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Abstract

Critical phenomena are wildly observed in living systems. If the system is at criticality, it can

quickly transfer information and achieve optimal response to external stimuli. Especially,

animal collective behavior has numerous critical properties, which are related to other

research regions, such as the brain system. Although the critical phenomena influencing

collective behavior have been extensively studied, two important aspects require clarifica-

tion. First, these critical phenomena never occur on a single scale but are instead nested

from the micro- to macro-levels (e.g., from a Lévy walk to scale-free correlation). Second,

the functional role of group criticality is unclear. To elucidate these aspects, the ambiguous

interaction model is constructed in this study; this model has a common framework and is a

natural extension of previous representative models (such as the Boids and Vicsek models).

We demonstrate that our model can explain the nested criticality of collective behavior

across several scales (considering scale-free correlation, super diffusion, Lévy walks, and

1/f fluctuation for relative velocities). Our model can also explain the relationship between

scale-free correlation and group turns. To examine this relation, we propose a new method,

applying partial information decomposition (PID) to two scale-free induced subgroups.

Using PID, we construct information flows between two scale-free induced subgroups and

find that coupling of the group morphology (i.e., the velocity distributions) and its fluctuation

power (i.e., the fluctuation distributions) likely enable rapid group turning. Thus, the flock

morphology may help its internal fluctuation convert to dynamic behavior. Our result sheds

new light on the role of group morphology, which is relatively unheeded, retaining the impor-

tance of fluctuation dynamics in group criticality.

Author summary

To investigate the critical phenomena influencing collective behavior, we propose the

ambiguous interaction model as a natural extension of the Boids model. Our proposed

model exhibits various critical properties with respect to real-world collective behavior

depending on the parameter settings (scale-free correlation, Lévy-walk behavior, and 1/f
fluctuations in the center-of-mass frame). The results show that individual and group crit-

icalities originate from the single algorithm employed by our model.
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Furthermore, we determine the functional duality for different input types (velocity

and fluctuation) using a scale-free induced correlated domain inside a flock. The informa-

tion flow between sub-domains within the flock is found to be bidirectional rather than

unidirectional. This means that, contrary to appearances, a flock does not have a leader-

follower information structure. Moreover, our analysis suggests a strong relationship

between group morphology (i.e., velocity distributions) and its fluctuation power (i.e.,

fluctuation distributions) for rapid group turning. Our result also sheds new light on the

role of group morphology, which has not been thoroughly investigated, retaining the

importance of fluctuation dynamics in group criticality.

Introduction

The critical phenomena of collective animal behavior, which are widely observed [1–4], eluci-

date the criticality of living systems [5–8]. However, the study of these phenomena is hindered

by two core, interrelated problems: (1) the critical phenomena are nested across several scales,

and (2) the functional roles of group criticalities are not clearly understood from an adaptive

perspective. The first problem reveals the statistical properties required for systems analyzed in

research studies. The second problem indicates that if the role of criticality is not well under-

stood, it is possible that it is not treated with sufficient importance.

Criticality in collective behavior occurs on at least two levels: macro and micro. The macro-

scale criticality is the criticality of the system as a whole, as represented by the scale-free corre-

lation of the system [8–12]. Cavagna et al. [9] found that a flock (of starlings, for example) has

size-independent correlation domains for its direction and speed, and that high correlation

raises the system susceptibility [13–15]. Thus, with scale-free correlation, the members of the

flock can quickly share information and achieve optimal responses to external stimuli as a

group. Overall, macro-scale criticality maximizes the benefits of group membership in various

ways [6–8]. In contrast, micro-scale criticality is the one that occurs for an element or individ-

ual as represented by a Lévy walk [16–23], which is an optimal search strategy (i.e., the optimal

balance between exploration and exploitation) for a given space. Some researchers have also

suggested that Lévy walks contribute to smooth communication between individuals in flocks

[24, 25]. Notably, each fish in a group tries to search for and communicate with the new neigh-

bors within the group. The micro-scale criticality may also therefore be related to group

benefits.

Although these critical properties have been separately reported, several systems seem to

coexist (e.g., in bacteria [10, 18], fish schools[12, 24], and proteins[11, 22]). At first glance,

group and individual benefits appear to be in conflict each other, because there is generally a

trade-off between the two [26, 27]; however, the nested critical system seems to address these

disagreements. The concept of “nested criticality” considered in this paper is derived from

these observations.

Next, we consider the second problem noted above, i.e., the lack of clarity regarding the

relationship between criticalities and the observed collective behavior. Group turning is one of

the most debated topics of collective behavior. Although some researchers have suggested that

criticalities and group turning are related [9, 28], their suggestions seem to be more suitable to

options other than criticality. For instance, Attanasi et al.[29, 30] believe that the quantum

effect causes rapid group turning and have also suggested that individual fluctuations may trig-

ger this behavior [31]. These solutions are attractive in themselves; however, the relationship

between collective behavior and critical phenomena remains obscure. Unfortunately, the
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currently existing technologies do not provide sufficient data (only time intervals of a few sec-

onds for analysis [31, 32]) to describe the relationship between group turning and critical

phenomena.

In a previous study, we developed a collective behavioral model based on ambiguous inter-

actions as one possible solution [33]. We applied this model to several flocking models and

showed that the interaction between the alignment and attraction can be regarded as a single

interaction with time-scale differences. Alignment pertains to the infinitely long predicted

neighbor positions of a given agent, whereas attraction relates to the interactions of that agent

with the current neighbor positions. We showed that the medium region of this time scale

could play a vital role in group criticality. However, our result was restricted to a two-dimen-

sional system, and we did not investigate the functional role of criticality. Additionally, as posi-

tional relations in three dimensions are more complex than those in two dimensions, it was

unclear whether our model could yield meaningful results for the three-dimensional case.

Especially, the noise definition of our model must be reconsidered for further extension to

general situations.

In the present study, we propose a model that can simultaneously explain nested criticality

in collective behavior and its functional abilities (i.e., group turning); our model is a natural

extension of our previous model to three dimensions. The self-tuned noise through ambiguous

interactions make it possible to bridge the gap between micro- and macro-scale criticality.

Moreover, our newly developed model elucidates the two features discussed above (i.e., the

nested criticality and its functional roles) via an information theoretic analysis. The remainder

of this paper is structured as follows. First, we present our model algorithm and explain why

our model is a natural extension of the previous representative models. Second, we examine

the criticality of group behavior. For various kinds of criticality (super diffusion, scale-free cor-

relation, Lévy walks, and 1/f fluctuation), we confirm that nested criticality holds without strict

parameter tunings. This suggests that the critical phenomena are universal and can be

observed in the broader range of parameter regions rather than only in a restricted region as

conventionally thought. Third, we divide a flock into two scale-free induced subgroups and

examine the information transfer between them, evaluating the influence of this coarse-

grained information (the average vectors of the fluctuation and velocity vectors) on the future

behavior of the group. Our analysis reveals that these coarse-gained average vectors signifi-

cantly impact the rapid group turning behavior. Finally, we present a new method of applying

partial information decomposition (PID) [34, 35] to the group behavior and find that combin-

ing group morphology (i.e., the velocity distribution) with internal fluctuations can likely

enable rapid group turning. Our findings imply that flock morphology may aid in the conver-

sion of internal fluctuations into dynamic behavior.

Materials and methods

First, we briefly review the main concepts used in our model and highlight the ones that are

based on a natural extension of basic flocking models, such as the self-propelled particle model

and the Boids model [36–38].

Most flocking models involve two interactions: alignment and attraction [39–46], which

have been experimentally confirmed [2, 47–50]. With regard to alignment, each agent changes

its direction to align with its chosen neighbors (e.g. within the certain radius[37] or the fixed

topological distance[2]), whereas in the case of attraction, each agent moves toward the current

positions of its neighbors. Many researchers have argued that a balance between alignment

and attraction is key to the various flocking formations observed in nature [38, 42, 47], and

recently, the reducibility of one of these interactions to the other has been highlighted [46].
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Based on these findings, our claim is clear: both the interactions stem from a common

interaction.

As another definition of alignment, the process by which one agent aligns in parallel with

its neighbors can be described as follows: each agent tries to adjust its direction to the infinite

future positions of its neighbors, assuming that the neighbors will continue to follow their cur-

rent trajectories. Similarly, attraction can be described as the agent adjusting its direction

according to the current positions of its neighbors (Fig 1A). Thus, the difference between

alignment and attraction lies in the prediction time scale (for more detail, see [33]). Thus, the

difference between these two interactions is not with regard to the type but the degree, and we

observe the same type of interaction across different time scales. This analysis suggests new

possibilities. Between the two extremes (i.e., current and infinite futures), our flocking model

provides various grades of interactions.

Quasi-Attraction and Quasi-Alignment

Based on the aforementioned considerations, we define a new flocking model that naturally

extends the previous models. In other words, because we have confirmed that two extremes

(attraction and alignment) for the flocking model correspond to different time scales, our aim

is to find smooth connections between them.

Let us define the “interaction sphere” SP for the connection (Fig 1B). First, we draw a

Delaunay diagram from the positional relationships of the given agents [51]. The neighbors

are connected to all the Delaunay triangles. Second, we compute the distance of each neighbor

Fig 1. Brief sketch of the quasi-attraction/alignment algorithm. (A) Reinterpretations of attraction (t = 0) and alignment (t =1). The red and black

arrows indicate the focal agent and its neighbor, respectively, while the green arrow indicates the next direction. (B) A sketch of the cover function,

which returns the minimum cap C on the interaction sphere SP, which covers all points pi (for the mathematical definition, see the Section 2 in S1

Appendix). (C) Left: The quasi-attraction projected on the plane. Each direction is extended to SP, where Catr (yellow) is the minimal sphere cap

covering all points tj. Right: The quasi-alignment projected on the plane, where Calg (blue) is the minimal sphere cap covering all points sj. Lower: C

(green) is the maximal sphere cap inside Catr

T
Calg. The focal agent selects its next direction randomly based on C. (D) A brief sketch of the avoidance

algorithm. Upper: Each direction is extended to the repulsion area SPavd = {r||r| = R}, where Cavd is the minimal sphere cap that covers all points on

SPavd. (Lower) The focal agent determines its next direction uniquely as the shortest-distance position to the outside of Cavd.

https://doi.org/10.1371/journal.pcbi.1010869.g001
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j from the agent of interest i, i.e., Dij, and take its maximum. This value is the radius of SP.

Mathematically, the interaction sphere of agent i, SPi ¼ fr 2 R
3jjrj ¼ Ri

maxg, where Ri
max ¼

maxj2Ni
fDijg and Ni is the set of Delaunay neighbors of i. Thus, SPi, covers all neighbors

directly linked with its Delaunay triangles.

Note that SP contains interaction domains from which the agent of interest determines its

next direction. In our model, unlike most other models, we do not adopt the average values

with external noise. Instead, we define a vaguer region on the interaction sphere; that is, a

spherical cap C. The possible directions must be selected from within this vague region (Fig

1B). This sphere enables the agents to tune their randomness according to their situations.

Next, we define the quasi-attraction, which consists of relatively small time-scale predic-

tions such as genuine attraction (t = 0). First, the focal agent i determines SPi from its Delau-

nay neighbors. The next step involves calculating the point at which the extended velocity

vectors vj intersect with SPi; i.e., tj (8j 2 Ni: Fig 1B: left). Here, we define the minimal spherical

cap Catr, which covers all these intersection points (ti; t1; t2; . . . ; tjNi j
). This cap can be com-

puted using the cover function (Fig 1B); that is, Catr;i ¼ Coverðti; t1; t2; . . . ; tjNi
jÞ. We also note

that the cap can be defined as having two factors, the solid angle Θ and the cap center c(Θ), as

shown in Fig 1B.

This cap Catr;i is the interaction domain induced by the quasi-attraction (Fig 1C: left). We

use the prefix “quasi-” because these intersections indicate longer time scales than that

obtained for pure attraction. Here, we consider the time scales in the context of the prediction

from the inside sphere. Although the travel time is relatively short, it is not necessarily t = 0.

The travel time depends on the neighbor relative positions and the current direction of the

focal agent only. For instance, in Fig 1C: left, agent 3 takes shorter time to achieve SP than

agent 1. If the agent is on the SP, the reaching time becomes minimum, that is, t = 0.

In contrast, quasi-alignment pertains to long time-scale predictions. Recently, some studies

have suggested the importance of future predictions of flocking movement [43, 46, 52–55]. In

our model, each agent predicts the behavior of its neighbors based on their past movements;

that is, their turning rates [33].

The turning rate can be represented using the rotation matrix R, which is defined as follows.

According to the Rodrigues’ rotation formula [56], two factors determine the velocity rotation

in three dimensions: the axis and the angle. The axis is in the direction that is unchanged by

the vector rotation and the angle is the degree of rotation around that axis. If we have two vec-

tors, we can construct R (Section 3 in S1 Appendix), and using R, we can then uniquely predict

the future direction from the current direction. For example, if the current unit velocity vector

is v̂ t
j (Fig A in S1 Appendix), the future direction is expected to be Rt

j v̂
t
j .

For the quasi-alignment, we consider several prediction time scales Δt. The current direc-

tion can be described in several ways depending on Δt, with vt;Dt
j ¼ rt

j � rt� Dt
j . The predicted

future position rtþDt
pre;j ¼ rt

j þ ðvmaxDtÞRDt
j v̂

t;Dt
j , where rt

j is the current position. From this expres-

sion, if the agent behavior is predicted for long time scales (i.e., large Δt), rtþDt
pre;j is a great dis-

tance from rt
j . As the quasi-alignment yields predictions for long Δt, we compute all rtþDt

pre;j

extending beyond SPi; that is, jjri � rtþDt
pre;j jj > Ri

max (8j 2 Ni [ fig, including self-prediction).

Let Δmin represent the minimum time step that satisfies the above-mentioned condition.

Then, we have a set X
Dmin ¼ frtþDmin

pre;j j8j 2 Ni [ figg (Fig 1C: right). By referring to X
Dmin , each

prediction point stj on SPi can be determined (see Section 3 in S1 Appendix). Finally, we also

define the interaction domain Calg;i (¼ Coverðsi; s1; s2; . . . ; sjNi j
ÞÞ) from its distribution on SPi

(Fig 1C: right).
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The maximal sphere cap on SPi, Ci, is included in Catr;i \ Calg;i and gives the next direction

of the focal agent (Fig 1C: lower):

Ci ¼ maxfCjC � Catr;i \ Calg;i � SPig ð1Þ

Let c(Θi) be a cap center and Θi be a solid angle of Ci along c(Θi). We set the condition that

a random direction directs the point, obeying a Gaussian distribution with variance Θi along

the mean axis of c(Θi). On the sphere, the Gaussian randomness is given by the von Mises–

Fisher distribution [57–59]. This function determines a random output based on a given mean

c(Θi) and variance Θi (note that random values can also be outside the cap Ci). We define the

random function RandomVM(Θi, c(Θi)), which obeys the von Mises–Fisher distribution (see

Section 4 in S1 Appendix for the precise definition). In other words, the randomness intensity

depends completely on the neighbor behaviors (the degree of Θi): if the neighbors have high

alignment (i.e., small Θi), the noise naturally degrades, but if they have low alignment (large

Θi), the noise increases. The noisy behavior of the focal agent is self-tuned according to its

environment. Following this computation, each velocity is determined as follows:

vi ¼ vmaxcosðdyi=2Þ ð2Þ

From this equation, it is clear that the deceleration depends on the degree of each turning

direction (dθ). This condition is based on experimental data [24]. We only use the fact that the

individual turn decelerates the agent speed from this study.

Finally, we define avoidance. In this study, avoidance rarely occurs because the agent speed

exceeds that of the avoidance domains occurring in real-world situations. The definition of

avoidance is opposite to that of quasi-attraction. In other words, the avoidance determines the

direction in which the agent must travel to avoid the sphere cap region created by quasi-attrac-

tion, i.e., Cavd;i (¼ Coverðt0i; t
0
1
; t0

2
; . . . ; t0nÞÞ, where n is the number of metric neighbors; Fig 1D:

upper). The next direction given by the avoidance rule is the point of shortest distance to the

edge of this sphere cap. Mathematically,

arg min
r2@Cavd;i

distSPavd
ðt0i; rÞ

where @Cavd;i is the edge of Cavd;i and t0i is the intersection of the extension of the vector vi (i.e.,

focal agent i) with the repulsion area SPavd. The agent direction targets a point on the edge of

this sphere cap (Fig 1D: lower).

Boundary condition

We set no boundary condition, wall, or periodic condition since the periodic (or wall) bound-

aries do not accurately capture the interaction factors inside the flock due to periodic effects.

The agents can move without constraint.

Summary of algorithms

Fig 2 summarizes our algorithm. First, each agent checks if it has neighbors that must be

repulsed. If so, an avoidance algorithm is applied. Following updating of all relevant agent

positions according to the applied avoidance algorithm, a Delaunay triangle is constructed

based on the current agent positions. Each agent computes the appropriate quasi-attraction

and quasi-alignment. These two interactions determine the next direction of each agent. After

all agent directions and positions are updated, one iteration is complete.
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Fig 2. Overview of algorithm. One parameter (the maximum velocity vmax) exists when the repulsion radius R is

fixed. Each agent checks if there are any other individuals in the repulsion zone, and if not, it executes the quasi-

attraction/alignment rule. The update timings are synchronous. The algorithm framework is of the same type as those

of previous Boids models and other methods.

https://doi.org/10.1371/journal.pcbi.1010869.g002
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Results

Group formations

Our model uses only three parameters: number of agents, maximum speed, and repulsion size.

We reduced the number of parameters to two as the degrees of attraction and alignment were

self-tuned. Because only Delaunay triangles determined the agent positional relations, the

topological relation was more important than the metric relation. Therefore, adjustment of the

velocity–repulsion ratio vmax/R was sufficient to alter the group behavior.

In the simulations reported in this section, vmax/R = 8 (this setting was based on the fish

speed [24]) and the number of individuals was set to N = 1000. As already mentioned, the

behavior of each agent varied dynamically according to the behaviors of its neighbors. This

tendency indicates that the intrinsic noise of each agent could prevent perfect alignments and

swarm-like noisy behavior.

Fig 3A confirms this characteristic. The group polarity P (blue) was unstable for a given

condition; in other words, it increased to 0.9 and then decreased to 0.5. The group considered

when using our model dynamically changed formation through ambiguous interactions. In

addition to this dynamic group formation (red), the group size V1=3
a

also varied (Vα is the vol-

ume of the group α-shape [60], the definition of which is given in Section 1 in S1 Appendix).

The volume fluctuation did not yield a uniform expansion, but rather, a heterogeneous one.

The flock distorted in various ways (e.g., twists denoted in Fig 3C). Fig 3B shows the negative

correlation between group skewness and V1=3
a

(correlation coefficient: −0.36). Group skewness

Fig 3. Group formation. (A) Sample time series for group polarity P ¼ j
P

i2N v̂ ij=N and flock size V
1
3
a . (B) The negative correlation between V

1
3
a and its

skewness 1 − Vα/Vconv, where Vconv is the full convex volume (Pearson’s correlation test: n = 8000, r = −0.36, p< 10−30). Note that the inequality relation

Vα < Vconv holds. (C) Examples of three types of group formation: alignment, twist, and burst.

https://doi.org/10.1371/journal.pcbi.1010869.g003
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can be defined as the ratio between the α-shape volume and its full convex volume. If the α-

shape matches a full-convex formation, the skewness approaches zero. From the graph, the

flock considered using our model tended to exhibit distorted shapes (such as twists or bursts,

as shown in Fig 3C) when the value of V1=3
a

increased.

We identified three group formations often observed when using our model: (1) alignment:

this formation is well-observed in all flocking models [37, 38]; (2) burst: this formation can be

characterized as the one that occurs for low P but large V1=3
a

and is often reported for fish

schools [33, 61]; and (3) twist: this formation can be characterized as occurring for low P but

high local P for bird flocks. From the outside, two groups in one collective interacted with each

other. Sometimes, their directions were skewed; whereas the other times, they were directed

opposite to one another, as if merging. We did not analytically examine these phenomena as it

was sufficient to confirm that our model could successfully output various group formations

from the given parameters.

Lévy-walk and 1/f fluctuation

First, we investigated the micro-level criticality, which does not pertain to the group, but

rather, to the behavior of each individual.

We examined the internal trajectory of each agent for the center-of-mass reference frame.

In our previous studies [24], we found that this type of a trajectory in a fish school indicates

Lévy walks. We successfully replicated this result in the two-dimensional model [33]; however,

it was unclear whether this finding extended to a higher dimension. Notably, a three-dimen-

sional system has an additional degree of freedom than the two-dimensional case.

First, we briefly discuss Lévy walks observed in animal behavior. A Lévy walk is an optimal

search strategy that balances exploration and exploitation [21–23]. It is a special type of a ran-

dom walk and is in contrast to a Brownian walk, which exploits the surroundings of a specific

location, as well as to a ballistic movement, which involves no exploitation and only explora-

tion. The properties of the randomness of a Lévy walk lie between these two extremes. A Lévy

walk is a characteristic property of animal behavior widely observed in nature [16–22]. Our

previous study highlighted the possibility that a Lévy walk in a fish school facilitates efficient

communication via super diffusion in the group [24].

Fig 4A shows an example of an agent trajectory for the center-of-mass reference frame. In

this simulation, the trajectory spanned the entire group. In other words, each agent could have

contact with neighbors in the flock. Fig 4B is an enlarged version of Fig 4A, where each dot on

the line indicates the travel distance for one step. Here, the dot intervals were significant for

the straight lines compared with the curved lines. This simple observation suggests that a

Lévy-walk-like stop-and-go strategy may have been adopted.

To analyze this in greater detail, we applied the following method. We defined a “pause”

(i.e., the zero-movement state) following the study conducted by Murakami and other

researchers [24]. Thus, when dr> ||ri(t) − ri(t − 1)||, or when the travel distance in the center-

of-mass reference frame for one step was smaller than a given threshold, dr, agent i was

regarded to be pausing.

The rank distribution of the step length l was found to obey a power-law distribution. More

precisely, because the group size confined the individual agent trajectories, the graph was

expected to follow a truncated power law, satisfying the following relation:

PðlÞ �
1

l1� mmin � l1� mmax

l� m ð4Þ
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where l is a step length, where μ is the power law exponent, lmin is the minimum step length of

a series of the trial, and lmix is the maximum step length of a series of the trial.

If the l distribution conformed to a Lévy walk, the exponential μ was approximately 2. Fig

4C shows a sample l distribution for the mass-centered trajectories of 1000 agents. We observe

that all the 1000 distributions were well-fitted with the truncated power law (p> 0.10 for the

Kolmogorov–Smirnov test and the Akaike information criterion (p) = 1 compared with the fit-

ted exponential [62]). Interestingly, the average slope μ was 2.15 (see Fig 4D). Our result sug-

gests that all the agents in the same group performed Lévy walks, even in the three-

dimensional space.

Additional results support the aforementioned finding. The jittering behavior for the cen-

ter-of-mass reference frame also has critical statistical properties. Fig 5A shows the time series

of velocity variation, ||xi(t) − xi(t − 1)||, of agent i among 1000 agents, where xi(t) = ri(t) −
rCM(t) is the position of agent i in the center of the reference frame, and ri(t) is the position of

agent i at time t, rCM(t) is the position of the flock center of mass at time t. Fig 5B shows the

power spectrum of Fig 5A. The slope of this graph is approximately 1 for all the agents, which

indicates 1/f fluctuation; this is also known as pink noise. When the slope is approximately 1,

the time series fluctuation is said to be scale-free. In other words, a time series with strong self-

similarity was obtained.

Fig 4. Lévy walk on the center-of-mass reference frame. (A) Sample center-of-mass trajectory for 10000 steps. (B) Enlarged version of the blue-circle

area (200 steps). The dots indicate individual steps. (C) Sample step-length l distribution for the mass-centered trajectories of 1000 agents. All l
distributions obey the truncated power law distribution P(l) * l−μ. The average Lévy slope μ is 2.15. (D) The average μ with respect to group size for

various velocity vmax parameters.

https://doi.org/10.1371/journal.pcbi.1010869.g004
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Supper diffusion and scale free correlation

This subsection reports our examination of the macro-level criticality (i.e., the scale-free corre-

lation). First, we examined the diffusive behavior of the flock. As some researchers have indi-

cated, animal groups in nature exhibit high fluctuations (e.g., bird flocks [63], fish schools [12],

and human crowds [25]). This instability in the intrinsic group behavior allows flocks to flexi-

bly and dynamically respond to their dynamic environments [26, 27].

Super diffusion is an anomalous diffusion, which is high-speed compared with Brownian

diffusion. To define this diffusion, the mean squared displacement must first be defined. Here,

dr2ðtÞ ¼
1

T � t
1

N

XT� t� 1

t0¼0

XN

i¼1

½xiðt þ t0Þ � xiðtÞ�
2

ð4Þ

where xi(t) = ri(t) − rCM(t) is the position of agent i in the center of the reference frame, and

ri(t) is the position of agent i at time t, rCM(t) is the position of the flock center of mass at time

t,. We averaged over all N and overall time lags of duration t 2 [0, T]. Here,

dr2ðtÞ ¼ Dta ð5Þ

and the behavior of the mean square displacement δr2(t) fit the power law, where α is the

Fig 5. Jittering behavior on center-of-mass reference frame. (A) Sample velocity variation time series (i.e., ||xi(t) − xi(t − 1)||). (B) Power spectrum of

(A): the slope of f−γ is 0.98 (solid line). (C) Average slope hγi according to group size for different velocity V parameters, with hγi converging to 1.0. The

jittering behavior of each agent is highly self-organized in time.

https://doi.org/10.1371/journal.pcbi.1010869.g005
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diffusion exponent from 0 to 2 and D is the diffusion coefficient. If α was between 1 and 2, the

system exhibited super diffusion [63].

Fig 6A shows that our model replicated super diffusion inside the flock (for mutual diffu-

sion, see S1 Fig). In contrast with the empirical model, α was relatively high value around 1.78

for all parameter settings (Fig 6B). This high inner diffusion arose because no physical con-

straint was set on the model; that is, the condition for the xyz axis was homogeneous. However,

actual flocks of starlings, for instance, have a high constraint on the z-axis because of gravity.

In other words, movement in real flocks occurs in the medium region somewhere between

two and three dimensions. The turning rate may have also impacted our result. In our model,

the agents could change direction by up to π/2 radians (in the supplied Python code, this maxi-

mum turning rate can be tuned as a parameter S2 Appendix). Numerous flocking models

adopt a maximal turning rate to replicate more realistic group behaviors. However, the aim of

this study was not to mimic actual behaviors, but rather, to identify the origin of the criticality

observed in nature while using minimal parameter settings. (Our model also behaved similarly

to real flocks by exhibiting behaviors such as neighbor shuffling and boundary diffusion; see

Section 5, 6, Fig Ca and Fig Cb in S1 Appendix).)

Next, we examined the scale-free correlation of the flock, which means that, even if the

flock appears neatly aligned from the outside, the internal fluctuations (both orientation and

speed) are not random but have a specific structure. Highly correlated fluctuation domains

exist inside flocks and, in 2010, Cavagna et al. discovered that their domain sizes are scale-free

[9]. Since Cavagna et al.’s discovery, numerous researchers have attempted to replicate their

scale-free correlation results [14, 15, 40, 42]. Our interest is in confirming whether the high-

fluctuation groups mentioned previously retain their scale-free properties.

To estimate the correlated domains inside a flock, we computed the correlation length ξ at

which the correlation function of the fluctuation became zero, i.e., C(r = ξ) = 0, using the rela-

tion

CðrÞ ¼
1

c0

P
i;j2Nui � ujdðr � rijÞ
P

i;j2Ndðr � rijÞ
ð6Þ

Here, ui is the fluctuation vector defined as ui = vi − (∑vi)/N, δ(r − rij) is the delta function, and

rij = |rj − ri| and c0 are normalization parameters such that C(r = 0) = 1 holds. Further, C(r = 0)

Fig 6. Super diffusion. (A) Mean square displacement in the center-of-mass reference frame. The diffusion coefficient D = 24.0, the diffusion exponent

α = 1.79, the group size N = 1000, and the velocity parameter vmax = 8 (m/s). (B) The α results obtained for different vmax and N; hence, α depends on N
but not on vmax.

https://doi.org/10.1371/journal.pcbi.1010869.g006
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is 1 and gradually decays to negative values along with r. We computed the correlation func-

tion for the speed fluctuation in a similar manner (see Section 7 in S1 Appendix).

Fig 7A and 7B show that high scale-free properties were also observed for our highly fluctu-

ated model, especially as regards their orientation. The orientation slope exceeded 0.40. In

contrast, the speed slope was low (about 0.31) compared with available data for starlings [9].

This result may have been caused by our velocity algorithm. (A recent study has suggested

another approach to coupling the velocity function with the restoring forces [64].) Neverthe-

less, our result indicates that both cases exhibited scale-free correlation.

The correlated domain in the group could be observed graphically. Fluctuations within the

group could be divided into two groups (red and blue in S4 Fig). The next subsection reports

our use of this property for analyzing information transfer between the two regions.

Information transfer between correlated subgroups

Constructing scale-free induced subgroups. Thus far, we have investigated nested criti-

cality in a group based on ambiguous interactions. This subsection reports our investigation of

information flow in terms of critical properties.

To obtain a clearer information flow inside the flock, we divided the group into two sub-

groups using the scale-free correlation. Although we confirmed the existence of two highly

correlated groups by their criticality, construction of a clear-cut criticality for the group using

fluctuations alone was challenging. If scale-free correlations were used alone, some agents may

have been mixed with opposite fluctuation groups. Without clear group divisions, we could

not define the information flow among the subgroups. Therefore, additional information was

required to construct distinct subgroups.

We applied the k-means method, which is a clustering method for given vector informa-

tion, to construct two subgroups. We used the k-means function in Matlab (MathWorks Inc.,

Natick, USA), taking the position and unit fluctuation vectors as inputs and setting the divi-

sion number (parameter k) to 2. As k-means clustering does not provide a unique division, we

Fig 7. Relation between correlation length and flock size. The flock size is defined as the maximum distance between two agents. Instead of trajectory

smoothing to cancel the agent noise, we examined the velocity vector v = xt+δt − xt when δt was 2, 5, and 10 steps. (A) The correlation between the

correlation length ξ and flock size L, where ξ is proportional to L: ξ = aL with a = 0.40 and δt = 2 (Pearson’s correlation test: n = 100, r = 0.93, p< 10−31),

a = 0.40 and δt = 5 (Pearson’s correlation test: n = 100, r = 0.93, p< 10−31), and a = 0.40 and δt = 10 (Pearson’s correlation test: n = 100, r = 0.93,

p< 10−31). (B) The correlation between the correlation length ξsp and L, where ξsp is proportional to L: ξsp = aL with a = 0.26 and δt = 2 (Pearson’s

correlation test: n = 100, r = 0.92, p< 10−31), a = 0.30 and δt = 5 (Pearson’s correlation test: n = 100, r = 0.92, p< 10−31), and a = 0.31 and δt = 10

(Pearson’s correlation test: n = 100, r = 0.92, p< 10−31). For the other parameter settings, see S1 Table.

https://doi.org/10.1371/journal.pcbi.1010869.g007
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performed the same computation 20 times and selected the largest belonging member number

in each case (see count(i) in Fig 8). Finally, we reindexed each group according to the align-

ment order in the mean direction: the top group was indexed as the “leader” and those behind

were indexed as “followers.” S4 Fig shows that grouping based on the scale-free correlation

yielded distinct divisions. We note that the number of subgroups was stable (the mean sub-

group size was approximately 500 and the survival probability of the same subgroup decayed

at a considerably slower degree than an exponential decay). More than 70% of the subgroup

remained unchanged after 50 steps (S5 Fig). This stability confirms that our method success-

fully reflected the fluctuation vector property.

Mutual information for two input types. We measured the information flow between

two subgroups induced by scale-free correlation, considering the two types of average vectors.

In other words, we prepared two patterns of interaction between a pair of average vectors for

each reindexed group (i.e., two average velocity vectors {hVileader, hVifollower} and two average

fluctuation vectors {hFileader, hFifollower}). This coarse-graining view elucidated the interaction

between the two groups as an interaction between two virtual representative agents. The effect

of these vectors could be evaluated as the future behavior of the group. We measured the

behavior of this group as the degree of curvature K of the entire trajectory. We could compute

the curvature vectors k at each point from the three position vectors of the center-of-mass tra-

jectory of the flock (Fig 9A). We obtained a certain interval for the average to cancel its local

zig-zag trajectories; in other words, KðtÞ ¼ j
Ptþdt

t kðtÞj=dt. Therefore, the effects of the two

Fig 8. Algorithm of the scale-free induced subgroup. The input information is frigi2N and fû^
igi2N (i.e., the fluctuation positions and directional

information). The output index is the assignment group number.

https://doi.org/10.1371/journal.pcbi.1010869.g008
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vectors could be computed as mutual information: I({Vleader(t), Vfollower(t)}; K(t)) or I({Flea-

der(t), Ffollower(t)}; K(t)).
Fig 9B shows the frequency distribution of K(t) extracted from a series of flocks (1000

agents). In the low-K(t) region, the flock exhibited ballistic movement. In contrast, in the high-

K(t) region of Fig 9A, significant directional changes occurred. To understand the effect of

information flow on flock turning, we identified two regions for the analysis: ballistic regions

and turning regions, i.e., those with K(t) < 0.05 and K(t) > 0.10, respectively.

Fig 9C shows the mutual information from 100 trials of the velocity (blue) and fluctuation

(red) vectors. Three patterns were identified for the analysis: whole, ballistic, and turning. The

turning condition featured more mutual information than the other two conditions. In partic-

ular, relatively little mutual information was required for ballistic movement. This observation

indicates that the velocity and fluctuation information transfer between the subgroups is sig-

nificantly related to changes in the whole-flock turning behavior. Next, we focused on high-K
(t) (> 0.1) regions only, as their mutual information was sufficiently large for the application

of PID.

Application of PID to rapid group turning. To understand the turning condition in

more detail, we applied PID to the given mutual information. PID ensures that any mutual

information can be decomposed into four elements: redundancy, two unidirectional informa-

tion flows, and synergy [34, 35, 65, 66]. The use of transfer entropy to measure the information

flow between two systems has been criticized [67–69] as over- or under-estimation may occur

because the redundancy and synergy are omitted [67, 70]. To elucidate the information flow

between two groups, the transfer entropy may be insufficient as the pure information transfer

from one side to another must be estimated. Thus, the redundancy and synergy effects in the

Fig 9. Curvature vectors and mutual information obtained for different inputs. (A) The flock center-of-mass trajectory and its curvature vectors at

each point. (B) The probability density P(K) for all series of data where δt = 5 steps. We defined the region with curvature K< 0.05 as the ballistic

region, and the region for which K> 0.10 as the group turning region. (C) Mutual information IV� I({Vleader(t), Vfollower(t)}; K(t)) and IF� I({Fleader(t),
Ffollower(t)}; K(t)) for each region. The mutual information (i.e., IV, IF) in the group turning region is significantly larger than in the ballistic region. The

detailed statistical test results are listed in S1 Table.

https://doi.org/10.1371/journal.pcbi.1010869.g009
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system must be considered. In our analysis, we used the PID Matlab code given in [66]

(https://github.com/robince/partial-info-decomp).

The PID equation for the two inputs is given as follows:

IðfX1ðtÞ;X2ðtÞg; KðtÞÞ ¼ RðtÞ þ U1ðtÞ þ U2ðtÞ þ SðtÞ ð7Þ

where R(t) is the redundancy, U1(t) is the unique information flow from X1(t) to K(t), U2(t) is

the unique information flow from X2(t) to K(t), and S(t) is the synergy.

For an easy understanding of the PID, a simple binary logic circuit is suitable (we present a

figurative interpretation in S6 Fig; alternatively, see [69]). However, this interpretation is valid

for discrete inputs only. Thus, we briefly describe PID here for readers unfamiliar with this

approach.

Note that redundancy increases when the two given inputs (i.e., X, Y) are correlated. This

explains the use of the term “redundancy” as when two inputs are highly correlated, the output

(i.e., Z) contains unnecessary information and the system is highly redundant. The lack of one

input does not affect the system output in terms of redundancy. If we subtract the redundancy

R from I(X; Z), we obtain a unique information flow U1. Compared to transfer entropy, this

quantity can more accurately measure the flow of information. The synergy is defined as the

remainder obtained when subtracting R, U1, and U2 from I(X, Y; Z). In contrast with redun-

dancy, this quantity measures the non-linear effect generated by the combination of two

inputs. One input cannot generate the same output as the other; i.e., redundancy and synergy

play different input roles. The input relation of redundancy is symmetric as each input has the

same function as regards the output, whereas the input relation of the synergy is asymmetric

as two inputs act as a set for the output.

We applied the PID to the rapid group turning region (i.e., K(t) > 0.10). According to our

settings, if the information flow was unidirectional from the leader to the follower,

U1({Vlead(t)}; K(t)) was the largest and the other three were smaller; however, Fig 10A shows a

different result. For the velocity inputs, the largest was the synergy information S({Vlead(t), Vfol-

low(t)}; K(t)) and the second-largest was the redundancy R({Vlead(t), Vfollow(t)}; K(t)) (the same

Fig 10. PID for group turning phase. (A) The PID decomposition for IV (blue) and IF (red) of the turning result in Fig 9C. The velocity synergy is

higher than that of the redundancy (paired t-test: t(99) = 2.75, p< 0.01); however, the fluctuation synergy does not exceed the fluctuation redundancy

(paired t-test: t(99) = −0.934, p> 0.1). The other statistical test results are listed in S1 Table. (B) The relation between the velocity synergy S({Vlead(t),
Vfollow(t)}; K(t)) and fluctuation redundancy R({Flead(t), Ffollow(t)}; K(t)). The correlation efficient is 0.93 (Pearson’s correlation test: n = 100, p< 10−31).

The other parameter settings are reported in S1 Table.

https://doi.org/10.1371/journal.pcbi.1010869.g010
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degree for the fluctuation inputs). The two unidirectional flows for both cases were relatively

low. For the velocity inputs, U1({Vlead(t)}; K(t)) was larger than U2({Vfollow(t)}; K(t)); however,

both the values were small. Our result suggests that the group information transfer did not

reflect the leader–follower relation. In other words, it was confirmed that positional informa-

tion is not a crucial factor in group turning.

By now, it is clear how the velocity and fluctuation inputs affected group turning, and we

also examined the relationship between the two inputs. Fig 10B indicates a high correlation

between the synergy of the velocity input S({Vlead(t), Vfollow(t)}; K(t)) and the redundancy of

the fluctuation input R({Flead(t), Ffollow(t)}; K(t)). We discuss the significance of this relation-

ship in more detail in the Discussion section. Here, however, we note only the correlation.

That is, the group turning couples the asymmetry of the velocity inputs to the symmetry of the

fluctuation inputs. This dual aspect effectively reflects the critical nature of the system, which

we identified throughout this study. The system maintains its high susceptibility to external

stimulus from the fluctuation perspective; from the velocity perspective, our findings suggest

that the system responds to some non-linear effect. Interestingly, the inverse relationship does

not hold (S1 Table). The different roles of the velocity and fluctuation inputs may be an essen-

tial property of the system criticality.

Discussion

In this study, we demonstrated the nested criticality that emerged from a single algorithm

employed our proposed ambiguous interaction model, which is a natural extension of the rep-

resentative flocking model. We re-interpreted the attraction and alignment as short- and long-

term predictions, respectively, and as a key concept of our model, we considered these predic-

tions as regions (i.e. C) rather than points. This vagueness offered the agents with several

options in specific contexts. As our model does not contradict the concepts of the Boids model

or other models, appropriate statistical properties could be confirmed (e.g., scale-free correla-

tion and super diffusion).

We also confirmed several micro-criticalities (i.e., Lévy walks and 1/f fluctuation) caused by

self-tuning noise. In our model, the next direction of the focal agent is provided as a region C;

thus, the behavior of that agent strongly depends on the behavior of its neighbors. If C

decreases or increases (e.g., with local high/low polarity), the next direction accordingly

becomes deterministic or indeterministic. This continuous oscillation between deterministic

and indeterministic behavior yields the criticality of each individual. Furthermore, the two

observed criticalities are in stark contrast. While the Lévy walk relates to the criticality in

space, the 1/f fluctuation is related to the criticality in time. Some researchers suggest that the

self-similar structure of a time series for jittering behavior is related to the Lévy-walk result

[71–73]. Although it is uncertain whether our result can be applied to actual data, we will con-

firm this relationship in future research.

Before discussing the group turning behavior, we consider the meaning of the micro-scale

criticality, which pertains to system robustness. Generally, robustness is quite a different con-

cept to stability [74]. System stability can be described as its “persistence” in the original state,

whereas system robustness relates to the “interplay between organization and dynamics” [74].

There is no original state to which the flock can return. In this sense, the flock is not a stable

system; however, it is robust, as its shape and behavior change dynamically depending on the

situation. In fact, some studies have suggested that robust systems should include micro-level

criticality. For example, Ros et al. showed that, even for simple models such as the self-pro-

pelled particle model, various collective behaviors can emerge through the application of the

logistic map update rule at Feigenbaum critical points [75]. Another example is the inverse
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Bayesian inference [76]. Unlike Bayesian inference, inverse Bayesian inference involves perma-

nently changing a hypothesis, and Gunji et al. successfully reproduced Lévy walks and various

collective phenomena by applying Bayesian and inverse Bayesian inference [76–78]. All these

studies have shown that micro-level criticality constitutes the robustness of group behavior.

The nested criticality confirmed in this study is also consistent with these findings.

Next, we considered the functional role of criticality. Although the scale-free correlation

may relate to group turning behavior, the lack of experimental data has prevented further

investigations. However, our scale-free induced coarse-gain group method elucidated the rela-

tionship between criticality and group turning behavior. Our method assumes a macro-criti-

cality that is stable for a certain interval. Using this approach, we showed that the interactions

between correlated domains contribute to rapid group turning involving both velocity and

fluctuation distributions.

The PID analysis conducted in this study provided us with a more detailed description of

this mechanism. The PID uniquely decomposed the mutual information I(X, Y; Z) into four

types of information: redundancy, two unique information flows, and synergy (where X and Y
are inputs and Z is the output). Recall that redundancy means that the system contains a com-

pensatory input for an output. In other words, if one input (i.e., X) is missing, the same output

can be expected from the other source as well (i.e., Y). In the case of continuous inputs, redun-

dancy refers to correlational inputs. As inputs are symmetrical in such cases, one side of the

information can be recovered from the other. The unique information flow is the remainder of

the mutual information; that is, I(X; Z) (or I(Y; Z)) minus the redundancy. This quantity

resembles the transfer entropy, but we must not confuse the two as the transfer entropy some-

times over- or under-estimates the net information [67]. The unique information flow comple-

ments this disadvantage of transfer entropy. Finally, synergy refers to the remainder of the

mutual information, i.e., I(X, Y; Z) minus the two unique information flows and redundancy.

In contrast to redundancy, the pair of synergy inputs contribute to the output. The effect of the

inputs on the output is non-linear. In this case, the loss of one source of information cannot

reproduce the same output.

The above-mentioned discussion explains why high redundancy emerges in the fluctuation

inputs, R({Flead(t), Ffollow(t)}; K(t)). The strong correlation between the two groups (i.e., Flead

and Ffollow) comes from the scale-free correlation. This input symmetry of Flead and Ffollow also

resonates with the critical-system susceptibility. The flock certainly contributes to the group

turning by increasing its susceptibility. In contrast, the synergy for the velocity inputs, S
({Vlead(t), Vfollow(t)}; K(t))), is more substantial than its redundancy (paired t-test; t(99) =

−2.76, p< 0.001). This tendency means the asymmetrical input relation of Vlead and Vfollow is

the key to the group turning behavior for the velocity distribution. Our analysis suggests that

the velocity and fluctuation distributions contribute to the group turning according to their

different roles.

The strong correlation between S({Vlead(t), Vfollow(t)}; K(t)) and R({Flead(t), Ffollow(t)}; K(t))
provides a more detailed picture. No other combination showed such a strong relationship,

which suggests a structural coupling. Although the influence of R({Flead(t), Ffollow(t)}; K(t))
means that the correlated fluctuation inputs contribute to the group turning, the meaning of S
({Vlead(t), Vfollow(t)}; K(t)) remains unclear. Intuitively, the two subgroups contribute indepen-

dently (i.e. non-correlated) to the group turning. Considering this asymmetric input relation,

the velocity vector distribution should be considered here. We call this type of velocity distri-

bution “torsion,” as the two velocity inputs exhibit high torque during the rapid group turning

(see S1 Table; alternatively, the distorted formation during group turning is visible in S1

Video). Considering the torque as object rotation, the high torque velocity distribution can

relate to the group turn.
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Therefore, the correlation between S({Vlead(t), Vfollow(t)}; K(t)) and R({Flead(t), Ffollow(t)}; K
(t)) should be interpreted as follows: A high fluctuation correlation and an appropriate flock

morphological structure (i.e., velocity torsion) are needed to generate a rapid group turn.

Thus, a suitable morphology coupled with correlated fluctuations to transform the fluctuation

power are required for group turning behavior.

This proposition also indicates that the inverse relation (i.e., between S({Flead(t), Ffollow(t)};
K(t)) and R({Vlead(t), Vfollow(t)}; K(t))) does not hold. High R({Vlead(t), Vfollow(t)}; K(t))) yields

a symmetric distribution of the velocity vectors only, whereas high S({Flead(t), Ffollow(t)}; K(t))
indicates low R({Flead(t), Ffollow(t)}; K(t)) (Pearson’s correlation test: n = 100, r = −0.92,

p< 10−40). Therefore, the inverse relation states that the heterogeneous fluctuation distribu-

tion has no relation with the homogeneous velocity distribution in terms of generating a group

turn. The coupling with the fluctuation power may be disconnected when the sub-groups

work as correlational units.

In this study, we considered only one parameter, vmax/R. It remains to be seen whether

the same results can be obtained by adding more realistic constraints (e.g., a maximum turn-

ing rate, visual field, and gravity effect) to our model. However, the behavior of our model is

statistically close to those of real flocks. We also noted that the realistic conditions imple-

mented using the Boids model cannot replicate a more accurate description of group critical-

ity [42]. Furthermore, few models focus on criticality across several levels. The effect of

further adding more realistic assumptions to our model remains to be investigated in a

future study.

Our flock model suggests that the nested criticality within the flock has dual effects on the

group turning behavior, via the fluctuation power in the form of symmetric fluctuation inputs

and via the group morphology in the form of asymmetric velocity inputs. Both the aspects

have functional roles when coupled. The flock morphology may help its internal fluctuation

convert to dynamic behavior. However, several studies have paid a significant amount of atten-

tion to the former but not to the latter [9, 28–32, 40, 79, 80]. This study therefore suggested the

importance of group morphology and that group criticality may support such couplings. The

functional role of group criticality described in this study is a verifiable hypothesis if sufficient

data become available.
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aging patterns in human hunter-gatherers. Proceedings of the National Academy of Sciences. 2014;

111(2):728–733. https://doi.org/10.1073/pnas.1318616111 PMID: 24367098

17. Miramontes O, DeSouza O, Paiva LR, Marins A, Orozco S. Lévy Flights and Self-Similar Exploratory
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