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Abstract

Neural mass models are used to simulate cortical dynamics and to explain the electrical and

magnetic fields measured using electro- and magnetoencephalography. Simulations evince

a complex phase-space structure for these kinds of models; including stationary points and

limit cycles and the possibility for bifurcations and transitions among different modes of

activity. This complexity allows neural mass models to describe the itinerant features of

brain dynamics. However, expressive, nonlinear neural mass models are often difficult to fit

to empirical data without additional simplifying assumptions: e.g., that the system can be

modelled as linear perturbations around a fixed point. In this study we offer a mathematical

analysis of neural mass models, specifically the canonical microcircuit model, providing ana-

lytical solutions describing slow changes in the type of cortical activity, i.e. dynamical itiner-

ancy. We derive a perturbation analysis up to second order of the phase flow, together with

adiabatic approximations. This allows us to describe amplitude modulations in a relatively

simple mathematical format providing analytic proof-of-principle for the existence of semi-

stable states of cortical dynamics at the scale of a cortical column. This work allows for

model inversion of neural mass models, not only around fixed points, but over regions of

phase space that encompass transitions among semi or multi-stable states of oscillatory

activity. Crucially, these theoretical results speak to model inversion in the context of multi-

ple semi-stable brain states, such as the transition between interictal, pre-ictal and ictal

activity in epilepsy.

Author summary

There is collecting evidence that the electrical activity of the brain is highly complex. Elec-

tro- and magnetoencephalography, being non-invasive methods, are often used to mea-

sure brain function in humans and have provided a large amount of data indicating

complexity. Furthermore, a quantitative framework is required to understand the interac-

tions between the different features of electrical activity of the brain. Neural mass models

can provide a quantitative framework required to further understand brain activity and

complexity, and in this paper we provide a mathematical form that can be used to under-

stand some of the complex electrical dynamics of the brain. Crucially, these theoretical
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results improve our understanding of multiple semi-stable brain states, as seen in

epilepsy.

This is a PLOS Computational BiologyMethods paper.

Introduction

The surface of the human brain is covered by a cortical layer of grey matter. This cortex con-

tains histologically distinguishable layers with laminar-specific types of neural cells that show

patterned interlaminar connectivity [1]. The cortex is also composed of cortical columns, that

show denser interlaminar synaptic connectivity—within a column—than horizontally among

adjacent columns [2]. Ensemble neuronal activity within each cortical column generates extra-

cellular currents, which can be measured using microelectrodes with relatively high spatial

precision; or more coarsely as net average currents through local field potential recordings [3].

Please see glossary list, if required, for technical terms in the paper (S2 Text).

There are numerous approaches to modelling the dynamics of neuronal activity at the scale

of cortical columns. One-dimensional models describing simplified single-neuron dynamics

with threshold firing; namely, integrate-and-fire neurons [4] can model the impact of interneu-

ron connectivity on larger scale dynamics, such as those observed within and between cortical

columns. However, these equations often result in integral-differential equations or partial dif-

ferential equations (please see S2 Text for definition), which are usually difficult to solve, at

least in closed form, and especially when considering larger neuronal systems [5,6].

Using approximation methods from statistical physics, the collective activity (or ensemble

activity) of cortical microcircuits comprising populations of distinct cell types have been mod-

elled as neural mass point processes (please see S2 Text for definitions) [7–12]. There are

broadly two sets of neural mass models: (1) Conduction-based models based on the Hodgkin-

Huxley model, with specific modelling of the intrinsic dynamics of ion channels [13], which

can allow for multi-compartment extensions [14,15]; and (2) convolution-based models where

simple synaptic kernels are used to estimate the postsynaptic depolarization from the presyn-

aptic input. These convolution-based models are computationally efficient whilst allowing a

range of complex dynamics to be simulated. The canonical microcircuit model (CMC) is a typ-

ical example of these convolution-based neural mass models. It comprises 4 populations and

has been used extensively to model EEG and MEG data [16]. In this setting, an idealized corti-

cal column is modelled using a set of 2nd-order differential equations with nonlinear coupling,

using a sigmoid function to map the effect of the neuronal potential of one population on the

depolarization of another (please see S2 Text for definitions).

In this study, we present an analysis of the dynamics of convolution-based neural mass

models, specifically, the canonical microcircuit model [16]. When considering the spatially

coarse-grained dynamics—typically recorded in human neurophysiological recordings—these

kinds of models afford a balance between accuracy and complexity. In other words, they are

sufficiently expressive to capture neuronal dynamics, at the scale of a cortical column, while

being sufficiently simple to preclude overfitting, when used to explain empirical timeseries.

Electrical activity of the cortex can be readily recorded using electro- or magnetoencepha-

lography (EEG/MEG). Visual analysis of the ensuing timeseries reveals a mixture of apparently

stochastic features, such as paroxysmal discharges, intermixed with recurrent rhythms. The
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spectrum of rhythms and paroxysmal discharges vary in frequency, location and progression

and are seen in a variety of states of the normal and diseased brain [3]. Quantitative analysis of

brain states suggest that these recurrent, recognizable patterns can be modelled as semi-stable

states, i.e., states with local but not global stability [10,17–20]. Importantly, these dynamical

features are sensitive markers for whole-brain (dys)function and can indicate pharmacological

and pathophysiological changes of neuronal connectivity at the synaptic level [21–23]. Thus,

developing biophysical models of cortical dynamics may help identify the synaptic and con-

nectivity processes that shape paroxysmal and time-varying dynamic features of brain activity.

The dynamical structure of these systems—such as neural mass models—can be character-

ized using a phase space representation (please see S2 Text for definition). Simulation of the

dynamics of neural mass models of the cortical column have disclosed complex structures in

this phase space [24–26]. These include stationary points, limit cycles and chaotic attractors

(please see S2 Text for definitions). Yet many popular current approaches of fitting neural

mass models to empirical data, such as dynamic causal modelling, assume that the dynamics

exist in a quasi-steady state, without transitions between distinct dynamical modes [27]. Thus,

there is a need to develop the tools necessary to link biophysical models of cortical function to

more complex, time-varying, and paroxysmal brain dynamics (e.g., seizure activity in

epilepsy).

The theoretical and empirical applications of neural mass models—with separation of time

scales—to analyze electrophysiological data, especially seizure activity, are diverse [28–33]. A

seminal paper, by Jirsa et al., elegantly modelled epileptic seizure activity, in terms of bifurca-

tions, using a neural mass model with two neural masses and a “permittivity” variable which

introduced a separation of time scales. The slow permittivity variable reflects chemical

changes, such as variations in electrolyte or metabolic homeostasis. This work has further been

elaborated in computational pipelines that can be applied to specific patient data recorded in

the evaluation for epilepsy surgery [34]. The Epileptor model differs from the canonical

micro-circuit model, as the latter does not have explicit multiple time scales. However, we

show in this paper that neural mass models do have an implicit time scale variation, which

could explain the phenomena described by the Epileptor model. The method we use to study

the implicit time scales of neural mass models are standard techniques in the study of dynam-

ical systems [35,36] and was alluded to by the authors of the Epileptor model [37].

In what follows, we will estimate the semi-stable (i.e., multi-stable) states of the canonical

microcircuit (CMC) model. We use an adiabatic approximation to integrate over fast changing

variables—to derive the implicit slow time scale dynamics. To this slowly evolving state we add

Brownian noise (to model unknown variations of the model, see S2 Text for definition) allow-

ing for transitions between semi-stable states. More specifically, the dynamics of mean activity

become gradient flows on a potential function (please see S2 Text for definitions). Crucially,

this formulation can be used to generate key measures such as the frequency and duration of

transient oscillatory modes, ie. features of itinerant activity. Using this formulation, we briefly

consider variational methods that could be used to estimate synaptic connectivity from empiri-

cal measures of occupancy and mean exit times from distinct modes of activity. The theoretical

results speak to a potential characterization of dynamical itinerancy seen in disorders of the

brain—including epilepsy—in computationally tractable ways that can be incorporated in

established (variational) model inversion schemes, such as dynamic causal modelling.

Methods

This section describes the formal results upon which the proposed analysis rests. This analysis

can be summarised, in narrative form, along the following lines:
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• First, identify a sufficiently expressive neural mass model, whose equations of motion are

parameterised in terms of synaptic connectivity.

• With a suitable transformation of variables, separate the fast (oscillatory) dynamics from

slow (amplitude) fluctuations, in the spirit of an adiabatic approximation.

• Formulate the dynamics of the slow variables in a relatively simple mathematical form. More

exactly, define the dynamics as a gradient flow on a potential function. This potential func-

tion can now be taken as the negative logarithm of a steady-state density; namely, the solu-

tion of the Fokker Planck equation describing density dynamics under random fluctuations

(please see S2 Text for definitions).

• From the steady-state density, evaluate the probability of occupying various fixed points—in

the state space of the slow variables—to generate the statistics of dwell times and transitions.

• Use the above steps as a generative model—that generates the statistics of dwell times from

synaptic connectivity—to infer connectivity from empirically observed statistics of (slow)

transitions among (fast) oscillatory modes of activity.

In what follows, we describe the mathematical basis of the steps above and present a brief,

illustrative application, using simulated data to recover the connectivity giving rise to transient

bursts of oscillatory activity.

CMC-model dynamics

The electrical activity of the cortical column can be modelled using the CMC-model as

described in [16,27]. To keep the derivations simple, and to ensure readability, we will rename

some parameters here, without changing the dynamics of the system. The model considers

four distinct neuronal populations modelled using a set of four 2nd order differential equa-

tions. These ordinary differential equations can be written equivalently as eight first order

equations.

_pi ¼ � oi
2qi þ εoi

2
X

gijSðqjÞ þ moi
2
X

gijP
pj
oj

 !

_qi ¼ pi

Where the potential of the i-th neural population is given by qi and the rate of change of

this is given by pi (i.e. a current term). We have introduced 2 variables μ and ε to control

the effect of perturbation of the non-connected model where the connectivity matrix is

given by gij. A sigmoid function (S) is used to parametrize the interaction between the

potential and current terms of the neuronal populations. The P-function parametrizes spike

rate variability.

The original variables (qi, pi) can be written as a complex variable (2C) which will keep the

derivations relatively concise and easy to follow.

zi ¼ qi þ i
pi
oi

The closed loops of the unperturbed motion will be given by,

zizi
� ¼ R2
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The equation of unperturbed motion will be given by,

_zi ¼ � ioizi

The solution will be given by,

zi ¼ Re� ioi t

The motion of the trajectories can then be given by the modulus (R) and argument (θi) of

the complex number (zi), Fig 1.

We introduce a new phase variable φi describing the deviation of the phase flow around its

value when μ and ε = 0, i.e. no perturbation.

yi ¼ � oit þ φi

Fig 1. Schematic figure showing the relation between the variables (q,p) and the amplitude and angle variables. The

blue curve shows the trajectory of an unperturbed trajectory (no damping and no coupling to other neuronal populations).

The red curve depicts the trajectory of a perturbed path. The amplitude (R) and angle variable (θ) for a point of the new

trajectory (red) is shown.

https://doi.org/10.1371/journal.pcbi.1010915.g001
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The resulting equations of motion can then be given by,

_zi ¼ � ioizi þ iεoi

X
gijS

zj þ zj�

2

� �

þ imoi

X
gijP

zj � zj�

2i

� �

ð1Þ

Adiabatic approximation

The above equations of motion can be simplified under the assumption that the time scale for

phase dynamics (which is determined by ωi) is small in relation to the time scale for amplitude

dynamics. This assumption has empirical validity when modelling cortical activity, as the

amplitude modulation of cortical rhythms or spike amplitude evolves over a slower time scale

(at least 10–100 times slower) than that of the phase dynamics [28,38].

In the above formulation this adiabatic assumption can be satisfied by limiting the range of

ε and μ. The resulting adiabatic approximation is a simplified model of the amplitude variables

(i.e., a 4-dimensional model), which permits further analysis of the dynamics in terms of

closed form solutions. The usefulness of the ensuing adiabatic approximation can be assessed

by the ability of the model to explain empirical data (see final section).

An adiabatic approximation can be specified with a time duration (T), where each neuronal

population will complete—to 0th order (see Perturbation analysis)—a series of cycles. The

angle variables move on a 4-dimensional torus (please see S2 Text for definition), and T is cho-

sen such that the motion over the torus completes (or approximately completes) one cycle and

the angle variables can be eliminated from the dynamical flow [35].

T ¼ least common denominator of foigi¼1;::;4

Results

Further analysis of the dynamics

A perturbation analysis of Eq 1 can now be pursued using the following expansion for φi and

Ri (in modulus-argument form, please see S2 Text for definition).

ziðtÞ ¼ Riðt; ε; mÞe
� iðoi tþφiðt;ε;mÞÞ

Where the two terms will be given by,

Riðt; ε; mÞ ¼ Ri;0;0 þ
X

εmmnRi;m;nðtÞ

φiðt; ε; mÞ ¼
X

εmmnφi;m;nðtÞ

From the flow of states, we get the following,

_ziðtÞ ¼ _Rie
� iðoi tþφiÞ � iRiðoi þ _φiÞe

� iðoi tþφiÞ

Which can be written as,

_Riðt; ε; mÞe
� iðoi tþφiÞ � iRiðt; ε; mÞ _φie

� iðoi tþφiÞ
� �

¼ iεoi

X
gijS

zj þ zj�

2

� �

þ imoi
2
X

gijP
zj � zj�

2i

� �

The resulting equation can now be integrated over the closed (or almost closed) path over

the torus, such that the angle variables are eliminated. To perform this integration we expand

the perturbative functions S and P as polynomial series. We are now in a position to derive the
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change in Ri to 1st order, by combining the results derived in the Appendix (S.1.1–3):

dRi
dt
¼
dRi
T
¼
mRi;0;1ðTÞ

T
¼ moigii

X1

r¼1

Br
Ri;0

2r� 1

22r� 1

2r � 1

r � 1

 !

The dynamics of Ri is determined by 2 coupling terms: the potential-to-current coupling

(S) and the current-to-current coupling (P). The nonlinearity of the coupling functions (S

and P) result in a series expansion in multiples of Ri. The complexity of the dynamics for the

amplitude parameters is determined by the connectivity matrix and the coupling functions.

These parameters are defined in the cortical column by reference to the synaptic connec-

tions between the neuronal populations, where the gain of each connection is given by gij and

their physiological effect on the target neuron parametrized in S and P. Note that the above

derivation is valid for any set equal to or larger than two neuronal populations.

Dynamics of amplitude modulations

The electrical or current recordings of cortical activity is often modelled as a linear combina-

tion of the activity of the potential of each neuronal population [39]. This can be used to derive

a 1-dimensional equation of motion for the amplitude dynamics of the recorded data. As can

be seen above the amplitude dynamics will be governed by the self-connection terms, gii. The

self-interactions within the cortical column will result in a set of non-interacting limit cycles

(taking up-to 1st order contribution from the perturbation).

Amplitude envelope dynamics

The measured potential (e.g., EEG) is given by (assuming a linear lead field).

yðtÞ ¼
X

aiRicosoit ð2Þ

The amplitude power can be estimated easily, provided the ωi are distinct.

R2 ¼
X

ai
2Ri

2

We can now normalize qi s.t

Xn

i¼1

ai
2 ¼ n

R will then be the radius of a sphere if all ai are constant in the vector space given by Ri. The

rate of change of the amplitude function R is given as below.

R
dR
dt
¼
X

ai
2Ri

dRi
dt

As we are interested in the average rate of change of R we will take a spatial average over

ellipsoids with constant R2.

1

A
∯R

dR
dt
¼

1

A
∯
X

ai
2Ri

dRi
dt

R will be constant on the surface,

1

A
∯
dR
dt
¼

1

AR
∯
X

ai
2Ri

dRi
dt
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Hyperspheroidal coordinates (please see S2 Text for definition) are used for the integration

(see S1 Text, S1.4). Let Rs be the average of R over the 3-sphere,

dRs
dt
¼

1

AR
∯
X

ai
2Ri

dRi
dt
¼ m

X
oigii

X1

r¼1

Br
4R2r� 1

ð2r þ 1Þ22rai2r
2r � 1

r � 1

 !
ð2r þ 1Þ!!

ð2r þ 2Þ!!
ð3Þ

As was discussed in the appendix, cross connectivity terms (or off-diagonal terms) will

affect the dynamics of Rs when higher order terms are included in the perturbation expansion.

The functional form of this equation means that the amplitude dynamics can be expressed as a

gradient flow on a potential, U that depends upon the synaptic connections gij and the cou-

pling functions:

@tI ¼ � rU

In other words, different connectivity matrixes and functions correspond to different

potentials (U): see Fig 2. This spectrum then defines different possibilities of dynamics sup-

ported by the CMC model. Panel A shows minima at 0 and 2. Panel B has three stable points,

at 0, 1 and 2 (see S1 Text, S1.1–3). This suggests that the CMC model—with certain synaptic

connections—features continuous high amplitude oscillations and a point of stability at the

Fig 2. Potential distributions for the dynamics of the total amplitude (R) for different connectivity between the

neuronal subpopulations. Here different connectivity matrices and couplings are selected to illustrate the spectrum of

potential functions. Minima of U in these functions are stable point attractors (A) The first example has two stable

points at the origin and at R = 2. (B) The second figure has three stable states at the origin and at R = 1 and 2.

https://doi.org/10.1371/journal.pcbi.1010915.g002
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origin. The oscillations would be a mixture of sinusoidal activity, with frequencies of the four

neural populations, where this mixture is determined by the lead field (Eq 2).

The potential distributions U in Fig 2 are generated by one self-connectivity term in the

superficial pyramidal cell layer. Up until this point, we have been considering deterministic

dynamics in the absence of noise. In what follows, we show that the same dynamical structures

persist in the presence of random fluctuations, via an analysis of the density dynamics.

A schematic of the steps taken to derive the dynamical equations of the amplitude modula-

tion of the EEG is shown in Fig 3.

Stationary states and exit times

Fast neuronal fluctuations can be easily modelled by adding innovations to the deterministic

equations of motion [40,41]. For the potential flow of the amplitude dynamics derived above

we can add a white (Wiener) noise process, resulting in a stochastic differential equation

(SDE) (see S2 Text, for definitions).

The trajectories are then described by the following SDE,

dI ¼ � rUdt þ sdBt

In the above equation, I and Bt are random variables while U and σ are real valued func-

tions. The associated Fokker Planck equation, describing the density dynamics over the ampli-

tude, is given by:

@tr ¼
s2

2
Dr � r: rUrð Þ

The stationary state of this equation is given by the following, where Z is the partition func-

tion (please see S2 Text for definition) or equivalently, a normalizing constant for p).

pst ¼
1

Z
exp �

2U
s2

� �

Fig 3. A schematic figure of the steps taken to derive the amplitude dynamics. The starting point is the 4 population CMC-model. The activity of the model

generates activity for each of the four populations as shown after the arrow “4-population dynamics”. The EEG lead field will then take a linear mixture of the

activity of the 4 populations resulting in a “EEG” curve. The amplitude modulation of the activity is drawn by a red curve. The adiabatic and perturbation

analysis discussed in this paper will define a gradient field as drawn after the arrow “perturbation expansion”. The gradient field will depend on the connectivity

matrix, G. A possible trajectory of the amplitude variable is shown as a red arrow moving from one stable state to another. The corresponding change in

amplitude over time is shown after the arrow “gradient field dynamics” in red above the “EEG curve”. The main contribution of this work is to find a direct

relation between the intrinsic connectivity and the gradient field which in turn will define statistical measures such as the probability of being in a specific state

or exit times from states.

https://doi.org/10.1371/journal.pcbi.1010915.g003
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With a connectivity matrix that features several stable states, we can now estimate the prob-

ability of finding the dynamical system in that state by simply integrating the stationary proba-

bility density function (i.e., solution to the Fokker Planck equation above) over the interval

defining the state: see Fig 4. This provides an analytic estimate of noise induced multistability

(c.f., topological supersymmetry breaking), in terms of the probability of finding the amplitude

dynamics near one of the fixed points or stable (oscillatory) states.

For the first state the probability is given by,

Pfstate 1g ¼

Z Rmax

0

rstdI

The mean duration of time (t) the system is in a given state can be approximated using Kra-

mer’s escape rate,

hti ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� U 00ðxminÞU 00ðxmaxÞ

p e
2½UðxmaxÞ� UðxminÞ�

s2

Finally, because we have closed form expressions for both the state probability and mean

exit times, we are able to estimate the connectivity matrices from empirical measures of occu-

pancy and mean exit times from discernible oscillatory states. In other words, the closed form

Fig 4. Regions attracted to different minima of the potential (shaded differently). The probability of finding the

system in one of these stable states is given by integrating the probability density function over the attracting interval

(state 1 = light grey), 0 to the first maxima (Rmax) of the potential curve or Rmax to1 (state 2 = dark grey). The red arrow

depicts how the trajectories pass between state 1 and 2 due to the underlying noise.

https://doi.org/10.1371/journal.pcbi.1010915.g004
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expressions above provide the basis for a generative model that can be inverted given empirical

measures of transitions among oscillatory modes evident in any empirical data. See Fig 5 for

inversion of simulated data of exit times, for different noise amplitudes, using the variational

procedures used in dynamic causal modelling. A simulated EEG trace is shown in Fig 6 illus-

trating how the system is moving between two semi-stable states resulting in a bursting

appearance of the EEG.

In this proof of principle example, synthetic data were generated from using prior values of

the connectivity in the CMC model provided by the SPM software. Inversion of the synthetic

data was performed using standard (variational Laplace) inversion routines available in the

SPM software package. The code used in this paper can be obtained from https://github.com/

gercoo/exittimes2synapticconnectivity. This example shows that the connectivity parameters

used to generate transitions among oscillatory states or modes can be recovered from mean

exit times alone. The implication here is that it is possible to both explain and leverage multi-

stability in terms of underlying synaptic connections and the amplitude of fast neuronal fluctu-

ations. This work could be applied when investigating spiking in epileptic and non-epileptic

tissue as the inter-spike interval could be modelled as the exit time from a large amplitude

transient. The inversion method described could then map spike frequency to synaptic con-

nectivity, which could be used to uncover the underlying physiological differences between

regions of the brain with different epileptogenicity.

Discussion

This paper has presented a formulation of multi-stable neuronal dynamics based on neural

mass models—and an accompanying analysis framework—that enables inference about synap-

tic connectivity parameters that engender to observable transitions among oscillatory states.

We have derived closed form expressions for the statistics of the semi-stable states, e.g. the

state probability and the mean duration of a state.

Fig 5. Inversion of the generative model based on simulated data. The left panel shows the mean exit time (on the vertical

axis) from state 2 (Fig 4) for different noise amplitudes (plotted along the horizontal axis). The dotted black curve indicates

the synthetic data that was inverted. The blue curve shows the expected data under the prior values of the connectivity matrix.

The red curve indicates the expected exit times with the posterior values of the connectivity matrix. The right panel shows the

change in the connectivity matrix between the prior and posterior estimates of the connectivity matrix, suggesting that the

connectivity parameters used to generate the data can be recovered from mean exit time data features.

https://doi.org/10.1371/journal.pcbi.1010915.g005
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Our work builds on both theoretical insights of prior neural mass modelling and empirical

observations of transient brain states. Prior simulations of neural mass models have already

shown the simultaneous presence of fixed point and limit cycle dynamics in the same cortical

model [25,42]. Furthermore, empirically there are several instances—in both the healthy and

diseased brain—where the mode of cortical and subcortical dynamics shifts repeatedly among

states; including physiological rhythms like sleep spindles, mu-rhythms, and pathological

states, such as epileptic seizure activity [3,43–47]. Indeed, the implicit itinerancy may be the

hallmark of all self-organising dynamical systems; ranging from the stochastic chaos that char-

acterises nonequilibrium steady-state [48–55] through to heteroclinic cycles [56–58].

The neural mass models we have considered here show complex dynamics that can be

divided into explicit fast and implicit slow variables. This separation in time scales allows for

an adiabatic approximation, which eliminates the fast modes producing a new set of dynamical

equations of slow variables. This new set of slow variables now describes slowly evolving

amplitude dynamics, rather than the fast oscillatory activity itself. This reduces the dimension-

ality of the system making it more tractable for simulation and inference. In this reduced sys-

tem, several types of fixed points—representing stationary states or oscillatory limit cycles—

can be characterised using measurable data features such as dwell and mean exit times.

In this work, we have presented closed form equations that link patterns of cortical micro-

circuit synaptic connectivity to statistical data features. This generative model allows for

Fig 6. Simulation of EEG trace with bi-stable activity. The trace shows a simulated EEG trace with a connectivity matrix giving a bistable system as described

in Fig 4. The system is bursting with high amplitude oscillations (state 2) with shorter suppressions of attenuation (state 1) in between.

https://doi.org/10.1371/journal.pcbi.1010915.g006
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Bayesian model inversion and comparison, allowing empirical comparison of different mecha-

nistic explanations of intermittent cortical dynamics. This might be particularly interesting

when modelling relatively fast changing dynamics like on and off rhythmic spiking or seizure

onset. As seizures progress there are changes in several variables including electrolytic or meta-

bolic changes which would have a large but secondary effect on cortical dynamics and might

change some key connectivity parameters, which would alter both fast and slow dynamics in

the system described here [59]. These slower changes can also be modelled effectively using

Adiabatic DCM where the effect of slow changes in synaptic parameters is included in the

model inversion [60].

The amplitude dynamics of a single-source CMC model (i.e., cortical column) has been

shown to be sufficiently approximated by a second order perturbation expansion. In contrast,

extrinsic connections between cortical columns may require higher order perturbation terms

and thus be of weaker strength compared to the intrinsic dynamics (at least within the parame-

ter range where the perturbation expansion is valid). This is due to the number of neurons

required to create an interconnected loop between two cortical columns [2,61]. The intrinsic

(i.e., within-source or column) dynamics is thus instantiated in cortical columns through the

intrinsic connectivity matrix, while the extrinsic connectivity results in a weak but richer set of

dynamics, as the extrinsic (i.e., between-source or column) connectivity can be diverse. This is

in line with the architectural setup of cortical processing, where cortical columns represent the

smallest units that process data as conditionally independent units and interact with other col-

umns, using a weaker set of interactions [62]. We will further develop the perturbation theory

presented here to include higher order terms to see whether the interactions between cortical

columns can be characterised.

Our perturbation expansion is sufficient to explain semi-stable states of the cortical modes

of activity (i.e. stationary states and limit cycles of the full dynamics) within cortical columns

in the absence of changes of connectivity. Using a perturbation expansion, we have managed

to derive the characteristics of semi-stable states of the cortical columns from the connectivity

matrix describing connectivity within the cortical column. This is an important step, as we can

now map statistical characterisations of complex cortical dynamics onto synaptic connectivity.

Understanding larger cortical networks from a modelling perspective can be further imple-

mented using a discrete simplification of the above model. It is possible—through a projection

mapping of the dynamics of the cortical columns onto the semi-stable state it occupies at any

given time—to simplify things considerably. This should preserve the important link between

connectivity and the semi-stable states that are generated. Connecting different cortical col-

umns could then result in a lattice model (similar to an Ising or Pott’s model) of the cortex,

where it would be relatively straightforward to link the intrinsic and extrinsic connectivity to

measurable dynamics [63,64]. Such an expansion of our work would prove particularly rele-

vant to the characterisation of epileptogenic networks and their role in seizure initiation and

spread. Furthermore, the effect of medication could be addressed in terms of the changes in

the intrinsic connectivity and in ceiling changes in network dynamics. Finally, the effect of epi-

lepsy surgery or disconnection surgery could be modelled by changes in extrinsic connectivity;

c.f. [65–67].

It is important to compare this work with other published methods using neural mass mod-

els to investigate itinerant brain dynamics. The Epileptor model is frequently used to charac-

terize epileptic seizure onset, propagation and offset [28,34,66]. As described previously, the

timescales are explicit in the functional form of the equations of the Epileptor model; while

they are only implicit in the physiologically grounded (canonical microcircuit) model

described in this study. The explicit parameterization in terms of distinct rate (i.e., time) con-

stants simplifies the mathematical modelling of seizures and provides a compelling taxonomy
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of seizures in terms of bifurcations for the field of computational epilepsy. The CMC-model,

in contrast, requires extensive mathematical derivations to uncover the underlying slow pro-

cesses; however, the biophysics of slow modulation can be shown to depend on the synaptic

connectivity within a cortical column. This may be important in terms of understanding the

mechanisms (e.g., synaptopathies) that underwrite epilepsy.

We have thus shown the possibility of a cortical column evincing slow dynamics in the

absence of slowly fluctuating variables. This dynamical mechanism fits well with the principle

of self-organization, where a system shows patterns in time or spatial scale larger than the local

dynamics governing the system. The analysis provided in this paper further allows for the sta-

tistics of transient electrophysiological activity (e.g., spike frequency and seizure duration) to

be mapped onto the synaptic connectivity, in contrast—or as a complement—to the permittiv-

ity variable in the Epileptor model.

Finally, there is a key difference between accounts exemplified by the Epileptor model, and

the model described in this paper. The dynamics of slow variables (e.g. amplitude modulation)

derived in this paper are dependent on fast variables (e.g. high frequency activity within neural

populations) only via the adiabatic approximation. In other words, the fast activity pushes the

system configuration slowly giving rise to the implicit slow dynamics. We describe a causal

flow from fast to slow timescales, in contrast to a feed-back system of the kind found in the

Epileptor model, where the dynamics of the slow variables directly affect faster variables. The

dependence of slow variables on fast variables in this paper allows us to define an “arrow of

causality” that is similar to that found in physics, where macroscopic variables can be esti-

mated from the underlying microscopic variables but not vice versa. [65,68–71]. However, we

note that the feed-back from slow to fast timescales may be required in certain cases (e.g., peri-

odic seizures or seizures of longer duration), perhaps using a similar set-up as the Epileptor

model [28]. This speaks to some interesting issues about the nature of circular causality, and

bottom-up versus top-down causation [66, 72]. These issues could, in principle, be addressed

using Bayesian model comparison of appropriate dynamic (causal) models.

The approach illustrated here may have relevance for our understanding of paroxysmal dis-

orders of cortical function such as epilepsy and epileptic seizures. The epilepsies are character-

ised by recurrent, sudden onset of rhythmic epileptic activity, on a background of spontaneous

‘normal’ interictal ongoing activity. In certain cases, cortical activity in epilepsy can alternate

rapidly between more than two states, 1) rhythmic spiking, 2) seizure activity and 3) spontane-

ous background activity [17,73]. The transition between these states has been described in

terms of phase transitions and bifurcations, where the synaptic parameters that shape microcir-

cuit dynamics exceed a threshold, resulting in a sudden change in phase space dynamics [39].

Our model, similar to previous modelling endeavours, offers an alternative perspective in that it

does not require a critical transition (as in transcritical bifurcations) to explain the change in

cortical activity [74]. Rather, the mechanism resulting in intermittently observable dynamic

phenomena is predicated on noise induced itinerancy, of the kind found in stochastic chaos

and topological supersymmetry breaking. In other words, the stochastic nature of the model

will move the dynamics of the system between semi-stable states. This form of transition

between states has been described in terms of transcritical activity [39]. What is new in this

study is that we can now map the observed changes to synaptic connectivity within the cortex.

Observations of intermittent dynamic features could—in principle—give support for either

bifurcations or transitions between semi-stable states. Note that we do not provide any evi-

dence for the absence of bifurcations in these intermittent systems, as these still exist within

the framework presented (i.e. changing the connectivity matrix can still cause transcritical

bifurcations): rather that these are not always required to explain observable state transitions.

To distinguish between the two proposals; bifurcations or semi-stable state transitions, the
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statistics of transitions among states may need to be further explored. It is through tools such

as the invertible, reduced models presented here that future work will be able to specifically

address these questions empirically; i.e., through the (Bayesian) model comparison of models

with and without changes in connectivity.

In summary, we have introduced the theoretical backdrop for a model of cortical multi-sta-

bility and itinerancy that could be used to infer the underlying synaptic connectivity from sta-

tistical descriptions of transient dynamic features. We hope to elaborate the theoretical work

presented above for the characterisation of global dynamics based on measurable electromag-

netic responses in health and disease.
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