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Abstract

Phased DNA methylation states within bisulfite sequencing reads are valuable source of

information that can be used to estimate epigenetic diversity across cells as well as epige-

nomic instability in individual cells. Various measures capturing the heterogeneity of DNA

methylation states have been proposed for a decade. However, in routine analyses on DNA

methylation, this heterogeneity is often ignored by computing average methylation levels at

CpG sites, even though such information exists in bisulfite sequencing data in the form of

phased methylation states, or methylation patterns. In this study, to facilitate the application

of the DNA methylation heterogeneity measures in downstream epigenomic analyses, we

present a Rust-based, extremely fast and lightweight bioinformatics toolkit called Metheor.

As the analysis of DNA methylation heterogeneity requires the examination of pairs or

groups of CpGs throughout the genome, existing softwares suffer from high computational

burden, which almost make a large-scale DNA methylation heterogeneity studies intractable

for researchers with limited resources. In this study, we benchmark the performance of

Metheor against existing code implementations for DNA methylation heterogeneity mea-

sures in three different scenarios of simulated bisulfite sequencing datasets. Metheor was

shown to dramatically reduce the execution time up to 300-fold and memory footprint up to

60-fold, while producing identical results with the original implementation, thereby facilitating

a large-scale study of DNA methylation heterogeneity profiles. To demonstrate the utility of

the low computational burden of Metheor, we show that the methylation heterogeneity pro-

files of 928 cancer cell lines can be computed with standard computing resources. With

those profiles, we reveal the association between DNA methylation heterogeneity and vari-

ous omics features. Source code for Metheor is at https://github.com/dohlee/metheor and is

freely available under the GPL-3.0 license.
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Author summary

DNA methylation is the most extensively studied epigenetic modifications that plays a

pivotal role in key biological processes. The advance of next-generation sequencing

technology combined with bisulfite treatment of DNA, namely bisulfite sequencing,

allowed fine-grained characterization of DNA methylation states at basepair-resolution,

and it facilitated researchers elucidate the significance of DNA methylation at various

genomic contexts. To date, most of the routine DNA methylation analyses only deal

with per-CpG methylation levels. That is, they compute the proportion of CpGs in

methylated state for each CpG throughout the genome. However, bisulfite sequencing

data harbor information beyond individual CpG methylation states: methylation states

co-occurring in a single sequencing read. This information is important because such

‘phased’ methylation states can inform us about the epigenetic diversity of cell popula-

tions as well as the local regulation states of the epigenome. We collectively refer to

those information as DNA methylation heterogeneity. In this study, we present a Rust-

based software named Metheor for ultrafast and accurate calculation of DNA methyla-

tion heterogeneity from bisulfite sequencing data. We show that Metheor reduces execu-

tion time and memory footprint up to 300-fold and 60-fold, respectively, compared to

existing implementations, and analyze DNA methylation heterogeneity profiles of 928

cancer cell lines.

Introduction

Unlike genomes, changes in epigenomes are dynamic and reversible. This plasticity has been

increasingly highlighted over a recent decade, since the spatiotemporal dynamics of epigenetic

modification are shown to form the basis of diverse cellular processes such as cell differentia-

tion and senescence. The variability of epigenomes is the key mechanism that cells acquire

diverse and precise functions throughout the whole body of an individual to sustain the life of

an organism. Furthermore, the dysregulation of the epigenetic variability has shown great bio-

logical implication for various cancer types, as it increases the adaptive potential of a cancer

cell population against treatments [1].

Among the diverse manifestations of epigenetic variabilities, cell-to-cell variability of DNA

methylation states is one of the most actively investigated research topics. To measure the

diversity of bulk cell population in terms of DNA methylation, it is necessary to identify the

epigenetic configurations of individual cells. Single-cell bisulfite sequencing can directly

resolve this challenge, but its cost makes it hardly applicable to a large-scale study. An effective

alternative is to extract DNA methylation states co-occurring in a single sequencing read, and

consider each pattern as a pseudo-barcode that identifies each cell. By measuring the diversity

of DNA methylation patterns aligned at each genomic region, we can obtain a partial estimate

of the true epigenetic diversity across cell population.

Despite many proof-of-concept experiments underscoring the utility of those DNA methyl-

ation heterogeneity measures in physiopathological conditions, a highly efficient toolkit for

quantifying the extent of the heterogeneity is still lacking. To facilitate a large-scale functional

study of DNA methylation heterogeneity based on bisulfite sequencing data, we developed a

fast and lightweight software called Metheor. In this study, we present the functionality of

Metheor and benchmark its performance against existing code implementations for DNA

methylation heterogeneity measures. Also, to demonstrate the utility of Metheor in large-scale

studies, we provide DNA methylation heterogeneity analyses of 928 cancer cell lines from
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Cancer Cell Line Encyclopedia (CCLE), which reveal novel association between the extent of

epigenetic heterogeneity and other omics features. We believe this software will serve as a con-

venient toolkit helping researchers fully utilize the phasing information of DNA methylation

states that have not been investigated actively so far.

Design and implementation

Functionality and implementation

Given a bisulfite read alignment file, Metheor can efficiently compute all of the six DNA meth-

ylation heterogeneity measures proposed to date [2–6] (Fig 1A and 1B and S1–S4 Figs). In

short, epipolymorphism and methylation entropy quantify the diversity of DNA methylation

patterns, or epialleles, in a given cell population. Fraction of discordant read pairs (FDRP) and

quantitative FDRP (qFDRP) measure the epiallelic diversity at CpG resolution. On the other

hand, proportion of discordant reads (PDR) measures the extent of local homogeneity of DNA

methylation through computing the proportion of bisulfite sequencing reads having two dif-

ferent DNA methylation states at the same time. Methylation haplotype load (MHL) similarly

captures the local homogeneity of DNA methylation status by quantifying how well a methyla-

tion haplotype (i.e., a stretch of consecutively methylated CpGs) is conserved throughout the

cell population. For the detailed description for each of the measures and the algorithms to

compute them, please refer to the S1 Text.

The main algorithmic advantage of Metheor is that it is a “one-sweep” algorithm that iter-

ates through the entire sequencing reads only once (Fig 1C). On the other hand, a bench-

mark counterpart R package, WSHPackage [6], iterates through a set of CpGs specified by a

user and fetches the reads covering each CpG using indexed alignment file (Fig 1D). As the

most time-consuming operation in this setting is fetching sequencing reads from align-

ments, we can estimate the time complexity of the methods using the total number of

sequencing read accesses. For Metheor, the estimation is trivial; it requires n sequencing

read accesses in total, where n is the number of aligned reads. For WSHPackage, the number

of sequencing read accesses is λ × n, where λ is the average number of CpGs within a single

sequencing read. Therefore, the performance advantage of Metheor compared to WSH will

be determined by the coefficient λ. Importantly, the empirical distribution of CpGs through-

out the genome is uneven and known to form CpG-dense regions including CpG-islands.

Reduced representation bisulfite sequencing (RRBS) predominantly targets those CpG-

dense regions, so the coefficient λ for RRBS experiment is generally greater than 1 (Fig 1E).

This is why the read-centric algorithm used in Metheor empirically runs faster than CpG-

centric ones.

Note that when a user wants to compute DNA methylation heterogeneity levels for only a

subset of CpGs rather than the whole set of CpGs, it may be disadvantageous for Metheor

since it iterates all the aligned reads while CpG-centric approaches uses alignment index to

access only to CpGs specified by users. However, we observed that Metheor still ran faster than

WSHPackage for PDR, FDRP and qFDRP calculation even when only a subset of CpGs are

considered (3*4-fold speedups when 5% of CpGs are considered; S5 Fig), underscoring the

efficiency of the implementation of Metheor.

Metheor also supports alignments generated not only by Bismark, but also other widely

used methylation-aware aligners, by providing a subcommand to attach a tag denoting the

methylation states of cytosines to each aligned read (Fig 1A). This warrants the wide applica-

bility of Metheor at the downstream of various bisulfite read processing pipelines. Metheor is

implemented in Rust language and distributed via the conda package manager.
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Definition of local pairwise methylation discordance (LPMD)

To ameliorate the read length bias of PDR, we propose a new measure called local pairwise

methylation discordance (LPMD) in this study (Fig 1G). LPMD considers the discrepancy of

methylation states between a pair of CpGs placed at a fixed distance from each other instead of

the read-wise classification of DNA methylation discordance in PDR. As in the computation

of PDR, the concordance of DNA methylation states are only examined for pairs of CpG

methylation states that are present on the same sequencing read. Therefore, LPMD allows a

Fig 1. Overview of Metheor. (A) The input for Metheor is bisulfite read alignment tagged with Bismark methylation call strings. Using each of the

seven subcommands shown, Metheor computes the corresponding DNA methylation heterogeneity measure. If reads were aligned with a tool other

than Bismark, Metheor can still add tag for methylation call string with metheor tag subcommand to make alignment file compatible for Metheor

run. (B) Schematic diagram for DNA methylation heterogeneity measures and benchmark settings in this study. [5] denote the Perl script provided by

the authors along with the article proposing the utility of MHL. (C, D) Schematic diagram illustrating (C) read-centric algorithm and (D) CpG-centric

algorithm for the computation of DNA methylation heterogeneity. The advantages (plus symbol) and disadvantages (minus symbol) are shown below

the diagrams. (E) Distribution of the average number of CpGs per sequencing read for the RRBS data from 928 CCLE cell lines. (F) Genomewide

average levels of proportion of discordant reads (PDR) and local pairwise methylation discordance (LPMD) against varying read lengths. (G) Schematic

illustration for the definition of local pairwise methylation discordance (LPMD) and examples. The proportion of reads having different DNA

methylation states for a pair of CpGs (red arrows) are computed.

https://doi.org/10.1371/journal.pcbi.1010946.g001
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consistent comparison between any sequencing experiments regardless of read length, as long

as the same range of CpG pair distance is considered. Throughout this study, we computed the

LPMD values using CpG pairs that are 2bp to 16bp away from each other regarding the length

of CCLE RRBS reads (29nt). We note that the trend of LPMD values are robust to the choice

of the genomic distance window between CpG pairs (S6 Fig), so in general 2*16bp window is

a reasonable choice.

Simulation of sequencing data with different read lengths

In the computation of PDR, a read is classified as discordant if it contains at least one CpG

pair with different methylation states. Therefore, it is conceivable that the levels of PDR will

increase as the length of sequencing read gets longer because the mere chance of observing a

discordant CpG pair increases as more CpGs are considered. This is not desirable since it

hampers the comparison of the metric between the sequencing experiments of different read

lengths, which is often unavoidable for large-scale collaborative studies or meta-analyses. To

examine the read length bias of PDR and LPMD, we simulated sequencing data with different

read lengths by manipulating publicly available RRBS data from Ewing sarcoma tumor sample.

The raw 50bp-sequencing reads were downloaded under SRA run accession SRR5222549, and

aligned to hg38 reference genome using Bismark v0.23.1. For each aligned read, the methyla-

tion call string generated by Bismark was trimmed from 3’-end to mimic reads of shorter

length. Read alignment files with 25bp, 30bp, 35bp, 45bp and 50bp reads were separately gen-

erated and genomewide average PDR values were computed. As expected, we observed the

clear read length bias for PDR, scaling linearly to increasing read lengths (Fig 1F).

Performance benchmark

We compared the performance of our method with existing methods (methclone [7],

WSHPackage [6] and perl scripts from [5]) for the six existing measures. Three different

types of simulated sequencing datasets with varying numbers of reads were used (S1 Text). In

brief, we generated two RRBS datasets (by simulation and real-world data subsampling) and

pseudo-whole genome bisulfite sequencing experiments reproducing the methylation erosion

scenario as proposed in [6]. All the benchmark experiments were done on a server with Intel

(R) Xeon(R) E7–4850 2.10 GHz CPU and 512GB of RAM.

Demonstration of the validity of results

To verify that Metheor produces methylation heterogeneity levels accurately, we compared

CpG-wise and CpG quartet-wise methylation heterogeneity levels produced by Metheor to

those produced by reference implementations. For experiment, we used the results from simu-

lated RRBS data with 20M reads. Note that PDR, MHL, FDRP and qFDRP levels were com-

puted for each individual CpG, and PM and ME were computed for each CpG quartet.

Computation of DNA methylation heterogeneity profiles of CCLE cell lines

We downloaded raw RRBS sequencing reads for 928 CCLE cell lines under SRA study acces-

sion SRP186687. RRBS reads were preprocessed using Trim Galore! v0.6.7 with --rrbs
option and aligned to hg38 reference genome using Bismark v0.23.1. Given the read align-

ments, genomewide and region-specific DNA methylation heterogeneity profiles were

obtained using Metheor v0.1.2 with default parameters. Of note, genomic contexts of interest

included CpG islands, CpG shores, CpG shelves, DNA methylation canyons, long and short

interspersed nuclear elements (LINEs and SINEs, respectively), long terminal repeats (LTRs),
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exons, introns, gene bodies and promoters of protein coding genes. Annotations for CpG

islands and transposable elements are downloaded from UCSC table browser. CpG shores

were defined as 2kbp regions flanking CpG islands on their both side, but regions overlapping

with any CpG islands were excluded. Similarly, CpG shelves were defined as 2kbp regions

flanking the stretches of CpG islands and shores. GENCODE v38 gene annotations were used

to define exons, introns, gene bodies and promoters, where promoters were defined as 2kbp

regions centered at TSS for each protein coding gene. Annotations for DNA methylation can-

yons were downloaded from the supplementary material of [8].

Results

Execution time and memory usage benchmarks

We observed significant speedups (up to 300-fold depending on measure and data size) for the

computation of all DNA methylation heterogeneity measures (Fig 2A and 2B and S7 Fig). It is

worth noting that the total running time of Metheor and WSHPackage were both linearly pro-

portional to the number of sequencing reads in the input data. Especially, we could achieve

extreme speedup for FDRP and qFDRP calculation using reservoir sampling-based approach

(S1 Text). Since the utility of FDRP and qFDRP has been limited by the slow computation [6],

we expect that Metheor will facilitate the use of those measures in further experimental setups.

We also observed significant reduction in memory footprints (Fig 2C and 2D and S7 Fig).

WSHPackage allows PDR, FDRP and qFDRP to be calculated using multiple threads. To

examine whether it can achieve performance comparable to Metheor when multiple threads

are used, we particularly focused on the three measures, PDR, FDRP and qFDRP, for which

WSHPackage allows the computation to be multithreaded. The running time for the computa-

tion of the three measures was measured using 20M simulated RRBS reads, with three repli-

cates using each of 4, 8, 16 and 32 threads for WSHPackage. Surprisingly, we found that

Metheor, only with a single thread, showed remarkable performance improvement

(13.7*175.8-fold faster) even compared to WSHPackage using 32 threads (Table 1).

Validity of the result

We verified that the DNA methylation heterogeneity levels computed by Metheor are consis-

tent with the results from the reference implementations at both individual CpG or epiallele

level (Fig 2E). Specifically, we observed exactly identical results for PDR, MHL, PM and ME

levels. For FDRP and qFDRP, values from Metheor and WSHPackage were not exactly the

same because these measures depend on random sampling of sequencing reads and it is not

possible to reproduce the random sampling process of the reference implementation. Never-

theless, they showed extremely high and significant correlation with each other, supporting

that Metheor successfully implements procedures to compute FDRP and qFDRP in desired

ways. Altogether, these results ensure the reliability of the results from Metheor throughout all

the measures it supports. Of note, Metheor uses 0-based half-open inteval system that comply

with standard BED format. All the comparisons for the validation were done after translating

the coordinates of the outputs appropriately.

Exploratory analysis on the DNA methylation heterogeneity profiles of 928

CCLE cell lines

Metheor allows the large-scale characterization of DNA methylation heterogeneity pro-

files in standard computing resources. To demonstrate the utility of Metheor for a large-

scale DNA methylation heterogeneity studies, we applied Metheor to compute the genomewide
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Fig 2. Performance benchmark and validity of the results. Benchmarking the running time of Metheor using (A)

simulated RRBS dataset and (B) Ewing sarcoma RRBS dataset. Values below the name of each of the measures denote

the amount of speedup (in fold) in Metheor compared to its benchmark counterpart. Benchmarking the memory

usage of Metheor using (C) simulated RRBS dataset and (D) Ewing sarcoma RRBS dataset. Values below the name of

each of the measures denote the amount of memory usage reduction (in fold) in Metheor compared to its benchmark

counterpart. All the benchmark experiments were repeated for three times, except for MHL. Lines denote the average

wall time and shades represent the 95% confidence interval. The wall time for MHL computation was measured for

only once. (E) Validity of the results. CpG-wise (PDR, MHL, FDRP and qFDRP) and CpG quartet-wise (PM and ME)

methylation heterogeneity levels were compared between Metheor and the corresponding reference implementations.

Pearson’s correlation coefficient and corresponding p-values are shown for FDRP and qFDRP.

https://doi.org/10.1371/journal.pcbi.1010946.g002
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and context-specific DNA methylation heterogeneity profiles (PDR, ME, PM, FDRP, qFDRP,

MHL and LPMD) using RRBS data for 928 cancer cell lines from CCLE. Of note, we restricted

our processing pipeline to use at most 32 cores, each of which being assigned to single-threaded

Metheor run, to show that Metheor can be run in standard computing resources that are avail-

able to a majority of the researchers, especially including experimental biologists.

The computation of PDR, ME, PM and MHL for each cell line took 99.75, 144.52, 97.54

and 182.15 seconds on average, respectively, and the whole pipeline for 928 cell lines did not

take more than one and an half hour. Since the running time estimation of four-threaded

WSHPackage run for PDR yields about 5 days according to Table 1, it shows the significant

reduction of the computational burden of Metheor. Of note, the computation of LPMD took

397.55 seconds on average for each cell line. Furthermore, the computation of FDRP and

qFDRP took 410.36 and 410.19 seconds on average, respectively, making the whole pipeline

finish in about 3.3 hours. As the four-threaded WSHPackage runs for FDRP and qFDRP are

expected to take 338 and 271 days in this setting, respectively, the use of high-performance

computing cluster would have been almost necessary to compute these measures. Altogether,

these results directly show the wide applicability of Metheor for large-scale DNA methylation

heterogeneity studies.

In the following sections, we provide some exploratory analyses on the biological signifi-

cance of the DNA methylation heterogeneity profiles of 928 cancer cell lines characterized by

Metheor.

Characteristics of the local DNA methylation disorder captured by LPMD across 928

cancer cell lines. We first analyzed the genomewide average levels of LPMD across the 928

cancer cell lines according to their tissues of origin (Fig 3A) and disease types (Fig 3B). Overall,

we could not observe consistent trends shared between genomewide methylation levels (i.e.,

average methylation level across all CpGs throughout the genome) and genomewide LPMD

levels across tissues and diseases. This implies that the observed DNA methylation heterogene-

ity levels are not a mere consequence of stochastic DNA methylation, but at least there exist

some tissue-specific regulatory mechanism that constrains the local homogeneity of DNA

methylation states.

The genomewide methylation and LPMD levels were highly variable within the group of

cell lines derived from haematopoietic and lymphoid tissues (Fig 3A), reflecting the heteroge-

neous disease composition (Fig 3B). Notably, malignancies derived from B cells showed high-

est genomewide LPMD, but they did not show consistent levels of global DNA methylation.

The increased local disorder of DNA methylation states in B cell-derived malignancies is

emphasized when the acute lymphoblastic B cell leukaemia and acute lymphoblastic T cell leu-

kaemia are compared. This is particularly interesting since the importance of DNA methyla-

tion heterogeneity has been already highlighted in multiple myelomas [9] and diffuse large B

cell lymphoma [10, 11].

Table 1. Performance comparison with WSHPackage using multiple threads for 20M RRBS-simulated reads.

Tool # threads PDR (fold) FDRP (fold) qFDRP (fold)

Metheor 1 0.87 (1) 2.96 (1) 3.72 (1)

WSHPackage 4 34.03 (38.92) 1813.86 (612.65) 1832.19 (492.70)

8 19.57 (22.38) 1072.79 (362.35) 1097.32 (295.09)

16 11.21 (12.82) 652.74 (220.47) 671.59 (180.60)

32 11.94 (13.66) 520.58 (175.83) 527.40 (141.83)

Values denote the wall time in minutes to compute each measure. Fold speedups in corresponding run of Metheor are shown in parentheses.

https://doi.org/10.1371/journal.pcbi.1010946.t001
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Fig 3. Characteristics of LPMD across 928 cancer cell lines. (A) Genomewide average methylation levels and LPMD levels

grouped by tissue types. Black vertical lines denote groupwise average levels of methylation and LPMD levels. Black horizontal bars

on the right side denote the standard deviation of corresponding values. (B) Genomewide average methylation levels and LPMD

levels grouped by disease types. Disease types from haematopoietic and lymphoid tissues are highlighted in red. (C, D) Correlation

between mRNA expression and (C) genomewide average LPMD or (D) genomewide average methylation level. Genes are ranked

according to the p-values of the corresponding correlation coefficients. P-values were adjusted using Benjamini-Hochberg

procedure. (E, F) Correlation between DNMT3A expression and (E) genomewide average LPMD or (F) genomewide average

methylation level. (G, H) Trends of fixed-distance average LPMD values. Shades denote 95% confidence interval. In (H), Cell lines

were divided into two groups based on the median DNMT3A expression. (I) Difference of fixed-distance average LPMD values

between DNMT3AHigh and DNMT3ALow groups.

https://doi.org/10.1371/journal.pcbi.1010946.g003
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To reveal potential epigenetic regulators of the genomewide level of the local disorder of

DNA methylation, we narrowed down our focus to a set of genes associated with GO term

‘DNA methylation’ (GO:0006306). Among the 59 genes associated with the term, we examined

56 genes whose mRNA expression levels were available. For each gene, the correlation between

its mRNA expression level and genomewide LPMD or DNA methylation level were computed

across the cancer cell lines, and we observed moderate negative correlation between DNMT3A
expression and LPMD levels (Fig 3C and 3D). Interestingly, the correlation between

DNMT3A expression and global DNA methylation level was not prominently stronger than

the other genes (Fig 3E and 3F). As a measure of the local disorder of DNA methylation, an

advantage of LPMD compared to PDR is that it explicitly takes the distance between a pair of

CpGs into account. We asked whether the probability of observing discordance of DNA meth-

ylation states increases with increasing distance between a pair of CpGs (Fig 3G). In other

words, we examined the local homogeneity of individual DNA methylation states in a quanti-

tative manner. As a result, we verified that the discordance of DNA methylation states were

positively correlated with the distance between CpGs. We confirmed that there were sufficient

number of CpG pairs for the computation of LPMD (S8 Fig). Intriguingly, when the cell lines

were divided into two groups based on their DNMT3A mRNA expression levels, we observed

significant differences of LPMD levels between the two groups (Fig 3H, Two-tailed indepen-

dent t-test p< 0.001 for all individual distances), and the absolute difference increased along

the distance (Fig 3I). We leave the elucidation of the exact biological mechanism underlying

the association between the DNMT3A expression and the local disorder of DNA methylation

as a future work, nevertheless we hypothesize that the processive de novo DNA methylation by

DNMT3A dependent on the oligomeric state of the protein [12] may play a critical role in this

phenomenon. Specifically, homotetrameric DNMT3A shows processive de novo methylation,

where the methylation is added to consecutive CpGs. On the other hand, homodimeric

DNMT3A shows distributive catalysis, where the enzyme complex frequently dissociates from

the DNA. As the oligomeric state of homomer complex is known to heavily dependent on

monomer concentration [13], we speculate that the increase of DNMT3A gene expression will

make intracellular DNMT3A oligomeric state biased toward homotetramers, thus increasing

the local homogeneity of DNA methylation states.

Homogeneity of DNA methylation patterns across cell population is associated with the

stemness of cancer cells. Having analyzed the intracellular DNA methylation disorders

using LPMD, we then tried to systematically identify genes whose expression levels are associ-

ated with the global extent of intercellular DNA methylation heterogeneity using methylation

entropy. To this end, for every gene, we computed the correlation between its expression and

the average methylation entropy levels at the promoters of all protein coding genes (Fig 4A).

Interestingly, we observed that the genes whose expressions were negatively correlated with

global promoter methylation entropy exhibited considerable enrichment for biological pro-

cesses including extracellular matrix organization, cell migration, cell differentiation and epi-

thelial to mesenchymal transition (Fig 4B) and it was true for the other DNA methylation

heterogeneity measures including LPMD, PDR, epipolymorphism, FDRP and MHL (S9 Fig

(A)). These terms collectively imply that the homogeneity of DNA methylation patterns is

associated with the increased metastatic potential as well as increased stemness of cancer cells.

As expected, cancer cell lines derived from metastatic origins displayed lower promoter meth-

ylation entropy levels (Fig 4C, p = 0.0478) and other DNA methylation heterogeneity levels

(S9 Fig (B)). Fig 4D shows weak, but significant negative correlation for the two representative

genes within canonical Wnt signaling (WNT7A and CTNND2). Furthermore, the activity of

Wnt signaling pathway, inferred by bioinformatic method called subsystem activation score

[14], also showed negative correlation with global levels of promoter methylation entropy (Fig
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4E) and other DNA methylation heterogeneity levels (S9 Fig (C)). These results are noticeable

in that stem cells in normal physiological condition show remarkable homogeneity of DNA

methylation patterns [4]. Although the causal relationship between the observed DNA methyl-

ation heterogeneity in a cancer cell population and stem-like reprogramming remains to be

studied, our results suggest the potential of the cancer cell population-level DNA methylation

homogeneity as a new prognostic marker.

Availability and future directions

The DNA methylation heterogeneity profiles generated by Metheor can be utilized to discover

novel biomarkers when combined with functional genomic analyses. For example, the hetero-

geneity, or diversity, of DNA methylation patterns within a cancer cell population can serve as

a predictive biomarker for certain anticancer drugs. Especially, through a preliminary analysis

we found that PDRs at the promoters of tumor suppressor genes (TSGs) are significantly

lower than that of oncogenes and the rest of the genes (S10 Fig), suggesting the different role

of epigenetic regulation of TSGs and oncogenes in the context of cancer evolution. Moreover,

the local heterogeneity of DNA methylation states may sensitize cancer cells to the perturba-

tion of certain genes. That is, the configuration of local DNA methylation states may reflect

the genetic dependency of cancer cells. Meanwhile, our exploratory analysis of DNA methyla-

tion heterogeneity reveals a link between the extent of the DNA methylation heterogeneity

and the overall stemness of cancer cell population. Although the causal explanation between

the homogeneity of DNA methylation and the stemness of cancer cells remains unclear, we

Fig 4. Association between methylation entropy and cancer stemness. (A) Genes were ranked by the Pearson’s correlation between their expression

and average methylation entropy levels across promoters. Red dots represent 3,680 genes having statistically significant correlations (Benjamini-

Hochberg adjusted p-value< 0.05), and the results of functional enrichment analysis using those genes are shown in (B). (C) The distribution of

promoter methylation entropy levels in primary and metastatic cancer cell lines. (D) The association between promoter methylation entropy levels and

two genes representative of Wnt signaling pathway (WNT7A and CTNND2). (E) The association between promoter methylation entropy levels and the

activity of Wnt signaling pathway. �two-tailed independent t-test p< 0.05; In D-E, Pearson’s correlation coefficients and associated p-values are shown.

In D, p-values were adjusted using Benjamini-Hochberg procedure.

https://doi.org/10.1371/journal.pcbi.1010946.g004
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can devise an orthogonal method for the computation of the stemness index [15] of a tumor,

which has already been shown its prognostic potential in various cancer types. Finally, to facili-

tate such future studies on the DNA methylation heterogeneity in cancers, we made the DNA

methylation heterogeneity profiles of 928 CCLE cell lines computed by Metheor publicly avail-

able through Figshare (https://doi.org/10.6084/m9.figshare.21100717.v1).

Metheor is freely available for any users under the GPL-3.0 license. The source code can be

anonymously downloaded at the GitHub repository (https://github.com/dohlee/metheor), and

the executable is distributed through conda package manager to facilitate the public use of the

software (https://anaconda.org/dohlee/metheor). We also provide the codes for the simulation

of WGBS reads at the dedicated GitHub repository (https://github.com/jwyang21/simulate_

WGBS).

Supporting information

S1 Text. Details of the algorithms used in Metheor implementation and simulated data

preparation used for benchmark.

(PDF)

S1 Fig. Schematic illustration of proportion of discorant reads (PDR).

(PDF)

S2 Fig. Schematic illustration of local pairwise methylation discordance (LPMD).

(PDF)

S3 Fig. Schematic illustration of methylation haplotype load (MHL).

(PDF)

S4 Fig. Schematic illustration of epipolymorphism and methylation entropy.

(PDF)

S5 Fig. Benchmarking the running time of Metheor against WSHPackage when only a sub-

set of CpGs are considered.

(PDF)

S6 Fig. Robustness of LPMD against the choice of genomic distance window.

(PDF)

S7 Fig. Benchmarking the running time and memory usage of Metheor using simulated

pseudo-WGBS dataset.

(PDF)

S8 Fig. Distribution of the number of CpG pairs at fixed distances in 928 CCLE cell lines.

(PDF)

S9 Fig. Association between stemness of cancer cells and other DNA methylation heteroge-

neity measures.

(PDF)

S10 Fig. Promoter PDRs of tumor suppressors and oncogenes.

(PDF)

Author Contributions

Conceptualization: Dohoon Lee.

PLOS COMPUTATIONAL BIOLOGY Ultrafast DNA methylation heterogeneity calculation from bisulfite read alignments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010946 March 20, 2023 12 / 14

https://doi.org/10.6084/m9.figshare.21100717.v1
https://github.com/dohlee/metheor
https://anaconda.org/dohlee/metheor
https://github.com/jwyang21/simulate_WGBS
https://github.com/jwyang21/simulate_WGBS
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010946.s011
https://doi.org/10.1371/journal.pcbi.1010946


Formal analysis: Dohoon Lee, Bonil Koo, Jeewon Yang.

Funding acquisition: Sun Kim.

Investigation: Dohoon Lee, Bonil Koo, Jeewon Yang.

Methodology: Dohoon Lee, Bonil Koo, Jeewon Yang.

Project administration: Sun Kim.

Software: Dohoon Lee, Bonil Koo, Jeewon Yang.

Supervision: Dohoon Lee, Sun Kim.

Validation: Dohoon Lee, Bonil Koo, Jeewon Yang.

Visualization: Dohoon Lee.

Writing – original draft: Dohoon Lee, Bonil Koo, Jeewon Yang, Sun Kim.

Writing – review & editing: Dohoon Lee, Bonil Koo, Jeewon Yang, Sun Kim.

References
1. Mazor T, Pankov A, Song J, Costello JF. Intratumoral heterogeneity of the epigenome. Cancer cell.

2016; 29(4):440–451. https://doi.org/10.1016/j.ccell.2016.03.009 PMID: 27070699

2. Xie H, Wang M, De Andrade A, Bonaldo M, Galat V, Arndt K, et al. Genome-wide quantitative assess-

ment of variation in DNA methylation patterns. Nucleic acids research. 2011; 39(10):4099–4108.

https://doi.org/10.1093/nar/gkr017 PMID: 21278160

3. Landau DA, Clement K, Ziller MJ, Boyle P, Fan J, Gu H, et al. Locally disordered methylation forms the

basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer cell. 2014; 26(6):813–

825. https://doi.org/10.1016/j.ccell.2014.10.012 PMID: 25490447

4. Landan G, Cohen NM, Mukamel Z, Bar A, Molchadsky A, Brosh R, et al. Epigenetic polymorphism and

the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nature

genetics. 2012; 44(11):1207–1214. https://doi.org/10.1038/ng.2442 PMID: 23064413

5. Guo S, Diep D, Plongthongkum N, Fung H-L, Zhang K, et al. Identification of methylation haplotype

blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from

plasma DNA. Nature genetics. 2017; 49(4):635–642. https://doi.org/10.1038/ng.3805 PMID: 28263317

6. Scherer M, Nebel A, Franke A, Walter J, Lengauer T, Bock C, et al. Quantitative comparison of within-

sample heterogeneity scores for DNA methylation data. Nucleic acids research. 2020; 48(8):e46–e46.

https://doi.org/10.1093/nar/gkaa120 PMID: 32103242

7. Li S, Garrett-Bakelman F, Perl AE, Luger SM, Zhang C, To BL, et al. Dynamic evolution of clonal epial-

leles revealed by methclone. Genome biology. 2014; 15(9):1–12. https://doi.org/10.1186/s13059-014-

0472-5 PMID: 25260792

8. Su J, Huang YH, Cui X, Wang X, Zhang X, Lei Y, et al. Homeobox oncogene activation by pan-cancer

DNA hypermethylation. Genome biology. 2018; 19(1):1–12. https://doi.org/10.1186/s13059-018-1492-

3 PMID: 30097071
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