6 (the same cost as the

SGC) on the same PCA projection as in Fig 2A; this further illustrates that the GA can reach

all four peaks, with up to 30% of the GA results concentrated in the blue cluster. However, the

actual phase volume of the cluster occupies only 3% of the high-fitness code space (Fig 2A,

blue cluster). To understand how this bias arises, we analyzed the optimization trajectories of

the independent GA runs (Fig 3B–3E). The blue cluster in Fig 3A comprises codes where high

polar-requirement amino acids are located in the two left columns (see also Fig 2C and 2C’);

the tendency to approach the cluster via a GA trajectory is characterized by ΔPR, the difference

between the average polar-requirement value in the two right columns hPRiR and the two

left columns hPRiL of the code. Fig 3D illustrates that ΔPR = hPR iR − hPR iL through GA

Fig 3. Simulation results by genetic algorithms (GAs). Results of 105 independent GAs. (A) Codes with comparable cost values to the SGC, 2.6 − Δ< cost< 2.6

+ Δ (Δ = 0.1), on the same PC1-PC2 plane as in Fig 2. Clustering was performed based on samples with cost< 2.6 + Δ, obtained via GA and MCMC sampling.

(B) Schematic illustration of evolution under the multipeak fitness landscape. (C-E) Analysis of the independent GA trajectories. The cost values of the

independent GA runs are plotted on the horizontal axis. (C) Transition rates from ΔPR> 0 to ΔPR< 0 (cyan), from ΔPR< 0 to ΔPR> 0 (purple), and between ΔPR
> 0 and ΔPR< 0 (black), where ΔPR is the difference in polar requirement between left and right two columns of code: ΔPR = hPRiR − hPRiL. (D)ΔPR in GA

trajectories as a function of the cost value experienced in each GA. Note that if a trajectory experiences the same cost value multiple times, only the latest value is

recorded, so a single curve is always a univalent function and does not necessarily correspond to the GA time series (GA time series can go up and down in cost).

(E) Fraction of genetic codes with ΔPR< 0. The green dashed line depicts the fraction for all the GA trajectories, while the thick line indicates that for GA

trajectories conditioned to reach cost = 2.6.

https://doi.org/10.1371/journal.pcbi.1011034.g003
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trajectories as a function of the cost values experienced in a single GA run, where genetic

codes with negative ΔPR values around cost = 2.6 represent the blue cluster in Fig 3A. In Fig

3C, the number of transitions between positive and negative ΔPR declines as the optimization

proceeds, with almost none occurring below cost = 4� 5. Consistent with this, the fraction of

genetic codes with ΔPR< 0 appearing in the GA optimization trajectories exhibits a plateau

below cost = 4� 5 (Fig 3E: thick green line), whereas the actual fraction of codes estimated via

multicanonical MC (Fig 3E: thick black line) declines monotonically as cost decreases. This

indicates that the fraction of codes with a negative ΔPR below cost’ 2.6 (i.e., the blue cluster in

Fig 3A) is determined early in the optimization process, at cost> 5, being determined by the

phase-space volume with cost> 5 rather than cost’ 2.6. This leads us to conclude that the GA

can cause a large bias in the situation depicted in Fig 3B, where the fitness landscape has multi-

ple peaks that allow no peak-to-peak jump, and one peak (the left peak in Fig 3B) has a broad

waist and narrow tip. In such a situation, the fraction of trajectories reaching the left peak is

determined by the waist size of the fitness landscape; in other words, the basin size of the peak,

when the optimization dynamics are interpreted as a dynamic system, causes the overconcen-

tration in the left narrow peak.

3 Discussion

The proposed multicanonical Monte Carlo method, which efficiently samples rare events in a

fully random genetic code ensemble, revealed that the probability of obtaining a genetic code

with a cost as low as that of the SGC by chance is ca. 10−20, much lower than the previous esti-

mate [3]. It would be virtually impossible to generate such a code by naive random sampling.

The proposed multicanonical method would therefore be appropriate as a standard tool in

studies inferring the selection pressure on the SGC, instead of the previously used naive ran-

dom sampling method [3–8, 15]. Note that despite their extremely low probability, the number

of such codes was huge as� 1059. This “numerous but rare” problem is also found in the

“magic square” problem [26].

The genetic code fitness landscape had four peaks, one of which included the SGC, indicat-

ing that the genetic code might have evolved as one of the other three classes. We also per-

formed GA simulations to analyze possible evolutionary trajectories toward these peaks.

Comparing the GA trajectories and the fitness landscape constructed through Monte Carlo

sampling revealed significant differences in the distribution of low-cost codes (Figs 2A and

3A), which represents that the evolutionary path-dependent bias in the GA arises under the

multi-peaked fitness landscape (e.g., Fig 3B). Specifically, the fraction of independently evolved

genetic codes reaching each peak is determined by the basin volume rather than the phase-

space volume of these optima. This finding demonstrates the importance of integrating sam-

pling-based and optimization-based approaches. From the perspective of statistical physics,

this fraction is dictated by the sum of the path probabilities from a random initial condition to

each peak, rather than the Boltzmann distribution of the fitness function; the fraction should

coincide with the Boltzmann distribution when the system is in equilibrium but can differ in a

finite time. In the proposed scenario, the evolutionary outcome is determined by the ease of

finding a peak of the fitness landscape, but not by the phase-space volume of optimal geno-

types. This scenario is applicable to both evolutionary studies and optimization problems with

gradient-descent-like algorithms under a multi-peaked fitness landscape. Evolutionary path-

dependent bias has also been reported in a study of gene regulatory networks [29], in which

the mutational robustness was significantly higher in the GA than in the reference ensemble at

the same fitness level. It remains to be clarified whether this bias toward mutational robustness
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[29, 32] is related to the bias caused by the presence of multiple peaks, presenting a new avenue

for evolutionary studies.

The asymmetric four-peak shape of the fitness landscape (Fig 2B) is attributed to our

assumption that the evolution of the terminal signal is ignored. However, this does not mean

that the results obtained are mere artifacts with no meaning to interpret, nor that our assump-

tions are unrealistic. An asymmetric fitness landscape (e.g., Fig 2B) emerges naturally when

the terminal codons are localized on the table to reduce the cost, as in the case of SGC. In this

sense, the fitness landscape obtained in this study should be considered as a landscape under

the conditional probability that the terminal signals are in the same position as in the SGC.

We also examined an ensemble without the condition that two Alu or Glu must be

included (S5 Fig). Further, the additional simulations were performed with two different

cost functions: a cost incorporating amino acid frequencies in genome data (S6 Fig) and a

cost based on BLOSUM62 score [31] (S7 Fig). In each case, similar fitness landscapes with

multiple peaks were identified (S5–S7 Figs; see also S1 Text). From these results, we con-

cluded the presence of four (or five) major peaks in the fitness landscape of the genetic code.

The following aspects that were beyond the scope of our study require future analysis: the

incorporation of the effect of codon usage [6, 15], coevolution of the genetic code with the

amino-acid synthesis metabolic pathway [9, 33, 34], code robustness against frameshift[35–

37], and the recently reported but controversial claim that the genetic code is robust against

mutations that increase the uptake of carbon and nitrogen incorporation [7, 38, 39]. In par-

ticular, our analysis did not answer why nearly all organisms use the same genetic code, the

SGC, instead of using different codes for different organisms. The emergence of a universal

code could be explained by the effects of horizontal gene transfer (HGT), as Vetsigian et al.

[40] addressed. How the HGT can alter the evolutionary outcome under the proposed fitness

landscape will also be one of the issues to be addressed. Likewise, the present analysis pro-

vided no answer as to why the SGC stopped at a suboptimal location for a particular peak.

Several hypotheses can be made: (a) the SGC has been frozen to the present position during

evolution. (b) The code structure at a very early stage of evolution may have influenced the

current SGC [9, 33, 34]. (c) We might fail to capture the true code fitness, where the SGC is

the global optimal. Selection pressures other than robustness against mistranslations or

amino-acid properties other than polar requirements may need to be considered. Our pro-

posed method has a flexibility to incorporating several factors as listed above and would pro-

vide a promising means of estimating the rareness of SGC from a fully random genetic code

ensemble, and visualizing the fitness landscape of the code.

Supporting information

S1 Text. The technical appendices include the details on (1) simulation with relaxing the

requirement to have at least two instances of ASP and GLU, (2) simulation for examining

the different cost functions that incorporate amino acid frequencies, and (3) a table of

polar requirement scale for amino acids.

(PDF)

S1 Fig. Two examples of codon misreading. (A) Example of GUG misreading. The star repre-

sents a codon to be misread by translational error. Blue, green, and red indicate erroneous

changes at the 1st, 2nd, and 3rd bases, respectively. The number in the table indicates the

weight for P(c0|c), the probability of misreading c as c0. For example, misreading is twice as

likely when the weight is 1 as when it is 0.5. (B) Example of CCA misreading.

(PDF)
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S2 Fig. Random code ensemble used in previous studies. (A) Procedure for generating a ran-

dom code in the ensemble. The 20 different amino acids are randomly assigned numbers from

(1) to (20), thus maintaining the SGC block structure that are groups of codons for where the

same amino acid is coded. (B) The Standard genetic code (SGC). (C) Example of a random

code generated by (A).

(PDF)

S3 Fig. Cluster number determination for the scatter plot in Fig 2A. (A) Visualization of the

scatter plot Fig 2A in the PC1-PC2-PC3 space. (B) Elbow method for determining the number

of the cluster = 4 in Fig 2A. The sum of square error (SSE) is plotted as a function of the num-

ber of clusters. The SSE decreases rapidly as the number of clusters increases from 1 to 4, then

declines more slowly from 4 to 8 clusters.

(PDF)

S4 Fig. PCA analysis of the dataset for the green cluster in Fig 2A. (A) Scatterplot on the

PC1-PC2 plane (PC scores: PC1, 31%; PC2, 7%). The symmetrical shape is attributed to the

symmetry of the cost function, with respect to the swapping of the bottom four rows and the

next four rows. (B-D) Examples of random genetic codes in the four corners in (A). The code

in (C) is located near the SGC on the PC1-PC2 plane, and indeed has a similar structure to the

SGC.

(PDF)

S5 Fig. The fitness landscape when the requirement to have two instances of Asp and Glu

is relaxed. Here, we consider a random genetic code ensemble of genetic codes with 20 differ-

ent amino acids (i.e., at least one instance of Asp and Glu). (A) Scatterplot of genetic codes

with cost values comparable to those of the SGC [2.6 − Δ< cost< 2.6 + Δ (Δ = 0.1)] on the

PC1-PC2 plane. (B) Fitness landscape visualized by piling up the scatterplot on the PC1-PC2

plane with different costs on the vertical axis. (C-F) Average structure of the random genetic

code in each cluster. (C’-F’) examples of samples belonging to the clusters (C-F) in (A).

(PDF)

S6 Fig. Fitness landscape under a random genetic code ensemble incorporating the amino

acid frequency in the genomes. The cost function defined by Eq. S1 in S1 Text is used. (A)

Genetic codes with comparable cost values to the SGC, where 2.9 − Δ< cost< 2.9 + Δ (Δ =

0.1) in the PC1-PC2 space (left panel) and in the PC1-PC2-PC3 space (the contribution ratios:

PC1, 31%, PC2, 18%, PC3 9%) (right panel). Principal component analysis and k-means clus-

tering were performed using the sampled data with a cost value of cost< 2.9 + Δ. (B) Fitness

landscape visualized by piling up the scatterplot on the PC1-PC2 plane, with costs decreasing

on the vertical axis (left panel). The peak that the SGC belongs to in the PC1-PC2 plane is also

shown in the PC2-PC3 plane (right panel). (C-F) Average structure of the genetic code in each

cluster. (C’-F’) examples of samples belonging to the clusters (C-F) in (A). (G) Elbow method

for determining the number of clusters = 4 in (A). The sum of square error (SSE) is plotted as

a function of the number of clusters. (H) Cost density-of-states function for the ensemble esti-

mated by the multicanonical Monte Carlo.

(EPS)

S7 Fig. Fitness landscape under a random genetic code ensemble incorporating BLO-

SUM62 score. The cost function defined by Eq. S2 in S1 Text is used. (A) Genetic codes with

comparable cost values to the SGC, where 3.3 − Δ< cost< 3.3 + Δ (Δ = 0.1) in the PC1-PC2

space (the contribution ratios: PC1, 21%, PC2, 8%). Principal component analysis and k-

means clustering were performed using the sampled data with a cost value of cost< 3.3 + Δ.
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(B) Fitness landscape visualized by piling up the scatterplot on the PC1-PC2 plane, with costs

decreasing on the vertical axis. (C-G) Average structure of the genetic code in each cluster.

(C’-G’) examples of samples belonging to the clusters (C-G) in (A). (H) The sum of square

error (SSE) in the elbow method is plotted as a function of the number of clusters. (I) Cost

density-of-states function for the ensemble estimated by the multicanonical Monte Carlo.

(EPS)

S8 Fig. Amino acid frequency in random genetic codes from a random genetic code ensem-

ble, where the genetic code contains 20 different amino acids with at least one instance of

Asp and Glu. (A) Percentage of genetic codes with one instance of Asp and Glu, against cost.

At low costs, almost all of the genetic codes have only one instance of Asp and Glu. (B) Mean

and variance of the number of amino acids in the random genetic codes, with cost 2.6 − Δ<
cost< 2.6 + Δ (Δ = 0.1), for the same ensemble as in (A). (C) The same plot as in (B), but for

the random code ensemble with at least two instances of Asp and Glu in each genetic code.

The numbers of amino acids in the SGC are within 2σ of the number obtained using the ran-

dom ensemble.

(PDF)

Acknowledgments

We would like to acknowledge the helpful discussions with Yukito Iba, Macoto Kikuchi and

Kunihiko Kaneko.

Author Contributions

Conceptualization: Nen Saito, Chikara Furusawa.

Formal analysis: Nen Saito.

Investigation: Yuji Omachi, Nen Saito.

Methodology: Nen Saito.

Project administration: Nen Saito, Chikara Furusawa.

Supervision: Nen Saito, Chikara Furusawa.

Validation: Yuji Omachi, Nen Saito.

Visualization: Yuji Omachi, Nen Saito.

Writing – original draft: Nen Saito.

Writing – review & editing: Chikara Furusawa.

References
1. Woese CR. On the evolution of the genetic code. Proceedings of the National Academy of Sciences of

the United States of America. 1965; 54(6):1546. https://doi.org/10.1073/pnas.54.6.1546 PMID:

5218910

2. Haig D, Hurst LD. A quantitative measure of error minimization in the genetic code. Journal of molecular

evolution. 1991; 33(5):412–417. https://doi.org/10.1007/BF02103132 PMID: 1960738

3. Freeland SJ, Hurst LD. The genetic code is one in a million. Journal of molecular evolution. 1998; 47

(3):238–248. https://doi.org/10.1007/PL00006381 PMID: 9732450

4. Gilis D, Massar S, Cerf NJ, Rooman M. Optimality of the genetic code with respect to protein stability

and amino-acid frequencies. Genome biology. 2001; 2(11):1–12. https://doi.org/10.1186/gb-2001-2-11-

research0049 PMID: 11737948

PLOS COMPUTATIONAL BIOLOGY Rare-event sampling analysis uncovers the fitness landscape of the genetic code

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011034 April 17, 2023 12 / 14

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011034.s009
https://doi.org/10.1073/pnas.54.6.1546
http://www.ncbi.nlm.nih.gov/pubmed/5218910
https://doi.org/10.1007/BF02103132
http://www.ncbi.nlm.nih.gov/pubmed/1960738
https://doi.org/10.1007/PL00006381
http://www.ncbi.nlm.nih.gov/pubmed/9732450
https://doi.org/10.1186/gb-2001-2-11-research0049
https://doi.org/10.1186/gb-2001-2-11-research0049
http://www.ncbi.nlm.nih.gov/pubmed/11737948
https://doi.org/10.1371/journal.pcbi.1011034


5. Goodarzi H, Nejad HA, Torabi N. On the optimality of the genetic code, with the consideration of termi-

nation codons. Biosystems. 2004; 77(1-3):163–173. https://doi.org/10.1016/j.biosystems.2004.05.031

PMID: 15527955

6. Archetti M. Codon usage bias and mutation constraints reduce the level of ErrorMinimization of the

genetic code. Journal of Molecular Evolution. 2004; 59(2):258–266. https://doi.org/10.1007/s00239-

004-2620-0 PMID: 15486699

7. Shenhav L, Zeevi D. Resource conservation manifests in the genetic code. Science. 2020; 370

(6517):683–687. https://doi.org/10.1126/science.aaz9642 PMID: 33154134

8. Novozhilov AS, Wolf YI, Koonin EV. Evolution of the genetic code: partial optimization of a random code

for robustness to translation error in a rugged fitness landscape. Biology direct. 2007; 2(1):1–24. https://

doi.org/10.1186/1745-6150-2-24

9. Koonin EV, Novozhilov AS. Origin and evolution of the genetic code: the universal enigma. IUBMB life.

2009; 61(2):99–111. https://doi.org/10.1002/iub.146 PMID: 19117371
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