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Abstract

Knowledge of who infected whom during an outbreak of an infectious disease is important to

determine risk factors for transmission and to design effective control measures. Both

whole-genome sequencing of pathogens and epidemiological data provide useful informa-

tion about the transmission events and underlying processes. Existing models to infer trans-

mission trees usually assume that the pathogen is introduced only once from outside into

the population of interest. However, this is not always true. For instance, SARS-CoV-2 is

suggested to be introduced multiple times in mink farms in the Netherlands from the SARS-

CoV-2 pandemic among humans. Here, we developed a Bayesian inference method com-

bining whole-genome sequencing data and epidemiological data, allowing for multiple intro-

ductions of the pathogen in the population. Our method does not a priori split the outbreak

into multiple phylogenetic clusters, nor does it break the dependency between the pro-

cesses of mutation, within-host dynamics, transmission, and observation. We implemented

our method as an additional feature in the R-package phybreak. On simulated data, our

method correctly identifies the number of introductions, with an accuracy depending on the

proportion of all observed cases that are introductions. Moreover, when a single introduction

was simulated, our method produced similar estimates of parameters and transmission

trees as the existing package. When applied to data from a SARS-CoV-2 outbreak in Dutch

mink farms, the method provides strong evidence for independent introductions of the path-

ogen at 13 farms, infecting a total of 63 farms. Using the new feature of the phybreak pack-

age, transmission routes of a more complex class of infectious disease outbreaks can be

inferred which will aid infection control in future outbreaks.
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Author summary

Information about transmission routes is essential to design effective control measures for

infectious disease outbreaks. A key question is whether outbreaks are caused by single

imported index cases, or by multiple introductions. We introduce the concept of a ‘history

host’ in a Bayesian model for simultaneous inference of phylogenetic and transmission

trees. This artificial host—representing a source population—merges transmission trees

by acting as the infector of all index cases, creating one large transmission tree. We applied

the model to data from a SARS-CoV2 outbreak among mink farms in the Netherlands.

We conclude that introductions from humans were an important factor in the outbreak,

which implies that culling of infected farms alone was insufficient to prevent newly

infected farms.

Introduction

Knowledge of who infected whom during an infectious disease outbreak is an important

source of information. Characteristics of the outbreak, such as the generation time distribu-

tion, are derived from data on these transmission events [1]. Moreover, risk factors for trans-

mission, such as distance between individuals or time lag since infection, can be more

accurately quantified, if the infection chain is known. Several methods exist that use data on

the time of symptom onset, contacts, or other proximity information, to reconstruct the most

likely transmission links between cases [2–4]. Currently, genetic data is increasingly incorpo-

rated into epidemiological inference as an additional source of information to infer individual

transmission events, transmission clusters, and even complete transmission trees [5–9]. The

use of both genetic data (i.e., differences in nucleotides between different samples of the patho-

gen) and epidemiological data (e.g., time of sampling, contacts, and geographic distance)

increases the evidence on who infected whom. Moreover, high-risk contacts and supersprea-

ders can be identified when a model is based on both types of data [10, 11]. Therefore, several

statistical methods have been developed which take both transmission and evolutionary

dynamics of the pathogen into account [12–15].

Most methods assume a single introduction to the population of interest. However, there

are many outbreaks where this assumption does not hold, e.g., Staphylococcus aureus or Pseu-
domonas aerigunosa are often introduced multiple times on a hospital ward when infected

patients are admitted [16], highly pathogenic avian influenza (HPAI) outbreaks among farms

are initiated multiple times by wild birds [17], and Foot and Mouth Disease (FMD) can be

introduced multiple times from outside a district [18]. Control measures focusing on transmis-

sion between hosts may be less effective if there are also external introductions.

Currently, several methods to infer transmission trees from both genetic and epidemiologi-

cal data are available. A method designed by Worby et al. [9] allows for multiple introductions,

but it only has phenomenological distributions of genetic distances. There is no underlying

mechanistic mutation model for the genetic difference within and between transmission trees.

The outbreaker2 package in R [19] also allows for multiple introductions, but there is only a

phenomenological distribution of the genetic distances between trees. Moreover, outbreaker2
assumes mutation at transmission, thereby ignoring within-host evolution of the virus. A

method that uses a phylogenetic tree and within-host evolution is Transphylo [20], although

transmission links are placed on a fixed phylogenetic tree. Both outbreaker2 and Transphylo

can deal with unsampled cases within the population, which can be used to link transmission

clusters, although this is different than inferring introductions from an exogenous population.
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To model multiple introductions from an exogenous population, Mollentze et al. [21]

extended the transmission model of Morelli et al. [22], which simultaneously infers a transmis-

sion and phylogenetic tree. Here, the within-host evolution was modeled by the use of a binary

tree, making the use of multiple samples per host problematic. Moreover and most impor-

tantly, there is no publicly available software to use the method.

To make optimal use of genetic and epidemiological data while allowing for multiple intro-

ductions of a pathogen, we propose a method to simultaneously infer introductions and trans-

missions consistent with an explicit phylogeny describing the genetic history of all samples.

This extended version of the method developed by Klinkenberg et al. [23] aims to infer the

transmission dynamics of an outbreak, i.e., who infected whom, from both genetic data of the

pathogen and epidemiological data, such as the time of sampling and culling. Inference of the

transmission tree and the phylogenetic tree is done simultaneously, concerning four processes:

genetic diversity (within and between transmission trees), within-host diversity, transmission,

and case observation, i.e., sampling time of hosts. Samples from posterior distributions of the

model parameters are taken using a Markov-Chain Monte Carlo (MCMC) method. These

samples provide information on how likely certain infection times and infectors of hosts are.

To address the possibility of multiple introductions, we relax the assumption of a single

index case. We add an artificial host to the set of sampled hosts, which serves as an infector for

all index cases (Fig 1). For this artificial host, we introduce the term ‘history host’, referring to

the representation of the history of the lineages within the index cases. Using the history host,

multiple outbreaks of a pathogen in the same population are merged into a single phylogenetic

tree.

After evaluation of the performance on simulated outbreaks with single and multiple

introductions, we illustrate the application of our method with an analysis of an outbreak of

the SARS-CoV-2 virus in the Dutch mink farm industry. From April to November 2020, 63

mink farms tested positive for SARS-CoV-2. To investigate whether the virus was introduced

on several farms, we estimated the number of introductions and compared the resulting

Fig 1. Overview of an outbreak with five sampled hosts and two introductions. The index cases of the sampled hosts (blue squares) are connected via

the history host (red square). Coalescence of lineages happens at a different rate in the history host than in the sampled hosts. The black lines give the

phylogenetic tree of the outbreak and the red arrows indicate transmissions between hosts.

https://doi.org/10.1371/journal.pcbi.1010928.g001
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farm-to-farm transmission tree and phylogenetic tree to the phylogenetic tree obtained in

[24, 25]. To describe the generation time distribution of infected farms, we used a within-

farm model of time since infection, that takes measures to reduce the spread and culling of

all animals into account. Furthermore, we implemented the possibility to include multiple

sequences per host.

Results

Modelling with the history host

To infer the transmission tree of an infectious disease outbreak, we developed a Bayesian

method in which four processes define the likelihood of a tree. Mutation events are modeled

with a mutation rate μ. For the within-host dynamics, we make a distinction between the his-

tory host and the sampled hosts. The history host represents either a different population of

the same host species, a different host species (e.g., zoonotic infection), or an environmental

source. Therefore, it contains the evolution of the pathogen in the source population, with

coalescence happening on a different time scale than within the sampled hosts (see Fig 1).

Coalescence, i.e. lineages merging backward in time, is thus described by two rates: rate 1/w
(τ, r) = 1/rτ, with τ the time since infection, for the coalescence events in the sampled hosts,

and rate 1/w(τ, rhistory) = 1/rhistoryτ for the coalescence events in the history host. Timing of

transmission is described by a generation time distribution, the time between infection and

transmission. The generation time distribution follows in the default model a gamma distri-

bution with mean mG and shape aG and for the analysis of the mink farm data we used the

generation time described in the methods. Sampling time intervals, i.e., the time between

infection and sampling, as a representation of case observations, are also described by a

gamma distribution with mean mS and shape aS.

Improving the efficiency of the MCMC

The posterior is sampled by MCMC, with proposals that simultaneously change the phyloge-

netic and transmission trees. In case there are many introductions, starting the MCMC in

overdispersed starting points lead to entrapment of the chain in local optima (S1 Fig). The his-

tory host contains many tips, i.e. the introductions, and therefore many branches and possible

configurations, of which some are rarely proposed by the update steps of the MCMC currently

implemented in phybreak. We solved this problem by (1) initializing the MCMC run by mak-

ing each host an introduction and using the neighbor joining tree (NJ tree) for the phyloge-

netic tree in the history host, and (2) implementing the paralleled Metropolis Coupled Monte

Carlo Markov Chain (p(MC3)) algorithm to give more freedom to the chain [26]. The p(MC3)

algorithm allows multiple peaks in the landscape of trees to be more readily explored, and

eases convergence without the cost of increased runtime. We tested for convergence by com-

paring the likelihood reached by each algorithm, to the likelihood reached by an MCMC run

starting with the simulated (true) phylogenetic and transmission trees. It turned out that the

NJ initialization and the p(MC3) algorithm always led to optimal convergence, whereas start-

ing from a random tree and using MCMC sometimes ended up in a local optimum, especially

when the number of introductions is high (Table A in S1 Results). We concluded that the con-

figuration of the history host is a bottleneck for performance with initialized randomly, and

decided to run all analyses with the NJ tree initialization, even though this breaks some

assumptions of MCMC diagnostics.
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Varying number of introductions and the coalescent rate

Before assessing in detail the method’s performance to identify the correct introductions and

infectors, we compared its performance in relation to different priors. Outbreaks with 20 hosts

were simulated with 5 introductions and a set of default parameters (see Materials and meth-

ods). The outbreak-size of 20 hosts represents small real-life outbreaks, although we simulate

larger outbreaks later on. The outbreaks were analyzed with uninformative priors on all

parameters, informative priors on the mutation rate and mean generation and sampling inter-

vals, and with all parameters set to their true values. The results were compared with respect to

identifying the correct infectors, infection times, and parameter values. Only small differences

were found between the results of each set of priors for the outbreaks with 5 introductions

(Table B in S1 Results). For example, the mean numbers of correctly identified infectors were

15, 15, and 15.7, with increasing prior information.

Next, we simulated outbreaks with varying numbers of introductions and varying coales-

cent rates of the history host. While fixing the number of sampled hosts at 20, we simulated

outbreaks with either 1, 2, 5, 10, 15, or 20 introductions. For each number of introductions, we

used coalescent rates of 0.004, 0.02, and 0.1 coalescence events per day in the history host,

against the background of a mean generation time interval of 1 day for transmission events.

Thereby we changed the genetic variability of the index cases. Low coalescent rates in the his-

tory host result in long branch lengths and thus large differences in sequences of the index

cases. Vice versa, high coalescent rates result in short branch lengths and small differences.

Each combination of a number of introductions and coalescent rate was used for 25 simulated

outbreaks, resulting in 450 outbreaks. We analyzed the simulated data with informative priors

(Table B in S1 Results), as in outbreak research most of the time there is some prior informa-

tion about the generation time and mutation rate.

Analyzing simulated outbreaks with 1 introduction resulted in a mean number (of 25 poste-

rior medians) of 1 introduction, see Fig 2A. This result did not change with the coalescent rate,

because there is no coalescence in the history host. With 2 or 5 introductions, the estimated

medians were still close to the simulated number. However, with 10 or more introductions the

estimated medians were lower than the simulated number of introductions, and a high coales-

cent rate increased this gap. When all hosts are simulated as an introduction, no more than

40% of all introductions were truly identified by the inference method. This indicates that sim-

ulated clusters were merged due to the low genetic variability.

Approximately 70% of all hosts have correctly identified infectors when there was 1 intro-

duction, and more than 95% of the hosts had their true infectors present in the 95% support

set (Fig 2B). This is the set of infectors for a host with cumulative support of at least 95%, with

infectors added by decreasing support. For more introductions and low coalescent rates, more

infectors were correctly identified, whereas for higher coalescent rates the number of correctly

identified infectors decreased.

Several types of incorrectly identified infectors can be distinguished. We define a transmis-

sion cluster as the set of hosts derived from one index case. We separate the errors into two

classes: involving a single transmission cluster in both the simulated and estimated tree (single,

S) or involving multiple transmission clusters in the simulated and/or estimated tree (multiple,

M). The simulated or identified infector is then in a different transmission cluster than the

case in the simulated or estimated tree. Both classes of error can be subdivided into three sub-

classes: both simulated and identified infectors are other cases in the data set (case to case, C

! C), the simulated infector is the history host and the identified infector is a case (history to

case, H! C), and the simulated infector is a case and the identified infector is the history host

(case to history, C!H) (see S1 Fig). In our analysis, we find that for small numbers of
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introductions, i.e. 1, 2, and 5, almost all errors are within a single transmission cluster and do

not involve an index case (single none). For 10 introductions, this is around half of the errors,

while the other half are merges of transmission clusters (multiple simulated). Larger numbers

of introductions, i.e. 15 and 20, mostly lead to merged transmission clusters. With the number

of introductions approaching the number of sampled hosts, there are only very few transmis-

sion events, such that it is hard to estimate the mutation rate or the coalescent rate in the his-

tory host correctly. An overestimation of the mutation rate, or an underestimation of the

coalescent rate, makes it more likely that index cases are placed in the same cluster, causing

merges. Fewer index cases imply more transmission events to estimate the correct parameter

values. However, even if all parameters were fixed at their true value, an incorrect infector

sometimes has the highest posterior probability (S2 Fig).

So, for low numbers of introductions, in these simulations up to 5, the model can reliably

infer the number of introductions when informative priors are given for the model parameters.

The number of introductions tends to be underestimated if there are many, due to the merging

of clusters.

SARS-CoV-2 in mink farms: Analysis of simulated data

In 2020, an outbreak of SARS-CoV-2 occurred among mink farms in the Netherlands. Symp-

tomatic infections in minks first occurred two months after the virus was introduced into the

Dutch human population, which suggests that the outbreak was a spillover from humans to

mink. To investigate whether there were multiple introductions of the virus into the mink

Fig 2. Analysis of simulated outbreaks with a varying number of introductions and coalescent rate (rhistory) in the history host. The facets give the

results for either 1, 2, 5, 10, 15, or 20 simulated introductions. (A) The mean estimated median number of introductions. The black line indicates the

simulated number of introductions. (B) Percentage of correctly identified infectors. The grey bar indicates cases for which the true infector has the

highest posterior weight. The transparent bar indicates cases for which the true infector is contained in the smallest set of candidate infectors with at

least 95% of the posterior weight. (C) Classification of the falsely identified infectors based on the highest support. The grey bars indicate the

correctly identified infectors. S: single transmission cluster involved, M: multiple transmission clusters involved. For the infector of a host: C2C: case

becomes case, H2C: history becomes case, C2H: case becomes history.

https://doi.org/10.1371/journal.pcbi.1010928.g002
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farm population, we applied our extended method to sequence data collected from minks

together with their time of sampling. Culling times of the farms were also known. To assess the

accuracy of our method on outbreaks with sizes similar to the SARS-CoV-2 outbreak, we sim-

ulated and analyzed outbreaks with comparable settings of the number of hosts, mutation and

coalescence rates, and prior distributions for the sampling time interval and the generation

time interval (Material and Methods). Sequences and sampling times were simulated for these

outbreaks. Again, we tested different numbers of introductions, for which 10 outbreaks each

were simulated and analyzed. The results are shown in Table 1. Compared to the percentages

of correctly identified infectors for outbreaks with 20 hosts, the model performs equally well

for the larger outbreak size of 63 hosts. Around 70–75% of all infectors are correctly identified

with the highest support, and the true infector of a host is present in the 95% CI set for at least

95% of all hosts. Only for a high number of introductions (e.g., 20, or 30 introductions), the

performance decreases, due to merged clusters, with 5–10% (S3 Fig). The genome of the

SARS-CoV-2 virus is found to have conserved regions and regions with higher mutation rates

[27]. To see what the implications of these different mutation rates are for the results, analyzed

with a single mutation rate over the complete genome, we simulated outbreaks for which only

50 base pairs are under mutation and analyzed these with our model (S5 Fig). If many muta-

tions happen in only a small part of the genome, and possibly multiple mutations on the same

positions, the model will estimate slightly more introductions. Furthermore, it will infer

slightly more false infectors, although the false infectors are in the same transmission chain as

the true infector. Therefore, it is important to see which farms are in the set of infectors of a

farm, as the farm with the highest support will not always be the true infector. The perfor-

mance of the model, however, is not notably different.

SARS-CoV-2 in mink farms: Analysis of the Dutch outbreak

During the first and second wave of SARS-CoV-2 infections in the Netherlands (starting in

March 2020 and September 2020, respectively), 63 out of a total of 126 mink farms in the Neth-

erlands were sampled positive for the virus. From the end of April 2020 to November 2020,

genetic and epidemiological data were collected on these farms, including viral sequences,

sampling times, and culling times. A phylogenetic analysis of the viral sequences showed 5 dis-

tinct genetic clusters of farms, based on their separation by sequences from human samples

[24]. Classification by PANGO lineages [28] showed that each cluster contained one PANGO

lineage, with 2 clusters containing the same lineage (S1 Data). One farm, NB-EMC-8, con-

tained samples from 2 different clusters and is therefore divided into NB-EMC-8a and

NB-EMC-8b in our analysis. While phylogenetic analysis could distinguish five clusters based

on human intermediate samples, suggesting five introductions, it could not rule out multiple

introductions within each cluster. For an estimate of the number of introductions without the

need for intermediate samples from the source population, we analyzed this outbreak with our

extended version of phybreak. We set the following priors on the model parameters: μμ = 3 �

Table 1. Summary statistics of simulated SARS-CoV-2 outbreaks in mink farms.

Number of simulated introductions

1 2 5 10 20 30

Estimated number of introductions 1.2 2.1 4.5 7 12.7 14.3

Correct infectors with highest support 75% 75% 71% 74% 74% 66%

Correct infectors in 95% CI 96% 97% 96% 97% 97% 92%

https://doi.org/10.1371/journal.pcbi.1010928.t001
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10−6 substitutions per nucleotide per day, σμ = 1 � 10−6 [29] and the mean rhistory = 20, i.e., coa-

lescence between any pair of lineages in a host happens with a rate 1/20, with shape equal to 3

(see Materials and methods). The mean of the prior distribution of the introduction rate is 5/

180, as five genetic clusters were reported within 180 days, with a shape equal to 3. Finally, we

set the prior mean sampling time μS at 10 days, with standard deviation σS = 2, as infection is

expected to happen 1–2 weeks before sampling [30].

The method estimated the time of the first coalescent event in the history host on March

4th, 2020 (Table 2). The reduction factor of infectiousness after sampling L was estimated at 1,

meaning that the method did not find an influence of sampling on infectiousness. We find 13

introductions in the maximum parent credibility tree (see Fig 3), of which 11 have minimal

support above 0.5. The median number of introductions in all cycles was 13, with the first and

third quartile being 11 and 14 introductions respectively (S8 Fig). Six introductions initiated a

Table 2. Summary statistics of SARS-CoV-2 outbreak in mink farms from real data.

Parameter inference median (95% quantile range) of posterior

μ 5.5 � 10−6 (4.7 � 10−6; 6.4 � 10−6)

mS 11.9 (10.2; 14.1

rhistory 30.5 (17.2; 53.6)

L 1.0 (0.6; 1.5)

Tree inference

Number of introductions 13 (11; 14)

Time of first coalescent event in history -51.7 (-87.4; -27.9)

https://doi.org/10.1371/journal.pcbi.1010928.t002

Fig 3. Maximum parent credibility transmission tree of a SARS-CoV-2 outbreak in mink farms. In total 13 introductions are found in the outbreak.

Vertical arrows represent transmission links and all arrows are colored according to the support in the posterior distribution. The grey bars show the

infectiousness of the hosts and hosts are sampled at the crosses. Host labels are colored according to phylogenetic clusters found by Lu et al. [24].

https://doi.org/10.1371/journal.pcbi.1010928.g003
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transmission chain, whereas the other 7 were single cases. By coloring the host labels, we see

that the method divided the hosts into subtrees similar to the phylogenetic clusters found by

Lu et al. [24]. Two genetic clusters, i.e. cluster B and cluster D, were merged into a single trans-

mission cluster, and with a genetic distance of only 4 nucleotides they belong to the same

PANGO lineage. Genetic cluster C is split into two transmission clusters, with NB-EMC-46 as

the index case of one of them. NB-EMC-46 was placed in genetic cluster A, but its samples

were found to belong to multiple PANGO lineages, including the lineage of genetic cluster C.

This indicates that farm NB-EMC-46 is infected multiple times. The large genetic cluster A is

separated into multiple transmission clusters, meaning that not all genetically clustered farms

are linked by one transmission chain. We find that the single cases which are part of this phylo-

genetic cluster have common ancestors with cases in the human population (S6 Fig). Time of

infection and genetic distance made it less likely that the single farms were part of the trans-

mission cluster of farms. In the later stage of the outbreak, there are two larger transmission

chains, for which the exact index case is less certain (S9 Fig). There is support for the scenario

that these transmission clusters are merged into one. The multivariate potential scale reduction

factor (PSRF) of 3 p(MC3) chains was 1.48 after a burn-in of 10.000 cycles and sampling of

10.000 cycles. Only the PSRF of the loglikelihood was above 1.1, namely 1.75, although trace-

plots show no further converging of the loglikelihood (S10 Fig). In conclusion, by using a phy-

lodynamic model combining the phylogenetic history of the samples with the transmission

history between the farms, we were able to distinguish farm-to-farm transmission routes

within a group of farms with a common introduction from the human population.

Our extensions are implemented in the package phybreak [23] for the R software [31] and

can be found at https://github.com/bastiaanvdroest/phybreak. The package version used,

together with the code for the analyses, is found at https://github.com/bastiaanvdroest/

phybreak_multiple_introductions.

Discussion

The method presented enables for the first time to simultaneously estimate the phylogenetic

tree and the transmission tree of an outbreak in the case where there may have been multiple

introductions. The inference is done without breaking the dependencies between mutations,

within-host dynamics, transmission, and observation. By modeling the history of lineages

infecting index cases through a phylogenetic tree in a history host, we can distinguish between

single and multiple introductions. As an extension to the model of Klinkenberg et al. [23], we

now have an easily accessible method for transmission tree inference, with the possibility to

assess multiple introductions.

From analyses of simulated outbreaks, we conclude that the model can infer the true num-

ber of introductions if there are few introductions compared to the total outbreak size. For an

increasing number of introductions, the model increasingly underestimated the number of

introductions, but the posterior distribution did include the actual number of introductions.

The simulated index cases which were incorrectly identified as non-index cases did have sup-

port as an index in the posterior trees. This means that interpretation of the transmission trees

should take into account the support as index for cases.

The ability to infer multiple introductions in the analysis of an outbreak is not only useful

for finding transmission clusters but also gives valuable information on how to respond to an

outbreak. In the case of multiple introductions, measures aimed at reducing transmission

events need to be complemented by preventing introduction from outside the target popula-

tion. Therefore it is of great importance to distinguish between single and multiple introduc-

tions of a pathogen in a population. With simulated data sets, we showed that our method is a
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useful tool to make this distinction: outbreaks with a single introduction are almost always

inferred to have a single index case, and outbreaks with multiple introductions are seldom

inferred to have a single introduction.

Although the model can distinguish between single or multiple introductions, the accuracy

strongly depends on genetic variability. High genetic variability makes it easier to distinguish

clusters of hosts and thus gives more weight to the true number of introductions in the poste-

rior. Low genetic variability, however, will cause sub-trees to be merged and therefore will lead

to an underestimation of the number of introductions. The accuracy of the results cannot be

determined in advance due to the variability in the external source population. This variation

is determined by the mutation rate and the effective population size of the history host. When

available, strong priors on the mutation rate and coalescent rate in the history host will

increase the accuracy, although even with the true values of the model parameters sub-trees

will not always be separated. In that case, there is too little information in the genetic and epi-

demiological data to find all introductions.

Transmission clusters of an infectious disease outbreak in a population are often derived

using phylogenetic analyses. However, with closely related index cases, defining clusters may

become arbitrary. If obtainable sequences sampled outside of the study population may help to

discriminate the clusters by acting as ‘missing links’ between clusters, but discrimination is not

so likely if clusters are closely connected. As with the SARS-CoV-2 outbreak in minks, low

genetic variability may cause transmission clusters to be merged in the phylogenetic tree,

thereby underestimating the number of introductions. We have shown that our method can

be used as an alternative approach, which only depends on the genetic data from the study

population. Moreover, with the addition of epidemiological data, e.g. sampling times and cull-

ing times, it can differentiate genetically similar transmission clusters.

Application of the model to a SARS-CoV-2 outbreak in the Dutch mink farms led to con-

firmation of previously found phylogenetic clusters, although the phylogenetic clusters are

broken down into multiple transmission clusters. These transmission clusters are composed

of individual infections along with a larger transmission tree. We split farm NB-EMC-8

based on the genetic clustering of the samples taken on this farm. Without this split, a trans-

mission cluster would have been formed containing multiple PANGO lineages and always

having NB-EMC-8 separating the two genetic clusters within that transmission cluster. Farm

NB-EMC-46 is also likely to be infected multiple times, as in our results it is the index case of

a transmission cluster containing samples from a different genetic cluster than NB-EMC-46.

Currently, our method does not allow for multiple infections of a host with different strains,

and therefore these clusters could not be separated by the estimation procedure. Extending

the method to allow multiple infections of the same host is a challenge for future develop-

ment. Clustering of the farms could be performed by setting a cutoff for the SNP distance

between samples of the farms (Table D in S1 Results). A 3 SNP cutoff results in 6 genetic

clusters, but it excludes relations between farms found in the phylogeny of Lu et al. [24]. A 2

SNP cutoff will separate the clusters found with a 3 SNP cutoff, but it will produce too many

introductions compared to our results. The usage of samples of humans around and on the

farms in building the phylogeny makes it possible to derive the genetic clusters. Here we

show that we come to similar conclusions, but do not need samples of the source population

to distinguish transmission clusters. Often such data is not available, for example, with intro-

ductions from other countries, the general population is a case of non-notifiable diseases or

from wildlife.

The possibility to distinguish multiple introductions of a pathogen into a host population

opens up a new avenue for the analysis of outbreaks. Currently, more methods can link trans-

mission clusters, as described in the introduction, but a software package to infer introductions
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from an exogenous population was not yet publicly available. However, the method assumes a

large population of which a small part gets infected and where contact is equally likely for all

pairs of hosts. An outbreak on, for instance, a hospital ward does not meet this assumption

with its small population size, in and outflow of patients, and spatial distance between patients.

To address these assumptions, the population size has to be accounted for, and contact data,

i.e., possible (in)direct contacts between hosts, as well as the geographical location of hosts give

a probability of the contact between hosts. Transmission routes can be excluded based on

these data sources, such that the certainty of the results increases.

In conclusion, we developed a new method for transmission tree inference which makes it

possible to estimate the number of introductions of a pathogen during an outbreak. The analy-

sis of the SARS-Cov-2 outbreak in Dutch mink farms shows multiple introductions of the

virus, indicating that even with fully controlling farm-to-farm transmission, newly infected

farms would arise by new introductions from the human population. Our method opens the

way to evaluate outbreaks in such a way that information about new introductions can be

derived; knowledge that is useful for policy-making.

Materials and methods

Tree inference model

The transmission and phylogenetic tree inference model describes the likelihood of observing

an infectious disease outbreak based on the epidemiological and genetic links between hosts

and samples. The outbreak dynamics are described by four processes: incidence of new cases

by introduction from outside or transmission by existing cases, the observation of the patho-

gen through sampling, the dynamics of the pathogen within infected hosts and the history

host, and genetic mutations in the pathogen. The inference is done by a Bayesian analysis,

using Markov-Chain Monte Carlo (MCMC) to obtain samples from the posterior distribu-

tions of the phylogenetic and transmission tree, along with all outbreak parameters, formed by

prior distributions and four likelihood functions for the four processes. We will briefly sum-

marize the likelihood functions, the posterior distributions, and the update steps in the

MCMC run.

The incidence of cases after the first introduction is modeled by two independent processes:

additional introduction from outside the study population and transmission between hosts.

Additional introductions occur with exponentially distributed waiting times with a rate λintro,

after the first introduction until the last sample time. We denote by T the time between the

first introduction and the last sample time, and k the number of introductions. Transmission

occurs with a dynamic rate, depending on the times since infection of infected hosts, described

by the generation time distribution. This is a Gamma distribution with shape aG and mean

mG. By the use of vector I of all infection times, including introductions, and the numeric vec-

tor M indicating the infectors of all hosts and 0 for introductions, the probability density func-

tion of the generation time of a host i, with Mi 6¼ 0, is dGðaG ;mGÞ
ðIi � IMi

Þ. The likelihood for the

transmission tree is therefore:

PrðI;MjaG;mGÞ ¼ l
k� 1

intro � e
ð� lintro∗TÞ �

Y

ijMi>0

dGðaG ;mGÞ
ðIi � IMi

Þ ð1Þ

For sampling, we assume that all hosts are detected and sampled at random times after they

were infected, according to a Gamma distribution with shape aS and mean mS. The likelihood
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uses the vector S of sampling times of all hosts and is therefore:

PrðSjI; aS;mSÞ ¼
Y

i

dGðaS ;mSÞ
ðSi � IiÞ ð2Þ

The phylogenetic tree P describes the evolutionary history of all sampled sequences and is

built from the phylogenetic mini-trees for each host, connected through the transmission

links. The introductions are connected by a phylogenetic tree in a separate ‘history host’. Each

mini-tree has tips formed by samples and lineages from secondary cases, and a single root

which is a tip in the mini-tree of the infector. Coalescent processes form mini-trees. In

(observed) hosts, a rate 1/w(τ, r) describes coalescence between any pair of lineages within the

host going backward in time; in the history host, the rate is constant over time: rhistory. In our

analysis, we use w(τ, r) = rτ, the linearly increasing within-host effective population size of the

pathogen at forward time τ since infection of the host. A consequence of this function is a

complete bottleneck: only one lineage is transmitted between hosts. In the phylogenetic tree P
of the outbreak with the set of nodes V, there are three sets of nodes: sampling nodes VS, i.e.

the tips of the tree where sampling took place, coalescent nodes VC and transmission nodes

VT, where a lineage goes from the infector to its infectee. For node x, τx gives the time of the

node since infection of the host. The number of lineages in host i at time τ is then denoted by

Li(τ):

LiðtÞ ¼ 1þ
X

x2Pi

x2VC

ðuðt � txÞÞ �
X

x2Pi

x2ðVT[VSÞ

ðuðt � txÞÞ
ð3Þ

where u(τ) is the heaviside step function, i.e. u(τ) = 0 if τ< 0, and u(τ) = 1 if τ� 0. The likeli-

hood of each host’s tree is then

PrðPijSi; I;M; rÞ ¼ exp �
Z 1

0

LiðtÞ

2

� �
1

wðt; rÞ
dt

� �

�
Y

x2Pi

x2VC

1

wðtx; rÞ ð4Þ

with 0

2

� �
� 1

2

� �
� 0. Here, the first term is the probability of having no coalescent event during

the intervals in which there are two or more lineages, and the second term is the product of

coalescent rates at the coalescent nodes. The prior distribution of the slope r is Gamma distrib-

uted with shape ar and rate br. Those were set to ar = br = 3 for all analyses. For the history

host, we assume that the coalescent rate is constant over time, so w(τ, rhist) = rhist. The total

likelihood of the within-host dynamics is the product of all hosts’ likelihoods:

PrðPjS; I;M; rÞ ¼ PrðP0jI;M; rhistoryÞ �
Y

iji>0

PrðPijSi; I;M; rÞ ð5Þ

Mutations are described by a Jukes-Cantor model, stating that any of the four nucleotides

have equal probability to mutate to, with a fixed mutation rate μ for all sites in the set of

sequences G. For all coalescent and transmission nodes x, which occur at time tx with parent
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node vx, the mutation likelihood is:

PrðGjP; mÞ ¼
Y

loci

X

fA;C;G;Tg3n� 1

Y

x

1

4
�

1

4
expð� mðtx � tvx

ÞÞ

� �Imutð1� NÞ

�
1

4
þ

3

4
expð� mðtx � tvx

ÞÞ

� �ð1� ImutÞð1� NÞ

ð6Þ

Here, Imut indicates if a mutation occurred on the branch between x and vx, and N indicates

if a branch ends with a tip with an unknown nucleotide (’n’ in the sequence). We use here a

strict molecular clock model, i.e. one mutation rate for all branches of the phylogenetic tree,

because, on the time frame of most outbreaks, there will not be any effect of different mutation

rates. In the history, changes in mutation rates are met by the coalescent rate of the history

host. The likelihood is calculated using Felsenstein’s pruning algorithm [32].

The transmission tree and its parameters are inferred by a Bayesian analysis, using Markov-

Chain Monte Carlo (MCMC). From the MCMC we obtain samples from the posterior distri-

butions of the model parameters, the infectors, and the infection times of all hosts. The poste-

rior distribution, with θ the set of model parameters, is given by

PrðI;M; P; yjS;GÞ / PrðGjP; yÞ � PrðPjS; I;M; yÞ � PrðSjI; yÞ � PrðI;MjyÞ � PrðyÞ ð7Þ

MCMC sampling

An MCMC run is run to get the posterior distribution of the model parameters, together with

the transmission and phylogenetic tree of the outbreak. The MCMC runs were initialized by

first choosing the means of priors for the parameters (except for μ), then constructing the

transmission and phylogenetic trees, and finally computing a value for μ. The trees were con-

structed by first sampling infection times from the observed sampling times and sample time

distribution. All cases were assumed to be index cases (other options are possible within the

package), and the topology of the phylogenetic tree was made with the neighbor-joining algo-

rithm using the first sequence of each host. The times of the coalescent nodes were simulated

with the coalescent model. This guaranteed an optimized tree topology in the history host, not

needing to be reached by sampling in the MCMC run. The parameter μ was for the initial state

set to be the tree parsimony (the number of mutations on the tree) divided by the sum of all

branch lengths and the genome size. The default prior distributions for the model parameters

are found in Table 3. The priors for mG and mS are translated into a prior for the rate parame-

ter in the Gamma distribution. More detail about the prior and posterior distributions is

included in S1 Methods. Per iteration cycle, each host is picked once in random order as the

focal host. A new infection time I0i is proposed for focal host i and consecutive steps are made

according to this new infection time. At the start of a proposal, there are two main ways of

updating: within a sub-tree, by following all hosts with a common index case along their trans-

mission links, or between sub-trees. Here we will describe the proposal step for updating

between sub-trees, as this is the step where the number of introductions can be altered. The

update steps within a sub-tree are as in the original phybreak package and can be found in S1

Methods.

Three situations describe the possibility to update the transmission tree between sub-trees

(see Fig 4):

1. The focal host i is the history host. In this case, new coalescent times are proposed. Option-

ally, a new phylogenetic mini-tree can be proposed.
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2. The focal host i is an index case. An infection time I0i is proposed. If this I0i is before the first

transmission from host i, a new infector M0
i is proposed out of the hosts which are infectious

at time I0i . Two situations are now possible:

a If M0
i ¼ 0, then host i remains an index case, with infection time I0i .

b If M0
i 6¼ 0, then host i is no longer an index case, and there is one fewer introduction. Host i

and its descendants will be merged as a branch to another sub-tree.

3. The focal host i is not an index case. An infection time I0i is proposed. If this I0i is before the

first transmission from host i, a new infector M0
i is proposed out of the hosts which are

infectious at time I0i . Two situations are now possible:

Table 3. Prior distributions of the model parameters.

Parameter Description Type of distribution Distribution parameters

log10(μ) Mutation rate N(μ, σ) mlog10
ðmÞ ¼ � 4;slog10

ðmÞ ¼ 0:5

mG Mean generation time interval DðmmG
;smG
Þ mmG

¼ 1;smG
¼ 1

mS Mean sampling time interval DðmmS
;smS
Þ mmS

¼ 1;smS
¼ 1

r Within-host coalescent rate Γ(ar, br) ar = 3; br = 3/1

rhistory History host coalescent rate Gðarhistory
; brhistory

Þ arhistory
¼ 1; brhistory

¼ 1=100

rintro Introduction rate Nðmrintro
;srintro

Þ mrintro
¼ 1;srintro

¼ 1

https://doi.org/10.1371/journal.pcbi.1010928.t003

Fig 4. Proposal steps for updates between sub-trees. In purple is the focal host, with the purple arrow indicating the proposed infection time I0i . The

red arrows indicate the transmission events and the history host is colored red, with the introductions as transmission from the history host. 2: Losing

an introduction by proposing a new infector Mi 6¼ 0 for an index case. 3a: The reverse of 2, by proposing a new infector Mi = 0 for a non-index case. 3b:

Switching sub-trees by proposing a new infector Mi 6¼ 0 on a different sub-tree. Situation 3b is also possible within the same sub-tree.

https://doi.org/10.1371/journal.pcbi.1010928.g004
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a If M0
i ¼ 0, then host i will become an index case, and there is one extra introduction. The

new sub-tree consists of host i and all of its descendants.

b If M0
i 6¼ 0, then host i either switch to another branch in its sub-tree or switch to another

sub-tree. There is no change in the number of introductions.

Each proposal step is followed by proposing new phylogenetic mini-trees for all hosts

involved. The proposal distributions and acceptance probabilities of all steps are described in

S1 Methods. The MCMC run is run according to the (MC)3 algorithm described by Altekar

et al. [26] to more readily explore multiple peaks in the posterior tree landscape, decreasing the

probability to get entrapped in a local optimum. The chains consisted of 35,000 cycles of

which the first 10,000 were used as burn-in.

Construction and analysis of simulated outbreaks

To verify the implementation of multiple introductions in the model, we simulated outbreaks

including one or more index cases, and analyzed them by MCMC runs. The simulation of an

outbreak starts with the simulation of a transmission tree:

1. Set an observation size, i.e. the number of hosts, the number of introductions k, and the

duration of the outbreak T.

2. Calculate the optimal population size in which to simulate the outbreak from the set param-

eter R0 and the observation size.

3. Sample k − 1 introduction times from the exponential waiting time distribution with rate

λintro. The introduction time of the first index case will be 0, and other introductions are at

cumulative waiting times from the first index.

4. For the index cases, sample the number of secondary cases from a Poisson distribution with

parameter R0.

5. The generation time between two hosts is Gamma distributed with shape aG and mean mG.

After infection, the sampling of a host takes place after a Gamma distributed time with

shape aS and mean mS.

6. Repeat steps 3 and 4 for the complete population size, where the infection time for a host is

not after T. Remove non-index cases without any links.

7. Repeat 3–6 till the desired observation size was given.

8. Add the history host and connect the index cases to this host.

After the simulation of the transmission tree, the phylogenetic tree is constructed by simu-

lating phylogenetic mini-trees for each host. Coalescent times are sampled according to the

given coalescent rate 1/w(τ, r). Edges between sample, coalescent, and transmission nodes are

made backward in time. In the history host, coalescence events occur with a constant rate 1/

rhistory.

For the sequences, we sample the number of mutations from a Poisson distribution with

parameter equal to λ = μ � sequencelength � totallengthofalledges, where μ is the mutation rate.

The mutations are distributed over the edges, with weights the lengths of the edges. For each

mutation, a uniform random locus is changed to a uniform random nucleotide.

We simulated outbreaks with a basic set of parameter values, the same as in Klinkenberg

et al. [23], (mG = 1, aG = 10, mS = 1, aS = 10, R0 = 1.5, r = 1, a sequence length of 104
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nucleotides and a mutation rate of μ = 10−4), with new parameters at λintro = 1. The number of

introductions varied between the simulations to assess the performance of the model. MCMC

chains were run following the (MC)3 algorithm, with 3 parallel chains with heats 1, 0.5, and

0.333. The chains are 35,000 cycles long, of which the first 10,000 cycles are used as burn-in.

Posterior distributions for infectors, infection times, and model parameters are collected from

the remaining 25,000 cycles.

Analysis of SARS-CoV-2 in mink farms: Simulated data

As an application of the method, we analyzed the SARS-CoV-2 outbreak in the Dutch mink

industry in 2020 [24]. We described the outbreak by taking the farms as hosts. The prior distri-

butions of the model parameters are set as follows: we set the mean sampling time interval

mS = 10 days (with a shape aS = 3), as the time between infection and detection was estimated

to be 1–2 weeks [30]. We set the mean introduction rate to 5/180 per day (with a shape of 3),

as five different clusters were found during the outbreak, which lasted for approximately 180

days, by Lu et al. [24]. The coalescent rate parameter rhistory was set to 20, i.e., 1/20 coalescent

events per pair of lineages. With an expected number of 5 introductions, this rate represented

the introduction of the virus in the Netherlands two months before the first positive mink sam-

ple. The other prior distributions were set to default.

As the hosts are farms here, we introduced an infectiousness function describing the growth

and circulation of the virus within the mink population of a farm. This function replaced the

gamma distribution for the likelihood that one farm infected another. We assumed that infec-

tiousness follows a logistic curve, with a reduced level after detection at time Ts, and exponen-

tial decay after culling at time Tc:

I ¼

1

1þ ae� gt
t < Ts

L
1þ ae� gt

Ts < t < Tc

L
1þ a � e� gTc

� e� Cðt� TcÞ t > Tc

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

ð8Þ

Here, a = 1 � 10−4 is the initial part of the mink population at a farm being infected, g is the

growth rate, and t is the time after infection of the farm. Parameter L is estimated to see if

there was some reduction of infectiousness after detection, and C is a fixed value. The logic

behind the exponential decay after culling is to have a delay in clearing of infectiousness, for

instance due to environmental contamination. Because the values for Ts and Tc differ per farm,

the infectiousness curves differ between the farms. Therefore we normalize the curves, such

that the average infectiousness function integrates to 1, while accounting for higher total infec-

tivity of longer infected farms. Another addition used for the mink farms was to include multi-

ple samples per farm. Phylogenetic mini-trees are then built with multiple lineages within a

farm, increasing the amount of genetic data. For the sampling time distribution, only the first

sample of each host is used.

To test the new model, with a similar history host, and sampling time distribution, we simu-

lated outbreaks with the same parameters as before but with the new infectiousness curve.

Culling times were set 15 days after infection, such that the hosts have a fixed infectiousness

curve. As for the outbreak size, we used 63 hosts with 1 sample per host. Prior distributions

were set with the same parameter values as the analysis of the real data. We set C to 5, such that

in 5 days after culling the infectiousness of a farm was effectively 0. We varied the number of

introductions, from 1, 2, 5, 10, 20, up to 30 introductions. As the genome of the SARS-CoV-2
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virus has different mutation rates for certain regions, we also tested the performance of the

model with a single mutation rate on simulations where only a region of 50 bp is mutated. For

this, we used the transmission and phylogenetic trees of the simulated outbreaks of the minks

with 10 introductions. Sequences of 50 bp were simulated with the same mutation rate as pre-

vious, adjusted for the genome length in order to get the same amount of mutations. When

mutations were acquired, sequences were extended to their original length and the outbreaks

were analyzed with the same parameter settings as before. Results of the simulated SARS-CoV-

2 outbreak were obtained by running three parallel chains, with 25, 000 cycles each, according

to the (MC)3 algorithm.

Analysis of SARS-CoV-2 in mink farms: Real data

We collected the full viral genomes in minks at 63 farms from GISAID (gisaid.org) and aligned

them with MUSCLE [33]. The alignment contains 326 sequences of 29,775 nucleotides long.

All positions with N in all 326 sequences are removed because we do not know if there is a

mutation at such a position. This left us with 326 sequences of 16,289 nucleotides long. Each

farm is sampled at least once, and we have an average number of 5 samples per farm, each

farm sampled on a single day. Besides the date of sampling, we also have the date of culling,

which is between 1 day and 45 days after sampling, with an average of 4 days. The first 5 farms

found to be infected had more than 30 days between sampling and culling, but for the rest of

the farms, this was no more than 10 days. Results were obtained by running three independent

p(MC3) chains with 3 heats, with 25, 000 cycles after a burn-in period of 10, 000 cycles. The

maximum parent credibility tree is used for visualization, computation of the number of intro-

ductions, and comparison to the phylogenetic tree [24].
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S1 Fig. Comparison of MCMC and p(MC3) with and without the neighbour-joining tree

initialization step. A: For low numbers of introductions (5 of the 20 hosts), there is no differ-

ence between methods in the posterior log-likelihood distribution. B: Higher numbers of

introductions (15 of the 20 hosts), performance of MCMC with a random tree as initialization

of the history host is inferior to either p(MC3), neighbour-joining tree initialization of the his-

tory host or the combination of both. Moreover, the simulated outbreak has a log-likelihood

(the vertical black line) that is higher than the log-likelihood distribution of MCMC with a ran-

dom tree as initialization. The latter gives the highest likelihood distribution and is chosen as

default option in all analyses. ‘random’ is random tree initialization, ‘nj’ is neighbour-joining

tree initialization, ‘2’ is MCMC and ‘3’ is p(MC3). The black lines are the log-likelihood values

of the simulated outbreaks.

(TIF)

S2 Fig. Type of errors in the estimated transmission tree. The left figure represents the trans-

mission tree of a simulated outbreak with 5 cases; there are 2 introductions (clusters) and 3

transmission events. The right figure represents possible estimates of the transmission tree of
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the simulated outbreak. The vertical ordering of cases in the left and the right figures is identi-

cal. The upper right figure shows errors in which an incorrect infector is identified, but the

incorrect infector belongs to the same cluster as the true infector (type A errors), the lower

right figure represents incorrect identifications of the infector in which the incorrect infector

belongs to a different cluster as the true infector (type B errors). In Type 1 errors neither the

true infector nor the incorrect identified infector is an index case. For type 2 errors, the host is

an index case in the simulated outbreak but not in the estimated outbreak. For type 3 errors,

the host is not an index case in the simulated outbreak but is an index case in the estimated

outbreak.

(TIF)

S3 Fig. Analysis of simulated outbreaks with fixed model parameters in the MCMC runs,

while varying the number of introductions and coalescent rate in the history host. The

model parameters are fixed at the simulation values. (A) The mean estimated median number

of introductions. The black line indicates the simulated number of introductions. (B) Percent-

age of correctly identified infectors. The grey bar indicates cases for which the true infector has

the highest posterior weight. The transparent bar indicates cases for which the true infector is

contained in the smallest set of candidate infectors with at least 95% of the posterior weight.

(C) Classification of the incorrectly identified infectors in the maximum credibility tree. The

grey bars indicate the correctly identified infectors. S: single transmission cluster involved, M:

multiple transmission clusters involved. C!C: simulated and inferred infectors are cases,

H!C: simulated infector was history host, inferred infector is case, C!H: simulated infector

was case, inferred infector is history host.

(TIF)

S4 Fig. Analysis of simulated outbreaks with similar parameter values as the SARS-CoV-2

outbreak in mink farms. (A) The mean estimated median number of introductions. The

black line indicates the simulated number of introductions. (B) Percentage of correctly identi-

fied infectors. The grey bar indicates cases for which the true infector has the highest posterior

weight. The transparent bar indicates cases for which the true infector is contained in the

smallest set of candidate infectors with at least 95% of the posterior weight. (C) Classification

of the falsely identified infectors based on highest support. (C) Classification of the falsely iden-

tified infectors based on highest support. The grey bars indicate the correctly identified infec-

tors. S: single transmission cluster involved, M: multiple transmission clusters involved. For

the infector of a host: C!C: case becomes case, H!C: history becomes case, C!H: case

becomes history.

(TIF)

S5 Fig. Analysis of simulated outbreaks with similar parameter values as the SARS-CoV-2

outbreak in mink farms, with only 50 base pairs of the genome under mutation. (A) The

mean estimated median number of introductions. The black line indicates the simulated num-

ber of introductions. (B) Percentage of correctly identified infectors. The grey bar indicates

cases for which the true infector has the highest posterior weight. The transparent bar indicates

cases for which the true infector is contained in the smallest set of candidate infectors with at

least 95% of the posterior weight. (C) Classification of the falsely identified infectors based on

highest support. (C) Classification of the falsely identified infectors based on highest support.

The grey bars indicate the correctly identified infectors. S: single transmission cluster involved,

M: multiple transmission clusters involved. For the infector of a host: C!C: case becomes

case, H!C: history becomes case, C!H: case becomes history.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Transmission tree inference with multiple introductions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010928 November 27, 2023 18 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010928.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010928.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010928.s008
https://doi.org/10.1371/journal.pcbi.1010928


S6 Fig. Maximum parent credibility transmission tree with with-host phylogenetic trees

for SARS-CoV-2 outbreak in mink farms. The farms are colored according to the clusters

found by Lu et al. (2021): cluster A: red; cluster B; yellow, cluster C: green; cluster D: blue, clus-

ter E: purple, cluster unknown: black. Cluster A is divided into 5 smaller clusters, with cluster

A1 introduced in NB-EMC-1 and cluster A2 introduced in NB-EMC-46.

(TIF)

S7 Fig. Maximum parent credibility phylogenetic tree for SARS-CoV-2 outbreak in mink

farms. The history host is shown as the most-left red line, and the hosts are given in alternating

colors. The black boxes represent the clusters in the transmission tree, with the lowest box the

assumed bigger cluster with index case NB-EMC-46.

(TIF)

S8 Fig. Histogram of number of introductions for the mink farms.

(TIF)

S9 Fig. Posterior support of infectors of all hosts. There is a high certainty of the index cases

(infectees with the history host as infector) in the beginning of the outbreak. Transmission

clusters with index cases NB-EMC-33 and NB-EMC-53 show more variation of the infectors,

even outside their transmission cluster. Posterior support is shown from 0 (white) to 1 (blue).

Hosts are ordered by transmission cluster and infection time. The grey bars show the transmis-

sion clusters.

(TIF)

S10 Fig. Traceplots of loglikelihood of 3 MCMC chains. Traceplots are shown of the loglike-

lihood of 3 MCMC chains analyzing the SARS-CoV-2 outbreak in Dutch mink farms.

(TIF)
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