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Abstract

We introduce a new spatial statistic, the weighted pair correlation function (wPCF). The

wPCF extends the existing pair correlation function (PCF) and cross-PCF to describe spatial

relationships between points marked with combinations of discrete and continuous labels.

We validate its use through application to a new agent-based model (ABM) which simulates

interactions between macrophages and tumour cells. These interactions are influenced by

the spatial positions of the cells and by macrophage phenotype, a continuous variable that

ranges from anti-tumour to pro-tumour. By varying model parameters that regulate macro-

phage phenotype, we show that the ABM exhibits behaviours which resemble the ‘three Es

of cancer immunoediting’: Equilibrium, Escape, and Elimination.

We use the wPCF to analyse synthetic images generated by the ABM. We show that the

wPCF generates a ‘human readable’ statistical summary of where macrophages with differ-

ent phenotypes are located relative to both blood vessels and tumour cells. We also define a

distinct ‘PCF signature’ that characterises each of the three Es of immunoediting, by com-

bining wPCF measurements with the cross-PCF describing interactions between vessels

and tumour cells. By applying dimension reduction techniques to this signature, we identify

its key features and train a support vector machine classifier to distinguish between simula-

tion outputs based on their PCF signature. This proof-of-concept study shows how multiple

spatial statistics can be combined to analyse the complex spatial features that the ABM gen-

erates, and to partition them into interpretable groups.

The intricate spatial features produced by the ABM are similar to those generated by

state-of-the-art multiplex imaging techniques which distinguish the spatial distribution and

intensity of multiple biomarkers in biological tissue regions. Applying methods such as the

wPCF to multiplex imaging data would exploit the continuous variation in biomarker intensi-

ties and generate more detailed characterisation of the spatial and phenotypic heterogeneity

in tissue samples.
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Author summary

Multiplex images provide exquisitely detailed information about the spatial distribution

and intensity of up to 40 biomarkers within two-dimensional tissue regions, creating chal-

lenges and opportunities for quantitative analysis. Although stain intensities are measured

on a continuous scale, they are typically converted into discrete labels to simplify subse-

quent spatial analysis. In this paper we propose a new spatial statistic, the weighted pair

correlation function (wPCF), which exploits, rather than neglects, the continuous varia-

tion in stain intensity contained in multiplex images, and can characterise both spatial

and phenotypic heterogeneity.
As proof-of-principle, we apply the wPCF to synthetic data that resemble multiplex

images of solid tumours. We generate data from an agent-based model (ABM) that simu-

lates macrophage-tumour interactions. The wPCF shows how the continuous label

describing macrophage phenotype is spatially related to categorical labels associated with

tumour cells and blood vessels. We demonstrate that correlation functions can categorise

spatial relationships in a manner which is interpretable and quantitative.
The methods we present can be used to analyse both ABM simulations and multiplex

imaging data, with applications that go beyond macrophage phenotype to include other

biological processes that exhibit continuous variation (e.g., cancer cell stemness, biomark-

ers for T-cell exhaustion, and levels of oxygenation).

Introduction

Tumours are highly heterogeneous structures, containing diverse populations of tumour cells,

blood vessels, stromal cells and immune cells. The immune landscape within solid tumours is

complex and varied [1, 2], with both innate and adaptive immune cells implicated in pro- and

anti-tumour responses [3]. For example, high densities of tumour associated macrophages

have been associated with poor prognosis in breast, prostate and head and neck cancer and

with good prognosis in colorectal and gastric cancer [4, 5]. These differences may be due to

the relative numbers of pro-tumour (‘M1’) and anti-tumour (‘M2’) macrophages in these can-

cers, but they may also be due to their morphology and spatial distribution [6–9]. For example,

in non-small cell lung cancer, high infiltration rates of M1 macrophages into tumour islets, but

not tumour stroma, have been associated with increased patient survival [10].

While macrophages are often classified as either M1 or M2, individual macrophages may

exhibit a variety of behaviours. Further, their overall behaviour, or phenotype, may change

over time in response to multiple microenvironmental cues [11]. Macrophage phenotype is

often defined in terms of expression levels of multiple functional markers such as CD68,

CD163, CD204 and CD206 [9]. It is difficult to resolve this level of heterogeneity using tradi-

tional immunohistochemistry (IHC), which typically permits only one or two markers per

image. By contrast, multiplex imaging modalities, such as multiplexed IHC and imaging mass

cytometry (IMC), can map expression levels of up to 40 different cellular markers and, as such,

resolve the spatial position and phenotype of individual cells, including macrophages [7, 12–

14].

In Fig 1A we present a typical multiplex image which shows spatial variation in the intensity

levels of three macrophage markers (CD68, CD163 and CD206), reproduced from [12]. In Fig

1B we show how the average intensity levels of these markers are used to classify segmented

cells. Defined threshold intensities are used to determine whether cells are negative (-), positive

(+) or extremely positive (++) for a particular marker. The classifications are combined to
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identify seven macrophage subtypes: CD68+, CD68++CD163+, CD68+CD163+, CD68

+CD163+CD206+, CD68+CD206+, CD68+CD206++, and CD68+IRF8+. By associating one

of these classifications with the centroid of each macrophage, a spatial map of macrophage

subtypes can be generated and used for subsequent spatial analyses. Such analyses may include

correlations of cell densities, measurements of distances between cells, or more complex spatial

statistics such as pair correlation functions (PCFs) which account for spatial relations between

points [15]. Fig 1C shows how the average intensity levels of CD68, CD163 and CD206 associ-

ated with each macrophage subtype vary across n = 35 patients (data reproduced from [12]).

Variation in marker levels occurs both within a tissue sample and across patients.

Stratification of macrophage populations into discrete classes (e.g., M1 and M2 classes, or

the seven subtypes shown in Fig 1), neglects the full range of information available from

Fig 1. Typical process for analysing macrophage phenotypes in multiplex imaging. A: A multiplex image showing macrophages of varying phenotypes,

reproduced from Fig 1b in [12]. Expression levels of different functional markers (e.g., CD68, CD163, CD206) are shown as differing intensities of separate

stains, visualised as a false-colour image. (Key: Orange: CD68+CD206++, Brown: CD68+CD206+, Green: CD68+, Yellow: CD68+IRF8+, Dark red: CD68+

+CD163+, Red: CD68+CD163+, and Purple: CD68+CD163+CD206+). B: Schematic indicating how continuous stain intensities represented in a multiplex

image are converted into different categories indicating macrophage phenotype. In this example, cell colours in the multiplex image are converted into

stain intensities for CD68, CD163 and CD206. Thresholds are assigned to each stain to distinguish whether a cell is negative, positive, or extremely positive,

for each stain. Each macrophage is then assigned one of 7 different potential phenotypes, based on combinations of positivity or negativity for each stain. C:

Data reproduced from Fig 1h in [12]. Points represent the average stain intensity of CD68, CD163, and CD206 measured in macrophages assigned to each

of the seven phenotype subtypes in each of n = 35 patients. Note that macrophages from the same subtype in different patients have differing levels of

intensity of each marker, so the same categorical label may be applied to macrophages with a wide range of continuous expression levels. Fig 1 contains

elements adapted from Fig 1 of https://doi.org/10.1038/s41467–019-11788-4, which is published under a Creative Commons Attribution 4.0 International

License.

https://doi.org/10.1371/journal.pcbi.1010994.g001
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multiplex images. In this paper, we show how resolving continuous variation in cell labels cla-

rifies the relationship between macrophage phenotype and spatial heterogeneity in solid

tumours. To achieve this, we introduce the weighted pair correlation function (wPCF), a new

spatial statistic which accounts for continuous variation in labels such as cell subtype, pheno-

type, or marker expression levels. While similar ‘marked point patterns’ have been studied in

ecology [16–18] and astronomy [19, 20], few methods consider the spatial correlation of con-

tinuous marks. Existing methods, such as Stoyan’s mark correlation function [16, 19, 21, 22]

or the mark variogram [18, 23], typically only depend on the distance r between point pairs

and quantify the correlation between marks at distance r. For example, the mark correlation

function kmm determines whether the marks of two points separated by a distance r are spa-

tially correlated: kmm(r)> 1 indicates that the marks of points separated by r are larger than

the average mark, while kmm(r)< 1 indicates that they are smaller than the average [16]. The

mark variogram can be used to test the similarity of two marks, separated by a distance r [18,

23]. While these methods are powerful, they are designed to evaluate the similarity of marks

on points separated by a fixed distance, rather than to consider the spatial correlation of points

with specified marks. In biological applications, a relevant problem is to determine whether

points with a particular mark, or range of marks, are correlated at distance r. The wPCF

addresses this, by identifying spatial interactions between points of one type and those whose

mark is within a range of target values.

We test and validate the wPCF using synthetic data generated from a two-dimensional

agent-based model (ABM) of tumour growth that accounts for tumour-macrophage interac-

tions and dynamic changes in macrophage phenotype. ABMs are well-suited for generating

labelled point pattern data, since each cell is represented by an agent whose behaviour is deter-

mined by subcellular variables (describing, for example, cell cycle state [24] or phenotype),

and its interaction with the environment (e.g., through force laws describing mechanical inter-

actions between cells). These subcellular variables can be used to represent marker expression

levels, meaning that each agent is associated with a point representing its cell centre together

with a collection of continuous or categorical labels. Data from such ABMs can be analysed

using PCFs [25–30] or cross-PCFs [31, 32], an extension of the PCF which accounts for inter-

actions between cells of different types.

The off-lattice, force-based ABM that we develop is motivated by an experimental study by

Arwert et al [33] which investigates how macrophage phenotype depends on spatial location

relative to a tumour mass and nearby vasculature, and how the spatial distribution of the dif-

ferent macrophage phenotypes influences the tumour’s growth dynamics. In brief, anti-

tumour macrophages extravasate from blood vessels and migrate towards clusters of tumour

cells, in response to tumour-derived signals such as colony stimulating factor-1 (CSF-1). Expo-

sure to TGF-β in the tumour increases macrophage sensitivity to C-X-C chemokine ligand

type 12 (CXCL12) and drives them towards a pro-tumour phenotype. At the same time,

CXCL12 produced by perivascular fibroblasts biases the movement of these M2 macrophages

towards neighbouring blood vessels. As they migrate out of the tumour, the pro-tumour mac-

rophages express epidermal growth factor (EGF), a tumour cell chemoattractant. In this way,

M2 macrophages facilitate metastasis by guiding the tumour cells towards the vasculature [33,

34].

The hybrid ABM developed in this paper builds on existing differential equation models

[35, 36] and ABMs [36, 37] that focus on specific tumour-macrophage interactions, such as

the CSF-1/EGF paracrine loop that mediates cross-talk between tumour cells and macro-

phages. Our model accounts for macrophage extravasation in response to tumour-derived

CSF-1, their subsequent tumour infiltration, and the CSF-1/EGF paracrine loop that mediates

cross-talk between tumour cells and macrophages. Models of macrophage-tumour

PLOS COMPUTATIONAL BIOLOGY Quantification of spatial and phenotypic heterogeneity in an ABM of tumours/macrophages

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010994 March 27, 2023 4 / 27

https://doi.org/10.1371/journal.pcbi.1010994


interactions often view macrophages as a homogeneous population [38, 39], or account for

multiple macrophage subtypes (typically M1 and M2) [40–43] and their interactions with T-

cells [44–46]. Eftimie [47] and El-Kenawi et al. [48] have developed models that view macro-

phage phenotype as a continuous variable whose dynamics are governed by environmental

cues, such as pH. We represent macrophage phenotype as a continuous variable, p, whose

dynamics depend on local levels of TGF-β and determine macrophage behaviour.

We vary ABM parameters, and show that it generates a range of spatial patterns and quali-

tative behaviours that resemble ‘The Three Es of cancer immunoediting’ [49]. In particular, as

we vary model parameters associated with the rate of macrophage extravasation and their che-

motactic sensitivity to CSF-1, we observe tumour Elimination, Escape, and Equilibrium. We

analyse simulation outputs at a fixed timepoint using wPCFs and cross-PCFs. We explain how,

taken together, wPCFs and cross-PCFs provide a description of simulation outputs which is

both quantitative and interpretable. We then show how the spatial statistics can be combined

and analysed using principal component analysis (PCA) to identify the key features that char-

acterise Elimination, Escape, and Equilibrium for our ABM simulations. We show further how

the principal components can be used to classify unseen data from ABM simulations. More

generally, this study serves as a powerful proof of concept: it shows how combinations of

wPCFs and cross-PCFs could be used to accurately classify the complex spatial and phenotypic

patterns formed by cells in multiplex images, without manual thresholding of marker

intensities.

The remainder of the paper is structured as follows. We first describe our ABM, emphasis-

ing those features which make it appropriate for generating synthetic imaging data. We intro-

duce the wPCF and illustrate how it can be interpreted as a series of cross-PCFs which vary

continuously with the label of interest, here macrophage phenotype. We then apply the wPCF

to synthetic data generated from our ABM, and show that it provides a more detailed descrip-

tion of the relationship between macrophage phenotype and spatial location than cross-PCFs.

We define a ‘PCF signature’, consisting of two wPCFs and a cross-PCF, which describes the

spatial relationships between blood vessels, tumour cells, and macrophages of each phenotype.

The signature can be interpreted as a high-dimensional vector, and we apply principal compo-

nent analysis (PCA) to reduce its dimensionality. We demonstrate a proof-of-concept classifi-

cation algorithm by using the first 100 principal components to train a simple classifier which

distinguishes between simulation outputs that correspond to the three Es of immunoediting

(i.e., Escape, Equilibrium and Elimination). Finally, we calculate PCF signatures for dynamic

ABM data, and show that a single simulation may transition between tumour Equilibrium,

Escape and Elimination at different timepoints.

Materials and methods

Agent-based model (ABM)

We present a 2D, multiscale, off-lattice ABM which extends an existing model of macrophage

infiltration into tumour spheroids by accounting for continuous and dynamic variation in

macrophage phenotype [30, 50]. The new model simulates a growing tumour embedded in a

small tissue region in vivo, and includes phenotype-dependent interactions between macro-

phages, blood vessels and tumour cells. We outline the ABM here, and refer the interested

reader to S1 Appendix for details of the implementation and default parameter values. The

ABM is implemented within the open source Chaste (Cancer, Heart and Soft Tissue Environ-

ment) modelling environment [51–53].

Overview. The ABM distinguishes four cell types: stromal cells, tumour cells, necrotic

cells, and macrophages. Their dynamics are influenced by five diffusible species: oxygen (ω),
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CSF-1 (c), CXCL12 (ξ), TGF-β (g) and EGF (�). In the 2D Cartesian geometry, blood vessels

are represented by fixed points which do not compete for space with the cell populations and

which act as distributed sources of oxygen [54]. A schematic of the ABM is presented in Fig 2.

Following [55], critical oxygen thresholds for hypoxia (ostr
H and otum

H ) and necrosis (ostr
N and

otum
N ) relate the rates of cell cycle progression of stromal and tumour cells to local oxygen levels

(see Fig 2A for details). For example, if, at time t> 0, otum
N < oðx; tÞ < otum

H , then the cell cycle

of a tumour cell at position x will immediately halt and remain paused until the local oxygen

concentration rises above the tumour hypoxic threshold. If, however, the oxygen concentra-

tion falls below the tumour necrosis threshold, then the cell becomes necrotic (this switch is

Fig 2. Schematic summarising the key interactions that are included in the agent based model. A: Oxygen is supplied by blood vessels and consumed by

stromal cells and tumour cells. Cell-cycle progression is determined by a cell’s local oxygen concentration: a cell may be ‘proliferative’ (and progress

through its cell cycle), ‘hypoxic’ (the cell cycle is temporarily paused until oxygen concentrations return to a sufficiently high level) or ‘necrotic’ (the cell

becomes necrotic cell and degrades). Cell cycles also pause if there is insufficient space available for proliferation. B: Macrophage behaviour depends on

phenotype p, modulating their rates of tumour cell killing, EGF production, and chemotactic sensitivity to gradients of CSF-1 and CXCL12. C: Forces

acting on different cell types. Macrophages are subject to mechanical forces due to interactions with nearby cells, and random forces which simulate their

exploration of their environment as highly motile cells. Macrophages also experience chemotactic forces that are directed up spatial gradients of CSF-1 and

CXCL12, and whose magnitude depends on p. Tumour cells experience mechanical forces due to interactions with neighbouring cells, and chemotactic

forces in the direction of increasing EGF. Stromal cells experience mechanical forces due to interactions with neighbouring cells. Necrotic cells experience

these interaction forces, which decrease in magnitude as they decrease in size. All cells experience a drag force. D: Summary of the phases of macrophage-

mediated tumour cell migration in our ABM. i) M1 macrophages extravasate from blood vessels in response to CSF-1. ii) M1 macrophages migrate into the

tumour mass in response to CSF-1, where they may kill tumour cells. iii) Exposure to TGF-β causes macrophages to adopt an M2 phenotype. iv) M2

macrophages produce EGF, which acts as a chemoattractant for tumour cells. v) M2 macrophages migrate towards blood vessels, in response to CXCL12

gradients. E: Schematic summarising the sources of CSF-1, TGF-β, EGF and CXCL12 in our model, and their interactions with cells, as described in steps i-

v of panel D.

https://doi.org/10.1371/journal.pcbi.1010994.g002
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irreversible). Necrotic cells occupy space for a finite time period during which their size

decreases linearly to zero and they are then removed from the simulation. Blood vessels also

act as entry points for macrophages, which infiltrate the tissue and alter their phenotype (and,

hence, behaviour) at rates which depend on local levels of TGF-β (see Fig 2B).

We represent each cell by the spatial coordinates of its centre of mass and determine its

movement by balancing the forces that act on it. Using an overdamped form of Newton’s sec-

ond law and neglecting inertial terms, we have that for cell i

n
dxi
dt
¼ Fi; ð1Þ

where ν is the assumed constant drag coefficient and Fi denotes the net force acting on cell i at

position xi and time t. The forces that act on a cell depend on its type (see Fig 2C and S1

Appendix). Cells interact via spring forces if their centres are within a distance Rint of each

other [56]; intercellular adhesion and volume exclusion are represented by attractive and

repulsive forces respectively. We also associate with each cell an approximate area, and stromal

cells which are so mechanically compressed that their area falls below a threshold proportion

AHi str of their normal area pause their cell cycle due to contact-inhibition (see S1 Appendix for

details).

Macrophage phenotype. Since the experimental data shown in [33] describes a unidirec-

tional transition of macrophage phenotype, we use a single continuous subcellular variable to

represent macrophage phenotype. This variable, p 2 [0, 1], determines macrophage behaviour,

with p< 0.5 denoting a primarily anti-tumour M1 phenotype and p> 0.5 representing a pri-

marily pro-tumour M2 phenotype. While M1 and M2 describe two broad categories of macro-

phage, their underlying behaviour is dependent on the value of p rather than this

categorisation, and for simplicity we may refer to macrophages whose phenotype is close to 0.5

as ‘transitioning’ macrophages. We assume that, following extravasation, macrophage i has a

phenotype pi = 0. Macrophage exposure to TGF-β levels above a threshold value, gcrit, causes pi
to increase at a constant rate Δp, per timestep dt, until the maximum value pi = 1 is reached

and the macrophage has a fully M2 phenotype. Its phenotype remains fixed at pi = 1 for all

later times. Thus, we have:

dpi
dt
¼ Hðgðxi; tÞ � gcritÞHð1 � piÞDp; ð2Þ

where H is the Heaviside function (HðxÞ ¼ 1 when x> 0 and HðxÞ ¼ 0 otherwise).

We now explain how changes in phenotype p affect macrophage behaviour and function,

and how these changes are incorporated into the ABM (see also Fig 2B).

Macrophage extravasation. Macrophages enter the domain via blood vessels with a prob-

ability per hour Pex which is an increasing, saturating function of CSF-1:

Pex ¼ P? �
c

cþ c1=2

; ð3Þ

where the non-negative parameter P? represents the maximum probability per hour of macro-

phage extravasation from a vessel, and c1/2 is the concentration of CSF-1 at which the probabil-

ity is half-maximal.

Macrophage chemotactic forces. Fig 2C shows the forces which act on different cell types

(functional forms for these forces are given in S1 Appendix). Here we highlight two macro-

phage-specific forces which describe their directed movement up spatial gradients of CSF-1

and CXCL12, and whose magnitude varies with phenotype p. Noting that M1 macrophages are

sensitive to CSF-1 and insensitive to CXCL12 (and conversely for M2 macrophages), we
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assume that chemotactic forces depend linearly on phenotype. The chemotactic forces acting

on macrophage i, at position xi with phenotype pi, are therefore:

Fwci ¼ wmc ð1 � piÞ
rc
jrcj

and Fwxi ¼ wmx pi
rx

jrxj
ð4Þ

respectively, where the non-negative parameters wmc and wm
x

indicate macrophage sensitivity to

spatial gradients of CSF-1 and CXCL12, andrc andrξ are evaluated at xi. The forces Fwci and

Fwxi contribute to the net force Fi in Eq (1) (see Fig 2C and S1 Appendix).

Macrophage cell killing. We assume that when a macrophage and a tumour cell are

within the interaction radius Rint then the macrophage will attempt to kill the tumour cell,

with M1 macrophages more likely to kill a tumour cell than M2 macrophages. We define a

probability of cell kill per hour, Pφ, which is a monotonic decreasing function of p. We suppose

further that, after a macrophage has killed a tumour cell, it experiences a ‘cooldown’ period of

tcool hours during which it cannot attempt tumour cell killing. Thus, we associate with macro-

phage i a subcellular timer tφ,i that is updated in real time and set to zero on tumour cell killing.

We define Pφ,i as:

Pφ ;i ¼
P?φ � 1 �

p10
i

p10
i þ 0:510

� �

for tφ ;i � tcool

0 otherwise

;

8
><

>:
ð5Þ

where P?φ is the maximum probability of tumour cell killing. If macrophage i is sufficiently

close to attack multiple tumour cells then one is selected at random for cell death. Killed

tumour cells are labelled as ‘necrotic’ and decay in the same way as other necrotic cells.

Macrophage production of EGF. The diffusible cytokine EGF, �, is produced by M2 mac-

rophages and undergoes natural decay. It is also a potent chemoattractant for tumour cells.

For simplicity, we assume that macrophage i produces EGF at a rate which is linearly propor-

tional to its phenotype pi, with constant of proportionality κ�. Denoting by D� and λ� the

assumed constant diffusion coefficient and natural decay rate of EGF, we suppose that its evo-

lution can be described by the following reaction diffusion equation:

@�

@t
¼ D�r

2� � l��þ k�

X

i

pidðx � xiÞ: ð6Þ

where δ(x) = 1 when x = 0 and δ(x) = 0 elsewhere. In (6), we sum over all macrophages to

determine the net rate of production at spatial position x.

Spatial statistics

In order to compute spatial statistics, we introduce the following notation. Consider an object

i (which may be a cell or a blood vessel), whose centre is located at xi = (xi, yi) at time t. We

associate with object i a categorical label qi 2 {B,M, S, T, N} which indicates whether it is a

blood vessel, macrophage, stromal cell, tumour cell or necrotic cell. Given a target label Q 2
{B,M, S, T, N}, the binary target function Θ(Q, qi) indicates whether the label qi matches Q:

YðQ; qiÞ ¼
1 if qi ¼ Q;

0 otherwise:

(

ð7Þ
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Cross pair correlation function (cross-PCF). The cross-PCF identifies spatial correla-

tions between objects with categorical labels that are separated by a distance r. We define a

sequence of annuli, of inner radius rk and outer radius rk + dr where r0 = 0 and dr> 0. We

denote by ArkðxÞ the area of the annulus with inner radius rk that is centred at the point x. If

this annulus lies wholly inside the domain then ArkðxÞ ¼ pððrk þ drÞ
2
� r2

kÞ ¼ pð2rk þ drÞdr;
otherwise, only the area contained within the domain is recorded. The indicator function,

Ik(r), is defined as follows:

IkðrÞ ¼
1 for rk � r < rk þ dr;

0 otherwise:

(

ð8Þ

We calculate the cross-PCF for blood vessels and tumour cells by considering a region of

area A. If, at time t, this region contains NB blood vessels and NT tumour cells, then the cross-

PCF, gBT(r), is given by:

gBTðrÞ ¼
1

NB

XN

i¼1

YðB; qiÞ
XN

j¼1

YðT; qjÞ
Ikðjxi � xjjÞ
ArkðxiÞ

=
NT
A

 !

) gBTðrÞ ¼
1

NBNT

XN

i¼1

XN

j¼1

A
ArkðxiÞ

YðB; qiÞYðT; qjÞIkðjxi � xjjÞ:

ð9Þ

where r 2 [rk, rk + dr) and N is the total number of objects in the simulation. For each blood

vessel, the cross-PCF compares the density of tumour cells in the annulus that surrounds it to

NT/A, the expected density in the annulus under complete spatial randomness (CSR). Thus,

gBT(r) > 1 indicates clustering of tumour cells at distance r from blood vessels and gBT(r) < 1

indicates anti-correlation, or exclusion, of tumour cells at distance r from blood vessels. Cross-

PCFs for other pairs of categorical variables are defined similarly. We note that the cross-PCF

is not necessarily symmetric (i.e., gBT 6¼ gTB since, for any pair of points, the annulus surround-

ing one point may intersect with the domain boundary while the annulus surrounding the

other may not).

Weighted pair correlation function (wPCF). We calculate the wPCF by replacing Θ(Q,

qi) in Eq (9) with a weighting function, 0� wp(P, pi)� 1, which describes how pi differs from a

target phenotype, P. Multiple functional forms could be used for the weighting function. The

relationship between the wPCF and cross-PCF is explored in more detail in S3 Appendix, and

in S4 Appendix we show how the choice of weighting function affects the wPCF. For simplicity

we use the same weighting function throughout this paper. We use a triangular weighting

function of the form:

wpðP; piÞ ¼ max 1 �
jP � pij
DP

; 0

� �

; ð10Þ

and fix ΔP = 0.2. Then, wp� 1 for cells whose phenotype pi is close to the target P and wp = 0

for those with |P − pi|> ΔP. We note further that wp(P, pi)!Θ(P, pi) as ΔP! 0. The choice

of ΔP, therefore, represents a balance between obtaining a smoothly varying wPCF (reduced

noise) and ensuring that the wPCF displays the signal of interest (increased signal). Different

values of ΔP are considered in S4 Appendix.
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Replacing Θ(T, qi) with wp(P, pi) in Eq (9), we define the wPCF for macrophages of target

phenotype P and blood vessels B, at lengthscale r, as follows:

wPCFðr; P;BÞ ¼
1

WPNB

XN

i¼1

XN

j¼1

A
ArkðxiÞ

wpðP; piÞYðB; qjÞIkðjxi � xjjÞ ð11Þ

whereWPðPÞ ¼
PN

i¼1
wpðP; piÞ is the total ‘weight’ associated with the target label P across all

macrophages (WP(P) replaces NT in Eq (9); non-macrophages have weight wp = 0). Intuitively,

the wPCF extends the cross-PCF by weighting the contribution of each macrophage based on

how closely its phenotype matches the target phenotype.

In Fig 3 we present two examples showing how the wPCF characterises spatial correlations

between objects with a continuous label p (coloured circles, analogous to macrophages with

Fig 3. Examples for interpreting the wPCF. Two examples showing how the wPCF can identify spatial correlations between categorical objects (200 pink

crosses equally spaced on the line y = 1, appearing as a solid line here due to the density of crosses) and objects with real values (1000 randomly placed

circles with labels p 2 [0, 1]). A: Points are labelled according to the formula pi = |1 − yi|. B: Points are labelled according to the formula pi = |1 − yi|2. Left:

Point patterns consisting of equally spaced pink crosses and randomly placed circles with non-random labelling. Middle: wPCFs corresponding to the

above point patterns. Dashed black lines show the lines P = r and P = r2, which by construction should show the strongest correlation. Right: Horizontal

slices through the wPCF at fixed values of P. Such slices can be interpreted as a cross-PCF showing colocalisation between the pink crosses and circles with

labels close to P.

https://doi.org/10.1371/journal.pcbi.1010994.g003
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phenotype p) and objects with a categorical label (magenta crosses, analogous to blood vessels).

In both examples, 200 crosses are uniformly distributed along the line y = 1, and 1000 circles

are randomly placed throughout a square domain of edge length 2. In Fig 3A, the label pi of a

circle at (xi, yi) increases linearly with distance from the line y = 1 (pi = |1 − yi|); in Fig 3B, the

label increases with the square of this distance (pi = |1 − pi|2). The corresponding wPCFs are

shown in the middle panels of Fig 3, for a range of target labels P and distances r. For simplic-

ity, when a wPCF is calculated over multiple values of the label p, we denote the resulting met-

ric as wPCF(r, p, B). By construction, a circle at distance r from the nearest cross has label P�
r for (A) (and P� r2 for (B)). The two wPCFs show strong clustering along these lines and

exclusion at shorter distances for points with larger labels (above the dashed lines). The weaker

clustering observed below the lines is explained as follows. Consider a cross at position (xj, 1).

In (A), the largest label associated with a circle at distance r from this cross is p = r (if the circle

is directly above the cross). Smaller labels can also be recorded, for circles at distance r which

are offset from the cross in the y-direction. In the rightmost panels of Fig 3, we plot wPCF(r, P,

B) for fixed values of the target label P. These curves can be interpreted as cross-PCFs for

points whose labels pi are “close” to P, and show the strongest clustering at the expected values.

A natural extension to the wPCF considers objects with two continuous labels, P1 and P2,

say, in order to identify spatial correlations between objects with labels close to P1 and objects

with labels close to P2 (e.g., colocalisation of macrophages with p� 0 with those with p� 1, or

colocalisation of a particular macrophage phenotype with a particular concentration of CSF-

1). We discuss such extensions in S5 Appendix.

Results

Agent-based modelling generates patterns that resemble the 3 Es of

immunoediting

For a given set of parameter values, we run multiple realisations of the ABM and record simu-

lation outputs at t = 500 (see S2 Appendix for details on simulation progression). This process

generates synthetic images that resemble multiplex data, in which five categories of cells are

distinguished (tumour, stroma, necrotic, vessel, macrophage) and macrophage phenotype is

described using the continuous label p. We perform a parameter sweep of the ABM, in which

we vary wmc , the strength of macrophage chemotaxis towards CSF-1, and c1/2, the concentration

of CSF-1 at which macrophage extravasation is half-maximal, selecting values for wmc and c1/2

from a discrete set of points arranged on a regular grid. We consider 9 values of each parame-

ter, evenly spaced for wmc 2 ½0:5; 4:5� and c1/2 2 [0.1, 0.9]. All other parameters are held fixed at

their default values (see S1 Appendix). In Fig 4 we present typical simulation outputs at t = 500

for different parameter combinations (some parameter combinations are omitted to facilitate

visualisation). These results show that varying wmc and c1/2 can generate a range of qualitative

behaviours that mirror the three stages of cancer immunoediting [49]. We summarise these

behaviours as follows:

• Equilibrium: a compact tumour mass, with macrophages confined to the surrounding

stroma. The dominant macrophage phenotype is M1. Tumour growth is constrained, with

tumour cells restricted to the mass and prevented from migrating to the vasculature by mac-

rophage surveillance (blue box in Fig 4).

• Escape: the tumour has a diffuse, fragmented structure. Perivascular niches containing M2

macrophages and tumour cells surround blood vessels. The bulk of the tumour is infiltrated

with M1 and transitioning macrophages, with central tumour necrosis caused by macro-

phages killing tumour cells (orange box in Fig 4).
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Fig 4. Varying macrophage sensitivity to environmental cues generates diverse patterns of tumour growth. Representative simulation endpoints for

combinations of wmc ¼ 0:5; 1:5; 2:5; 3:5; 4:5 and c1/2 = 0.1, 0.3, 0.5, 0.7, 0.9. We group these into three qualitatively similar behaviours: Equilibrium—blue

box: compact tumour mass, with predominantly M1 macrophages confined to the stroma. Escape—orange box: establishment of perivascular niches

containing M2 macrophages, tumour cells and blood vessels. Tumour masses are asymmetrical. Elimination—green box: total or near total tumour

elimination.

https://doi.org/10.1371/journal.pcbi.1010994.g004

PLOS COMPUTATIONAL BIOLOGY Quantification of spatial and phenotypic heterogeneity in an ABM of tumours/macrophages

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010994 March 27, 2023 12 / 27

https://doi.org/10.1371/journal.pcbi.1010994.g004
https://doi.org/10.1371/journal.pcbi.1010994


• Elimination: total, or near-total, tumour cell elimination. Some macrophages cluster around

any surviving tumour cells and the dominant macrophage phenotype is M1 (green box in

Fig 4).

Equilibrium (blue box) arises for low values of wmc (e.g, wmc ¼ 0:5). Large numbers of macro-

phages extravasate in response to CSF-1 but, since they are not strongly attracted to the

tumour mass, they remain in the stroma. As a result, tumour growth is constrained by the

macrophages, which are predominantly M1. When c1/2 is also small (e.g., c1/2 ⪅ 0.3), the rate of

macrophage extravasation is high, and some macrophages reach the tumour boundary

through random exploration of the tissue. These macrophages kill tumour cells on contact,

causing the tumour mass to decrease in size.

Escape (orange box) occurs when macrophages migrate to the tumour so slowly that they

do not overwhelm it. Further, exposure to TGF-β causes the macrophages to transition to an

M2 phenotype. The M2 macrophages migrate towards nearby blood vessels, up spatial gradi-

ents in CXCL12, and the CSF-1/EGF paracrine loop enables tumour cells to trail behind them.

If these tumour cells reach the vasculature, we assume that tumour cells enter the vasculature

and metastasise to other parts of the body. Therefore, we denote such simulations as tumour

escape.

Elimination (green box) occurs when the rate of macrophage extravasation is very high

(low values of c1/2). Tumour elimination occurs because the M1 macrophages are strongly

attracted to the tumour mass and kill tumour cells before they are ‘reprogrammed’ to an M2

phenotype. Strong chemotactic sensitivity to CSF-1 (large values of wmc ) can cause the macro-

phages to cluster around the last tumour cells to be eliminated.

The wPCF clarifies the relationship between macrophage phenotype and

spatial distribution

Fig 5 illustrates how resolving macrophage phenotype as a continuous variable enhances inter-

pretation of the spatial patterns that macrophages adopt in solid tumours.

In Fig 5A, macrophage phenotype is not resolved. The cross-PCF between macrophages

and blood vessels reveals strong short-range clustering. In Fig 5B the macrophages are parti-

tioned into two subpopulations: without loss of generality, M1 macrophages have p� 0.5

while M2 macrophages have p> 0.5. We calculate the cross-PCF between each macrophage

subpopulation and blood vessels. The resulting cross-PCFs show that M2 macrophages are

strongly clustered around blood vessels, while the M1 macrophages are not significantly associ-

ated with the blood vessels at any length scale.

In Fig 5C macrophage phenotype is viewed as a continuous variable and we compute the

wPCF between the macrophages and the blood vessels (wPCF(r, p, B)). The wPCF identifies

three distinct macrophage populations, rather than the two populations used in Fig 5B. The

spatial positions of macrophages with p� 0 and blood vessels are not strongly correlated, as

for the M1 population in Fig 5A. Macrophages with 0.6 ⪅ p exhibit strong short range colocali-

sation with blood vessels, as for the M2 population in Fig 5B. The wPCF identifies a third pop-

ulation of macrophages with 0.1 ⪅ p⪅ 0.6 which is strongly excluded from blood vessels at

distances up to approximately 15 cell diameters. This distance corresponds to the approximate

distance from blood vessels to the tumour core, suggesting that these macrophages are local-

ised inside the tumour mass.
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Fig 5. wPCF shows how macrophage phenotype and spatial distribution are related. A: Treating macrophages as a single

population shows clustering between macrophages and tumour cells in the cross-PCF. B: Defining two populations of

macrophages (M1, with p� 0.5, or M2 with p> 0.5) shows differences in spatial localisation: M1 macrophages are randomly

spread through the domain, while M2 macrophages are clustered around blood vessels. C: Using the full phenotype spectrum

reveals three macrophage subpopulations, which are clearly visible in the wPCF. Macrophages with p� 0 have no significant
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wPCFs produce signatures that distinguish the 3 Es of immunoediting

In Fig 6 we analyse the spatial patterns generated by the ABM for different values of wmc and c1/

2. These patterns resemble Equilibrium (A, wmc ¼ 1; c1=2 ¼ 0:8), Escape (B,

wmc ¼ 3:5; c1=2 ¼ 0:7) and Elimination (C, wmc ¼ 1:5; c1=2 ¼ 0:3). For each simulation, we com-

pute wPCF(r, p, B), wPCF(r, p, T) and gBT(r), to characterise the pairwise spatial relationships

between macrophages of different phenotypes, blood vessels, and tumour cells. We define the

combination of these three statistics as a ‘PCF signature’ for our simulations.

Equilibrium simulations (Fig 6A) may not contain all macrophage phenotypes. Therefore,

their wPCFs may be undefined for some values of p (in this case, for 0.78 ⪅ p.) There is a

marked difference in the spatial localisation of macrophages with p� 0 and those with

p> 0.2, with mid-phenotype macrophages exhibiting short-range exclusion from blood vessels

but not from tumour cells. In this case, macrophages which have not been exposed to TGF-β
(p = 0) are restricted to the stroma while those with larger phenotype values cluster around the

tumour mass, at distance from the blood vessels. The cross-PCF between blood vessels and

tumour cells, gBT(r), indicates strong exclusion between blood vessels and tumour cells at dis-

tances of up to approximately 12.5 cell diameters, which is comparable to the exclusion dis-

tance between macrophages of intermediate phenotype and blood vessels.

For the Escape simulations (Fig 6B), macrophages with p = 1 cluster (r� 0) with blood ves-

sels and tumour cells. With the peak in gBT(r) near r = 0, this indicates the formation of peri-

vascular niches containing tumour cells, blood vessels and M2 macrophages, as reported by

Arwert et al. [33]. Macrophages with an intermediate phenotype are strongly excluded from

blood vessels at radii up to 15 cell diameters and strongly associated with tumour cells at radii

up to approximately 10 cell diameters. Taken together with the exclusion of tumour cells from

blood vessels indicated by gBT(r) for 2.5 ⪅ r ⪅ 12.5, this is characteristic of a central tumour

mass populated with transitioning macrophages and the formation of perivascular niches.

Finally, for Elimination simulations (Fig 6C), there are no strong correlations between

tumour cells and macrophages and wPCF(r, p, T) is extremely noisy (because there are very

few tumour cells). Similarly, gBT(r)� 1, since most simulations with this parameter set have no

tumour cells. wPCF(r, p, B) is similar to that shown in Fig 6B, indicating that the macrophage

distribution for Elimination is similar to that for Escape (M2 macrophages cluster around

blood vessels, and transitioning macrophages localise in the domain centre, at distance from

the vasculature). This further suggests that the time courses for Elimination and Escape simu-

lations may be similar at early times.

Dimension reduction via PCA permits quantitative comparison of PCF

signatures

The parameter sweep described in Fig 4 contained 737 individual simulations, with 7–10 sto-

chastic realisations conducted for each parameter combination (limited by availability of HPC

resources). Each image was manually classified as Equilibrium, Escape or Elimination accord-

ing to the most prominent behaviour displayed (see inset of Fig 7 for parameter combinations

and labels). We allocated 371 of these images into a training dataset (simulations with ‘itera-

tion number’ 2 [0, 4]) and the remaining 366 into a testing dataset (simulations with ‘iteration

spatial relationship with blood vessels, macrophages with 0.6⪅ p have strong short range colocalisation with blood vessels,

and macrophages with 0.1 ⪅ p ⪅ 0.6 are strongly excluded from blood vessels at distances up to 15 cell diameters. As well as

wPCF(r, p, B) (bottom left), we present cross-sections of the wPCF (top and bottom right) which show that the wPCF has a

similar interpretation as the cross-PCFs in A and B, while providing greater resolution in macrophage phenotype.

https://doi.org/10.1371/journal.pcbi.1010994.g005
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number’ 2 [5, 9]). For each image, we computed wPCF(r, p, B), wPCF(r, p, T) and gBT(r) to

form the PCF signature described in the previous section. We then vectorised and

concatenated the three spatial statistics, to form a high-dimensional vector (38,773 entries).

This process is described more fully in S6 Appendix.

We then applied dimensionality reduction to the training dataset. In Fig 7, we use principal

component analysis (PCA) to project these high-dimensional vectors onto their first three

principal components (the first principal component lies in the direction that maximises the

variance in the data; each successive principal component maximizes the remaining variance

Fig 6. ‘PCF signatures’ for Equilibrium, Escape and Elimination. We consider parameter combinations representing Equilibrium (A,

wmc ¼ 1; c1=2 ¼ 0:8), Escape (B, wmc ¼ 3:5; c1=2 ¼ 0:7) and Elimination (C, wmc ¼ 1:5; c1=2 ¼ 0:3). For each, we show a representative simulation at t = 500.

The wPCFs describing macrophage relationships with blood vessels and macrophage relationships with tumour cells are shown, alongside the cross-PCF

describing blood vessel to tumour cell relationships (each averaged over 10 simulation repetitions).

https://doi.org/10.1371/journal.pcbi.1010994.g006
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Fig 7. Projecting PCF signatures onto their first three principle components resolves the 3 Es of immunoediting. Top: labels assigned to each parameter

combination at t = 500. Labels are manually assigned based on the predominant behaviour observed across all realisations of that parameter set. Main:

Projection of the vectorised PCF signatures from outputs at t = 500 of 371 ABM simulations onto their first three principal components. Simulations cluster

according to their label (manually defined as Escape, Elimination or Equilibrium as per the inset above). The top 100 principal components for the centroid of

each cluster have been converted back into wPCF and cross-PCF signatures, and the corresponding wPCF(r, p, B), wPCF(r, p, T) and gBT(r) to each are shown.

Each inset has the same interpretation as the PCF signatures in Fig 6, showing that conversion between PCF signatures and PCA-space is straightforward.

https://doi.org/10.1371/journal.pcbi.1010994.g007
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in the data and is orthogonal to all previous principal components). Projecting the data onto

the first 3 principal components shows that the synthetic images cluster according to their

labels, suggesting that wPCF(r, p, B), wPCF(r, p, T) and gBT(r) capture sufficient information to

distinguish between the three qualitative behaviours that the ABM exhibits (i.e., the three Es of

immunoediting).

The wPCFs and PCFs associated with the centroids of each cluster are presented in the

inset in Fig 7, and are obtained by summing the first 100 principal components that define

each centroid. These PCF signatures are consistent with those presented in Fig 6, and suggest

that the first three principal components associated with the simulation output from the ABM

at t = 500 could be used to classify it as Escape, Elimination or Equilibrium.

The 371 data points shown in Fig 7 were then used as training data for a support vector

machine (SVM) with a radial basis function kernel (default implementation within python’s

scikit-learn Support Vector Classification implementation), based on the first 100 principal

components of the PCF signatures. We used the SVM to predict the labels of a testing set of

the 366 simulations in the test dataset, and obtained 91.5% accuracy.

We applied the classifier to simulation outputs from a second parameter sweep, this time

randomly choosing values of the same two parameters as previously (wmc and c1/2) alongside

randomly choosing four additional parameters (wm
x

, wT
�
, c1/2 and gcrit) in order to generate a

wider potential variety of simulation outcomes (see S7 Appendix for examples). This produced

431 additional images, which were manually labelled as Equilibrium, Escape or Elimination at

t = 500. Table 1 shows the performance of the classifier at predicting the labels of these simula-

tions. The classifier identifies Escape simulations with extremely high accuracy, correctly iden-

tifying 97.2% of simulations in which tumour intravasation and metastasis is present. The

overall classification accuracy, across all three possible outcomes, is 82.1%.

ABM simulations may transition between the three Es of immunoediting

over time

We have shown that ABM data from a single timepoint can be classified as Equilibrium,

Escape or Elimination based on their PCF signatures. Since the ABM simulations are dynamic,

we can use the methods used to create Fig 7 to investigate how the qualitative behaviour of an

ABM simulation changes over time.

The results presented in Fig 8 derive from an ABM simulation with wmc ¼ 4:5 and c1/2 = 0.3,

which we classify as ‘Elimination’ based on its output at t = 500. The time series in Fig 8 show

how, as the tumour develops, the simulation transitions from ‘Equilibrium’ (compact mass,

t = 250) through to ‘Escape’ (t = 350, 400) and, ultimately, to ‘Elimination’.

We calculate PCF signatures for this ABM simulation every 10 hours, and project them

onto the first three principal components, using the process in Fig 7. The resulting trajectory is

depicted in Fig 9, with points coloured according to their time and the insets showing the cor-

responding synthetic images.

Table 1. Classification performance for 100 principal components. Classifier accuracy (number of classifications and percentage of true classifications assigned to that

class) for SVMs trained on the first 100 principal components, based on 431 manually labelled simulations at t = 500 with parameters randomly sampled within a 6-param-

eter space. Bold fields show correct classifications.

Predicted classification

Equilibrium Escape Elimination

True classification Equilibrium 78 (65%) 26 (22%) 16 (13%)

Escape 0 (0%) 104 (97%) 3 (3%)

Elimination 18 (9%) 14 (7%) 172 (84%)

https://doi.org/10.1371/journal.pcbi.1010994.t001
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Fig 8. Dynamic evolution of an ABM simulation. Time series showing the evolution of an ABM simulation generated with wmc ¼ 4:5 and c1/2 = 0.3,

and all other parameter values fixed at the default values listed in S1 Appendix. At different timepoints, the simulation exhibits behaviours which are

consistent with Equilibrium, Escape and Elimination. The corresponding PCF signatures show how the ABM progresses through these stages.

https://doi.org/10.1371/journal.pcbi.1010994.g008
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Fig 9. Dynamic evolution of an ABM simulation through PCA space. A single simulation can exhibit Equilibrium (t = 150), Escape (t = 350, 450) or

Elimination (t = 500) at different times. These changes are captured by the movement of the PCF signature through PCA space.

https://doi.org/10.1371/journal.pcbi.1010994.g009
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At early times, the images localise within the Equilibrium cluster (blue cluster; t = 150).

Once macrophages start to appear in the images, the trajectory moves away from the three

clusters, due to noise in the wPCFs caused by the small number of macrophages relative to the

t = 500 simulations which define the clusters (t = 250). As the number of macrophages

increases, the trajectory moves closer to the Escape cluster (orange cluster; t = 350 and

t = 450). Finally, as the tumour cells are killed and removed from the simulation, the trajectory

moves into the Elimination cluster (green cluster; t = 500).

This study highlights two related challenges. First, spatial data from a single timepoint may

not be predictive of past or future behaviour: an ABM may exhibit multiple behaviours at dif-

ferent timepoints. Second, for this simulation, some tumour cells successfully migrate to

neighbouring blood vessels prior to the tumour’s elimination. In practice, these tumour cells

could enter the vasculature and spread to other parts of the body. Given information about the

tumour’s spatial composition at t = 500 only, we will classify this image as Elimination without

identifying the Escape behaviour present at earlier times.

Discussion

In this paper we have introduced a new spatial statistic, the wPCF, which extends the cross-

PCF to point clouds labelled with a mixture of categorical and continuous labels. We demon-

strated its utility by applying it to synthetic data generated from a new ABM that simulates

macrophage interactions with a tumour growing in a 2D vascular tissue. Blood vessels and

tumour cells are categorically labelled, while macrophages have a continuous phenotypic label.

The wPCF reveals spatial correlations between the different cell types.

The ABM focusses on the impact that phenotypic heterogeneity in the macrophage popula-

tion has on the tumour’s patterns of growth. By varying parameters that control macrophage

sensitivity to environmental cues, we used the ABM to generate a range of synthetic data that

spans the three Es of immunoediting (Equilibrium, Escape or Elimination). We showed that

wPCFs and cross-PCFs can be combined to produce a high dimensional ‘PCF signature’

which characterises the relative locations of macrophages, tumour cells and blood vessels. Our

results suggest that, given suitable training data, the PCF signature could be used to automate

the classification of images or point patterns into different clusters, by using PCA to project

the PCF signature onto a lower dimensional space.

One advantage of testing the wPCF on synthetic data from an ABM is its ability to generate

time-series data. Our analysis of dynamic output from an ABM simulation showed how the

PCF signature may vary over time. A given simulation may transition between different states,

suggesting that caution is needed when using a single time point to make predictions about a

tumour’s future growth and response to treatment. This study also highlights one of the bene-

fits of developing mathematical models of a biological system: the ABM can be used to investi-

gate questions that would be challenging to address with existing experimental techniques. For

example, it is not currently feasible to apply multiplex imaging to the same tissue at multiple

timepoints.

There are many directions for extending and improving the ABM. For example, including

tumour cell intravasation would prevent situations in which an Escape signature can prog-

ress to Elimination at a later timepoint, as in Fig 8. In practice, tumour cells would have

entered the vasculature and may have established metastases. In future work, we will also

explore ABM extensions which incorporate therapies, such as radiotherapy or immunother-

apy, and investigate whether interactions between different cell types are predictive of

response (see, e.g., [57–59]). We will consider whether the spatial distributions of cells at dif-

ferent timepoints must be accounted for when making such predictions. We could further

PLOS COMPUTATIONAL BIOLOGY Quantification of spatial and phenotypic heterogeneity in an ABM of tumours/macrophages

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010994 March 27, 2023 21 / 27

https://doi.org/10.1371/journal.pcbi.1010994


extend the ABM to account for multiple immune cell subtypes, such as T cells, or stromal

cells such as fibroblasts [60].

The robustness of the wPCF should be tested through application to other types of ABMs

that simulate tumour growth and generate similar outputs. In addition to the Chaste frame-

work used here [51–53], other candidate ABM frameworks include PhysiCell [61], HAL

(Hybrid Automata Library) [62], and CompuCell3D [63, 64].

In this paper we used the wPCF and cross-PCF to describe and classify synthetic data gener-

ated by an ABM. However, the wPCF has application to a wider range of scientific fields. In

particular, the wPCF can account for continuous variation in expression levels of cellular

markers which characterise multiplex imaging modalities, such as multiplex immunohis-

tochemistry or Imaging Mass Cytometry. Equally, the wPCF could be used to describe any

structured cell population, for example continuous labels describing the stemness or differenti-

ation status of cancer cells, the exhaustion level of T-cells, or the oxygen concentration experi-

enced by cells within a tissue sample. Beyond biology, the wPCF could be used to analyse data

from other applications in which PCFs have proven useful, including astronomy [19, 20] and

ecology [16–18]. We note that, as with the PCF and cross-PCF, it is straightforward to general-

ise the wPCF for data in 1D or 3D, making it applicable outside of purely 2-dimensional imag-

ing data. The wPCF can be extended to compare the spatial distributions of point patterns

with multiple continuous labels. In Fig 1 expression levels of CD68, CD163, and CD204 were

used to define distinct macrophage subtypes; each marker could represent a separate continu-

ous structure label. We show how the wPCF can be used to describe the spatial distribution of

points with two continuous labels in S5 Appendix.

Future work will involve applying the wPCF to multiplex imaging data, in order to validate

its use in biological and clinical settings. Applying such statistics to medical images would

enable their high-throughput, automated quantification and comparison in a manner that

goes beyond expert visual inspection and is more interpretable than AI approaches [65, 66].

We note also that while in this paper we focus on correlation functions, alternative metrics,

including topological data analysis, can describe spatial features such as immune deserts that

exist in noisy data [30], or changes in tumour and vascular architecture in response to radio-

therapy [67]. Multiple spatial statistics can be combined to obtain more detailed descriptions

of 2D data [68], or new statistics can be derived from networks of cell contact [69] or observa-

tions of immune cell locations [70, 71].

In this paper we presented a proof-of-concept SVM classifier to show how multiple statis-

tics can be combined to classify data, with PCA acting as a dimension reduction technique

which permits a classifier to be trained on high dimensional statistics without sacrificing their

interpretability (as is generally required for AI approaches). This method has the potential to

bridge the gap between classifiers applied to summary statistics, which are flexible and fast to

train but generally do not include spatial data, and classifiers applied directly to images, which

account for spatial features of images but are difficult to interpret, and require large training

datasets and intensive computation. While the classifier described here works, there is consid-

erable scope for optimisation in relation to i) the choice of statistics, ii) the choice of classifica-

tion method, and iii) the choice of dimension reduction tool. In future work, we will explore

alternative choices at each of these stages, in order to improve our pipeline for classification of

point clouds based on their spatial structure. We will also use a wider range of techniques,

such as topological data analysis, to characterise the outputs from different simulations and

timepoints.

This paper demonstrates an exciting proof-of-concept: statistics which describe different

aspects of cell localisation can be combined to classify, describe and analyse synthetic and bio-

logical point clouds.
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37. Knútsdóttir H, Condeelis J, Pálsson E. 3-D individual cell based computational modeling of tumor cell–

macrophage paracrine signaling mediated by EGF and CSF-1 gradients. Integrative Biology. 2016; 8

(1):104–119. https://doi.org/10.1039/c5ib00201j PMID: 26686751

38. Owen M, Sherratt J. Mathematical modelling of macrophage dynamics in tumours. Mathematical Mod-

els and Methods in Applied Sciences. 1999; 9(4):513–539. https://doi.org/10.1142/

S0218202599000270

39. Kelly C, Leek R, Byrne H, Cox S, Harris A, Lewis C. Modelling Macrophage Infiltration into Avascular

Tumours. Journal of Theoretical Medicine. 2002; 4(1):21–38. https://doi.org/10.1080/

10273660290015242

40. Suveges S, Eftimie R, Trucu D. Directionality of Macrophages Movement in Tumour Invasion: A Multi-

scale Moving-Boundary Approach. Bulletin of Mathematical Biology. 2020; 82(12):1–50. https://doi.org/

10.1007/s11538-020-00819-7 PMID: 33211193

41. Li X, Jolly M, George J, Pienta K, Levine H. Computational modeling of the crosstalk between macro-

phage polarization and tumor cell plasticity in the tumor microenvironment. Frontiers in Oncology. 2019;

9(JAN):1–12. https://doi.org/10.3389/fonc.2019.00010 PMID: 30729096

42. Mahlbacher G, Curtis L, Lowengrub J, Frieboes H. Mathematical modeling of tumor-associated macro-

phage interactions with the cancer microenvironment. Journal for ImmunoTherapy of Cancer. 2018; 6

(1):1–17. https://doi.org/10.1186/s40425-017-0313-7 PMID: 29382395

43. Webb S, Owen M, Byrne H, Murdoch C, Lewis C. Macrophage-based anti-cancer therapy: Modelling

different modes of tumour targeting. Bulletin of Mathematical Biology. 2007; 69(5):1747–1776. https://

doi.org/10.1007/s11538-006-9189-2 PMID: 17333419

44. Cess C, Finley S. Multi-scale modeling of macrophage—T cell interactions within the tumor microenvi-

ronment. vol. 16; 2020. Available from: http://dx.doi.org/10.1371/journal.pcbi.1008519.

45. Curtis L, Sebens S, Frieboes H. Modeling of tumor response to macrophage and T lymphocyte interac-

tions in the liver metastatic microenvironment. Cancer Immunology, Immunotherapy. 2021; 70

(5):1475–1488. https://doi.org/10.1007/s00262-020-02785-4 PMID: 33180183

PLOS COMPUTATIONAL BIOLOGY Quantification of spatial and phenotypic heterogeneity in an ABM of tumours/macrophages

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010994 March 27, 2023 25 / 27

https://doi.org/10.1016/j.jtbi.2014.02.033
https://doi.org/10.1016/j.jtbi.2014.02.033
http://www.ncbi.nlm.nih.gov/pubmed/24607741
https://doi.org/10.1103/PhysRevE.97.062104
http://www.ncbi.nlm.nih.gov/pubmed/30011502
https://doi.org/10.1103/PhysRevE.99.032124
http://www.ncbi.nlm.nih.gov/pubmed/30999485
https://doi.org/10.1016/j.jtbi.2017.10.032
http://www.ncbi.nlm.nih.gov/pubmed/29102643
https://doi.org/10.1073/pnas.2102166118
http://www.ncbi.nlm.nih.gov/pubmed/34625491
https://doi.org/10.1186/1471-2105-12-396
https://doi.org/10.1186/1471-2105-12-396
http://www.ncbi.nlm.nih.gov/pubmed/21991994
https://doi.org/10.1016/j.jtbi.2017.11.014
http://www.ncbi.nlm.nih.gov/pubmed/29197512
https://doi.org/10.1016/j.celrep.2018.04.007
http://www.ncbi.nlm.nih.gov/pubmed/29719241
https://doi.org/10.1158/2159-8290.CD-15-0012
https://doi.org/10.1158/2159-8290.CD-15-0012
http://www.ncbi.nlm.nih.gov/pubmed/26269515
https://doi.org/10.1016/j.jtbi.2014.04.031
https://doi.org/10.1016/j.jtbi.2014.04.031
http://www.ncbi.nlm.nih.gov/pubmed/24810842
https://doi.org/10.1039/c5ib00201j
http://www.ncbi.nlm.nih.gov/pubmed/26686751
https://doi.org/10.1142/S0218202599000270
https://doi.org/10.1142/S0218202599000270
https://doi.org/10.1080/10273660290015242
https://doi.org/10.1080/10273660290015242
https://doi.org/10.1007/s11538-020-00819-7
https://doi.org/10.1007/s11538-020-00819-7
http://www.ncbi.nlm.nih.gov/pubmed/33211193
https://doi.org/10.3389/fonc.2019.00010
http://www.ncbi.nlm.nih.gov/pubmed/30729096
https://doi.org/10.1186/s40425-017-0313-7
http://www.ncbi.nlm.nih.gov/pubmed/29382395
https://doi.org/10.1007/s11538-006-9189-2
https://doi.org/10.1007/s11538-006-9189-2
http://www.ncbi.nlm.nih.gov/pubmed/17333419
http://dx.doi.org/10.1371/journal.pcbi.1008519
https://doi.org/10.1007/s00262-020-02785-4
http://www.ncbi.nlm.nih.gov/pubmed/33180183
https://doi.org/10.1371/journal.pcbi.1010994


46. den Breems N, Eftimie R. The re-polarisation of M2 and M1 macrophages and its role on cancer out-

comes. Journal of Theoretical Biology. 2016; 390:23–39. https://doi.org/10.1016/j.jtbi.2015.10.034

PMID: 26551154

47. Eftimie R. Investigation into the role of macrophages heterogeneity on solid tumour aggregations. Math-

ematical Biosciences. 2020; 322(March 2019):108325. https://doi.org/10.1016/j.mbs.2020.108325

PMID: 32088171

48. El-Kenawi A, Gatenbee C, Robertson-Tessi M, Bravo R, Dhillon J, Balagurunathan Y, et al. Acidity pro-

motes tumour progression by altering macrophage phenotype in prostate cancer. British Journal of

Cancer. 2019; 121(7):556–566. https://doi.org/10.1038/s41416-019-0542-2 PMID: 31417189

49. Dunn G, Old L, Schreiber R. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004;

22:329–60. https://doi.org/10.1146/annurev.immunol.22.012703.104803 PMID: 15032581

50. Bull J, Mech F, Quaiser T, Waters S, Byrne H. Mathematical modelling reveals cellular dynamics within

tumour spheroids. PLOS Computational Biology. 2020; 16(8):e1007961. https://doi.org/10.1371/

journal.pcbi.1007961 PMID: 32810174

51. Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher A, et al. Chaste: A test-

driven approach to software development for biological modelling. Computer Physics Communications.

2009; 180(12):2452–2471. https://doi.org/10.1016/j.cpc.2009.07.019

52. Mirams G, Arthurs C, Bernabeu M, Bordas R, Cooper J, Corrias A, et al. Chaste: An Open Source C++

Library for Computational Physiology and Biology. PLoS Computational Biology. 2013; 9(3). https://doi.

org/10.1371/journal.pcbi.1002970 PMID: 23516352

53. Cooper F, Baker R, Bernabeu M, Bordas R, Bowler L, Bueno-Orovio A, et al. Chaste: Cancer, Heart

and Soft Tissue Environment. Journal of Open Source Software. 2020; 5(47):1848. https://doi.org/10.

21105/joss.01848

54. Scott J, Fletcher A, Anderson A, Maini P. Spatial Metrics of Tumour Vascular Organisation Predict Radi-

ation Efficacy in a Computational Model. PLoS Computational Biology. 2016; 12(1). https://doi.org/10.

1371/journal.pcbi.1004712 PMID: 26800503

55. Greenspan H. Models for the Growth of a Solid Tumor by Diffusion. Studies in Applied Mathematics.

1972; 51(4):317–340. https://doi.org/10.1002/sapm1972514317

56. Pathmanathan P, Cooper J, Fletcher A, Mirams G, Murray P, Osborne J, et al. A computational study of

discrete mechanical tissue models. Physical biology. 2009; 6(3):036001. https://doi.org/10.1088/1478-

3975/6/3/036001 PMID: 19369704

57. Owen M, Byrne H, Lewis C. Mathematical modelling of the use of macrophages as vehicles for drug

delivery to hypoxic tumour sites. Journal of Theoretical Biology. 2004; 226(4):377–391. https://doi.org/

10.1016/j.jtbi.2003.09.004 PMID: 14759644

58. Rockne R, Hawkins-Daruud A, Swanson K, Sluka J, Glazier J, Macklin P, et al. The 2019 mathematical

oncology roadmap. Physical Biology. 2019; 16:041005. https://doi.org/10.1088/1478-3975/ab1a09

PMID: 30991381

59. Bull J, Byrne H. The Hallmarks of Mathematical Oncology. Proceedings of the IEEE. 2022. In press.

60. Norton K, Jin K, Popel A. Modeling triple-negative breast cancer heterogeneity: Effects of stromal mac-

rophages, fibroblasts and tumor vasculature. Journal of Theoretical Biology. 2018; 452:56–68. https://

doi.org/10.1016/j.jtbi.2018.05.003 PMID: 29750999

61. Ghaffarizadeh A, Heiland R, Friedman S, M Shannon, Macklin P. PhysiCell: An open source physics-

based cell simulator for 3-D multicellular systems. PLoS Computational Biology. 2018; 14(2):1–34.

https://doi.org/10.1371/journal.pcbi.1005991 PMID: 29474446

62. Bravo R, Baratchart E, West J, Schenck R, Miller A, Gallaher J, et al. Hybrid Automata Library: A flexible

platform for hybrid modeling with real-time visualization. PLoS Computational Biology. 2020; 16(3):1–

28. https://doi.org/10.1371/journal.pcbi.1007635 PMID: 32155140

63. Leschiera E, Lorenzi T, Shen S, Almeida L, Audebert C. A mathematical model to study the impact of

intra-tumour heterogeneity on anti-tumour CD8+ T cell immune response. Journal of Theoretical Biol-

ogy. 2022; 538:111028. https://doi.org/10.1016/j.jtbi.2022.111028 PMID: 35085535

64. Swat M, Thomas G, Belmonte J, Shirinifard A, Hmeljak D, Glazier J. Multi-Scale Modeling of Tissues

Using CompuCell3D. Methods in Cell Biology. 2012; 110:325–366. https://doi.org/10.1016/B978-0-12-

388403-9.00013-8 PMID: 22482955

65. Colling R, Pitman H, Oien K, Rajpoot N, Macklin P, CM-Path AI in Histopathology Working Group, et al.

Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. Journal of Pathol-

ogy. 2019; 249:143–150. https://doi.org/10.1002/path.5310 PMID: 31144302

66. Hakkoum H, Abnane I, Idri A. Interpretability in the medical field: A systematic mapping and review

study. Applied Soft Computing. 2022; 117:108391. https://doi.org/10.1016/j.asoc.2021.108391

PLOS COMPUTATIONAL BIOLOGY Quantification of spatial and phenotypic heterogeneity in an ABM of tumours/macrophages

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010994 March 27, 2023 26 / 27

https://doi.org/10.1016/j.jtbi.2015.10.034
http://www.ncbi.nlm.nih.gov/pubmed/26551154
https://doi.org/10.1016/j.mbs.2020.108325
http://www.ncbi.nlm.nih.gov/pubmed/32088171
https://doi.org/10.1038/s41416-019-0542-2
http://www.ncbi.nlm.nih.gov/pubmed/31417189
https://doi.org/10.1146/annurev.immunol.22.012703.104803
http://www.ncbi.nlm.nih.gov/pubmed/15032581
https://doi.org/10.1371/journal.pcbi.1007961
https://doi.org/10.1371/journal.pcbi.1007961
http://www.ncbi.nlm.nih.gov/pubmed/32810174
https://doi.org/10.1016/j.cpc.2009.07.019
https://doi.org/10.1371/journal.pcbi.1002970
https://doi.org/10.1371/journal.pcbi.1002970
http://www.ncbi.nlm.nih.gov/pubmed/23516352
https://doi.org/10.21105/joss.01848
https://doi.org/10.21105/joss.01848
https://doi.org/10.1371/journal.pcbi.1004712
https://doi.org/10.1371/journal.pcbi.1004712
http://www.ncbi.nlm.nih.gov/pubmed/26800503
https://doi.org/10.1002/sapm1972514317
https://doi.org/10.1088/1478-3975/6/3/036001
https://doi.org/10.1088/1478-3975/6/3/036001
http://www.ncbi.nlm.nih.gov/pubmed/19369704
https://doi.org/10.1016/j.jtbi.2003.09.004
https://doi.org/10.1016/j.jtbi.2003.09.004
http://www.ncbi.nlm.nih.gov/pubmed/14759644
https://doi.org/10.1088/1478-3975/ab1a09
http://www.ncbi.nlm.nih.gov/pubmed/30991381
https://doi.org/10.1016/j.jtbi.2018.05.003
https://doi.org/10.1016/j.jtbi.2018.05.003
http://www.ncbi.nlm.nih.gov/pubmed/29750999
https://doi.org/10.1371/journal.pcbi.1005991
http://www.ncbi.nlm.nih.gov/pubmed/29474446
https://doi.org/10.1371/journal.pcbi.1007635
http://www.ncbi.nlm.nih.gov/pubmed/32155140
https://doi.org/10.1016/j.jtbi.2022.111028
http://www.ncbi.nlm.nih.gov/pubmed/35085535
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
https://doi.org/10.1016/B978-0-12-388403-9.00013-8
http://www.ncbi.nlm.nih.gov/pubmed/22482955
https://doi.org/10.1002/path.5310
http://www.ncbi.nlm.nih.gov/pubmed/31144302
https://doi.org/10.1016/j.asoc.2021.108391
https://doi.org/10.1371/journal.pcbi.1010994


67. Stolz B, Kaeppler J, Markelc B, Mech F, Lipsmeier F, Muschel R, et al. Multiscale Topology Character-

ises Dynamic Tumour Vascular Networks. arXiv preprint. 2020:2008.08667

68. Bull J, Macklin P, Quaiser T, Braun F, Waters S, Pugh C, et al. Combining multiple spatial statistics

enhances the description of immune cell localisation within tumours. Scientific Reports. 2020;

10:18624. https://doi.org/10.1038/s41598-020-75180-9 PMID: 33122646

69. Failmezger H, Muralidhar S, Rullan A, de Andrea C, Sahai E, Yuan Y. Topological Tumor Graphs: A

Graph-Based Spatial Model to Infer Stromal Recruitment for Immunosuppression in Melanoma Histol-

ogy. Cancer Research. 2020; 256(4):1199–1209. https://doi.org/10.1158/0008-5472.CAN-19-2268

PMID: 31874858

70. Galon J, Mlecnik B, Bindea G, Andell H, Berger A, Lagorce C, et al. Towards the introduction of the

‘Immunoscore’ in the classification of malignant tumours. Journal of Pathology. 2014; 232(2):199–209.

https://doi.org/10.1002/path.4287 PMID: 24122236

71. AbdulJabbar K, Ahmed Raza S, Rosenthal R, Jamal-Hanjani M, Veeriah S, Akarca A, et al. Geospatial

immune variability illuminates differential evolution of lung adenocarcinoma. Nature Medicine. 2020; 26

(7):1054–1062. https://doi.org/10.1038/s41591-020-0900-x PMID: 32461698

PLOS COMPUTATIONAL BIOLOGY Quantification of spatial and phenotypic heterogeneity in an ABM of tumours/macrophages

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010994 March 27, 2023 27 / 27

https://doi.org/10.1038/s41598-020-75180-9
http://www.ncbi.nlm.nih.gov/pubmed/33122646
https://doi.org/10.1158/0008-5472.CAN-19-2268
http://www.ncbi.nlm.nih.gov/pubmed/31874858
https://doi.org/10.1002/path.4287
http://www.ncbi.nlm.nih.gov/pubmed/24122236
https://doi.org/10.1038/s41591-020-0900-x
http://www.ncbi.nlm.nih.gov/pubmed/32461698
https://doi.org/10.1371/journal.pcbi.1010994

