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Abstract

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world,

causing ~1.5 million deaths every year. The World Health Organization initiated an End TB

Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals

have focused on discovering more effective and more patient-friendly antibiotic drug regi-

mens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin

is one promising antibiotic that may improve the current standard regimen by shortening

treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing

moxifloxacin have better bactericidal activity. However, testing every possible combination

regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and

clinical limitations. To identify better regimens more systematically, we simulated pharmaco-

kinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate

efficacies, and then compared our predictions to both clinical trials and nonhuman primate

studies performed herein. We used GranSim, our well-established hybrid agent-based

model that simulates granuloma formation and antibiotic treatment, for this task. In addition,

we established a multiple-objective optimization pipeline using GranSim to discover opti-

mized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage

and lowering time needed to sterilize granulomas. Our approach can efficiently test many

regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical

trials and ultimately accelerate the TB regimen discovery process.
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Author summary

Tuberculosis (TB) is a top global health concern and the WHO has made END TB a goal

for 2050. Treatment for TB requires multiple antibiotics taken for long periods of time,

which is challenging for TB patients due to side effects and compliance issues. Therefore,

identifying regimens that are more effective and more patient-friendly than the currently

used 4-drug standard regimen treatment is urgently needed. It is also known that non-

compliance leads to the development of drug resistant TB. In this work, we first apply our

next-generation computational model that captures the immune response to infection in

lungs with M. tuberculosis via the formation of granulomas to predict new regimens for

the treatment of TB. These include regimens that have been recently tried in clinical trials

with controversial results. Our goal is to identify regimens that optimize how fast bacteria

are cleared using minimal dosages. We then pair our studies with the best experimental

system for TB, namely, validating our predictions using a non-human primate model.

Our findings suggest new regimens and additionally that systems pharmacological model-

ing should be employed as a method to narrow the design space for drug regimens for

tuberculosis and other diseases as well prior to clinical trials.

Introduction

Tuberculosis (TB) is one of the deadliest infectious diseases in the world, with 1.6 million

deaths in 2021 [1], and World Health Organization (WHO) aims to reduce the number of TB-

related deaths by 95% by 2035 [1]. While vaccination efforts can reduce the number of new TB

cases and deaths, a shorter but highly efficacious and safe drug regimen is needed to treat TB.

Although new and efficacious drugs have been discovered for drug-resistant TB [2,3], drug-

susceptible TB disease has been treated with the same regimen for close to 50 years, namely

6–9 months of treatment with isoniazid (H), rifampin (R), ethambutol (E) and pyrazinamide

(Z) [4]. Likely, changes to the existing standard regimen for drug-susceptible TB will help

achieve WHO’s goal.

Improving existing TB treatment involves finding regimens that account for the complexi-

ties of TB. The structure of the granuloma influences antibiotic distribution and can result in

lower concentrations within granulomas [5–8]. Moreover, microenvironments within granu-

lomas can promote the infecting bacteria, Mycobacterium tuberculosis (Mtb), to shift pheno-

typic states that are tolerant towards antibiotics [9–11]. Host-to-host variability in drug

absorption and metabolism kinetics leads to pharmacokinetic (PK) variability that has been

clinically linked to worse outcomes in TB treatment [12]. Furthermore, the lengthy treatment

makes compliance challenging. While compliance yields high levels of success, intermittent

treatment can lead to the development of drug resistance [13]. In short, by addressing these

complications (heterogeneity in granulomas and antibiotic distribution, antibiotic-tolerant

Mtb, host-to-host PK variability and long treatment times), a better regimen–one that would

successfully treat more individuals with a shorter treatment duration–can be identified.

Due to these challenges, identifying new regimens for TB is a complex process that requires

a combination of approaches to accurately capture different aspects of TB treatment [14].

Studies have classified the pharmacokinetic/ pharmacodynamic (PK/PD) features of individual

TB antibiotics with in vitro methods, such as hollow fiber systems [15–17] and bactericidal

assays in different growth conditions [18–20], and in vivo methods via HPLC coupled to tan-

dem mass spectrometry (LC-MS/MS) and MALDI mass spectrometry imaging (MALDI-MSI)

analyses [21–23]. However, these studies were mostly performed using single antibiotics and,
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due to heterogeneity among granulomas, variability of Mtb metabolic states and the propensity

for Mtb to develop drug resistance, TB treatments with more than one antibiotic (i.e. combina-

tion therapy) are essential. To quantify drug interactions and assess the efficacy of combina-

tion therapies, many studies have been performed: in vitro with checkerboard assays [24–26],

in vivo with mouse [27,28], using a non-human primate (NHP) animal models [29,30], as well

as in silico approaches applying machine learning algorithms [31,32]. Moreover, many clinical

studies have been performed with antibiotic combinations, which is crucial to assessing toxic-

ity as well as long term outcomes of treatments [33–36]. These valuable studies are time-con-

suming and expensive, often prohibitively so.

Computational modeling can efficiently predict regimen efficacy and optimal doses, which

is essential due to the high number of combinations of drug regimens in this large regimen

design space (on the order of 1017 [37]). We have previously shown that our validated compu-

tational simulations of granuloma formation, function and treatment, called GranSim, can

simulate efficacies of different TB regimens (c.f. [6,8,38]) and we can utilize surrogate-assisted

optimization algorithms to accurately and efficiently predict optimal regimens [37].

Previous studies in murine models suggested that moxifloxacin (M) is a promising antibi-

otic to improve the standard regimen and decrease the duration of TB treatment due to its

strong bactericidal activity [39–44]. To this end, a recent clinical trial, REMoxTB, attempted to

shorten treatment from 6 months to 4 months by altering the standard HRZE regimen to

HRZM or RMZE. However, the study failed to show noninferiority of moxifloxacin-contain-

ing regimens to the standard regimen due to higher relapse rates of these regimens [33]; after

careful reanalysis, some patient populations were shown to be cured successfully with these

moxifloxacin-containing regimens in a shorter treatment window [45]. In our study, we elabo-

rate an approach toward identifying drug regimens that are more effective in treating TB gran-

ulomas and that require shorter treatment times compared to the standard regimen. We used

our computational model GranSim to create an in silico biorepository of hundreds of granulo-

mas, combined with in vivo data generated from a NHP model and applied a surrogate-assis-

ted optimization algorithm to identify regimen success and failure. We first simulated

moxifloxacin-containing regimens using GranSim and identified regimens that are superior to

the standard treatment based on sterilization times. Informed by our simulation results, we

performed an in vivo study in NHPs to test our predicted regimens that haven’t been studied

before, validating our simulation predictions. Thus, our study identifies new regimens that can

inform pre-clinical trials to shorten treatment times and minimize dosages. This highlights the

importance of using modeling prior to pre-clinical trials as a step towards a more efficient and

directed regimen design for TB.

Results

In silico library of granulomas for treatment simulations and dose

optimization

We first generated an in silico library of 750 granulomas over 300 days that matches NHP data-

set of 600 granulomas [46,47]. To do that, we sampled 250 granuloma parameter sets within

biological feasible ranges using the LHS method. We varied parameters that determine a vari-

ety of host immune responses during Mtb infection (e.g., immune cell recruitment, macro-

phage apoptosis rate etc.) and metabolic activity (e.g., chemokine/cytokine production rate)

(see Table 1 in [8] for the full list of parameters that are varied). Then, we simulated three repli-

cations with each parameter set to capture both types of uncertainty present [48]. As a result of

simulating GranSim with these parameter sets, granulomas emerge with variable dynamics of

CFU/immune cell counts and granuloma sizes. We then classified granulomas that have
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nonzero bacterial loads (those that did not sterilize) by measuring their colony forming units

(CFUs) as either low-CFU or high-CFU granulomas, depending on their CFU trends (Fig 1) In

this work, we simulated different treatments on subsets of granulomas from this library of

both high- and low-CFU granulomas as well as combined. This follows as humans and NHPs

have multiple granulomas within their lungs, and ensures that we test each regimen on a vari-

ety of granuloma types and multiple granulomas, making it relevant to both experimental data

and clinical TB outcomes. Here, low-CFU granulomas represent the state where the immune

system controls bacterial growth within a granuloma, whereas within high-CFU granulomas,

bacteria grow to large numbers and can disseminate [8, 49, 50]. Specifically, if the number of

CFUs within a granuloma is less than 104 at the end of the simulation and has not increased

more than 50 CFUs in the last 20 days of simulation, we label it as a low-CFU granuloma (Fig

1, blue curves). If the number of CFUs in a granuloma is between 104 and 107 at the end of the

simulation or it has increased by more than 50 CFUs in the last 20 days of simulation, we label

it as a high-CFU granuloma (Fig 1, red curves). We proposed 104 CFUs/granuloma as a thresh-

old for low-CFU granulomas, based on the observed CFU trends of the 750 granulomas we

simulated: granulomas with CFUs lower than this threshold tend to stabilize in our simula-

tions (Fig 1, blue curves), representing controlled growth. However, granulomas with CFUs

higher than this threshold tend to grow uncontrollably (Fig 1, red curves). We can alter this

threshold without loss of generality. We randomly selected 100 low-CFU and 100 high-CFU

granulomas to simulate regimen treatments.

Fig 1. CFU trends within the in silico repository of simulated granuloma generated by GranSim after the start of infection. Each curve represents a single

granuloma simulation with a single parameter set using GranSim, and black dots are CFU counts from NHP granulomas [46,47]. Each individual data point

comes from a granuloma of a unique NHP; however, multiple data points at the same time step may come from the same NHP if that NHP has developed

multiple granulomas by the time they were necropsied. In total, the data points come from 42 monkeys and 646 granulomas, and each monkey has 2–40

granulomas (the median is 14.5, 25th and 75th percentiles are 9 and 20, respectively.). Based on their CFU trajectories, we categorize granulomas into low–CFU

(blue curves, N = 100) and high–CFU (red curves, N = 100) granulomas. Low–CFU granulomas represent granulomas that have controlled bacterial burden;

high–CFU granulomas are those where bacterial growth is uncontrollable by the immune system, respectively [8,49,50].

https://doi.org/10.1371/journal.pcbi.1010823.g001
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Simulations capture the rapid rate of sterilization with moxifloxacin-

containing regimens that is observed in clinical trials

We first compare the standard regimen for TB, i.e., HRZE, with various moxifloxacin-contain-

ing regimens. A recent clinical trial (REMoxTB) compared the 6-month standard regimen

HRZE treatment (control group) to 4-month treatment with two moxifloxacin-containing reg-

imens, HRZM (termed the “isoniazid group” in the original study) and RMZE (termed the

“ethambutol group” in the original study) (see Table 1 for the protocol) [33]. Regimens with

moxifloxacin were not found to be suitable replacements for the standard regimen, as they had

a higher rate of relapse in patients after the end of treatment, even though they decreased the

bacterial load in patients’ sputum more rapidly at the beginning of the treatment (Fig 2A).

We used GranSim to simulate the same protocol as in the REMoxTB study (see Methods

and Table 1). Our results agree with the clinical trial: moxifloxacin-containing regimens

reduced the bacterial load faster, as ~40% of the granulomas were sterilized within the first

week (Fig 2B, dashed red and dotted green curves). By comparison, the standard regimen

required more than 4 weeks to sterilize the same number of granulomas (Fig 2B, blue curve).

To treat the whole set of granulomas successfully (i.e., both low-and high-CFU), HRZE,

HRZM and RMZE-treated groups need 17, 8 and 12 weeks of treatment, respectively. The

metric “time to sterilize a granuloma” follows a similar trend: HRZM-treated group has the

shortest sterilization time with ~14 days (median), followed by RMZE- (~17 days median) and

HRZE-treated (~35 days median) groups. Therefore, our simulations suggest that the HRZM

is the most effective regimen in terms of bactericidal activity, followed by RMZE, although the

difference between these two regimens is minimal yet significant (p<0.001). The control

group, HRZE, is the slowest to sterilize granulomas.

In the REMoxTB study, noninferiority of moxifloxacin-containing regimens was not

shown due to the higher relapse rates [33]. Our granuloma-scale model limits our ability to

predict disease relapse because it does not contain the dynamics of Mtb-containing granulo-

mas in lymph nodes, which have been shown to induce reinfection when Mtb is present in

lymph node granulomas [51] (see Discussion).

Regimens HMZE, HRZE and RMZE reduce bacterial burden in both NHP

studies and simulations

NHPs with active TB were treated with the TB standard regimen HRZE as well as two moxi-

floxacin-containing regimens: RMZE and HMZE (see Table 1 and Methods). Daily

Table 1. Simulation protocols used in this study. Those indicated as clinical trial correspond to the regimens used in

[33], and those indicated as NHP study correspond to the regimens tested in NHPs herein. HRZEM combinations

refer solely to the computational studies. Optimization refers to the regimens we further tested with our optimization

protocol to determine dosing and sterilization time to predict the best performers.

STUDY GROUP REGIMEN

Clinical trial Control (HRZE) 3 wk HRZE + 18 wk HR

HRZM 17 wk HRZM + 9 wk placebo

RMZE 17 wk RMZE + 9 wk placebo

NHP study Control (no drug) 60 days

HMZE 60 days

HRZE 60 days

RMZE 60 days

HRZEM combinations 4-way combinations 120 days

3-way combinations 220 days

2-way combinations 300 days

Optimization 4-way combinations 180 days

https://doi.org/10.1371/journal.pcbi.1010823.t001
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administration of drugs was initiated at 13 weeks post-infection and continued for 8 weeks at

which time the macaques were necropsied. Total CFU was calculated by summing the CFU

counts obtained from plating multiple tissue samples (lung, granulomas, LNs) from each ani-

mal. Each regimen was able to reduce bacterial burden in NHPs compared to controls (Fig 3D

and 3E). Simulations with GranSim indicated that moxifloxacin-containing regimens, HMZE

and RMZE, sterilize more granulomas in a shorter time frame than the standard regimen,

HRZE (Fig 3A–3C).

Metabolic activity within granulomas is decreased with antibiotic

treatment in both NHPs and simulations

We used PET-CT imaging on NHPs with FDG uptake to assess how drug regimens influence

inflammatory activity of granulomas. We measured standardized uptake value ratio (SUVR), a

previously developed measure to quantify the FDG avidity per granuloma [30,52]. Treatment

with HMZE reduced FDG avidity of granulomas within 8 weeks, whereas there was no change

in FDG avidity in response to RMZE or HRZE treatment, similar to that of the control group

(Fig 4A). In GranSim, we monitor metabolic activity of a granuloma based on cells associated

with inflammation within granulomas, such as the number of various cell types and inflamma-

tory measures of activity within granulomas (see Methods for more details). Similar to the

FDG PET-CT results from NHP experiments, GranSim simulations demonstrated that treat-

ment with HMZE decreases metabolic activity significantly (Fig 4B). However, GranSim pre-

dicted reduced inflammation with RMZE and HRZE as well, unlike NHP experiments, where

no change was observed compared to the control.

Fig 2. Comparison of moxifloxacin–containing regimens to the standard regimen for the human study and GranSim. (A) Results from the REMoxTB

clinical trial [33]. Probability that a patient has a sputum culture–positive status decreases over the course of treatment, and this decline is more pronounced for

moxifloxacin–containing regimens. Control (HRZE), HRZM and RMZE groups have 510, 514 and 524 patients, respectively. This figure is adapted from Fig 2B

of [33] (Data points (x) extracted by WebPlotDigitizer). (B,C) GranSim predictions for (B) the fraction of unsterilized granulomas and (C) sterilization times

upon treatment with HRZE, HRZM and RMZE (*p<0.001, one–tailed paired t–test). The central red lines in box plots represent the median, whereas the

bottom and the top edges of boxes represent 25th and 75th percentiles, respectively. For the REMoxTB study and the simulations, in the control groups,

patients/granulomas are treated with HRZE for 8 weeks, followed by an 18–week long HR treatment. In HRZM and RMZE groups, patients/granulomas are

treated with HRZM and RMZE for 17 weeks, respectively (see Methods and Table 1). In (B) and (C), each group has 200 simulated granulomas.

https://doi.org/10.1371/journal.pcbi.1010823.g002
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Simulations reveal that moxifloxacin-containing regimens have a better

bactericidal activity than HRZE

To systematically compare the efficacy of moxifloxacin-containing regimens to the standard

regimen, we used GranSim to simulate treatment with all 4-way combinations of HRZEM

(HRZE, RMZE, HMZE, HRME and HRZM) for 120 days (Fig 5). We analyze simulation

results distinguishing granulomas that are high-CFU (Fig 5A and 5D) versus low-CFU (Fig 5B

and 5E), as well as combined (Fig 5C and 5F). We used equal sample sizes (N = 100) for high-

and low-CFU granulomas for a fairer comparison. However, data from NHP granulomas

(black dots in Fig 1) suggest that 30% of unsterilized granulomas are high-CFU, while 70% of

them are low-CFU granulomas. Although low-CFU granulomas are clinically more common

Fig 3. Comparing NHP and GranSim regimens. Comparison of the standard regimen (HRZE) to two moxifloxacin–containing regimens, HMZE and RMZE,

between in silico studies with GranSim (panels A–C) and in vivo NHP studies (panels D and E). (A) The sterilization times of granulomas averaged over 200

granulomas in GranSim. Note that we assign the maximum simulation time of 60 days as a sterilization time for unsterilized granulomas (*p<0.001, one–tailed

paired t–test). The central red lines in box plots represent the median, whereas the bottom and the top edges of boxes represent 25th and 75th percentiles,

respectively. (B, E) Percentage of granulomas that are unsterilized by treatment end for (B) NHP studies and (E) GranSim. Colored dots in (E) represent the

percentage of unsterilized granulomas per NHP. (C) The fraction of granulomas which are unsterilized as a function of simulated treatment time using

GranSim. (D) The average total CFU per NHP after treatment with the corresponding regimens for two months (n = 7 animals in the control group, n = 3

animals in HRZE group, n = 4 animals in HMZE, n = 2 animals in RMZE). Statistical analyses were not performed on the NHP data due to small numbers of

animals per group.

https://doi.org/10.1371/journal.pcbi.1010823.g003
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as most individuals have latent infection, high-CFU granulomas are harder to treat and likely

result in an active disease. Therefore, it is crucial to understand drug dynamics within high-

CFU granulomas.

Our simulation results indicate that all four regimens containing moxifloxacin clear Mtb

within all types of granulomas (high-CFU, low-CFU, and combinations) in a significantly

shorter time than the standard regimen HRZE (blue curve in Fig 5A–5C, gray box in Fig 5D–

5F). Moreover, simulations show that the initial decline in bacterial load for combinations of

high- and low-CFU granulomas with regimens containing moxifloxacin (Fig 5C) stems from

the fast sterilization of all low-CFU granulomas (Fig 5B), as the clearance rate for high-CFU

granulomas is slower than that for low-CFU granulomas. In addition, the differences between

various moxifloxacin-containing regimens are more pronounced in high-CFU granulomas.

For example, HRZM clears all high-CFU granulomas by 51 days, which is the fastest of all

4-way combinations of HRZEM. The next best regimen is HRME, requiring 77 days to sterilize

all granulomas with high-CFU. RMZE and HRZE sterilize all high-CFU granulomas by a simi-

lar time window, in 94 and 97 days, respectively. Lastly, treating all granulomas until they ster-

ilize with HMZE takes 118 days. However, the time required to sterilize a high-CFU

granuloma (Fig 5D) is lower for moxifloxacin-containing regimens (Fig 5D, red boxes) than

that for the standard regimen (Fig 5D, black box), which is consistent with the findings in

Figs 2 and 3.

Simulations show that moxifloxacin-containing regimens are more

efficacious than HRZE with fewer than four antibiotics

Compliance is one of the challenges of TB treatment due to the long-term use of many antibi-

otics with numerous side effects. To identify a more patient-friendly treatment, in line with the

Fig 4. Comparison of metabolic activity (measured by SUVR) change post treatment in NHP and GranSim. Comparison of

metabolic activity changes (A) in NHP granulomas and (B) using GranSim. (A) Change in standardized uptake value ratio (SUVR) per

NHP granuloma (colored dots) in 8 weeks (SUVR8weeks−SUVRpre–treatment) when NHP are treated with HRZE (n = 3 animals), HMZE

(n = 4 animals) and RMZE (n = 2 animals) for 8 weeks (n = 7 animals in control case, i.e., without treatment). Color shades of the dots

in each column indicate NHPs and the diamonds are the median of SUVR change/granuloma for each NHP. (B) Change in FDG

avidity per granuloma simulated using GranSim (FDG avidity8weeks−FDG aviditypretreatment) averaged over 200 granulomas (*p<0.0005,

one–tailed paired t–test). The central red lines in box plots represent the median, whereas the bottom and the top edges of boxes

represent 25th and 75th percentiles, respectively.

https://doi.org/10.1371/journal.pcbi.1010823.g004

PLOS COMPUTATIONAL BIOLOGY Optimizing tuberculosis drugs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010823 June 15, 2023 8 / 30

https://doi.org/10.1371/journal.pcbi.1010823.g004
https://doi.org/10.1371/journal.pcbi.1010823


goals of the END TB strategy of WHO [53], we could reduce the number of antibiotics used in

a regimen and/or reduce the total dose of a regimen. To test whether a regimen with fewer

than four antibiotics would be as efficient as (or more efficient than) the 4-way combinations

of HRZEM, we simulated all 3-way (Fig C in S1 Appendix) and 2-way (Fig D in S1 Appendix)

combinations of HRZEM in treating individual granulomas. As compared with 4-way combi-

nations (Fig 5B and 5E), we also observed the fast clearance of low-CFU granulomas treated

with moxifloxacin-containing regimens in 3- (panels B and E in Fig C in S1 Appendix) and

2-way (panels B and E in Fig D in S1 Appendix) combinations. Sterilization of high-CFU gran-

ulomas remains faster with 3-way combinations containing moxifloxacin than for regimens

without moxifloxacin; however, the rate of sterilization is slower than for low-CFU granulo-

mas (panels A and D in Fig C in S1 Appendix). The trend does not always hold for treatment

of high-CFU granulomas with 2-way combinations containing moxifloxacin (panels A and D

in Fig D in S1 Appendix). Regimens like ZM and EM cannot sterilize most of the high-CFU

granulomas despite prolonged treatment (panel A in Fig D in S1 Appendix). These

Fig 5. Comparison of 200 simulations for all HRZEM four–way regimens using GranSim. Comparison of (A–C) sterilizing rates and (D–F) sterilization

times of 4–way combinations of HRZEM for (A and D) 100 high–CFU, (B and E) 100 low–CFU and (C and F) a combination of 100 high–and 100 low–CFU

granulomas. Significance test was performed only between HRZE and moxifloxacin–containing regimens (*p<0.0001, one–tailed paired t–test). The central

lines in box plots represent the median, whereas the bottom and the top edges of boxes represent 25th and 75th percentiles, respectively.

https://doi.org/10.1371/journal.pcbi.1010823.g005
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granulomas may be related to the classically defined paucibacillary granulomas which even

after treatment remain difficult to sterilize [54].

Lastly, we compared treatments with all 2-way, 3-way and 4-way combinations of HRZEM

to the standard regimen HRZE based on the sterilization time for each regimen of high-CFU

(Fig 6A) and low-CFU (Fig 6B) granulomas and both types of granulomas combined (Fig 6C).

Our results demonstrate that regimens that are more effective in sterilizing granulomas than

HRZE each contain moxifloxacin (colored curves in Fig 6). For high-CFU granulomas, a mox-

ifloxacin-containing regimen with at least 3 antibiotics is needed to achieve a better perfor-

mance than HRZE (Fig 6A). However, sterilizing low-CFU granulomas faster than HRZE is

possible even with regimens containing two antibiotics (HM, RM and ZM in Fig 6B). These

comparisons are based only on the standard doses of regimens; optimization of doses is also

possible. Our results agree with preclinical studies on mouse models in that HRZM [40, 55],

RMZE [55] and RMZ [39, 40] sterilize mice faster than HRZE.

Fig 6. Simulated treatments with 4–way, 3–way, 2–way regimen comparison from HRZEM. Comparison of (A–C) sterilizing rates and (D–F) sterilization

times of all regimen combinations of HRZEM to HRZE (thick green curve in all panels) in (A and D) 100 high–CFU, (B and E) 100 low–CFU and (C and F) a

combination of 100 high–and 100 low–CFU granulomas. Significance test was performed only between HRZE and all other regimens (*p<0.01, one–tailed

paired t–test). The central lines in box plots represent the median, whereas the bottom and the top edges of boxes represent 25th and 75th percentiles,

respectively. Colored curves indicate the regimens that clear granulomas faster than HRZE, i.e., they have a significantly lower sterilization times. Gray curves

represent regimens with slower sterilization.

https://doi.org/10.1371/journal.pcbi.1010823.g006
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Dosing optimization method identifies new doses for regimens

Optimizing the dose of each antibiotic in all 4-way combinations of HRZEM may reduce the total

antibiotic dose, contributing to our goal of a more patient-friendly TB treatment. Here, we use

Pareto optimization to predict optimal solutions that balance the trade-off between two treatment

objectives: minimizing the total antibiotic dose and minimizing the average time for regimens

required to sterilize all Mtb within granulomas, i.e., the average sterilization time. Based on these

two objectives, our Pareto optimization pipeline predicts the Pareto front for each 4-way combi-

nation regimen of HRZEM (HRZM, HRME, HMZE, RMZE and HRZE) and outputs a set of

optimized regimens that belong to the Pareto set (i.e., optimal doses) (Fig 7A-E, red dots).

In general, regimens that simulations identify as optimal (i.e., regimens in the Pareto set)

span a wide range of total dose and average sterilization times. This suggests that among opti-

mized regimens, some have very low average sterilization times at the cost of a very high anti-

biotic dose and some regimens have a very low total dose leading to long sterilization times.

Fig 7. Pareto front optimization study simulating all 4–way combinations of HRZEM to find regimens that minimize both average sterilization time and

total dose. Pareto front optimization identifying optimal dose and sterilization times for: (A) HRZM, (B) HRME, (C) HMZE, (D) RMZE and (E) HRZE. In

each panel (A–E), red dots represent the (non–dominating) regimens that belong to the Pareto set (see Tables B–F in S1 Appendix for the doses of each

antibiotic in the regimens that belong to Pareto sets) whereas black dots are the regimens that are not optimal based on the objectives. Green dots show the

regimen based on the current standard doses recommended by CDC [4]. (F) Pareto sets for all regimens (same as red dots in panels A–E) compared to the

standard regimen HRZE with CDC–recommended doses (X in Panel F). Dots in the dashed gray rectangle indicate the regimens that have lower total drug

dose and lower average sterilization times (see Table 2 for the doses of each antibiotic in these regimens). Triangles indicate optimized regimens with 3–way

combinations, as the optimal doses of one antibiotic (E or Z) in these regimens are predicted as 0.

https://doi.org/10.1371/journal.pcbi.1010823.g007
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However, we are particularly interested in optimized regimens that have both lower total dose

and lower average sterilization times as compared to standard regimen (HRZE with CDC-rec-

ommended doses). Our method predicts that the 19 regimens in the dashed gray rectangle (Fig

7F) are all more advantageous than the standard regimen (black dot in Fig 7F) in terms of

reducing both total dose and sterilization time. These regimens tend to have higher doses of

rifampicin than the standard regimen yet lower total regimen dose (Table 2), resulting in

shorter sterilization times, which is in line with clinical trials that showed a reduction in time to

culture conversion using higher doses of rifampicin [56,57]. Based on our earlier results, it is

not surprising that these optimized regimens mostly contain moxifloxacin (Table 2). This is also

expected based on clinical studies where moxifloxacin-containing regimens sterilize granulo-

mas more efficiently (c.f. Fig 2). Further, although most of these optimal regimens contain four

antibiotics, our pipeline also predicted a few optimal combinations with less than four antibiot-

ics (see triangles in the rectangle region of Fig 7F; underlined rows labeled in Table 2). (Our

pipeline predicts the ethambutol optimal dose as 0 for HRME and RMZE regimens and the pyr-

azinamide optimal dose as 0 for RMZE, thus identifying HRM, RMZ and REM as additional

optimal regimens). This agrees with our systematic study of all possible combinations that

determined HRM, RZM and REM as more efficient regimens than the standard regimen HRZE

(c.f. Fig 6). Our optimization approach provides a more efficient way to identify regimens with

different combinations of antibiotics than is possible in clinical or experimental studies.

Discussion

One of the strategies to improve TB treatment regimens is to shorten treatment duration by

introducing or substituting newer antibiotics that have better bactericidal activities than those

Table 2. Simulated Doses of Antibiotics that optimize treatment objectives (compare with Fig 7). The doses for each antibiotic in the regimens that have lower average

sterilization time and lower dosage than the standard regimen (black row) as shown in Fig 7F (i.e., all regimens in dashed gray rectangle). The underlined rows indicate

optimal 3–way combinations, where the optimal dose of E or Z is predicted as 0.

Avg Sterilization Time (days) Total dose (mg/kg) H R Z E M

33.6 60 5 10 25 20 0

5.1 55.2 6.1 20.0 0 16.8 12.3

5.5 53.4 7.5 13.9 0 19.7 12.3

6.1 40.8 9.0 11.3 0 7.2 13.3

6.7 37.0 8.8 19.7 0.6 0 7.9

7.5 29.6 5.5 10.1 0 0 14.0

8.6 36.4 1.3 16.0 9.0 0 10.1

8.7 32.3 8.7 7.7 5.1 0 10.8

8.8 47.2 0 18.4 16.0 4.1 8.7

9.2 30.1 10 9.7 3.9 0 6.5

9.3 52.2 8.7 0 31.2 0.5 11.8

9.5 23.4 6.7 9.2 0 0 7.5

10.6 45.4 0 9.2 26.9 0 9.3

10.9 51.3 9.8 0 18.7 12.9 9.9

11.0 28.4 0 13.3 2.6 1.0 11.5

13.8 21.1 8.2 0 2.6 1.0 9.3

17.3 23.0 0 12.7 0 2.5 7.8

20.5 16.4 9.1 0.9 1.2 0 5.2

27.3 38.7 4.7 19.0 14.2 0.8 0

29.7 16.8 5.4 5.1 0 3.1 3.2

https://doi.org/10.1371/journal.pcbi.1010823.t002
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in the current standard regimen (HRZE), for example, by considering bedaquiline, pretoma-

nid, linezolid [58] or moxifloxacin [33]. To this end, clinical trials [33,41,43] and also in vivo
studies with mice [39,40,44] have been conducted to explore a moxifloxacin-containing regi-

men that decreases treatment duration. In this study, we employ three unique approaches to

predict more patient-friendly treatment regimens for TB: replacing antibiotics in the standard

regimen with moxifloxacin in vivo and in silico, reducing the total number of antibiotics in a

regimen by scanning all regimen combinations in silico, and reducing the total dosage using

an in silico drug optimization pipeline.

Previously, we explored regimens with and without moxifloxacin in our simulation frame-

work, GranSim, to compare with early-phase clinical trials [59]. However, this is the first study

that directly compares TB treatment simulations using GranSim to a phase 3 clinical trial

(REMoxTB [33]) (Fig 2). We also perform NHP studies with promising regimens predicted by

GranSim. (Figs 3 and 4). Different from our previous studies, we systematically analyzed all

possible combinations with or without moxifloxacin and employed a new optimization pipe-

line to identify optimal regimens that sterilize granulomas more efficiently than HRZE.

Previous clinical trials concluded that both 4 months of HRZM treatment and 4 months of

RMZE had better bactericidal activity than the control group (HRZE) based on the conversion

to culture negativity status of the patients (Fig 2A) [33]. In our simulations, we observe a simi-

lar trend as in the clinical trial in terms of bactericidal activity: HRZM and RMZE groups are

more effective in reducing bacterial load and sterilizing granulomas than the control group

(Fig 2B and 2C). Although the measures of the clinical trial and our simulations are at different

scales (host-scale measures in clinical trials and granuloma-scale measures in simulations),

both studies support that moxifloxacin is a promising regimen.

NHP experiments with standard and moxifloxacin-containing regimens indicate that all

regimens reduce the total CFU of NHPs (Fig 3D) by sterilizing the majority of NHP granulo-

mas (Fig 3E and Fig E in S1 Appendix). Furthermore, granuloma metabolic activity (surrogate

for inflammation) drops by treatment with HMZE only, while RMZE and HRZE does not

affect the metabolic activity. These outcomes are in agreement with our simulations; however,

simulations predict that RMZE is equally effective as HMZE in sterilizing granulomas and

reduces metabolic activity. This difference may stem from the small sample size in NHP stud-

ies but likely also is due to in vivo factors that are not included within GranSim. In addition,

the surrogate measures used for FDG avidity in granulomas are only an approximation of the

factors involved in in vivo FDG avidity. Using GranSim, we simulated 200 distinct granulomas

per regimen. However, due to resource limitations, sample sizes were necessarily smaller in

the NHP studies, and RMZE has the smallest sample size with only 2 animals. Moreover,

unlike in silico studies where we simulate treatment with the same set of granulomas over vari-

ous regimens, in vivo studies require different sets of animals to test regimens, and the outbred

nature of macaques adds another level of variability, although this is also true in humans.

To test the efficacy of moxifloxacin-containing regimens more systematically and to poten-

tially reduce the number of antibiotics needed per regimen, we simulated the treatment of

low- and high-CFU granulomas with all 4-way (Fig 5), 3–way (Fig C in S1 Appendix) and

2-way (Fig D in S1 Appendix) combinations of HRZEM. In this study, we conclude that any

4-way, 3-way or 2-way (except EM) combinations that include moxifloxacin are more effica-

cious in eliminating bacteria within low-CFU granulomas than HRZE (Fig 6B). However, only

4-way combinations and some of the 3-way combinations work better than HRZE for treating

high-CFU granulomas (Fig 6A). This suggests that decreasing the number of antibiotics within

a regimen may be challenging when treating more progressive, caseous granulomas with the 5

drugs in this study, whereas granulomas with lower CFU numbers are easier to treat with

fewer antibiotics.
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Most of the regimens that are 2-, 3- or 4-way combinations of HRZEM consistently

decrease the fraction of granulomas remaining unsterilized over the course of the treatment

and, subsequently, clear them all (Fig 5A–5C, panels A-C in Fig C and Fig D in S1 Appendix).

However, some regimens cannot sterilize further, i.e., fraction of unsterilized granulomas stays

the same over a prolonged treatment time, (especially high-CFU granulomas). This may follow

as high-CFU granulomas are mainly caseous with bacteria trapped within that region. It is

known that moxifloxacin does not homogeneously diffuse into the caseous core of granulomas

[5,60]. Therefore, a regimen containing moxifloxacin needs to be complemented with antibiot-

ics that are effective in killing Mtb trapped within caseum of granulomas, unlike ethambutol

(E) [61,62] or pyrazinamide (Z) [20,61]. Treatment of high-CFU granulomas with ZM or EM

decreases the bacterial load initially, but eventually results in granulomas with primarily Mtb

in caseum (Fig F in S1 Appendix) that could not be sterilized by prolonged treatments with

ZM (panel A in Fig F in S1 Appendix) or EM (panel B in Fig F in S1 Appendix). This suggests

that ZM or EM treatments may result in granulomas that harbor bacteria that could later lead

to relapse disease [63]. Although treatment with EM or ZM could not sterilize all high-CFU

granulomas, 20% and 40% of high-CFU granulomas are cleared by EM and ZM treatment,

respectively (panel A in Fig D in S1 Appendix).

Another novel approach introduced in this study is implementing an optimization pipeline

into GranSim to optimize doses of the drugs within regimens using a multi-objective optimiza-

tion algorithm. Previously, we studied optimization in GranSim by comparing genetic algo-

rithm and radial basis function (RBF) network surrogate models and showed that using an

RBF network method is more efficient in optimizing drug regimens without losing accuracy

[37]. However, the RBF network method is based on minimizing one objective function that

may consist of various weighted terms, depending on the objectives we consider to discover a

better regimen. A Pareto set is a set of solutions that is used to minimize multiple objectives

with varying levels of importance. Therefore, determining the Pareto front with a single objec-

tive function would require many iterations of optimization to obtain a wide-ranging Pareto

set [64]. Thus, multi-objective Pareto optimization is a more efficient approach to discover the

optimal solution set.

To successfully optimize the doses of a regimen, it is crucial to have well defined objectives

based on the factors that we would like to consider in a regimen. In this study, we assumed

that the total dosage of a regimen, independent of the antibiotic, should be minimal. Moreover,

the regimen should sterilize granulomas as quickly as possible. However, we can modify these

objectives or add additional ones to obtain more biologically relevant optimized regimens. For

instance, each antibiotic has different levels of adverse side effects and high doses should be

avoided. Moreover, financial burden of each regimen should also be considered in order to

identify more accessible treatments worldwide.

Computational modeling studies have many advantages that are useful for drug discovery

studies and that complement experimental studies. Unlike clinical trials and in vivo experi-

ments, our computational approach has the power to evaluate the efficacy of regimens on the
same set of granulomas to eliminate the variability. Moreover, due to limited resources, trying

every single regimen combination in vivo experimentally or clinically, or repeating the experi-

ment many times to achieve significance may not be feasible. Hence, promising regimens may

be skipped or missed due to nonsignificant results. Here, we predicted new and promising

combination regimens that have not yet been studied clinically, such as HMZE that informed

our NHP studies and was predicted to be an effective regimen via our simulations. Another

drawback of clinical and in vivo studies is the risk of disease relapse. To assess the relapse rate

after treatment, study subjects are observed for several months. Unlike experiments, we can

track each Mtb bacilli in our simulations that gives us the power to anticipate relapse at the
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end of the treatment based on the sterilization status. Having unsterilized granulomas at the

end of treatment is predictive of TB relapse.

One limitation of our approach is that our model is at granuloma-scale. However, predict-

ing the relapse rates requires a host-scale model. Additionally being able to treat a collection of

granulomas within a host can serve to elaborate further the studies herein. The source of

relapse is not fully understood. One hypothesis suggests that bacteria within granulomas in

lymph nodes could migrate to the lungs and induce reinfection or reactivation [51]. Therefore,

a host-scale immune model of TB that contains multiple granulomas within lungs and lymph

nodes is needed to assess regimens’ long-term efficacy and to determine relapse rates, which

are crucial parameters to evaluate regimens efficiently, and we are currently adapting our host-

scale TB model, HostSim [46, 65], to encompass antibiotics and meet this need. These next-

generation improvements will make our approach more powerful and reliable, so that in vivo
experiments or clinical trials can be systematically informed by simulation results. In current

and future work, we aim to test the most efficacious regimens in an animal model to validate

our predictions.

Methods

We combined computational modeling with studies in NHPs, outlining the approaches for

each below. We point out where modifications to existing protocols and models have changed

in the next-generation versions used herein.

GranSim
As a basis for studying treatment at the granuloma scale, we used our well-established compu-

tational model of granuloma formation and function, GranSim (Fig 8B). GranSim is a hybrid

agent-based model (ABM) that simulates the immune response during Mtb infection, captur-

ing granuloma formation as an emergent behavior [6, 66–69]. Agents in this ABM include

immune cells, such as macrophages and T-cells, and individual bacteria. GranSim simulates a

two-dimensional section of lung tissue (6mm x 6mm) represented by dissecting a 300 x 300

grid into 90,000 grid microcompartments, each of size 20μm. Simulations begin with a single

infected macrophage in the center of the grid that initiates recruitment of additional macro-

phages and T cells to the infection site. These immune cells interact with each other and with

Mtb according to a large set of immunology-based rules that describe killing of Mtb, secretion

of chemokines/cytokines, and activation and movement of cells (for a complete description of

our rules, see http://malthus.micro.med.umich.edu/GranSim/). Granulomas “emerge” as a

result of these interactions when simulating GranSim. Infection is initiated with a single

bacterium.

NHPs are highly informative animal models for TB, as TB disease and pathology, including

granulomas, are similar to humans [70]. The immunological rules and cellular behaviors

included in GranSim are based on datasets derived from NHP granulomas [66,67,69]. More-

over, we validate and calibrate GranSim granulomas to both spatial and temporal datasets

from NHP granulomas, including immune cells (macrophages and T cells) and Mtb counts

and the spatial distribution of cell types within a granuloma [30,50,71]. GranSim simulates a

broad range of biologically relevant outcomes that can recreate the heterogeneity of observed

granulomas from NHPs and humans [67,72].

Antibiotics may have bactericidal (bacterial killing) or bacteriostatic (inhibition of bacterial

growth) effects. To capture the actions of these drugs on bacteria, tracking the individual bac-

teria within the granuloma is key [73]. To mimic that of actual infection in NHPs, we simulate

three distinct subpopulations of Mtb based on their location within granulomas: replicating-
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extracellular Mtb, intracellular Mtb that reside and replicate within macrophages, and Mtb

that are trapped within the caseous necrotic core. These caseum-trapped bacteria have varying

growth rates depending on the level of tissue caseation. These subpopulations differ in their

abilities to replicate and move within a granuloma.

Latin Hypercube Sampling (LHS)

LHS is a parameter-sampling method that samples the parameter space without replacement

and covers the parameter space more uniformly than a simple random sampling. It is done by

dividing each parameter distribution into N equal probability intervals and sampling from

these intervals to generate N distinct parameter sets and identify epistemic uncertainty

[48,74,75]. We used this method to generate an in silico library of granulomas in GranSim. If

Fig 8. An overview of the hybrid agent–based model that simulates granuloma formation and function, GranSim, and how

pharmacokinetics (PK) and pharmacodynamics (PD) of antibiotics are incorporated in GranSim. A) Our simulations begin with GranSim
generating a large library of granulomas to be used for regimen testing. B) Antibiotic concentrations in plasma are simulated by a

compartmental, ordinary differential equation model (ka, CL and Q are rate constants between compartments) with one (Z, E and M) or two

transit compartments (H and R) representing oral absorption (one transit compartment shown in the figure). (C) Antibiotics in the plasma

permeate through vascular sources into the lung tissue, i.e., onto the spatial grid of GranSim, where antibiotics can: diffuse, bind to caseum, be

taken up by macrophages and penetrate into a granuloma. (D) We determine a killing rate for each Mtb phenotype (k1, k2 and k3) based on the

local antibiotic concentration in their environment (grid compartment) (C1, C2 and C3) using a Hill equation calibrated to each Mtb type

(nonreplicating, intracellular and extracellular). Emax_N, Emax_I and Emax_E are maximum–killing rate constants, respectively, C50N, C50I and

C50E are the concentration at half maximal killing, respectively and hN, hI and hE are Hill curve constants for nonreplicating, intracellular and

extracellular Mtb, respectively.

https://doi.org/10.1371/journal.pcbi.1010823.g008
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the system under study, as is ours, has stochastic components, it is necessary to do replicates

(we choose 3) of each of the N runs to capture the aleatory uncertainty within as well (c.f. [48]).

These samplings capture both epistemic and aleatory uncertainty that arise in parameter sets.

Pharmacokinetic/pharmacodynamic (PK/PD) modeling

We have used GranSim previously to simulate the PK/PD of antibiotic drug treatment for TB.

Specifically, we can simulate the spatial distribution of antibiotics and their sterilizing ability

for different antibiotic regimens [5,6,8,38].

Briefly, the PK/PD model within GranSim simulates the plasma concentration over time

following oral doses of antibiotics (Fig 8A), the subsequent spatial concentration in the simu-

lated granuloma (Fig 8C) and the bactericidal activity based on the local concentration (Fig

8D). We modeled the plasma PK using a compartmental, ordinary differential equation model

to simulate absorption through transit compartments into the plasma, exchange with periph-

eral tissue and first-order elimination from the plasma (Fig 8A) [6,22]. To simulate tissue PK,

we referenced the concentration in the plasma and calculated flux through vascular sources on

the computational grid. We then calculated diffusion through tissue, binding to caseum and

epithelium and partitioning into macrophages (Fig 8C) [6,8,38,76]. These processes control

penetration depth, i.e., how deeply antibiotics penetrate into granulomas.

We modeled the PD by using a Hill function that determines the concentration (C) depen-

dent antibiotic killing rate constant (k), which is the rate of bacterial death per time step [77]

(Fig 8D). The general form of the Hill curve we use is:

k Cð Þ ¼ Emax
Ch

Ch þ C50

h ðEq1Þ

where Emax is the maximum killing rate constant, h is the Hill coefficient and C50 is the con-

centration needed to achieve the half maximal killing rate constant (Emax/2). For each antibi-

otic, we calibrated the parameters of the Hill curve (Emax, C50 and h) for intracellular,

replicating-extracellular and caseum Mtb separately, as the pharmacodynamics of antibiotics

are different in these subpopulations. The calibration is based on bactericidal assays of Mtb

within microenvironments that are relevant to NHP granulomas, namely infected macro-

phages [18,19,78–80], Mtb in rich growth media [18,19,78–80] and Mtb in caseum mimic

[20], for intracellular, replicating-extracellular and Mtb in caseum, respectively (Fig 8D).

In this study, we used the effective concentration of each antibiotic (C) as the total concen-

tration in each grid compartment rather than the free concentration, i.e., the extracellular con-

centration that is not bound to any macromolecules or any tissue, as we calculated in our

previous studies [8, 59]. We made this change as the bactericidal assays we reference are based

on the total concentration applied to the Mtb in vitro [20].

Accounting for pharmacodynamic drug interactions in the model

When multiple antibiotics are used and thus present and available on our simulation grid

within GranSim, we simulate their interaction by adjusting the effective concentration accord-

ing to their predicted fractional inhibitory concentration (FIC) values, as we have done previ-

ously [59]. We use the FIC values predicted by an in silico tool, INDIGO-MTB (inferring drug

interactions using chemogenomics and orthology optimized for Mtb) [31,32]. This tool

employs a machine learning algorithm that uses known drug interactions along with drug

transcriptomics data as inputs and predicts unknown drug interactions, i.e., FICs.

Briefly, we first converted the concentrations of all antibiotics on a small section of the grid

(microgrid) to the equipotent concentration of the antibiotic of the highest maximal killing
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rate constant (highest Emax). For example, if we have n antibiotics (drug i with the concentration

Ci) and drug m has the highest Emax of all drugs, then we calculate the adjusted concentration

for each drug i (Ci,adj), which is the concentration of drug m that results in the same antibiotic

killing rate constant as drug i with the concentration of Ci, with the following equation:

Ci;adj ¼
Cm;50

hmCi
hi

Emax;m
Emax;i

Ci
hi þ Ci;50

hi
� �

� Ci
hi

0

@

1

A

1=hm

ðEq2Þ

where Cm,50 and Ci,50 are the concentration of Cm and Ci at which half maximal killing is

achieved, respectively, Emax,m and Emax,i are the maximal killing rate constants of drug m and

drug i, respectively, and hm and hi are the Hill coefficients of drug m and drug i, respectively.

Then, we calculated the effective concentration (Ceff) as the sum of the adjusted concentrations

of n antibiotics that are increased/decreased based on the FIC values (see Table A in S1 Appen-

dix for a complete list of FIC values) to simulate synergistic/antagonistic effects with the follow-

ing equation:

Ceff ¼ ð
Xn

i¼1
Ci;adj

FICÞ
1=FIC

ðEq3Þ

where Ci,adj is the adjusted concentration of the drug i. Then, we used Ceff to calculate the antibi-

otic killing rate constant k on that microgrid by using the Hill equation constants of the antibi-

otic with the highest Emax:

k Ceff

� �
¼ Emax;m

Ceff
hm

Ceff
hm þ Cm;50

hm
ðEq4Þ

where Emax,m, hm and Cm,50 are the Hill equation parameters of the antibiotic m, the one with

the highest Emax within the regimen.

Simulating antibiotic regimens in GranSim
To calibrate the PK parameters of each antibiotic in GranSim, we used antibiotic concentra-

tions at various time points and tissue types (e.g., plasma, uninvolved lung, caseum and lesion)

from human or rabbit/NHP samples after administering human-equivalent doses (see Fig C in

S1 Text for moxifloxacin PK calibration). We calibrated plasma and tissue PK parameters for

isoniazid, rifampicin, pyrazinamide and moxifloxacin based on human data [21] and the

parameters for ethambutol from rabbit samples [62] as human data are not available for this

antibiotic. We also utilized MALDI-MS images from human [21] and rabbit [60,62] samples

that show the spatial distribution of antibiotics within granulomas as a validation for our tissue

PK calibration.

We simulated regimens on 200 randomly selected granulomas from our in silico granuloma

library (100 low CFU and 100 high CFU granulomas). We employed different dosing proto-

cols based on the studies shown in Table 1. First, we simulated the protocols for the REMoxTB

clinical trial [33] using GranSim. There were 3 different groups in this study: control group

(HRZE), HRZM group and RMZE group. To simulate the control group, we dosed granulo-

mas with HRZE daily for 8 weeks, followed by 18 weeks of daily dosing of HR. We simulated

HRZM and RMZE groups by dosing granulomas for 17 weeks daily with HRZM and RMZE,

respectively, followed by 9 weeks of a placebo phase, i.e., 9 weeks of no antibiotics (Table 1).

To compare our results to NHP studies performed herein, we simulated the regimens

HRZE, HMZE and RMZE for 60 days by dosing daily. We also simulated a positive control

case with the same granulomas but with no antibiotics (Table 1). Additionally, we simulated
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all 2-way, 3-way and 4-way combinations of HRZEM until all granulomas sterilize or reach a

stable state, i.e., until the fraction of granulomas that are not sterilized doesn’t change signifi-

cantly over time (120 days for 4-way combinations (5 regimens), 220 days for 3-way combina-

tions (10 regimens), 300 days for 2-way combinations (10 regimens)) (Table 1).

Average sterilization time measurement

A regimen’s efficacy depends on how fast it can clear all Mtb within a granuloma. Therefore,

we measured the average time a regimen needs to clear a granuloma, i.e., average sterilization
time, as a way to assess regimens’ potency. The average sterilization time of a regimen i (tsteri) is

tsteri ¼

Pn
k¼1

tsterik
n

ðEq5Þ

where n is the number of granulomas treated by i and tsterik is the time that granuloma k is treated

with i until total Mtb within k is zero. If a granuloma k is not sterilized by a regimen i at the end of

the treatment, then we assign tsterik ¼ ttreatment where ttreatment is the duration of the treatment.

NHP granuloma FDG avidity measurement in GranSim
Positron Emission Tomography and Computed Tomography (PET-CT) scans are used to

measure metabolic activity of granulomas within NHP by quantifying the uptake of a glucose

analog FDG (2-deoxy-2-[18F]-fluoro-D-glucose) via a measure called SUVR (standardized

uptake value ratio) [52]. As a proxy for capturing the SUVR per granuloma from NHP experi-

ments within our computational model, we developed a surrogate measurement in GranSim
that combines the amount of proinflammatory activity derived from both tumor necrosis fac-

tor (TNF) with activity of proinflammatory cells (such as activated T cells and macrophages)

that we define as FDG avidity. This is a way to represent the metabolic activity in the in silico
granulomas. Specifically, we calculate FDG avidity measure for each granuloma, i as:

FDG avidityi ¼
Xn

k¼1
ðTNFk þMrk

þ 4Mik
þ 9Mcik

þ 6Mak
þ 3Tgamk

þ 3Tcytk
Þ ðEq6Þ

where n is the number of grid microcompartments of the agent-based model grid in a simula-

tion, TNFk is the TNF concentration within the microgrid k in pg/ml (with an upper bound as

30 pg/ml), Mrk
; Mik

; Mcik
; Mak

; Tgamk
and Tcytk

are the number of resting macrophages, infected

macrophages, chronically infected macrophages, active macrophages, IFN-γ producing T cells

and cytotoxic T cells at microgrid k, respectively (see Fig A in S1 Appendix for the visualization

of FDG avidity in GranSim and see http://malthus.micro.med.umich.edu/GranSim/ for more

information about the roles of each cell type). The weights that each cell type contributes to the

FDG avidity on a grid is determined based on the assumed inflammatory responses each cell

type creates based on their in vivo activity. Because we do not know all factors or cells that con-

tribute to the SUVR, we use levels of TNF (an inflammatory marker) as a surrogate to represent

contributions from other cells to the metabolic activity within a granuloma.

Objective functions for regimen optimization

We use two objective functions to be minimized, the average sterilization time (described

above) and the total normalized dose (d). We define the total normalized dose d as

d xð Þ ¼
Xn

k¼1

Di

Dimax

; ðEq7Þ
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where k is the number of antibiotics in the regimen x, Di stands for the dose of the individual

antibiotic i, and Dimax
is the maximum allowed dose in our simulations. Minimizing drug dose

will decrease potential side effects. In our optimization pipeline, we aim to find the regimens

that minimize both objective functions.

The sampling ranges for each dose variable were set to range from 0 mg/kg to double the

standard CDC dose [4]. Maximum safe doses for each antibiotic were set to 10, 20, 40, 50 and

14 mg/kg for H, R, E, Z and M, respectively, as higher doses would increase the risk of toxicity

and would not be clinically relevant [56,81–84].

Kriging-based surrogate model

The goal of a multi-objective optimization is to find the optimal trade-off between two or more

objectives by identifying the optimal variable combinations [85]. For example, in this study the

goal is to both minimize time to sterilization and drug doses between multiple drugs. Using a

surrogate-assisted framework involves predicting the objective functions based on the outcomes

of the already-sampled regimens. These predictions can then be used as a computationally inex-

pensive alternative to predict the objective functions throughout the whole design space.

Here, we use a kriging-based surrogate model to generate the objective function predic-

tions. This kriging-based prediction and optimization algorithm is based on a set of open-

source MATLAB functions developed by Forrester and Sóbester [64,86]. This surrogate-assis-

ted framework provides an efficient and accurate way to thoroughly investigate the regimen

design space and predict optimal doses but with few iterations as compared to, for example, a

genetic algorithm [37]. Based on the sampled regimens and the calculated values of the corre-

sponding objective functions, the algorithm builds a kriging-based, surrogate model to predict

the values of the objective functions at any point in the variable design space.

The kriging model operates by assuming that the value of a function f of n variables at any

n-dimensional vector x can be stated as the sum of some unknown mean (μ) and an error

term that is a function of position ε(x) [87]:

f ðxÞ ¼ mþ εðxÞ ðEq8Þ

We also assume that the error term ε(x) is normally distributed with a mean of 0 and a stan-

dard deviation of σ2. To provide an estimate for the error at any given x, we assume the errors

at two points are correlated based on the distance between those two points. This means points

that are closer in the variable space tend to be more related and have smaller variance than

those that are farther. Hence, the correlation in error between points i and j, equal to compo-

nent Rij in the correlation matrix R, exponentially decays with respect to the weighted distance

between them:

Rij ¼ Corr½εðxðiÞÞ; εðxðjÞÞ� ¼ exp½�
Pn

h¼1
yhjx

ðiÞ
h � xðjÞh j

ph �ðyh � 0; ph 2 ½1; 2�Þ ðEq9Þ

where θh and ph are correlation parameters. Here, the correlation varies between 0 and 1 for

the farthest and closest points, respectively. The aim in this optimization algorithm is to esti-

mate the parameters μ, σ2, θh and ph for h = 1,..,n that maximizes the likelihood function L:

L ¼
1

ð2pŝ2Þ
k=2
jRj1=2

exp �
ðy � 1m̂Þ

0R� 1ðy � 1m̂Þ

2ŝ2

� �

ðEq10Þ

where y is a vector of length k with the values of the observed data at each of the sample points.

By varying θh and ph to find their optimal values that maximizes the likelihood function L, we

can calculate μ and σ2 and, hence, can predict the value of f at any point x.
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Pareto optimization

For multi-objective optimization goals, there may be a trade-off between different objectives.

For example, increasing the dose of each antibiotic in a regimen to the maximal dose would

result in a minimal sterilization time at the cost of a very high dose, which may lead to severe

side effects. Similarly, a very low dose would minimize the total dose of a regimen; however,

the granuloma would sterilize slowly, if at all. Both solutions are a part of a Pareto set, which

contains (non-dominated) optimal solutions using different weights on the objectives. There-

fore, we need to derive compromised solutions, deciding weights between the objectives within

the algorithm (see Fig B in S1 Appendix for a detailed description of a Pareto set). By using the

predicted objective functions, our algorithm selects a new regimen that maximizes the likeli-

hood of expected improvement of the Pareto set. Specifically, the expected improvement crite-

rion seeks the regimen(s) that maximize(s) the expected distance from the points currently in

the Pareto front and lies in the blue shaded area in Fig B in S1 Appendix, where new solutions

would dominate the current Pareto set [64,88].

Optimization pipeline in GranSim
Our optimization pipeline started with exploring an initial set of 40 regimens for each set of

4-way combinations (HRZE, HRZM, RMZE, HMZE, HRME). We generated these 40 regi-

mens using the LHS sampling scheme for the parameter space of doses for each individual

antibiotic. These were varied between 0 to the double of the standard CDC dose [4], i.e., 10,

20, 50, 40 and 14 for H, R, Z, E and M, respectively. For each regimen, we simulated 30 granu-

lomas (15 high-CFU and 15 low-CFU granulomas) each for 180 days (Table 1) and averaged

their sterilization times to evaluate the objective function for each regimen. Then, by using the

multi-objective surrogate-assisted optimization algorithm, we predicted the objective func-

tions and one regimen that is expected to improve the current Pareto set. We simulated this

new regimen using GranSim on the 30 total high- and low-CFU granulomas. This iterative

process continued for 20 iterations, and one optimal regimen was simulated at the end of each

iteration. At the end of this pipeline, we computed the Pareto front, i.e., the optimal non-domi-

nating regimens.

Nonhuman primate model for in vivo regimen experimental studies

Nine male Chinese cynomolgus macaques (Macaca fascicularis) (4–7 years of age) were dedi-

cated to this study and were infected with virulent M. tuberculosis strain Erdman (8–21 CFU)

via bronchoscopic instillation into a lower lobe. Three months post-infection, drug treatment

was initiated and continued for 2 months, then the animals were necropsied. Animals were

monitored daily for appetite and behavior and monthly for weight and erythrocyte sedimenta-

tion rate (a sign of inflammation). Gastric aspirate and BAL samples were cultured for Mtb to

assess disease progression. An additional seven cynomolgus macaques (2 males, 3 females, 5–9

years of age, infected with Mtb Erdman) from a concurrent study were included here as histor-

ical untreated controls and necropsied 5 months post-infection.

Drug treatments were 1. isoniazid (H), rifampicin (R), pyrazinamide (Z) and ethambutol

(E) (HRZE, N = 3); 2. isoniazid (H), moxifloxacin (M), pyrazinamide (Z) and ethambutol (E)

(HMZE, N = 4); or 3. rifampicin (R), moxifloxacin (M), pyrazinamide (Z) and ethambutol (E)

(RMZE, N = 2). Drug dosing as follows: H: 15 mg/kg; R: 20 mg/kg; Z: 150 mg/kg; E 55 mg/kg;

M: 35 mg/kg. Drugs were provided daily in treats or by gavage. Macaques were treated for 2

months, and drugs were stopped one day before necropsy. See Table 1 for a list of treatment

protocols.
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18F-fluorodeoxyglucose (FDG) PET-CT imaging was performed prior to treatment initia-

tion and at 4- and 8-weeks post-treatment initiation. FDG is a glucose analogue, which is pref-

erentially taken up by and retained in metabolically active cells and thus is useful as a proxy for

inflammation. FDG uptake was quantified using the peak standard uptake value (SUV) associ-

ated with each granuloma, as previously described [52].

Detailed necropsies were performed using the final PET-CT scan as a map to isolate all

lesions (granulomas, consolidations, etc.), uninvolved lung lobe samples, all thoracic lymph

nodes, peripheral lymph nodes, spleen and liver. All samples were plated individually for Mtb

on 7H11 plates, incubated for 3 weeks in a 5% C02 incubator. Bacterial burden for each sample

was calculated based on colonies counted on plates. Sum of all samples in thoracic cavity

(lung, granulomas, lymph nodes) is reported as total thoracic CFU; total lung and total tho-

racic LN are also calculated.

Supporting information

S1 Appendix. Optimizing tuberculosis treatment efficacy: comparing the standard regi-

men with Moxifloxacin-containing regimens. Fig A. Visualization of simulated NHP gran-

uloma FDG avidity using GranSim. The structure indicates FDG avidity of a simulated

granuloma using GranSim. The brightness scale of each microcompartment on the grid is cal-

culated based on inflammation within GranSim measured here by TNF concentration levels

and a weighted sum of each proinflammatory immune cell in the granuloma. See Methods for

details. Fig B. Schematic of Pareto Front Optimization. The non-dominating solutions, i.e.,

the Pareto set (x’s) for a problem with two objectives f1(x) and f2(x). The solid red line repre-

sents the Pareto front. Any solution that lies in the red shaded area would be a part of the

Pareto set, whereas solutions in the blue shaded area would dominate the preexisting Pareto

set and, hence, replace it [1]. Fig C. Comparing 3-way simulated combinations of HRZEM

using GranSim. Comparison of simulations for (A-C) fraction of unsterilized granulomas and

(D-F) sterilization times of 3-way combinations of HRZEM for (A and D) 100 high-CFU, (B

and E) 100 low-CFU and (C and F) a combination of 100 high- and 100 low-CFU granulomas.

(A-C) Moxifloxacin-containing regimens sterilize granulomas a lot faster initially than regi-

mens without moxifloxacin in all cases, and this difference is more pronounced for (B) low-

CFU granulomas. (D-F) Sterilization times shows a similar trend: granulomas treated with reg-

imens containing moxifloxacin (red boxes) are cleared in a shorter time frames on average

than regimens not containing moxifloxacin (black boxes). We performed significance tests

between each possible pair of regimens with (red boxes) and without (black boxes) including

moxifloxacin and show that regimens containing moxifloxacin are significantly more effica-

cious than regimens that do not include moxifloxacin (*p<0.0001, one-tailed paired t-test).

The central red lines in box plots represent the median, whereas the bottom and the top edges

of boxes represent 25th and 75th percentiles, respectively. Fig D. Comparing 2-way simulated

combinations of HRZEM using GranSim. Comparison of simulations for (A-C) fraction of

unsterilized granulomas and (D-F) sterilization times of 2-way combinations of HRZEM for

(A and D) 100 high-CFU, (B and E) 100 low-CFU and (C and F) a combination of 100 high-

and 100 low-CFU granulomas. (A-C) Moxifloxacin-containing regimens sterilize (B) low-

CFU granulomas faster initially than regimens not containing moxifloxacin in all cases, but

the same trend does not always hold for (A) high-CFU granulomas and (C) the combination

of high- and low-CFU granulomas. (D-F) Sterilization times averaged over all granulomas for

(D) high-CFU and (E) low-CFU granulomas, and (F) both groups combined (black boxes: reg-

imens with no moxifloxacin, red boxes: regimens with moxifloxacin). We performed signifi-

cance tests between each possible pair of regimens with (red boxes) and without (black boxes)
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including moxifloxacin and showed that HM and RM are significantly more efficacious than

regimens not including moxifloxacin (*p<0.005, one-tailed paired t-test). The central red lines

in box plots represent the median, whereas the bottom and the top edges of boxes represent

25th and 75th percentiles, respectively. Fig E. Data derived from NHP studies on total lung

CFU. The total CFU per NHP granulomas after NHP are treated with the corresponding regi-

mens for two months demonstrate that most granulomas are sterilized by all regimens com-

pared to the control (n = 107 granulomas from 7 animals in the control group, n = 117

granulomas from 4 animals in HMZE group, n = 52 granulomas from 3 animals in HRZE

group, n = 34 granulomas from 2 animals in RMZE group). Fig F. Simulation showing possi-

bility of Paucibacilliary TB for 2 regimen treatments. Total number of Mtb of high-CFU

granulomas when treated with (A) ZM and (B) EM for 300 days. Treatment starts 300 days

after the infection. Each line represents a granuloma simulation in GranSim. Table A. Frac-

tional inhibitory concentration (FIC) values of each regimen as predicted by INDI-

GO-MTB [2]. These values are used in the drug combinations. Table B. Predicted dosages

for each antibiotic in the HRZM regimen that are optimal for minimizing dose and sterili-

zation time (red dots in Fig 7A). Red row indicates the regimen with CDC-recommended

doses for each antibiotic (green dot in Fig 7A) [3]. The row labeled with a triangle indicates an

optimal 3-way combination, where the optimal dose of Z is predicted as 0. Table C. Predicted

dosages of each antibiotic in HRME regimen that is optimal for dose and sterilization

times (Red dots Fig 7B). Red row indicates the regimen with CDC-recommended doses for

each antibiotic (green dot in Fig 7B) [3]. The rows labeled with a triangle indicate an optimal

3-way combination, where the optimal dose of E is predicted as 0. Table D. Predicted dosages

of each antibiotic in HMZE regimen that are optimal for dose and sterilization times (Red

dots Fig 7C). Red row indicates the regimen with CDC-recommended doses for each antibi-

otic (green dot in Fig 7C) [3]. The row labeled with a triangle indicates an optimal 3-way com-

bination, where the optimal dose of E is predicted as 0. Table E. Predicted dosages of each

antibiotic in RMZE regimen that are optimal for dose and sterilization times (Red dots Fig

7D). Red row indicates the regimen with CDC-recommended doses for each antibiotic (green

dot in Fig 7D) [3]. The rows labeled with a triangle indicate an optimal 3-way combination,

where the optimal dose of E or Z is predicted as 0. Table F. Predicted dosages of each antibi-

otic in HRZE regimen that are optimal for dose and sterilization times (Red dots Fig 7E).

Red row indicates the regimen with CDC-recommended doses for each antibiotic (green dot

in Fig 7E) [3].

(DOCX)

S1 Text. Changes to GranSim and PK/PD modeling that are included in this next-genera-

tion version. Fig A. GranSim Calibrated to non-human primate data from Flynn lab [5,6].

(A) T cell and (B) macrophage counts from a new set of granulomas sampled from calibrated

parameter ranges span the range of in vivo data. Black dots are in vivo data from NHP granulo-

mas, blue lines are the maximum, mean and minimum (from top to bottom) values of corre-

sponding simulated cell counts from GranSim simulations, and the blue shaded area is

between the minimum and maximum. Fig B. Schematic representation of how antibiotics

are partitioned within a grid microcompartment within GranSim. Within a microcompart-

ment, antibiotics can be caseum-bound (DCcaseum), be located within macrophages (DCmac) or

be free without binding to anything (DCfree), depending on the availability of caseous tissue

and macrophages within that microgrid. (DCcaseum: drug concentration bound to caseum,

DCmac: drug concentration within a macrophage, DCfree: free drug concentration, green circle:

macrophage, brown bleb: caseum, black circles: replicating extracellular Mtb, light green circle:

intracellular Mtb, tan circle: nonreplicating Mtb). Fig C. Calibration of GranSim PK/PD to
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Moxifloxacin datasets. Calibration of moxifloxacin (MXF) plasma and tissue PK to temporal

(black dots in A-D) and spatial (see Fig 2B in [8]) data from human granulomas. Black lines in

A-D are the maximum, mean and minimum (from top to bottom) values of MXF concentra-

tions resulting from 100 GranSim simulations, and the black shaded area is between the mini-

mum and maximum. Average simulated MXF concentrations in (A) blood, (B) granuloma,

(C) uninvolved lung and (D) caseum agree with human data. (E) Spatial analysis of how MXF

is distributed within a granuloma in GranSim indicates that MXF does not easily diffuse into

caseum, which is consistent with MALDI-MS imaging of granulomas in [8]. All other drugs

were calibrated using this same approach. Table A. Pharmacodynamic (PD) parameters for

each drug and Mtb type and sources for bactericidal assays used for calibration. Emax val-

ues are reported as per GranSim timestep of 10 minutes.
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man, JoAnne L. Flynn, Denise E. Kirschner.

Data curation: Pauline Maiello, H. Jacob Borish, Alexander G. White, Harris B. Chishti, Jaime

Tomko, L. James Frye, Daniel Fillmore, Kara Kracinovsky, Jennifer Sakal, Charles A.

Scanga, Philana Ling Lin.

Formal analysis: Maral Budak, Joseph M. Cicchese.
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