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Abstract

Surround suppression (SS) is a fundamental property of sensory processing throughout the

brain. In the auditory system, the early processing stream encodes sounds using a one

dimensional physical space—frequency. Previous studies in the auditory system have

shown SS to manifest as bandwidth tuning around the preferred frequency. We asked

whether bandwidth tuning can be found around frequencies away from the preferred fre-

quency. We exploited the simplicity of spectral representation of sounds to study SS by

manipulating both sound frequency and bandwidth. We recorded single unit spiking activity

from the auditory cortex (ACx) of awake mice in response to an array of broadband stimuli

with varying central frequencies and bandwidths. Our recordings revealed that a significant

portion of neuronal response profiles had a preferred bandwidth that varied in a regular way

with the sound’s central frequency. To gain insight into the possible mechanism underlying

these responses, we modelled neuronal activity using a variation of the “Mexican hat” func-

tion often used to model SS. The model accounted for response properties of single neurons

with high accuracy. Our data and model show that these responses in ACx obey simple

rules resulting from the presence of lateral inhibitory sidebands, mostly above the excitatory

band of the neuron, that result in sensitivity to the location of top frequency edges, invariant

to other spectral attributes. Our work offers a simple explanation for auditory edge detection

and possibly other computations of spectral content in sounds.

Author summary

A central computation performed by the auditory system in the mammalian brain is fre-

quency decomposition. As a result, single neurons throughout the auditory system are

often characterized by their preference to basic sound frequencies such as pure tones.

Here we tested how single neurons in the mouse auditory cortex respond to sound stimuli

with a range of bandwidths around specific central frequencies. We found that single neu-

rons respond strongly to specific bandwidths, and that these responses varied in a regular

way based on the sound’s central frequency. We could explain the nature of these

responses using a simple mathematical model that considers the excitatory central
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response to frequency and the structure of its inhibitory side bands. We found that some

neurons in the auditory cortex are best described by their responses to the location of

sharp boundaries, or edges, in the frequency composition of sounds. Taken together, our

work highlights aspects of neuronal responses in the mouse auditory cortex that go

beyond responses to pure tones.

Introduction

Surround suppression (SS) is a well-established neural computation in the brain [1]. As its

name implies, SS results in the suppression of a neuron’s firing rate by stimuli that surround its

central area of activation. Classically, neurons in sensory systems are described by a tuning

curve, which describes the firing rate of a neuron as a function of attributes of stimulus space. SS

arises when responses to stimuli outside the regions that normally drive the cell to fire are sup-

pressed. One paradigmatic version of SS has been described already several decades ago in the

visual cortex, as the reduction in firing rate in response to oriented bars of increasing length [2].

The vast majority of research on SS has been performed in the visual system. SS has been

found to be a property of visual neurons in many species (e.g. mouse, cat, monkey, and human)

and in several processing levels of the visual stream including the retina, superior colliculus, lat-

eral geniculate nucleus, primary visual cortex, and association cortices [2–25]. SS has been pro-

posed to play a role in stimulus saliency [26], edge detection [27], figure-ground separation [28],

and redundancy reduction [29–31]. However, SS is not unique to vision. Indeed, lateral inhibi-

tory sidebands of tuning curves have been described in all other senses, from olfaction, through

somatosensation, to audition [32, 33]. For example, sideband inhibition has been described in

different stations along the hierarchy of the auditory system, from the auditory nerve through

the brainstem to cortex [34–37]. Nevertheless, we still have only a rudimentary understanding

of the computations SS subserves in sensory systems other than the visual system.

Relatively few studies have explored the sensitivity of neurons to spectral bandwidth in ACx

[38–40]. These studies often use a small set of stimuli. For example, in mouse ACx, Li and col-

leagues sequentially described tuning curves of single neurons to pure tones and then pre-

sented broadband stimuli (BBS) with increased bandwidth, but only centered at the preferred

frequency of each neuron [40]. Probing this stimulus space, they found a subgroup of neurons

in ACx whose responses to stimuli with larger bandwidths (centered on the neuronal preferred

frequency) were suppressed. This result is similar to findings in the visual system, in which sti-

muli of increasing size often evoke a reduced response [3, 4].

Here, we tested exhaustively a 2D landscape of stimulus bandwidth and central frequency.

We recorded a large number of neurons in ACx that show SS, supporting previous observa-

tions. SS was often expressed as a complex pattern of bandwidth tuning that was asymmetrical

in frequency space, changing as a function of the central frequency of the sound. Using a

model with a small number of parameters we provide a simple mechanistic explanation for

such complex patterns and use our findings to argue that SS is a basic mechanism for generat-

ing sensitivity to spectral features such as the top frequency edge of the stimulus.

Results

Frequency-bandwidth response areas of auditory cortical neurons

We recorded extracellular spiking activity from head restrained, passively listening awake

mice, using the high density Neuropixels probes (see Methods). We targeted our recordings to
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the ACx and recorded collectively from 4 auditory regions—primary ACx (AUDp), ventral

ACx (AUDv), dorsal ACx (AUDd) and the temporal association area (TeA). To do so, we pen-

etrated the brain with a single probe such that it diagonally traversed all, or a subset of these,

cortical regions (Fig 1a–1d). To validate the exact locations of our recordings we reconstructed

Fig 1. The experimental design—Recordings and stimuli. Schematic representation of the experimental setup. a.

Probe penetration setting enabling simultaneous recording of activity from several auditory cortices (AUDp, AUDv,

AUDd and TeA; highlighted in color). b. Fluorescent image of a coronal brain slice showing two probe tracks in one

mouse. c. Reconstructed trajectories of all probe tracks used in this study (n = 7 penetrations; n = 5 mice). d. Left:

spectrograms of all presented BBSs sorted based on bandwidth (Y axis, b), and central frequency (x axis, fc). Right: A

color-coded FBRA of an example neuron in response to all stimuli shown on the left. e. PSTHs are overlayed on top of

the mean response at each pixel location. Black bars on the bottom indicate stimulus presentation time. Scale bars—

150 spikes/sec, and 500 ms. f. Schematic of the spectral profiles of the six stimuli marked in e. g. Voltage traces of the

six stimuli marked in e. h. High magnification spectrograms of the six stimuli marked in e. i. Top: high magnification

PSTHs of the six stimuli marked in e. Bottom: raster plots matching the PSTHs.

https://doi.org/10.1371/journal.pcbi.1010861.g001
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(postmortem) the probe tracks, which were coated with a fluorescent lipophilic dye. We used

DiI-coated and/or DiO-coated probes for single or multiple sequential penetrations (Fig 1c).

All probe trajectories were aligned to the Allen Brain Atlas coordinate framework validating

the exact positions of our recordings in all mice (Fig 1d). Using this validation, we found that

we collected data almost exclusively from deep layers of ACx (for breakdown of our recording

locations see Table 1). Our analysis focused on 149 highly responsive neurons (S1 Fig) from 7

probe penetrations in 5 mice. Spike sorting the data revealed both single units (SUs) and

multi-unit data. Here, we present only well isolated SUs strongly responding to the broad

band stimuli in the stimulus set (see Methods).

To study the landscape of SS in ACx neurons, we played a two-dimensional array of

broadband stimuli (BBS) with varying central frequencies (fc) and bandwidths (b) (Fig 1e—

left; Fig 1f). We used frequencies between 4-64kHz, 25% of an octave apart with bandwidths

of 0–1 octave (b = 0 correspond to pure tones; Fig 1e—top row). Sounds (10 trials each)

were played in a pseudo-random order of center frequencies and bandwidths. Crucially, we

chose to fix the spectrum level of the noise, rather than the total sound intensity of the sti-

muli. In consequence, sound intensity increased with bandwidth (as measured by the RMS

of the signal, Fig 1g). Post-stimulus time histograms (PSTH) were computed for each neu-

ron-stimulus pair (Fig 1e-right; Fig 1i) and used to determine the mean firing rate for each

stimulus. Plotting the mean response of all BBS results in a frequency-bandwidth response

area (FBRA) for each neuron (Fig 1e-right). Six example stimuli and their responses from

the FBRA of the example neuron in Fig 1e (Fig 1e—right; marked in red boxes) are shown in

detail in Fig 1i.

FBRAs had heterogeneous shapes. For a given fc, in some cases the responses were a

monotonically increasing as a function of bandwidth, while in other cases the responses

were non-monotonic, peaking at some bandwidth and decreasing for further increase in

bandwidth. Some neurons showed clear asymmetry in their FBRA shapes. Such neurons typ-

ically responded only to a small range of bandwidths for any given fc, and the range of effec-

tive bandwidths shifted, depending on fc, in a regular manner (see e.g., the six rightmost

FBRAs in Fig 2a). Next, we sought to quantitatively explain how such asymmetry could

arise. We reasoned that an asymmetric SS would explain the asymmetry detected in the

FBRA’s.

Table 1. Breakdown of cortical areas and layer distribution of the responsive units.

Area layer Responsive units

AUDd 1–4 0

5 1

6 6

AUDp 1–4 0

5 22

6 6

AUDv 1–4 0

5 32

6 45

TEa 1–4 0

5 32

6 5

Total 149

https://doi.org/10.1371/journal.pcbi.1010861.t001
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Using modulated Ricker wavelets to model asymmetric surround-

suppression

In order to explain the FBRAs quantitively, we built a mathematical model, which was inspired

by the model that is often used to account for SS in the retina—the Ricker Wavelet (also

known as the Mexican Hat) [41]. The Ricker wavelet is the negative normalized second

derivative of a Gaussian [42]. The model we used, which we termed the Modulated Ricker

Wavelet (MRW) is expressed as:

MRW fð Þ ¼ A � ðw2 þ I
E= � f � mð Þ

2
Þ � e�

f � mð Þ2

2w2 � �
� f ; m;w; sð Þ

Where f is frequency. The MRW model has four parameters (μ;w; I E; s= ). The Ricker wavelet

corresponds to I
E ¼ 1= and s = 0. The mean μ is a parameter whose only role is to position the

wavelet along the frequency axis, and it largely corresponds to the best frequency of the neu-

ron. The width (w) determines the overall range of frequencies that affect the output of the

Fig 2. Frequency Bandwidth Response Areas (FBRAs) of neurons and the model. a. FBRAs of 8 example neurons

from 5 different mice. b. Model-FBRAs (top) and corresponding tuning curves (bottom) of 12 examples as calculated

from the model. The examples span varying s, I
E= and w values.

https://doi.org/10.1371/journal.pcbi.1010861.g002
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model, through positive or negative weights. The two additional parameters are used to modu-

late the model. The first parameter is inhibition/excitation ratio (I E= ) which determines the

depth of the inhibitory flanks with respect to the excitatory peak. This parameter allows for a

smooth interpolation between a gaussian shaped tuning curve that has no inhibitory sidebands

(I E ¼ 0= ) to a Ricker wavelet shaped tuning curve (I E ¼ 1= ), which has symmetric inhibitory

sidebands (see S1 Video). The second parameter that we added is skewness (s). ϕ� is a weighted

sum of two sigmoidal functions, adjustable by s, that makes it possible to suppress one or the

other sidebands, and therefore determines the skewness of the MRW (see Fig 2b and Meth-

ods). The parameter s has a mild effect when inhibition is weak, and a large effect when inhibi-

tion is strong, such that when s = ±1, inhibition is present only in one flank of the tuning

curve. A is a normalization factor that sets the maximal value of the MRW to 1 (Fig 2b; S2 Fig,

S1 Video). The MRW is considered as a model tuning curve—a set of frequency-dependent

weights that determines how each frequency affects the output of the neuron. The model pre-

dicts the responses to a stimulus as a linear sum of the effects of each frequency, with the

weights determined by the model tuning curve. By modulating the parameters of the MRW

model, we could qualitatively replicate the fine details of many FBRA shapes (compare neuro-

nal FBRAs in Fig 2a to model FBRAs in Fig 2b). For additional details about the model see

Methods and S1 Video.

We, therefore, quantitatively fitted neuronal FBRAs to FBRAs computed from the model

(i.e. ‘model FBRAs’). To do so, we searched for the best possible correlation between neuronal

and model FBRAs while adjusting the four model parameters. The result of this search was a

single model FBRA for each neuronal FBRA. That is, the model FBRA is the one with the high-

est correlation between model and neuronal FBRAs. Fig 3a shows four different neurons of

well-fitted neuronal FBRAs (Fig 3a—top row), with their best fit model FBRA (Fig 3a—center

row), and the resultant model tuning curve (Fig 3a—bottom row). Examples of less successful

fits are shown in S3 Fig. At the population level, our model found high correlations between

the model and the data, with a mean correlation value of 0.64 ± 0.21 (mean±SD, Fig 3b). These

high correlation values dropped to 0.21 ± 0.03 when the neuronal FBRAs were shuffled (Fig

3b; see Methods). These data show that our model has a strong descriptive power for estimat-

ing the mean responses of ACx neurons to BBS.

Next, we focused on SUs that had the highest correlations with the model, defined as being

above the population median (n = 74 well fitted neurons, S1 Fig; for the distributions of all

model parameters that best fit the SU data see Fig 3c). The μ values, which are determined by

our electrode penetration in relation to the tonotopic axis, were centered at low frequencies

(10.5 ± 9.4 kHz; mean±SD), consistent with previous Neuropixels recording experiments from

our lab [43]. The mean w values were 0.26 ± 0.25 octaves, which are on the order of magnitude

of common measures of bandwidth in awake mouse ACx [40] (although w here is not precisely

bandwidth; see Methods). We then plotted the joint distribution of the parameters s and I
E=

for each neuron (Fig 3d). Interestingly, we found that SUs with high correlations to the model

belonged mostly to one of two subgroups. One subgroup has typical I
E ¼ 0= and s values close

to 0, corresponding to Gaussian tuning curve with no sidebands (Fig 3d—left cluster of points;

Fig 3a- left neuron). The other subgroup of neurons tended to have large I
E= values and a posi-

tive s (Fig 3d—top right cluster of points). These latter values correspond to a tuning curve

with asymmetric sidebands located mostly above the best frequency (FBRAs of such neurons

are shown in the two middle examples of Fig 3a). To quantify the distribution of these two sub-

groups, we divided the graph in Fig 3d to four quadrants, showing that most neurons indeed

reside in the top right quadrant (Fig 3d and 3e, ‘Q1’). These results suggest that our model

explains well the tuning curves of two populations of auditory neurons, one that essentially
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sums up the energy within its tuning curve (Fig 3d and 3e, ‘Q2-3’), and a larger group that has

inhibitory sidebands, which are largely above the best frequency (Fig 3d and 3e, ‘Q1’).

Model validation using notch stimuli

To test the generalizability of our model, we compared model predictions to a set of stimuli

that were not used in fitting the parameters to their actual measured responses. For that pur-

pose, we used notch stimuli, whose frequency content is complementary to that of the BBS.

Each BBS (except for pure tones) has a respective notch stimulus (Fig 4a and 4b). Plotting the

mean responses to all notch stimuli as a joint function of their center frequency fc and band-

width b resulted in a notch FBRA (nFBRA) for each neuron. We used the model with the

parameters fitted to the FBRA to calculate a predicted nFBRA for each neuron (Fig 4c, center

column). We then compared the measured nFBRA of each neuron (Fig 4c, right column) to its

Fig 3. The MRW model provides a mechanistic explanation to neuronal FBRAs. a. Top: FBRAs of 4 neurons from 3

mice. Middle: model FBRAs fitted to the same neurons. Bottom: fitted MRWs of the same neurons. b. Distribution of

FBRA correlation values (Pearson correlation) for all neurons in our dataset (n = 149 neurons, N = 5 mice) for real and

shuffled data. The mean FBRA correlation value was 0.64±0.21 (s.e.m). The mean value of shuffled data is 0.21 ± 0.03.

c. Distributions of m;w; s; I E= values of n = 74 neurons. Only neurons with fit correlation higher than the median

(which is also 0.64) are shown. d. The combination of skewness and I/E values of n = 74 neurons. We define four

quadrants of the graph (Q1-4), such that neurons with high S and I/E are in Q1. The graph shows two main sub-

population of neurons in ACx—in Q1 and in Q2. e. Distribution of the number of neurons in each of the quadrant’s

shown in panel ‘d’, showing the predominance of neurons with high model fits to Q1.

https://doi.org/10.1371/journal.pcbi.1010861.g003

PLOS COMPUTATIONAL BIOLOGY Top frequency edge detection in mouse auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010861 January 19, 2023 7 / 19

https://doi.org/10.1371/journal.pcbi.1010861.g003
https://doi.org/10.1371/journal.pcbi.1010861


prediction. The model, which was based on the responses to BBSs, produced predicted

nFBRAs that were often highly correlated with neuronal nFBRAs (Fig 4c; Fig 4d compare data

to shuffled data). As expected, in neurons for which FBRA correlation values were high,

nFBRA correlation values were also high (Fig 4e).

Neurons in ACx encode the top frequency of broadband stimuli

Finally, we asked what could be encoded by neurons in ACx with tuning curves characterized

by high I
E= and positive s values (‘Q1’ neurons in Fig 3d). Inspired by similar interpretations

from the visual system [44], we reasoned that these neurons may respond to edges. Since these

neurons are inhibited by higher frequencies rather than lower frequencies, they likely respond

only to the top frequency edge, that is, to the top frequency of a broadband stimulus (Fig 5a;

marked as ft). Thus, we hypothesized that Q1 neurons will respond largely similarly to broad-

band stimuli that have the same ft, rather than the same center frequency or the same bottom

frequency or the same total energy (Fig 5a and 5b; S2 Video). To test this hypothesis, we replot-

ted the responses to BBSs (Fig 5c, left) as a function of the ft of the BBSs (Fig 5c, Center). These

tuning curves, which were based on top frequency were often unimodal. To quantify this

Fig 4. Validation of the MRW model using notch stimuli. a. Spectrograms of 3 example BBS (left) and their

respective notch stimuli (right). b. Spectrograms of all presented notch stimuli sorted based on inverse bandwidth (Y

axis, b), and central frequency (x axis, fc). The 3 stimuli from ‘a’ are marked in red. c. Left: FBRAs of 3 example neurons

from 3 different mice. Middle: nFBRAs of the same neurons as predicted by the MRW fit for BBS. Right: nFBRAs of

the same neurons. d. Distribution of nFBRA correlation values for real and shuffled data (p< 10−10, paired student’s t-

test). e. nFBRA correlation vs. FBRA correlation for all neurons (n = 149, Pearson correlation, p< 10−6).

https://doi.org/10.1371/journal.pcbi.1010861.g004
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observation, we calculated the quality of fit between these neuronal tuning curves and a Gauss-

ian. As a negative control, we also calculated fits to the responses as a function of the bottom

frequency—fb, of the BBSs (Fig 5c, right). Neurons with asymmetric FBRAs (i.e. ‘Q1’ neurons

in Fig 3d) showed better fits when their responses were plotted as a function of ft as compared

to when plotted as a function of fb (Fig 5c—compare center to right). Neurons with symmetri-

cal FBRAs showed similar fits to Gaussians in either condition (Fig 5c—bottom). Directly

comparing the quality of these two fits, we found a tendency for the fits to be better as a func-

tion of ft than as a function of fb (Fig 5d), with most of the bias attributed to Q1 neurons (Fig

5d—inset). These data support the claim that this subgroup of neurons in ACx encodes the top

frequency of broadband sounds.

Discussion

Protocol to study bandwidth tuning in ACx

Broadband sounds of varying bandwidths have been used to study single neuron responses

throughout the auditory system [45–47], although their use in ACx is not very common

Fig 5. Cortical neurons selective for top-frequency. a. Illustration of a BBS. The bottom, center, and top frequencies are marked by arrows. b—

bandwidth. b. A schematic demonstration of top-frequency selectivity. Three different stimuli (3 shades of grey) having the same ft and varying

fc, all have a complete overlap with the excitatory band of the tuning curve and will consequently evoke the same response. Only a sufficiently

narrow stimulus with the same ft (red) will evoke a weaker response—demonstrating that top-frequency selectivity is true for stimuli with some

minimal bandwidth. c. Left: FBRAs of 3 example neurons. Middle and right: Tuning curves of the 3 example neurons shown on the left sorted

by ft or fb of all stimuli. Black dots are data points corresponding to the firing rate at each stimulus. Red line is a fitted gaussian. The quality of fit

for each tuning curve to a gaussian are shown on the top right of each plot. d. The quality of fit for each tuning curve when the tuning curve is

plotted as top frequency (Y axis) versus bottom frequency tuning curves (X axis). Red line is the identity line. Q1 neurons are plotted separately

(filled circles) to Q2-4 neurons (open circles). Inset: A bar graph showing DR2 ¼ ðR2
t � R2

bÞ. Neurons from Q1 have significantly higher R2
t ‘s

(student’s t-test, p< 10−6).

https://doi.org/10.1371/journal.pcbi.1010861.g005
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[38–40]. Using such sounds, it has been previously shown that neurons in ACx exhibit band-

width tuning, often expressed as a non-monotonic response profile to bandwidth (see e.g., fig-

ure 1b in Li et al., 2019 [40]). This type of response profile emerged from our data as well. For

example, consider the FBRA in Fig 1e, and envision we would have played only the BBS

around 8kHz (Fig 1e, column containing boxes 1–4). Importantly, we demonstrate here that

limiting the exploration to stimuli centered on one frequency, as has been done previously in

mice [39, 40] can render more complex response patterns undetectable. For example, by using

the full 2D frequency landscape of center frequency and bandwidth, we found that the band-

width which evokes the strongest response in a neuron (the optimal bandwidth for a given

center frequency) could well be different around different central frequencies. Notably, the

dependence of optimal bandwidth on center frequency followed clear regularities (Figs 2 and

3). These regularities were detected in a large group of responsive neurons in our dataset.

The protocol we used has a few merits. First, as our data show, we were able to readily mea-

sure two distinct phenomena—bandwidth tuning and sideband inhibition, which are tightly

related. Indeed, bandwidth tuning in our hands is invariably a consequence of an inhibitory

band in higher frequencies, accounting for the sensitivity for top edges. Second, since sponta-

neous firing rates in cortex are generally low, inhibition had a small effect over baseline firing

rates and was therefore harder to detect when presenting only a small number of frequencies

across the stimulus landscape. Of note, inhibition has already been shown to be made easier to

detect by using two-tone presentations [48, 49]. However, since the number of two tone com-

binations to probe the full frequency landscape is very large, previous work often used only

limited sets of pairs, based on individual characterization of each of the neurons recorded (e.g.

one of the two tones is often selected to be at the preferred frequency of the neuron). Such

choices limit again the conclusions that can be derived from such experiments (but see [50]).

An additional fruitful approach that showed the existence of inhibitory sidebands in the tuning

curves of ACx neurons is estimating their spectral-temporal receptive fields (STRF) [51–54].

The STRF is estimated by playing sound that are complex in both their spectral and temporal

modulation and applying reverse correlation techniques to the neuronal response. Both our

stimulus set and our model are simpler then the protocol needed for STRF estimation. How-

ever, STRFs are advantageous in pointing important spectral and temporal properties of neu-

ronal tuning curves. Our data supplement and strengthen the STRF approach.

Limitations of our study

Our findings have a few limitations. First, most neurons in our dataset are located in several

sub-regions of the ACx, which deviates from previous work in the mouse, that focused on A1.

In turn, this makes direct comparisons with other A1 studies more challenging [39, 40]. Sec-

ond, neurons in our data were biased to respond to low frequencies. This bias may stem from

the specific coordinates of the penetrations of our recording electrodes. The limited window of

tonotopy from which we measured, prevents us from assessing how edge detection aligns with

the tonotopic map. Third, our recordings were restricted to deep layers (L5/6) as opposed to

previous studies that tested bandwidth-tuning which were restricted to more superficial layers

or L4. For example, Li and colleagues [40] showed that bandwidth tuning is more prominent

in L2/3 than in L4. The existence of bandwidth tuning already in L4 suggests that it might be

found upstream to ACx. The extent to which the SS of L5/6 neurons reflects upstream mecha-

nisms, or is determined by local interactions in ACx, remains unclear. Fourth, although BBS

are slightly more complex than pure tone, they are still restricted stimuli. BBS are temporally

static, and lack the complexity of natural stimuli. While we show that our model is generaliz-

able to an additional set of static stimuli (i.e.- notches), we did not test our model’s predictive
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power over the responsiveness of ACx neurons to temporally richer, more natural stimuli.

This remains an open question for future exploration. Fifth, even in cases where neuronal and

model FBRAs had strong correlations, responses to pure tones (PT, sounds with 0 bandwidth)

were usually poorly replicated by the model (see Fig 3a). The main reason for that is that in

our protocol, sound intensity was increasing with bandwidth, leaving PT at low intensity, and

thus frequently evoking a weak response even from highly active neurons. However, it is inter-

esting that some neurons were highly responsive to PT with respect to broadband stimuli (e.g.

Fig 2a) despite them having low intensity, suggesting an exceptionally strong effect of SS.

Lastly, although our model explained well the activity of a large group of auditory neurons, it

was nevertheless a poorer fit for others. This might be due to the fact that our model is simple,

with only few parameters that attempt to describe only local rules of cortical connectivity. The

exact shape of excitatory and inhibitory bands of biological neurons is likely more complex

than our model can account for [55]. For example, top-down connections could modulate the

local inhibitory landscape in ways that we did not explore here [56–58]. ACx neurons that do

not fit the model could be involved in other auditory computations that are not captured

by our model and, importantly, could be spectrally and/or temporally context-dependent

[59–65].

Mechanisms of SS in ACx

To explain FBRA profiles, we modified the Ricker wavelet function (also known as the Mexi-

can hat) that is widely used to model SS in the retina [66]. Our modified version, the MRW, is

a simple model with only 4 parameters that allows characterizing not only SS, but both the

extent and symmetry of SS within a single dimension. Given the success of using MRW to

study the extent and asymmetry of SS in ACx, it could be a useful tool to study SS in other sys-

tems as well. Based on the neuronal responses in ACx, the model shows that bandwidth tuning

is largely a consequence of a tuning curve that has an excitatory frequency-band and single

powerful inhibitory band above it. One mechanistic explanation that was suggested for this

kind of asymmetry is local inhibition by somatostatin expressing interneurons. Specifically,

somatostatin interneurons have been implicated in mediating neuronal suppression by side-

band frequencies above the excitatory band [67], as well as explicitly in bandwidth tuning [39].

Interestingly, somatostatin interneurons have been shown to mediate SS in visual cortex as

well [4], indicating further SS as a general cortical mechanism rather than modality specific

[33]. Deciphering how asymmetrical SS is mediated by the precise structure of inhibition and

excitation in the auditory system is a theoretical and experimental open challenge.

Sound edges and beyond

We suggest that neurons in ACx with asymmetric SS behave as edge detectors, as they are par-

ticularly tuned to the top frequency of a BBS (Fig 5). Notably, edge detection by asymmetry is

not a new idea, dating back almost 30 years ago. In fact, similar ideas have been suggested

before from recordings in the ACx of anesthetized ferrets [48, 68] and awake owl monkeys

[69] using different approaches. For example, Shamma and colleagues extracted the excitatory

and inhibitory bands in the tuning curve of neurons using a two-tone protocol, showing that

neurons with a single inhibitory band above the excitatory band prefer top spectral edges on

their preferred frequency over bottom edges (and the opposite for neurons with the inhibitory

band below the excitatory band) [48]. Fishbach and colleagues developed a model that

accounted for those data, and showed that the model parameters showed smoother topograph-

ical mapping [68]. Our protocol supports and extends those earlier findings. First, we extend

this idea to data in mice and to the ACx in the awake state. Second, using a large variety of
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BBSs we show that neurons that respond to top edges are often much less sensitive to the bot-

tom edge and the rest of the frequency content of stimuli, indicating a specificity of this type of

computation. Third, the large variety of BBSs has allowed us to sort stimuli according to their

top frequency and reveal a strong, unimodal tuning curve to that parameter, further indicating

that spectral edge is likely a feature extracted by these neurons. Lastly, since we collected data

from several cortical regions, our results suggest that SS exists in neurons beyond primary

auditory cortex.

We speculate that edge detection may be useful for auditory scene analysis—the segregation

and grouping of different spectral components of sounds [70]. The auditory system has been

suggested to extract features such as harmonics [71], temporal patterns [72] and temporal and

spectral edges [68, 73] for the inference of distinct components of the auditory scene. Indeed,

responses to spectral edges such as those shown here may be an additional component of the

computation needed for construction of auditory objects by the ACx.

An additional related finding was introduced by Zhang et al [34], which suggested that side-

band inhibition takes part in neuronal selectivity to the directionality of frequency sweeps.

Similar to the findings presented here, this paper showed that neurons in rat auditory cortex

with a preferred frequency at the lower frequency range tend to have a sideband at higher fre-

quencies (i.e. positive skewness). Additionally, they have shown that neurons with a preferred

frequency at a higher frequency range have an inhibitory sideband at lower frequencies. Here

we did not find many neurons with a lower inhibitory sideband (i.e. negative skewness), which

might imply a species/ strain specific property or be a result of our data being biased to neu-

rons preferring low frequencies. Finally, using conductance measurements, Zhang and col-

leagues [34] have shown that inhibition is delayed with respect to excitation which together

with the spectral asymmetry, results in a frequency sweep directionality preference.

Finally, we note that the response profile which we measured might only be a particular

case of a more general computation. The response profile of top-edge detecting neurons (i.e.

Q1 neurons) is qualitatively similar to the first derivative of a gaussian (i.e. g1 wavelet). In this

context, Fishbach and colleagues[73] have built a spectro-temporal model for auditory

responses, whereas neurons such as those we call ‘Q1 neurons’ compute the first spectral deriv-

ative of sounds. Indeed, it has been shown that convolving a signal with a g1 wavelet gives back

the signal’s (smoothed) first derivative [42]. According to this interpretation, BBS with sharp

edges such as those we presented here, will evoke the strongest response, with sharp edges hav-

ing infinite derivatives. Thus, we speculate that neuronal responses in ACx will be proportional

to the (absolute) magnitude of the spectral derivative of a specific frequency.

To conclude, using a single, generic protocol and a simple mathematical model we tap onto

three phenomena in single ACx neurons: bandwidth tuning, sideband inhibition and edge

detection (Figs 1–3 and 5). Further, we show that a significant group of neurons in awake

mouse ACx show strong tuning to sound edges (Fig 5). The simplicity of this stimulus set

could be exploited in future research to elucidate the contribution of different auditory brain

regions to edge detection, and perhaps be used in behavioral experiments to see how such

computation translates to perception.

Materials and methods

Ethics statement

We used 8 to 12-week-old C57/b6 female mice (n = 5). All experiments were performed in

head-fixed awake mice and approved by the Institutional Animal Care and Use Committee of

the Hebrew University of Jerusalem (NS-18-15521-4).
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Extracellular recordings using Neuropixels

We used Neuropixels [74] for extracellular recordings of spiking activity in left ACx. Prior to

the recording, a custom-made metal bar was implanted on the mouse skull, and a small crani-

otomy was made on the left hemisphere (coordinates relative to bregma: anterior 2.5 mm, lat-

eral 4.2 mm). The craniotomy was protected by a wall of dental cement and covered directly

with a silicone elastomer (WPI; Kwik-Cast catalog #KWIK-CAST). The surgery was done

under Isoflurane anesthesia (2%) and a subcutaneous injection of carprofen (0.004 mg/g).

Mice were given 1–2 d to recover. On the day of the recording, animals were head-fixed and

the craniotomy was exposed. Then, a Neuropixels probe 1.0 (IMEC, phase 3A) was inserted

through the craniotomy in a 20–30 degree tilt (from vertical position) and lowered into the

brain, 3 mm deep. Penetration and probe depth were performed and monitored using a

micromanipulator. Probes were covered with a fluorescent dye [DiI (Invitrogen catalog

#V22885) or DiO (Invitrogen catalog #V22886)] before penetration, to enable reconstruction

of the penetration sites in high resolution. In each mouse, we performed one or two consecu-

tive probe penetrations. Probe trajectories were reconstructed from consecutive coronal slices

as detailed in earlier work [43, 62] and using an open source software ([75]; Fig 1D). Following

the reconstruction, probe channels were annotated to the corresponding brain regions they

were recording from (see Table 1).

All recordings were acquired using Neuropixels 1.0 (IMEC, phase 3A), a base-station

connector (IMEC) and a National Instruments chassis with an IMEC slot. An external refer-

ence electrode (Ag/AgCl wire) was positioned on the skull and submerged in saline. Data were

sampled at 30 kHz, with action potential band filtered to contain 0.3- to 10kHz frequencies.

Action potential band gain was set to 500. All recordings were automatically sorted using the

algorithm of Kilosort 2, with its default parameters (e.g. central part of the autocorrelation—

2ms; contamination—20%) ([76] https://github.com/MouseLand/Kilosort2). Following auto-

matic sorting, manual sorting was performed using the “Phy 2.0” open-source GUI (UCL;

https://github.com/cortex-lab/phy). During manual sorting, spike clusters were merged based

on assessment of wave-form similarity and the appearance of drift patterns. Each spike cluster

was assessed by criteria of waveform size, consistency of firing rates, the presence of short-

latency inter-spike intervals, auto and cross correlograms, and principal component analysis.

If a cluster was classified by Kilosort as a well isolated SU with minimal contamination (based

on violations of the expected refractory period, see https://github.com/MouseLand/Kilosort/

wiki), and the manual inspection showed it to be satisfactory on all above mentioned accounts,

it was tagged as a SU. If a cluster did not meet the above criteria, it was excluded from analysis.

A more detailed explanation for the manual sorting guidelines can be found in https://phy.

readthedocs.io/en/latest/sorting_user_guide. Fig 1D was generated using the Allen CCF soft-

ware (UCL; https://github.com/cortex-lab/allenCCF).

Auditory stimuli

Sound stimuli were presented through a free field speaker (ES1; TDT) positioned 5cm from

the animals’ right ear and were delivered to the speaker at 500 kHz sampling rate via a driver

(ED1; TDT). Stimuli consisted of pure tones (either 11 or 17 different frequencies starting

from 4 kHz and going up to either 22.6 or 64kHz in 25% octave intervals). BBSs had center fre-

quencies matching the pure tone frequencies with either 10 or 11 different bandwidths linearly

spaced between 5% and 100% octaves (full width) around the center frequency. Notice that

since the steps in the frequency axis and in the bandwidth axis are different (25% vs. ~10%),

FBRAs have a step-like shape that is not a result of neuronal/model properties, but merely the

choice of stimuli. Notch stimuli were inverse to BBSs with a minimal frequency of 2kHz and a
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maximal frequency of a full octave above the highest pure tone frequency played at that proto-

col. Both BBSs and notches were created by summing pure tones of all frequencies within the

bandwidth spaced 0.1% octave apart, with an equal amplitude and randomized phases. Pure

tone sound levels were ~55 dB SPL, while 1 octave BBS sound level were ~85 dB SPL. Sound

levels for notches were similar regardless of notch bandwidth and measured ~90 dB SPL. All

stimuli were 100 ms in duration, with 5 ms on and off linear ramps. Each pure tone was

repeated 10 times, and each broadband stimulus was generated 10 times since there is a ran-

dom component to its creation. All stimulus repetitions were presented in a random order

with 1 second inter-stimulus intervals.

Data analysis

Data analysis and statistics were performed using custom written code in MATLAB (Math-

Works). Analysis was restricted to neurons from the following auditory regions—AUDp,

AUDv, AUDd and TeA, and only to those SU’s that were significantly excited by BBSs in their

ON-response. A significant excitatory response was determined by performing a one-tail paired

students’ t-test between the number of spikes during stimulus presentation (100 ms) and the

number of spikes during the 100 ms immediately before the stimulus (pre-stim window), Bon-

ferroni corrected for multiple comparisons. Neurons that were inhibited by BBS, strictly OFF-

responsive to BBS or responsive only to notch stimuli were not analyzed further (see S1 Fig).

PSTHs were calculated for 10 ms bins. Normalized amplitudes for FBRAs were taken as the

mean difference in firing rate during stimulus presentation and the pre-stim window.

Modulated Ricker wavelets

MRWs obeyed the function:

MRW fð Þ a ðw2 þ I
E= � f � mð Þ

2
Þ � e�

f � mð Þ2

2w2 � �
� f ; m;w; sð Þ

�
� f ; m;w; sð Þ ¼ 0:5þ 0:5 � sð Þ � � f ; m;

w
2

� �
þ 0:5 � 0:5 � sð Þ �

�

1 � � f ; m;
w
2

� ��

Such that ϕ f ;μ; w2
� �

is a Gaussian cumulative distribution function with mean μ and stan-

dard deviation w
2, which was chosen heuristically for not producing an artifact. Wavelets were

normalized such that their maximal value is 1 (Fig 2b, S2a Fig, S1 Video). MRWs were repre-

sented as vectors of weight values across the frequency axis. For calculation of model-FBRAs,

stimuli were represented as vectors of intensity values in frequency space. To account for the

phenomenon of cochlear widening [77], broadband stimuli, which initially were a rectangular

pulse of height 1, were concatenated with a linear increase/decrease from half an octave away

on either side (S2a Fig). This simple widening was chosen in order not to achieve too many

degrees of freedom over the model. This was performed similarly for notch stimuli (S2b Fig).

Finally, to calculate a model neuron response to each stimulus, the inner product of the stimu-

lus vector and the MRW went through a positive rectifier to account for the low spontaneous

firing of ACx (S2a Fig).

Model fitting

To fit model FBRAs to neuronal FBRAs, we used a modification of the Matlab function fmin-
search(), that allows restricting parameter values. The value to minimize was the negative of

the Pearson correlation between neuronal and model FBRAs, (excluding responses to pure

tones) + 0.05 � w, in order to avoid unrealistically large values of w. μ was restricted to the
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range of presented frequencies. w was restricted to widths above 5% of an octave. I
E= was

restricted between 0 and 1. s was restricted between -1 and 1. For fitting shuffled data, the

FBRA of each neuron was shuffled before fitting. Shuffling was done by randomizing the loca-

tion of each of the 121 mean responses, along the vector of central frequencies and band-

widths. Data shuffling was performed 100 times on neuronal FBRAs before fitting the model

and then averaged. Shuffle correlation values in Figs 3b and 4d are the averages. For fitting

neuronal responses according to ft or fb to a gaussian, we used the Matlab function fit().

Supporting information

S1 Fig. Neuronal counts. a. A scheme showing the number of SUs outputted by the spike sort-

ing procedure (n = 577), the number of neurons responsive to one of various attributes of

sounds (n = 451), highly responsive units to BBSs (n = 149), and the number of neurons with

high fit-correlations (above median) to the MRW model (n = 74). see Methods for further

information.

(PDF)

S2 Fig. Response function. a. Schematic of the calculation of a response of a model neurons

with a given tuning curve (middle) to an example BBS modeled with cochlear widening

(right). The inner product of the tuning curve and the stimulus is then positively rectified. b.

Example notch stimulus, modeled with cochlear widening.

(PDF)

S3 Fig. Additional examples of model fitting. a. Top: FBRAs of 4 neurons from 3 mice. Mid-

dle: model FBRAs fitted to the same neurons. Bottom: fitted MRWs of the same neurons.

(PDF)

S1 Video. The Modulated Ricker Wavelet model and resultant FBRA. Left: An MRW tun-

ing curve of a model neuron with all parameters values stated in red in the top right. The shape

of the tuning curve is changing by changing the parameter values. Right: A synthetic FBRA of

the model neuron.

(MP4)

S2 Video. Left: An MRW tuning curve of a model neuron with I
E ¼ 1= , s = 1 (i.e.—Q1 neu-

ron). The transparent grey rectangle represents a BBS. The rectangle on the top right fills up

with red color the more the model neuron responds to the BBS, such that a fully red rectangle

corresponds to a maximal response. BBS with the same top frequency evoke similar responses

as long as the stimulus is wider than the excitatory band of the tuning curve. BBS with the

same bottom frequency do not necessarily evoke the same response.

(MP4)
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