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Abstract

The number of published metagenome assemblies is rapidly growing due to advances in

sequencing technologies. However, sequencing errors, variable coverage, repetitive geno-

mic regions, and other factors can produce misassemblies, which are challenging to detect

for taxonomically novel genomic data. Assembly errors can affect all downstream analyses

of the assemblies. Accuracy for the state of the art in reference-free misassembly prediction

does not exceed an AUPRC of 0.57, and it is not clear how well these models generalize to

real-world data. Here, we present the Residual neural network for Misassembled Contig

identification (ResMiCo), a deep learning approach for reference-free identification of misas-

sembled contigs. To develop ResMiCo, we first generated a training dataset of unprece-

dented size and complexity that can be used for further benchmarking and developments in

the field. Through rigorous validation, we show that ResMiCo is substantially more accurate

than the state of the art, and the model is robust to novel taxonomic diversity and varying

assembly methods. ResMiCo estimated 7% misassembled contigs per metagenome across

multiple real-world datasets. We demonstrate how ResMiCo can be used to optimize meta-

genome assembly hyperparameters to improve accuracy, instead of optimizing solely for

contiguity. The accuracy, robustness, and ease-of-use of ResMiCo make the tool suitable

for general quality control of metagenome assemblies and assembly methodology

optimization.

Author summary

Metagenome assembly quality is fundamental to all downstream analyses of such data.

The number of metagenome assemblies, especially metagenome-assembled genomes

(MAGs), is rapidly increasing, but tools to assess the quality of these assemblies lack the

accuracy needed for robust quality control. Moreover, existing models have been trained
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on datasets lacking complexity and realism, which may limit their generalization to novel

data. Due to the limitations of existing models, most studies forgo such approaches and

instead rely on CheckM to assess assembly quality, an approach that only utilizes a small

portion of all genomic information and does not identify specific misassemblies. We har-

nessed existing large genomic datasets and high-performance computing to produce a

training dataset of unprecedented size and complexity and thereby trained a deep learning

model for predicting misassemblies that can robustly generalize to novel taxonomy and

varying assembly methodologies.

This is a PLOS Computational Biology Methods paper.

Introduction

Metagenome sequencing is rapidly increasing in popularity due to the lowering costs of

sequencing and simplified library construction methods [1, 2]. At the same time, improve-

ments in metagenome assembly tools [3, 4] and high-performance computing resources have

increased the feasibility of large-scale metagenome assemblies on 1000s of samples [5–7]. The

contiguous sequences (contigs) generated via metagenome assembly can be analyzed directly

for such tasks as creating gene catalogs [8, 9], or binning approaches can be used to cluster the

contigs into metagenome-assembled genomes (MAGs) that can be used for various compara-

tive genomics applications [10].

These advances have given rise to vast genome assembly databases, such as the Unified

Human Gastrointestinal Genome (UHGG) [11], in which MAGs account for 70% of the

species. As another example, the Genome Taxonomy Database (GTDB) expanded from

approximately 32,000 species to nearly 50,000 in less than one year [12, 13], largely due to the

proliferation of MAGs. Given the low-throughput nature of isolating Bacteria and Archaea for

independent genome sequencing [11], metagenome assembly approaches will likely continue

to dominate.

The correct assembly of metagenomes is challenging due to several factors, including

sequencing errors, high taxonomic diversity often comprising 1000s of species, uneven cover-

age, and repetitive genomic regions [14]. All of these factors contribute to misassemblies, with

the most common being structural variations, relocations, translocations, and inversions [15].

Long read sequence data can mitigate some of these issues [14, 16], but the expense relative to

short read sequencing generally prevents one from obtaining sufficient sequence coverage for

complex communities [17]. While assembly contiguity can be assessed easily by calculating

such metrics as N50, assessing assembly accuracy is considerably more challenging due to a

few major causes. First, due to a lack of very closely related taxa with genome regions (nearly)

identical to the query, contigs cannot simply be mapped to references in order to assess accu-

racy. Second, reference-free tools that predict misassemblies have generally been trained and

validated on small, homogeneous datasets in the past, which raises the question of their robust-

ness to novel data (e.g., novel taxa or assembly methods). Indeed, Mineeva and colleagues

showed that existing tools generally performed poorly on a large, heterogeneous dataset [18].

The authors’ novel deep learning approach, DeepMAsED, amply outperformed the state of the

art and was relatively robust to taxonomic novelty, achieving an AUPRC score of 0.57 on a
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novel genome dataset; still, there remained substantial room for improvement in model accu-

racy and also a robust validation on complex datasets spanning the heterogeneity of existing

metagenomes from complex communities. Indeed, Lei and colleagues developed metaMIC, a

reference-free machine learning (ML) model for predicting misassemblies in metagenome

assemblies [19], and showed that DeepMAsED’s performance was inferior to metaMIC’s; how-

ever, only few methodological details were provided on the validation approach.

We present Residual Neural Network for Misassembled Contigs Identification (ResMiCo),

a novel approach for reference-free identification of misassembled contigs in metagenome

assemblies. ResMiCo is a deep convolutional neural network with skip connections between

non-adjacent layers. Similar architectures have proven to be highly successful when trained on

large datasets from various fields [20, 21]. We utilize a novel high throughput pipeline to gen-

erate complex and realistic training data covering much of the possible parameter space (e.g.,

varying data richness, sequencing depth, sequencing error rate, community diversities, and

metagenome assembly methods). Through extensive evaluation, we show that the model out-

performs the existing state of the art and is robust to metagenome data heterogeneity, includ-

ing taxonomic novelty and metagenome assembly parameters. ResMiCo is also robust to

alternative data simulation approaches, as shown when applied to the Critical Assessment

Metagenome Interpretation (CAMI) datasets. We show that using ResMiCo to filter putative

genomes reduces the number of misassembled contigs by a factor of four. We also apply

ResMiCo to a large collection of metagenomes from published studies and show that 7% ± 5.7

(s.d.) of contigs per metagenome are misassembled. Lastly, we show that ResMiCo can be used

to optimize metagenome assembler parameters for accuracy without the need for simulated or

mock-community metagenome datasets.

Materials and methods

Simulated data

We used synthetic datasets for initial model training and testing. The data simulation method-

ology, depicted in Fig 1, builds on, and significantly expands on our previous work [18].

Reference bacterial and archaeal genomes were selected from Release 202 of the Genome Tax-

onomy Database (GTDB) [22]. Metagenomes were simulated from publicly available reference

genomes via MGSIM (https://github.com/nick-youngblut/MGSIM). Simulation parameters

varied in all combinations of i) community richness, ii) community abundance distribution,

iii) reference genomes selected from the total pool, iv) read length, v) insert size distribution

(i.e., the distance in between the forward and reverse read pair), vi) sequencer error profile,

vii) sequencing depth, and viii) metagenome assembler (Table 1). The abundance distribution

of each community was modeled as a log-normal distribution. We varied parameter σ to

produce differing levels of evenness of relative abundances. Community richness was altered

by random sub-sampling from the pool of reference genomes available in the training or

test split. The ART [23] read simulator was used to generate paired-end Illumina reads of

length 100 or 150 using either the default “Illumina HiSeq 2500” error profile or the

“HiSeq2500L150R1/2” error profile used in CAMISIM [24]. Four paired-end read insert size

distributions were simulated via the ART parameter settings (see “Insert size” in Table 1). We

included multiple simulation replicates, in which the community and read simulation parame-

ters were held constant, but each replicate differed via randomization of the genome sub-sam-

pling within each simulation. The reads from each community were assembled independently

with metaSPAdes [3] and MEGAHIT [4].

MetaQUAST [15] was used to identify truly misassembled contigs based on mapping all

contigs to the reference genomes used for the simulations. The MetaQUAST-identified contig
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misassembly labels (“extensive misassembly”) were used as ground truth. The extensive misas-

sembly label includes relocations, inversions, translocations and interspecies translocations.

We also extracted MetaQUAST-identified breakpoint positions in the misassembled contigs.

For initial model training and testing, we utilized a pool of 18,000 reference genomes

selected from Release 202 of the Genome Taxonomy Database (GTDB). The pool was split at

the family taxonomic level so that all genomes in the test dataset belonged to families not pres-

ent in the training dataset. The resulting split was even, with 9000 genomes used for both train-

ing and testing. To reduce bias toward particular species, at most 50 genomes per species were

included in the reference genome pool, with genomes selected at random. The pool was also

filtered by CheckM-estimated completeness (� 90%) and contamination (� 5%). Other filter-

ing criteria included: i) only “high” MIMAG quality, ii) no single-cell genome assemblies,

Fig 1. The ResMiCo simulation and training pipeline. (A) Select reference genomes from the Genome Taxonomy Database (GTDB) at various

abundances; (B) Simulate reads for the selected genomes using ART-Illumina; (C) Assemble reads into contigs using MEGAHIT and metaSPAdes; (D)

Align reads back to the assembled contigs using Bowtie2, then extract features such as coverage, number of single-nucleotide variants (SNVs), mean

alignment score, etc., for each contig using the given alignments; (E) Compute labels for each contig by aligning against the reference genomes using

MetaQUAST; (F) For each contig, select a random section (that contains a breakpoint if the contig is misassembled), pad to the network’s input length

if necessary, and feed the data into the ResMiCo model. Steps (D) and (E) are independent and can be parallelized.

https://doi.org/10.1371/journal.pcbi.1011001.g001

Table 1. Parameter values used in the simulation pipeline. The training dataset n9k-train was generated using all

1440 parameter combinations for the insert size distribution with mean = 270 & sd = 50 and mean = 190 & sd = 75.

For the “mean = 350 & sd = 75” insert size distribution, 3 replicates for the “HiSeq 2500 L150R1/2” error profile and

one replicate for the “HiSeq 2500 error” profile were generated (960 parameter combinations). For the “mean = 450 &

sd = 120” insert size distribution, we used all parameters combinations, but only with the “HiSeq 2500 L150R1/2” error

profile (720 parameter combinations). In total, we created 4560 samples. The parameter grid was not uniformly sam-

pled due to the resource limitations. The test dataset n9k-novel contains one simulation replicate with the “HiSeq 2500”

error profile, and using one (mean = 270 & sd = 50) insert size, which resulted in 240 parameter combinations.

Parameter Values

Community richness 50, 1000, 3000, 5000 genomes

Genome abundance Lognormal with μ = 10 and σ 2 {0.5, 1, 2}

Replicates 3 random selections of reference genomes

Read length 100, 150 bps

Insert size mean & sd 2 {190&75, 270&50, 350&75, 450&120}

Error profile HiSeq 2500, HiSeq 2500 L150R1/2 [24]

Sequencing depth 0.5m, 2m, 8m, 12m, 20m

Assembler MEGAHIT, MetaSPAdes

https://doi.org/10.1371/journal.pcbi.1011001.t001
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iii)� 500 contigs, iv) a genome size of� 15 mbp, and v) a mean contig length of� 10 kbp.

We randomly subsampled reads mapped to each contig to a maximum mean contig coverage

of 20. At this coverage level, assemblies of reasonable quality can be produced, and subsam-

pling helps prevent out-of-distribution issues when applying ResMiCo to datasets with sub-

stantially higher sequencing depth than in our training dataset.

To create features for model training and testing, we mapped reads to the contigs from the

corresponding synthetic metagenome via Bowtie2 [25], and the resulting alignment data was

used to generate per contig position features, as listed in Table A in S1 Text.

We refer to the training dataset as n9k-train and to the test dataset, which consists of

genomes novel at a family taxonomic level, as n9k-novel. All combinations of the metagenome

simulation parameters produced a training dataset of 4560 metagenomes and 80M contigs

(Table 1). We were limited to 1.3T of available space on our HPC cluster, so we had to ran-

domly subset n9k-train to 3000 metagenomes, comprising 52M contigs (Table 2). The test set

(n9k-novel) was generated using the subset of parameters and one simulation replicate to save

computational time (Table 1). We also created a test dataset with higher intra-species diversity

(33.3 ± 115) versus n9k-novel (2.4 ± 13.7), which we named n2k-novel-intra-species. We used

only 2000 reference genomes in order to include enough families with a high number of intra-

species genome diversity, but still include only families novel relative to the train dataset (as

with n9k-novel). The simulation parameters for n2k-novel-intra-species were consistent with

n9k-train, except i) only 50 and 1000 genomes for richness, ii) one simulation replicate, iii)

one insert size distribution (mean = 270, sd = 50), and iv) sequencing depths of 2M, 8M, and

12M read pairs.

CAMI simulated metagenomes

To benchmark ResMiCo’s performance in a new setting, we downloaded the paired-end reads

of the Critical Assessment of Metagenome Interpretation (CAMI) human skin, human oral,

human gut, plant-associated, and marine assembly challenges [26]. As with the n9k-train data-

set, we assembled the reads via metaSPAdes and MEGAHIT, and identified true misassemblies

via MetaQUAST based on the reference genomes in each of the 5 datasets. As shown in

Table 2, the number of misassembled contigs in the CAMI datasets is *50% lower, while cov-

erage is *50% higher relative to the n9k-train dataset. The breakpoint locations for misassem-

bled contigs follow a nearly identical distribution for all datasets, with more breakpoints

clustered towards the ends (Fig A in S1 Text).

Published, real-world metagenomes

We evaluated ResMiCo on 7 published metagenome datasets: UHGG [11], TwinsUK [27],

Animal-gut [28], Pinnell2019 [29], Mantri2021 [30], MarineMetagenomeDB [31], and

Table 2. A summary of the five synthetic datasets used for training and evaluating ResMiCo. The n9k-train and n9k-novel datasets were generated using our pipeline,

all other datasets were created from CAMI reads. The n9k-train dataset was used for training and validation, while all other datasets were used for testing. Misassemblies

are reported as a percent of the total number of contigs in the dataset. Misassemblies length is the sum of misassembled contig lengths divided by the total number of bases.

n9k-train n9k-novel gut skin oral marine plant

Contigs 52.5M 6.8M 0.44M 0.32M .41M 1.0 1.0

Bases 159B 19.7B 1.5B 890M 1.5B 2.3B 3.4B

Average Coverage 12.6 10.2 16.9 15.7 16.3 14.1 16.7

Misassemblies 3.41% 4.0% 1.2% 1.72% 1.74% 2.66% 2.43%

Misassemblies length 3.69% 4.26% 3.82% 3.06% 3.20% 3.29% 6.70%

Median Contig length 1530 1510 1473 1394 1455 1349 1427

https://doi.org/10.1371/journal.pcbi.1011001.t002
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TerrestrialMetagenomeDB [32] (S1 Table). The UHGG consisted of randomly selected meta-

genomes associated with the UHGG MAG collection. TwinsUK consisted of human gut meta-

genomes from adults in the TwinsUK cohort [27], while the Animal-gut comprised gut

metagenomes from a broad taxonomic diversity of vertebrates [28].Pinnell2019 and Man-
tri2021 consisted of benthic and soil microbial community metagenomes, respectively. Mari-
neMetagenomeDB and TerrestrialMetagenomeDB consisted of a selection of metagenomes

from each respective database. The following filtering criteria were applied prior to metagen-

ome selection: i)� 1e6 and� 80e6 reads, ii) maximum read lengths of� 150bp, and iii)� 10

samples in the study, and for the UHGG: iv)� 10 and� 300 MAGs associated with the

metagenome.

We also evaluated ResMiCo on 2 mock community datasets: BMock12 [33] and MBARC-

26 [34]. We subsampled each metagenome to 2M read pairs in order to evaluate a sequencing

depth on par with existing real-world metagenomes [35, 36]. Representative genomes were

downloaded from JGI IMG and Genbank for BMock12 and MBARC-26, respectively. These

representatives were used in conjunction with MetaQUAST to identify true misassemblies.

Metagenome read data processing was done as described in Youngblut and colleagues [28].

Briefly, reads were validated with fqtools [37]. Adapters were trimmed with Skewer [38]. The

“bbduk” command from bbtools (https://sourceforge.net/projects/bbmap/) was used to trim

and filter reads based on Phred scores. The “bbmap” command from bbtools was used to filter

reads mapping to the hg19 human genome assembly. Read quality reports for each step of the

pipeline were generated and visualised with FastQC and MultiQC, respectively (https://www.

bioinformatics.babraham.ac.uk/, [39]). Metagenomes were assembled via metaSPAdes with

default parameters, and contigs < 1000bp were removed. We did not also assemble the meta-

genomes with MEGAHIT, given the extra computational expense and methods complexity of

evaluating both assemblers for each dataset, along the improved accuracy of metaSPAdes ver-

sus MEGAHIT [3]. Read mapping and ResMiCo feature generation were conducted as done

for the simulation datasets.

Data preprocessing

Count features were normalized by coverage (the number of reads mapped to the position)

such that they are in the 0–1 range. For numerical features, we pre-computed mean and stan-

dard deviations using all contigs in the n9k-train dataset and saved these values. For all data-

setes, we standardized numerical features to set the mean to zero and the variance to one using

values computed on the training set. Missing values were replaced by zero (the new mean). We

summarize the preprocessing applied to each feature in Table A in S1 Text.

Since we observed that ResMiCo did not generalize well to insert size distributions substan-

tially deviating from the training dataset (Table E in S1 Text), we excluded metagenomes for

which the 0.05 and 0.95 quantiles of the mean insert size distribution lay outside the 0.02 and

0.98 quantiles of the mean insert size distribution of the n9k-train dataset, which are equal to

117 and 493, respectively.

Model and training

Architecture. The ResMiCo neural network (NN) architecture is shown in Fig 2. It

belongs to a class of deep convolutional residual neural networks. Residual connections enable

deeper (more layers) neural networks and more efficient training compared to convolutional

NNs [20]. Deeper models can capture more complex patterns spread over larger inputs. The

main building unit, depicted at the bottom of the figure, is the residual block, consisting of two

batch-normalized-convolutions [40] with a ReLu activation. The input of the residual block is

PLOS COMPUTATIONAL BIOLOGY ResMiCo: Increasing the quality of metagenome-assembled genomes with deep learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011001 May 1, 2023 6 / 20

https://sourceforge.net/projects/bbmap/
https://www.bioinformatics.babraham.ac.uk/
https://www.bioinformatics.babraham.ac.uk/
https://doi.org/10.1371/journal.pcbi.1011001


connected with the output by simple element-wise addition. Since convolutions are not pad-

ded, the last 2*(K − 1) positions in the residual input, where K is the convolution kernel size,

are cut off to match the output size. When the residual block is downsampling the data (by

using a stride of S = 2 in the first convolution), the residual input is downsampled with a K = 1

convolution of an identical stride.

Residual blocks with the same number of filters and identical output shapes are grouped

into residual groups. ResMiCo has 4 residual groups, with the center groups consisting of 5

residual blocks each, while the outside groups contain 2 residual blocks. Each of the last three

residual groups starts with a convolution that doubles the number of filters and halves the

input size using a stride S = 2. All layers use a ReLU activation, except for the last fully con-

nected layer, which uses a sigmoid activation. The output of the convolutional layers is

Fig 2. ResMiCo architecture. The input is first passed through multiple convolutional layers; then the convolved result is masked to eliminate the effect of

padding and passed through an average pooling layer, followed by two fully connected layers of sizes 128 × 50 and 50 × 1. The convolutional part consists

of a simple convolution, followed by four residual groups (RG) with 2, 5, 5, and 2 residual blocks, respectively. The bottom of the figure depicts the

structure of a residual block with a given number of features (F), kernel size (K), and stride (S). The first convolution in RG2, RG3, and RG4 halves the

input size (using a stride of S = 2) and doubles the number of filters, gradually from 16 to 128. B denotes the batch size, and M represents the maximum

contig length. The “14” in “BxMx14” represents the number of the selected features in the input to the neural network. Overall, ResMiCo has 562,573

parameters, of which 559,441 are trainable.

https://doi.org/10.1371/journal.pcbi.1011001.g002
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summarized along the spatial axis via global average pooling, resulting in an output shape that

depends only on the number of filters in the last convolutional layer (128 in our case) rather

than on the contig length, thus allowing ResMiCo to handle contigs of variable length. Contigs

in a batch are padded to the longest length, and the effects of padding are neutralized by creat-

ing a mask that is fed to the global average pooling layer. The resulting 128 features of the

global average pooling are fed into the final two layers: a fully connected layer with 50 neurons

and a one-neuron output layer with a sigmoid activation function.

Training. The model was trained on the n9k-train training dataset for 50 epochs. One

epoch is one pass of the entire training dataset through the algorithm. All misassembled contigs

were used as positive training examples. In contrast, we randomly selected a 10% subset at

every training epoch for the over-represented class of correctly assembled contigs, thus artifi-

cially increasing the positive sample rate to 24%. This helped to balance the dataset and reduce

the computational load during training. For contigs shorter than 20,000 base-pairs, the entire

contig is selected and zero-padded to the maximum batch length. For misassembled contigs

longer than 20,000 base-pairs, a random 20,000 base-pair interval around each breakpoint (as

identified by MetaQUAST) was selected. For long contigs with no misassemblies, a random

20,000 base-pair interval is selected.

During model training, the binary cross-entropy loss between the target and predicted out-

put was minimized by an Adam optimizer [41]. We used a batch size of 200 and an initial

learning rate of 0.0001 with exponential decay of 0.8 when plateauing at evaluation. Gradients

were clipped to a norm of 1 and a value of 0.5.

Model selection. We used 10% of the n9k-train dataset as a validation set for model selec-

tion (n9k-valid). AUPRC on the validation set was computed every second epoch; if the score

improved, a corresponding model was saved. The ResMiCo model described in this section

achieved the highest AUPRC on the n9k-valid dataset at Epoch 46. The list of optimized hyper-

parameters and the attempted values are provided in Table B in S1 Text.

Feature selection. Since ResMiCo uses a larger number of features than both DeepMAsED

and metaMIC, it is important to understand the amount that each feature, particularly features

unique to ResMiCo, contributes to model predictions. Borrowed from game theory, Shapley

values provide a principled way of explaining the predictions of machine learning models. We

approximated the Shapley values using the Deep Shap (SHAP) algorithm [42], a refined version

of DeepLIFT [43].

In order to be able to compute SHAP coefficients, we had to make some adjustments to

ResMiCo’s architecture: the input size was fixed, the padding was not masked, and the global

average pooling layer was replaced by local pooling with a window covering the whole length.

SHAP requires as input background samples as well as samples for which the predictions will

be explained. We randomly sampled 200 contigs for the background and 200 contigs for expla-

nations (100 correctly assembled and 100 misassembled) from the n9k-novel dataset. In Fig L

in S1 Text, we show that SHAP led to the same conclusions when using subsets of the 200 con-

tigs, suggesting 200 is sufficient for this analysis.

Fig 3 shows features ranked by their importance. For comparison, we also marked features

present in the ResMiCo pipeline that were used by metaMIC and DeepMAsED. Feature

names are explained in Table A in S1 Text. The top 14 features were selected as input to the

ResMiCo model. We included at least one feature of each kind: mapping quality, alignment

score, etc. Limiting the number of features resulted in significantly reduced training time.

Predictions. To predict the misassembly probability for contigs longer than 20,000 base

pairs, we split the contig into chunks of 20,000 base pairs, with a stride (overlap) of 500 bases

in order to mitigate problems when the breakpoint is located at the very end of a chunk and

two consecutive chunks individually appear as correctly assembled contigs. The prediction for
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the contig was obtained by selecting the maximum score across all chunks. For contigs shorter

than 20,000 base pairs, the entire contig is given as input.

Comparison to the state of the art

We analyzed the performance of our proposed model in relation to the following existing

methods:

Fig 3. Feature ranked by their importance. The lighter color marks features used by the ResMiCo model. We denote features used by DeepMAsED and

metaMIC with a star outline and filled star, respectively. mapq and al_score are mapping quality and alignment score, as defined by Bowtie2. num_snp
is the number of SNVs among aligned reads relative to the reference. num_query_[ATGC] is the base composition of aligned reads at the target position.

num_orphan is the number of aligned reads in which only one of the pairs aligns properly. num_proper is the number of read pairs that align properly,

as defined by Bowtie2. num_proper_snp is properly aligned reads with a SNV relative to the reference at the target position. ref_base is the reference

base [ATGC] at the target position. Error bars correspond to the stdev computed over 5 runs.

https://doi.org/10.1371/journal.pcbi.1011001.g003
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• metaMIC [44]—applied with default parameters, except the minimum contig length was

reduced from 5 kbp to 1 kbp, in order to test on the same data as the other methods;

• DeepMAsED [18]—we followed the feature generation scheme and the trained model pro-

vided by the authors;

• ALE [45]—we aggregated four positional sub-scores that ALE outputs (depth, place, insert,

and k-mer log-likelihoods) with the same thresholds defined in [18]. The contig misassembly

probability is computed as the number of positions with the sub-score below the threshold

divided by contig length;

• Random—we assigned a random misassembly probability to each contig. This results in a

horizontal line on a precision-recall curve plot with a precision equal to the prevalence of

misassemblies in the dataset.

Since all datasets suffer from a class imbalance in the detriment of positive samples (misas-

sembled contigs, Table 2), we selected the area under the precision-recall curve (AUPRC) as a

metric to measure performance, rather than the area under the receiver operator curve

(AUROC) [46]. However, AUPRC is not invariant to the prevalence of positive samples, so we

used AUROC to compare the model’s performance across datasets with different percentages

of positive samples.

Benchmarking ResMiCo resource requirements

We benchmarked ResMiCo with direct comparisons between utilizing one CPU versus one

GPU. On the CAMI gut dataset, ResMiCo was > 2x faster with a GPU versus a CPU (108 ± 0.7

versus 38.7 ± 10.3 contigs per second). While a GPU is substantially faster than a CPU, one

could still process nearly 140,000 contigs in 1 hour with a single CPU. Nonetheless, we note

that multiple GPUs are recommended for training the model on large datasets, given that

training on CPUs would not be feasible for large datasets, as in this work.

Results

ResMiCo outperforms existing models and is robust to metagenome

novelty

We first tested all models against the n9k-novel dataset, which consisted of family-level taxo-

nomically novel genomes relative to any in the training dataset. ResMiCo outperformed

DeepMAsED, ALE, and metaMIC by a large margin, with an AUPRC of 0.76 versus 0.25 for

DeepMAsED, the second-best performing model (Fig 4A). Note that DeepMAsED’s AUPRC

score dropped from 0.57 (reported in [18]) to 0.25 due to a higher variability within the n9k-
novel test set. Importantly, ResMiCo’s AUPRC did not substantially differ between the training

validation (0.73) and the n9k-novel dataset (0.76), thereby demonstrating that the model is

robust to taxonomic novelty. ResMiCo’s AUPRC score typically varied from 0.6 to 0.8 across

the various simulation parameter combinations (Fig H in S1 Text). The most challenging set-

tings for ResMiCo were a low community richness and a low sequencing depth. We also

found that the contig length distribution explained much of the variability in ResMiCo model

performance. For the simulations with a median contig length longer than 2000bp, the

AUPRC was between 0.4 and 0.6 (Fig E in S1 Text). In terms of misassembly type, ResMiCo

performance was lowest for inversions (Fig G in S1 Text).

We simulated another test dataset (n2k-novel-intraspecies) with more genomes per species

(33.3 ± 115) versus n9k-novel (2.4 ± 13.7). ResMiCo performance on n2k-novel-intraspecies
declined relative to n9k-novel (AUPRC = 0.487, AUROC = 0.955), which was likely due to an
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increase in inter-genome translocations among closely related taxa. Still, ResMiCo greatly out-

performed the closest competitor: metaMIC (AUPRC = 0.080, AUROC = 0.805).

We next evaluated ResMiCo on the CAMI gut, oral, and skin metagenome datasets, which

are commonly used simulation datasets for the evaluation of metagenomics analysis tools. The

CAMI datasets differed substantially from n9k-train and n9k-novel in regards to coverage

(sequencing depth) and class imbalance (percent misassemblies) (Table 2). Moreover, refer-

ence genomes used for the n9k-train and n9k-novel datasets were selected from the entire

GTDB, while the CAMI datasets consisted of biome-specific reference genomes [24]. Regard-

less of these differences, ResMiCo’s performance remained largely unaffected, and the model

still clearly outperformed all competitors (Fig 4B, 4C and 4D). Given that the 5 synthetic data-

sets differ substantially in true positive rates (Table 2), we computed the AUROC score, which

is unaffected by such differences. Fig 4E shows that the AUROC remains relatively constant

across the n9k-train validation, n9k-novel, and the CAMI datasets.

We also evaluated ResMiCo on two CAMI datasets that simulate non-human biomes:

CAMI-marine and CAMI-plant-associated. The performance of ResMiCo was comparable to

the human-associated CAMI datasets (CAMI-marine: AUPRC = 0.831, AUROC = 0.990;

CAMI-plant-associated: AUPRC = 0.611, AUROC = 0.965), suggesting that ResMiCo can gen-

eralize to metagenomes from highly varying biomes.

Fig 4. ResMiCo performance evaluation. Precision-recall curves and the corresponding AUPRC scores for ResMiCo and four baseline methods

(metaMIC, DeepMAsED, ALE, Random) applied on the (A) nk9-novel, (B) CAMI gut, (C) CAMI oral, and (D) CAMI skin datasets. (E) Receiver

operating characteristic curve and the corresponding AUROC scores for ResMiCo applied on five datasets: n9k-train (validation set only), nk9-novel, and

three CAMI datasets.

https://doi.org/10.1371/journal.pcbi.1011001.g004
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Lastly, we assessed 2 mock community datasets: BMock12 [33] and MBARC-26 [34]. While

existing mock communities are orders of magnitude lower in richness than complex commu-

nities, such as soil or mammalian gut microbiomes, and usually completely lack intra-species

genomic diversity, mock communities do provide the best available real-world, ground-truth

datasets. ResMiCo performance was in line with our expectations based on our simulations of

low community richness (Fig H and I in S1 Text), with an AUPRC of 0.475 and an AUROC of

0.951 when averaged across the 2 datasets (Table H in S1 Text). These findings demonstrate

that ResMiCo can generalize well to real-world metagenomic data.

Improvement of assembly quality after filtering ResMiCo-identified

misassemblies

A primary function of ResMiCo is to identify misassembled contigs so that they can be

removed from the assembly. To illustrate the effects of such filtering, we discarded contigs in

n9k-novel with a ResMiCo score of>0.8, which corresponds to a recall and precision of 0.72

and 0.65, respectively. Given that truly misassemblied contigs are known for the n9k-novel
dataset, we could measure the true error rate before and after filtering. Filtering according to

ResMiCo scores resulted in a reduction of the true error rate from 4% to 1% while keeping the

contiguity metrics virtually unmodified (Table 3).

We also evaluated whether the MetaQUAST-defined “genome fraction” (the percentage of

aligned bases in the reference genome) substantially declined as a result of filtering ResMiCo-

identified misassemblies. For both the CAMI-gut and CAMI-marine datasets, the genome frac-

tion did not substantially change after filtering (Wilcox, P� 0.66; Fig K in S1 Text).

Assembly optimization based on ResMiCo-identified error rates

Since ResMiCo generates a score for each contig, we could use the number of contigs with a

score above a certain threshold to estimate the misassembly rate of a given contig set (we used

>0.8 in our experiments). The estimated misassembly rate could then be used to optimize

metagenome assembler parameters (e.g., k-mer lengths) for real metagenomes, which lack

ground-truth data. Assembler hyperparameters are generally optimized simply based on total

contiguity (e.g., N50) or possibly via CheckM after binning contigs into MAGs. However, such

methods do not directly assess contig assembly accuracy. In order to use ResMiCo for this

application, model performance must be robust to assembler hyperparameter settings outside

of the training distribution.

We tested ResMiCo’s performance as an oracle for assembler performance by simulating

datasets in a similar fashion as n9k-novel, but with 6 different k-mer length hyperparameter

settings for both MEGAHIT and metaSPAdes (see Methods). For each of the 6 k-mer length

combinations, we generated akin to n9k-novel but utilized only 2 community richness (50 and

3000) and 2 sequencing depth (2M and 8M) settings. The rest of the simulation parameters

were fixed: genome abundance distribution with σ = 1, read lengths of 150 bps, insert size dis-

tribution of mean = 270 & sd = 50, and the “HiSeq 2500 error” error profile. The percentage of

actual misassembled contigs differed from <1% to 30% depending on the assembler and the

Table 3. Low-quality contig filtering. Statistics before and after filtering low-quality contigs with the ResMiCo model applied on the n9k-novel test set. The ResMiCo

score threshold was set to>0.8. Misassemblies length is the sum of misassembled contig lengths divided by the total number of bases.

Dataset True error rate Misassemblies length N contigs N50 Mean length Median length

Original 4.0% 4.3% 6779977 3919 2911 1510

ResMiCo 1.2% 1.8% 6474434 3917 2914 1522

https://doi.org/10.1371/journal.pcbi.1011001.t003
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chosen k-mer set applied on the same set reads (Fig 5). We then compared the percentage of

misassembled contigs with the percentage estimated by ResMiCo for each of the four commu-

nity richness/sequencing depth combinations (6 k-mer sets per combination).

ResMiCo was able to accurately rank the assemblies by misassembly rate for all four simula-

tion parameter combinations, achieving a Pearson correlation of 0.9. (Fig 5A). While ResMiCo

has a tendency to overestimate the misassembly rate with a selected prediction threshold, and

the ratio between predicted and true misassembly rate depends on sample richness and

sequencing depth (Fig J in S1 Text), the ranking remained consistent in all considered scenar-

ios. At the same time, for the most well-assembled metagenomes (low richness and high

sequencing depth), we observed a correlation of 0.9 between N50 and true error rate (Fig 5B),

which suggests that the high contiguity achieved together with high misassembly error rate.

However this relationship does not hold for the samples simulated with other parameters,

making possible to search for assembler parameters that produce good quality in terms of con-

tiguity and error rate simultaneously. Consequently, we propose that ResMiCo can be used to

rank assembler parameters for real-world metagenome data and identify parameters leading

to the lowest misassembly rate.

Latent space visualization

To get an intuition on how ResMiCo internally represents data, we studied the output of the

global average pooling layer. At that point, the input data is mapped into a 128-dimensional

space. We used UMAP [49] with default parameters to project the embeddings into a two-

dimensional space. UMAP was fitted on the n9k-train, n9k-novel, and CAMI-gut datasets. We

used 10,000 randomly sampled contigs from each of the three datasets.

The latent space visualization indicates that n9k-train has more variability (due to the

extensive set of parameters used in the simulations) than CAMI-gut, which is concentrated in

a small subspace, while misassembled contigs from both datasets are generally clustered

together (Fig 6A and 6B). Note that since ResMiCo has two fully connected layers following

the visualized global average pooling, the two classes are not expected to be completely separa-

ble at this stage. Both community richness and average contig coverage strongly partition the

latent space (Fig 6C and 6D).

Fig 5. Misassembly (error) rate produced by MEGAHIT and metaSPAdes assemblers with six different k-mer sets. k-mer set names denote the k-

mer lengths used for the assembly. (A) ResMiCo-identified error rate (y-axis) correlates with the true error rate. (B) N50 size and the true error rate are

orthogonal measures of the metagenome quality.

https://doi.org/10.1371/journal.pcbi.1011001.g005
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ResMiCo detects a 3–12% misassembly rate in real-world metagenomes

We applied ResMiCo to published gut metagenome datasets from multiple studies in order to

assess the prevalence of misassembled contigs in publicly available metagenomic data. We uti-

lized three datasets of gut samples: UHGG, TwinsUK, and Animal-gut. UHGG consisted of a

random subset of gut metagenomes associated with MAGs in the UHGG database, while

TwinsUK and Animal-gut consisted of gut metagenomes from westernized adults and a broad

taxonomic diversity of vertebrates, respectively (see Materials and methods). We also utilized 2

marine meatgenome datasets (Pinnell2019 and MarineMetagenomeDB) and 2 from soil (Man-
tri2021 and TerrestrialMetagenomeDB).

ResMiCo detected an average of 3.4%, 6%, and 8.8% misassembled contigs across all meta-

genome assemblies in the vertebrate-associated datasets: TwinsUK, Animal-gut, and UHGG,

respectively. The marine and soil datasets contained more misassemblies (MarineMetagen-
omeDB: 8.3%, Mantri2021: 11.5%, Pinnell2019: 8.6%, and TerrestrialMetagenomeDB: 12.5%).

Overall, we evaluated 8,235,502 contigs, of which 6% are misassembled according to

ResMiCo’s predictions (� 0.8).

We provide an estimated the misassembly rate for each metagenome in S1 Table. Averaged

across all metagenomes, the misasssembly rate was 7% ± 5.7 (sd). The high variability among

Fig 6. Contig embeddings learned by ResMiCo, projected using UMAP. The first row shows (A) all contig embeddings and (B) misassembled contig

embeddings for the n9k-train, the n9k-novel, and the CAMI. gut datasets. In the second row, contigs from the n9k-train dataset are colored (C) by the

richness of the simulated community they originated from and (D) by their average coverage.

https://doi.org/10.1371/journal.pcbi.1011001.g006
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samples and datasets suggests that sample-specific factors (e.g., community taxonomic com-

plexity or variability among NGS library preparations) can substantially influence misassembly

rates. Note that we did not apply ResMiCo on the minority of metagenomes that failed to meet

our inclusion criteria (see the Materials and methods).

Discussion

We addressed the problem of reference-free metagenome quality evaluation by developing

ResMiCo, a deep residual neural network that enables accurate misassembled contig identifi-

cation. ResMiCo provides an efficient data generation pipeline (see Text G in S1 Text), which

transforms raw reads and contigs into positional features that are utilized by a residual neural

network to predict if a given contig was misassembled. The ResMiCo model was trained and

tested on datasets of unprecedented size and complexity (n9k-train and n9k-novel contain 210

Gbps of assembled contigs), which we have made freely available as a resource for further

model development and benchmarking (see Materials and methods). These datasets can be

expanded, or new datasets can be generated with ResMiCo’s dataset simulation pipeline,

which allows for straightforward, efficient data generation on high-performance computing

systems.

ResMiCo achieved a 0.76 AUPRC score on the taxonomically novel holdout test set (n9k-
novel), which is an exceptional improvement over the state of the art (Fig 4A). The robustness

of ResMiCo to family-level taxonomic novelty clearly demonstrates that it can be applied to

metagenomes that include substantial taxonomic novelty, such as gut microbiomes from

poorly studied animal species [28].

When tested on the 3 human and 2 non-human CAMI datasets, ResMiCo showed similarly

high performance and again substantially outperformed the state of the art (see Results and Fig

4B, 4C and 4D). These results show that ResMiCo can generalize to third-party, biome-specific

datasets, despite our use of a biome-agnostic training dataset consisting of genomes randomly

selected from the entire GTDB.

ResMiCo is primarily designed to increase the quality of existing assemblies, and we dem-

onstrated that filtering out contigs with high scores from the holdout test set resulted in a four-

fold decrease in the true error rate without a substantial decline in contiguity (Table 3).

When applied to the real-world metagenome datasets, ResMiCo detected 7% ± 5.7 (sd) mis-

assembled contigs per metagenome. This estimate is substantially higher than the 1% misas-

sembly rate previously estimated via DeepMAsED [18], which may be due to differences in

model accuracy and the increased number and variety of real-world metagenomes used for

our estimation.

We also show that ResMiCo can be applied to select assembler parameters corresponding

to the best assembly accuracy for a given unlabeled dataset (Fig 5). Researchers can thus opti-

mize assembler parameters for obtaining high accuracy on their specific real-world metagen-

omes without relying on benchmarks from simulated datasets [24].

ResMiCo’s vastly improved performance relative to other reference-free misassembly detec-

tion methods is likely due to three main factors. First, ResMiCo was trained on a very large and

varied dataset. Even after re-implementing the samtools pileup algorithm to gain a 10x speed

improvement, generating the n9k-train dataset required nearly 40,000 CPU hours to produce

all 4,560 simulation parameter combinations (Table 1). For model training, we used 52.5M

contigs that total 159 Gbps. In contrast, the DeepMAsED training dataset is 100x smaller, while

no such training dataset information is available for metaMIC [44]. The UMAP projections of

the contig embeddings for the n9k-train, the n9k-novel, and the CAMI-gut datasets (Fig 6A)

show that ResMiCo’s training data comprises a substantial portion of the input space. Second,
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ResMiCo was trained on a larger number of carefully selected features; although ResMiCo uses

only the top 14 features in Fig 3, we generated and tested a total of 23 features (Table A in S1

Text) before selecting the 14 best performing ones. In comparison, DeepMAsED used 8 fea-

tures for training, while metaMIC used 4 types of features, and as we have shown, both models

failed to identify the features most relevant to misassembly detection. Third, introducing resid-

ual blocks, combined with the larger dataset, allowed us to train a deeper convolutional model,

which has been shown to have better performance relative to traditional, shallower CNNs [20].

Long range (up to 20,000 bp) signal from raw positional features is transformed by the residual

blocks, such that ResMiCo is able to internally detect a breakpoint (Fig B in S1 Text) and iden-

tify misassembled contigs based on the strength of this signal.

While our extensive evaluations showed that ResMiCo is robust to many sources of dataset

novelty, we did find that the model is sensitive to the mean insert size distribution (Table E in

S1 Text). Therefore, prior to evaluation, we removed all metagenomes falling substantially out-

side of the n9k-train insert size distribution. While filtering by insert size may lead to a biased

selection of real-world metagenomes, Illumina sequencing libraries often vary substantially in

fragment length and subsequently insert size distribution, even within the same sequencing

run. Such variation can result from inaccuracies in DNA quantification and reagent aliquot-

ing. ResMiCo automatically detects if the insert size distributions of the evaluated data differ

substantially from those during training and warns users that results may be less accurate. If

needed, researchers can simulate more training data that includes the desired insert size range

with the ResMiCo simulation pipeline.

Improving performance robustness across changing distributions, sometimes termed out-

of-distribution (o.o.d.) generalization [50–52], could be an interesting direction for follow-up

work. While deep learning has produced impressive results in a range of domains, its reliance

on independent and identically distributed (i.i.d.) training data can be a problem [53–55].

Although a range of attempts exist to improve o.o.d. generalization, empirical risk minimiza-

tion still is the method of choice in practice [56, 57], especially when used with a dataset of

maximal diversity, as done in our study.

Besides improving o.o.d., there are some other areas for further improvement. First, more

research is needed to evaluate the quality of contigs assembled from error-prone long reads

(e.g., Oxford Nanopore). Second, it is worth investigating if ResMiCo can be adapted to indi-

cate the location of breakpoints in misassembled contigs. Third, rather than using binary

labels, ResMiCo could be trained on misassembly type (e.g., inversion or translocation) to pro-

vide more detailed predictions. Fourth, while we did train on a very broad selection of

genomes from across the bacterial and archaeal tree of life, future training and evaluation

could be expanded to include eukaryotes and viruses.

In summary, ResMiCo is a major advancement in the challenge of reference-free metagen-

ome quality assessment. Existing methods addressing this problem have not been widely used,

likely due to concerns regarding whether such approaches can generalize to real-world data-

sets. Our extensive testing shows that ResMiCo generalizes well across a large parameter space

that includes taxonomy, community abundances, and many sequencing parameters. Wide

adoption of ResMiCo could substantially improve metagenome assembly quality for individual

studies and databases, which is critical for obtaining accurate biological insights from metage-

nomic data.
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