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Abstract

Inferring gene co-expression networks is a useful process for understanding gene regulation

and pathway activity. The networks are usually undirected graphs where genes are repre-

sented as nodes and an edge represents a significant co-expression relationship. When

expression data of multiple (p) genes in multiple (K) conditions (e.g., treatments, tissues,

strains) are available, joint estimation of networks harnessing shared information across

them can significantly increase the power of analysis. In addition, examining condition-spe-

cific patterns of co-expression can provide insights into the underlying cellular processes

activated in a particular condition. Condition adaptive fused graphical lasso (CFGL) is an

existing method that incorporates condition specificity in a fused graphical lasso (FGL)

model for estimating multiple co-expression networks. However, with computational com-

plexity of O(p2K log K), the current implementation of CFGL is prohibitively slow even for a

moderate number of genes and can only be used for a maximum of three conditions. In this

paper, we propose a faster alternative of CFGL named rapid condition adaptive fused

graphical lasso (RCFGL). In RCFGL, we incorporate the condition specificity into another

popular model for joint network estimation, known as fused multiple graphical lasso (FMGL).

We use a more efficient algorithm in the iterative steps compared to CFGL, enabling faster

computation with complexity of O(p2K) and making it easily generalizable for more than

three conditions. We also present a novel screening rule to determine if the full network esti-

mation problem can be broken down into estimation of smaller disjoint sub-networks,

thereby reducing the complexity further. We demonstrate the computational advantage and

superior performance of our method compared to two non-condition adaptive methods, FGL

and FMGL, and one condition adaptive method, CFGL in both simulation study and real

data analysis. We used RCFGL to jointly estimate the gene co-expression networks in differ-

ent brain regions (conditions) using a cohort of heterogeneous stock rats. We also provide

an accommodating C and Python based package that implements RCFGL.
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Author summary

Inferring gene co-expression networks can be useful for understanding pathway activity

and gene regulation. While jointly estimating co-expression networks of multiple condi-

tions, taking into account condition specificity, such as information about an edge being

present only in a specific condition or an edge being present across all the conditions, sub-

stantially increases the power. In this paper, a computationally rapid condition adaptive

method for jointly estimating gene co-expression networks of multiple conditions is pro-

posed. The novelty of the method is demonstrated through a broad range of simulation

studies and a real data analysis with multiple brain regions from a genetically diverse

cohort of rats.

Introduction

A gene co-expression network is an undirected graph, where each node corresponds to a gene,

and gene pairs are connected with an edge if they share a significant co-expression relationship

[1–3]. Gene co-expression network analysis is a useful tool for uncovering the complex molec-

ular interplay in biological processes [4–7]. Fitting Gaussian graphical models (GGM) is a pop-

ular approach for constructing biological networks in various applications [8–13]. In the

context of gene co-expression network analysis, GGM assumes a multivariate normal distribu-

tion between the expression profiles of a set of genes [14]. The estimate of the inverse of the

covariance matrix (also known as “precision matrix”) is then examined to find which pairs of

genes have significant conditional dependence and the co-expression network is constructed

based on the dependence structure. The nonzero off-diagonal elements of the estimated preci-

sion matrix represent edges in the network.

Numerous approaches [15–21] have focused on the estimation of the aforementioned pre-

cision matrix. In most realistic scenarios, the number of genes (p) is much larger than the

number of samples (n). It compels the researchers to use some form of regularization to induce

sparsity in the estimation of the p-dimensional precision matrix. Yuan and Lin [16], Banerjee

et al. [17], Friedman et al. [18], considered a penalized maximum likelihood model with ℓ1 reg-

ularization, known as graphical lasso (GL). Solving the GL model is a constrained convex opti-

mization problem. Alternating direction method of multipliers (ADMM) [22–28] is a widely

popular algorithm for solving constrained convex optimization problems. Different variations

of ADMM have been used to solve the GL problem [29–34].

In a multi-condition gene co-expression study, the co-expression profiles across multiple

(K) conditions are available and it is of great interest to find out how similar or dissimilar the

co-expression networks are across those conditions [35–37]. For example, a particular co-

expression network module can be present in a tumor tissue but not in a healthy tissue and

thus, can serve as a key tool in identification of the tissue-type. There are methods like

DiffCoEx [38], DICER [39] and DINGO [40] which particularly aim to study such differen-

tial co-expression patterns between two conditions. Broadly, these methods compare the

sample correlation of every pair of genes between two conditions. The problem with such

approaches is two-fold: firstly, the sample correlation may not be an appropriate measure of

co-expression in many datasets, especially with a large number of genes and a limited sam-

ple-size and secondly, with more than two conditions, the approaches compare the pairs of

conditions independently and thereby failing to perform a joint comparison in the true

sense. Alternatively, a joint analysis of co-expression networks (more generally, any graphi-

cal networks) harnessing shared information across different conditions can be significantly
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more powerful than individual analyses [41, 42]. Fused graphical lasso (FGL) [43] is one of

the most popular approaches for joint estimation of multiple graphical networks. As the

name suggests, FGL is an extension of the GL model in the context of multiple conditions. It

simultaneously estimates multiple precision matrices, corresponding to multiple conditions,

by considering the sum of multiple GL likelihoods and further employs a standard lasso pen-

alty [44] and a pairwise fused lasso penalty [45] across the conditions. The standard lasso

penalty encourages sparsity in the network estimation and the pairwise fused lasso penalty

ensures that the networks share some degree of similarity. A similar method named fused

multiple graphical lasso (FMGL) was proposed by Yang et al. [46]. FMGL considers a

sequential fused lasso penalty across the conditions instead of the pairwise penalty consid-

ered in FGL. FGL and FMGL are equivalent when there are only two conditions. Both the

methods use the iterative ADMM algorithm [22] for estimating the parameters. However,

FMGL makes use of a very efficient intermediate step originally described in Condat (2013)

[47] that substantially speeds up the computation (from O(K log K) to O(K)).

The fused lasso penalties both pairwise and sequential inherently assume that the preci-

sion matrices and consequently, the co-expression networks in all conditions are equally

similar to each other. This assumption is rigid and may easily be violated in most real data

scenarios. For example, tissues of two different tumor sub-types are expected to be more sim-

ilar to each other than a healthy tissue. To account for such condition specific similarities

and dissimilarities into the FGL framework, Lyu et al. [48] developed condition adaptive

fused graphical lasso (CFGL). The penalty term considered in CFGL is a modification of the

pairwise fused lasso penalty that incorporates binary weight matrices capturing condition-

specificity. CFGL uses an iterative ADMM algorithm for estimating the parameters. How-

ever, the CFGL R package is limited because it can only accommodate a maximum of three

conditions and is prohibitively slow even for a moderate number of genes (p� 1000). Thus,

in a dataset with more than three conditions and a large number of genes, the CFGL R pack-

age is not scalable.

In this paper, we propose a new method named rapid condition adaptive fused graphical

lasso (RCFGL) for jointly estimating multiple co-expression networks that takes into account

condition specificity, is computationally rapid, and can handle more than three conditions.

Similar to CFGL, we compute the binary weight matrices that capture pairwise condition spec-

ificity. Instead of considering a pairwise fused lasso penalty, as considered in CFGL, we incor-

porate the computed weight matrices with a sequential fused lasso penalty. In that sense,

RCFGL is a condition adaptive extension of the FMGL algorithm. We use iterative ADMM

algorithm [22] for estimation of the parameters. As in FMGL, using a sequential fused lasso

penalty enables us to solve an intermediate step efficiently using fast algorithms [47, 49, 50].

This particular step is one of the main reasons behind the computational hurdle faced in

CFGL. The authors of FGL and FMGL both had proposed a set of necessary conditions that

can be investigated prior to fitting the models to evaluate the existence of a block diagonal

structure in the precision matrices to be estimated. It can drastically reduce the computational

time since all the matrix operations of order O(p3) reduce to
PM

l¼1
Oðp3

l Þ (where M is the total

number of blocks with l-th block having size pl). We have theoretically shown that the same set

of conditions can also be used in the context of RCFGL further facilitating the computation.

Through extensive simulation studies, we verified the robustness of our proposed method and

demonstrated the computational advantage. We also analyzed the gene co-expression net-

works of three different brain regions from a dataset of heterogeneous stock rats. Finally, we

built a C and Python based package implementing RCFGL available here, https://github.com/

sealx017/RCFGL.
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Materials and methods

Suppose there are p genes with expression profiles available across K conditions and there

are nk individuals under each condition k. Let yk
i denote the p × 1 expression vector corre-

sponding to the i-th individual under condition k. YðkÞ ¼ ðyk
1
; . . . ; yk

nk
Þ

T
is the nk × p matrix of

expression vectors under condition k and �YðkÞ is the corresponding 1 × p column mean

vector. It is assumed that yk
1
; . . . ; yk

nk
2 IRp, are independently and identically drawn from

Np(μk, Σk) where μk 2 IRp and Σk� 0 (the notation � 0 denotes positive-definiteness). Let

ΘðkÞ ¼ Σ� 1

k denote the precision matrix under condition k. Upon estimating Θ(k), the gene

co-expression network would be constructed by representing the genes as nodes and condi-

tional dependencies as edges in a graph. To be more specific, two genes i, j under condition

k, will only be connected in the graph if and only if ΘðkÞij 6¼ 0: Throughout the paper we use

1n to denote n × 1 vector of all 10s. Next, we discuss the existing methods for estimating

Θ(k)’s.

Review of methods

Fused graphical lasso and fused multiple graphical lasso. Fused graphical lasso (FGL)

[43] and fused multiple graphical lasso (FMGL) [46] maximize the following penalized log-

likelihood function,

maximize
ΘðkÞ�0;k¼1;...;K

XK

k¼1

nk½logðdetðΘ
ðkÞÞ � trðSðkÞΘðkÞÞ� � PðΘÞ; ð1Þ

where SðkÞ ¼ ðYðkÞ � 1nk
�YðkÞÞTðYðkÞ � 1nk

�YðkÞÞ=nk is the sample covariance matrix and P(Θ) is

the penalty term with Θ = {Θ(1), . . ., Θ(K)}. As mentioned earlier, the only difference between

FGL and FMGL is in the penalty term, P(Θ). FGL considers a pairwise fused lasso penalty and

FMGL considers a sequential fused lasso penalty which have the following forms,

PFGLðΘÞ ¼ l1

X

i6¼j

XK

k¼1

jΘðkÞij j þ l2

X

i6¼j

XK

k<k0
jΘðkÞij � Θðk

0Þ

ij j;

PFMGLðΘÞ ¼ l1

X

i6¼j

XK

k¼1

jΘðkÞij j þ l2

X

i6¼j

XK� 1

k¼1

jΘðkÞij � Θðkþ1Þ

ij j;

where λ1, λ2 are non-negative tuning parameters. The first term of both PFGL(Θ) and

PFMGL(Θ) is the lasso penalty used in the GL model [18] that controls the overall sparsity. The

second term of both the penalties controls the similarity of the off-diagonal elements of the

precision matrices between conditions. Note that the second term of PFMGL(Θ) is different

from that of PFGL(Θ) since it only focuses on differences between two consecutive conditions.

If there are only two conditions i.e., K = 2, PFGL(Θ) = PFMGL(Θ). For K = 3, writing the penal-

ties as functions of λ1, λ2, we show that PFGL(Θ, λ1, λ2)� PFMGL(Θ, λ1, 2λ2). For K> 3, we are

able to establish a crude connection: PFGLðΘ; l1; l2Þ � PFMGL Θ;l1; b
K2

4
cl2

� �
(S1 Text).

PFGL(Θ) encourages the same level of similarity between all the pairs of conditions and

PFMGL(Θ) encourages the same level of similarity between each consecutive pair of conditions.

However, these assumptions may be violated in practical scenarios. For example, two different

subtypes of tumor tissues can be more similar to each other than to a healthy tissue. Therefore,

ideally the penalty term should be such that it penalizes the difference between the tumor sub-

types more than it penalizes the difference between one of the tumor subtypes and the healthy
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tissue. Lyu et. al. [48] addressed this issue by incorporating a special weight term into PFGL(Θ)

which is discussed in the next section.

Condition adaptive fused graphical lasso. Lyu et. al. [48] introduced binary screening

matrices: Wðkk0Þ ¼ ½½wðkk0Þ
ij �� for k 6¼ k0 defined as,

wðkk0Þ
ij ¼

1 ΘðkÞij and Θðk
0Þ

ij are non‐differential between conditions k and k0

0 ΘðkÞij and Θðk
0Þ

ij are differential between conditions k and k0:

8
<

:

The weight matrices are included in PFGL(Θ) to define a penalty function that takes into

account condition-specificity,

PCFGLðΘÞ ¼ l1

X

i6¼j

XK

k¼1

jΘðkÞij j þ l2

X

i6¼j

XK

k<k0
wðkk0Þ

ij jΘ
ðkÞ
ij � Θðk

0Þ

ij j:

The weight matrices in real data are unknown. Lyu et. al. [48] estimated them by performing a

hypothesis test [51] for evaluating differences between the conditions. The test determines if

the ij-th entry of the precision matrices: Θ(k) and Θ(k0) is differential. If the test is rejected, wkk0
ij

is set to 0, otherwise, it is set to 1. Going back to the example of two tumor subtypes and a

healthy tissue, suppose the ij-th element is non-differential between the tumor subtypes (let’s

denote them as condition 1 and 2) but is differential between each of the tumor subtypes and

the healthy tissue (let’s denote it as condition 3). The weight terms in this case will be, w12
ij ¼ 1,

w23
ij ¼ 0, and w13

ij ¼ 0. As a consequence, PCFGL(Θ) will penalize the difference between the

tumor subtypes but not the difference between one of the tumor subtypes and the healthy tis-

sue for the ij-th element.

Proposed method

Model. We propose to maximize the penalized log-likelihood from (1) with a new penalty

term. We consider the binary weight matrices: W(kk0) discussed in the last section and include

them to PFMGL(Θ) instead of PFGL(Θ) as in CFGL. Thus, the penalty term we propose has the

following form,

PRCFGLðΘÞ ¼ l1

X

i6¼j

XK

k¼1

jΘðkÞij j þ l2

X

i6¼j

XK� 1

k¼1

w
ðkkþ1Þ

ij jΘðkÞij � Θðkþ1Þ

ij j:

We name the method rapid condition adaptive fused graphical lasso (RCFGL) due to the

computational speed it offers over CFGL. Note that when K = 2, RCFGL is equivalent to CFGL

(since, PCFGL(Θ) = PRCFGL(Θ)). Denote the set of all weight matrices as, W = {Wkk0: k< k0}.
For K> 2, writing the penalties as functions of λ1, λ2, W, we show that PCFGL(Θ, λ1, λ2, W)�

PRCFGL(Θ, λ1, λ2, W�), where W� = {W�(kk+1): k = 1, . . ., K − 1} is a set of slightly modified

weight matrices (S1 Text).

All the methods discussed so far consider penalty functions which are sums of two indi-

vidual penalties: the first one being the standard lasso penalty controlling overall sparsity

and the second one controlling similarity between conditions. The methods differ from each

other only in terms of the second penalty term. In the second penalty term, FGL and CFGL

consider all possible pairwise differences between the conditions, whereas FMGL and

RCFGL consider only sequential differences. CFGL and RCFGL take into account condition

specificity by incorporating weights, whereas FGL and FMGL are not condition adaptive

(Table 1).
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ADMM algorithm. We use an iterative ADMM algorithm [22] to maximize the penalized

log-likelihood. Our algorithm is very similar to that used in FGL [43] and CFGL [48] with a

few key modifications. The algorithm requires several intermediate variables such as Z, U that

do not have any direct interpretation. We rewrite the problem as,

minimize
Θ;Z

�
XK

k¼1

nk½logðdetðΘ
ðkÞÞ � trðSðkÞΘðkÞÞ� þ PRCFGLðZÞ;

incorporating the constraint of positive-definiteness: Θ(k)� 0 for k = 1, . . ., K and the con-

straint that Z(k) = Θ(k) for k = 1, . . ., K, where Z = {Z(1), . . ., Z(K)}. The corresponding scaled

augmented Lagrangian [22] can be written as,

LrðΘ;Z;UÞ ¼ �
XK

k¼1

nk½logðdetðΘ
ðkÞÞ � trðSðkÞΘðkÞÞ� þ PRCFGLðZÞþ

r

2

XK

k¼1

jjΘðkÞ � ZðkÞ þ UðkÞjj2F �
r

2

XK

k¼1

jjUðkÞjj
2

F

ð2Þ

where U = {U(1), . . ., U(K)} are dual variables, ρ is a penalty parameter and ||.||F denotes the Fro-

benius norm.

The algorithm is as follows,

1. Initialize the variables: Θ(k) = I, Z(k) = 0, U(k) = 0 for k = 1, . . ., K.

2. Select a constant ρ> 0.

3. For i = 1, 2, 3, . . . until convergence:

i. For k = 1, . . ., K, update ΘðkÞðiÞ as the minimizer (with respect to [w.r.t] Θ(k)) of

� nk½logðdetðΘ
ðkÞÞ � trðSðkÞΘðkÞÞ� þ r

2
jjΘðkÞ � ZðkÞði� 1Þ þ UðkÞði� 1Þjj

2

F .

Let VDVT denote the eigen-decomposition of SðkÞ � r=nkðZ
ðkÞ
ði� 1Þ þ UðkÞði� 1ÞÞ.

The solution of the above minimization [52] is given by V ~DVT , where ~D jj is the diagonal

matrix with j-th diagonal element being

r=nkð� Djj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

jj þ 4r=nk

q
Þ:

Table 1. Penalty functions used in different methods. The different methods consider penalty functions which are sum of two individual penalties and they differ only in

the second term. The table categories the second penalty term for each of the methods by whether the method is condition adaptive and whether it uses the sequential

difference.

Condition Adaptive

Sequential Difference No Yes

No
FGL:

X

i6¼j

XK

k<k0
jΘðkÞij � Θðk

0 Þ

ij j FMGL (RFGL�):
X

i6¼j

XK� 1

k¼1

jΘðkÞij � Θðkþ1Þ

ij j

Yes
CFGL:

X

i6¼j

XK

k<k0
wkk0

ij jΘ
ðkÞ
ij � Θðk

0 Þ

ij j RCFGL:
X

i6¼j

XK� 1

k¼1

wðkkþ1Þ

ij jΘðkÞij � Θðkþ1Þ

ij j

�In the developed Python package, we provide an implementation of FMGL that we refer to as RFGL.

https://doi.org/10.1371/journal.pcbi.1010758.t001
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ii. Update Z(i) as the minimizer (w.r.t Z) of

PRCFGLðZÞ þ
r

2

XK

k¼1

jjΘðkÞðiÞ � ZðkÞ þU
ðkÞ
ði� 1Þjj

2

F

The problem can be rewritten as,

minimize
Z

PRCFGLðZÞ þ
r

2

XK

k¼1

jjZðkÞ � AðkÞjj2F

( )

; A
ðkÞ
¼ ΘðkÞðiÞ þU

ðkÞ
ði� 1Þ

With the actual expression of PRCFGL(Z) the above problem takes the form,

minimize
Z

l1

X

i6¼j

XK

k¼1

jZðkÞij j þ l2

X

i6¼j

XK� 1

k¼1

w
ðkkþ1Þ

ij jZðkÞij � Zðkþ1Þ

ij j þ
r

2

XK

k¼1

jjZðkÞ � A
ðkÞ
jj

2

F

( )

The above problem is completely separable w.r.t each pair of matrix elements (i, j), where

i 6¼ j. It means that one can independently solve, for each pair (i, j), the following minimi-

zation problem:

minimize
Z
ð1Þ

ij ;...;Z
ðKÞ
ij

l1

XK

k¼1

jZðkÞij j þ l2

XK� 1

k¼1

w
ðkkþ1Þ

ij jZðkÞij � Zðkþ1Þ

ij j þ
r

2

XK

k¼1

jZðkÞij � A
ðkÞ
ij j

2

( )

ð3Þ

The problem is known as the weighted 1-D fused lasso signal approximator, which can

be solved very efficiently.

iii. For k = 1, . . ., K, update Uk
ðiÞ as Uk

ði� 1Þ
þ ðΘk

ðiÞ � Zk
ðiÞÞ.

The step where using a sequential fused lasso penalty instead of a pairwise fused lasso pen-

alty is beneficial is in Eq (3). When wðkkþ1Þ

ij ¼ 1 for all k = 1, . . ., K − 1, the problem of Eq 3

becomes the 1-D fused lasso signal approximator [45, 53] for which an efficient and exact solu-

tion is available by the algorithm of Condat et al. [47]. The MATLAB package of FMGL [46]

also uses this particular algorithm. The algorithm of Condat et al. [47] treats the fused lasso sig-

nal approximator as a 1-D total variation denoising problem [54]. When wðkkþ1Þ

ij ¼ 0 for at

least one k, the problem of Eq 3 can be thought of as a special case of a weighted 1-D total vari-

ation problem (where weights are 1 or 0). There is an efficient ‘Taut-String’ algorithm [49, 50]

for solving weighted 1-D total variation denoising problems.

The algorithm of Condat et al. [47] and the ‘Taut-String’ algorithm [49, 50] both have

computational complexity of O(K) in most practical scenarios. Recall that FGL [43] uses a pair-

wise fused lasso penalty which results in the general fused lasso approximator [45, 53] in the Z

updating step. FGL follows a path algorithm [53] for solving the above step which has compu-

tational complexity of O(K log K). In CFGL [48], the authors solve the Z updating step exactly

for K = 2 and 3, but, do not provide any solution for K> 3. For details about the computation

of the weight matrices: Wkk+1 for k = 1, . . ., K − 1, we refer to the CFGL paper [48].

Detecting block diagonal structure in the precision matrices. Here, we present a theo-

rem involving a set of sufficient conditions that can be checked prior to fitting the ADMM

algorithm and can potentially result in substantial computational benefit. A similar theorem

has been used in the context of FGL [43] and FMGL [46]. Using the theorem, one would

inspect the sample covariance matrices S(1), . . ., S(K) to determine if the solution to the RCFGL

problem i.e., the estimates of the precision matrices: Θ̂ðkÞ for k = 1, . . ., K, are block-diagonal
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after some permutation of the genes. The inspection is based on comparing the absolute values

of SðkÞij ’s with the tuning parameter λ1.

Theorem 1 Denote the set of p genes by C. Suppose, there are M many disjoint subsets of C s.
t. C1 t C2 t . . . t CM = C. For the genes in Cl to be completely disconnected from those in Cl0 in
each of the resulting estimates, it will be sufficient to have jnkS

ðkÞ
ij j < l1 for k = 1, 2, � � �, K, 8i 2

Cl, j 2 Cl0.

Using Theorem 1, for a given value of λ1, suppose we find out that the estimated precision

matrices: Θ̂ðkÞ for k = 1, . . ., K, will be block-diagonal with M blocks i.e., they will have the fol-

lowing form,

Θ̂ðkÞ ¼

Θ̂ðkÞ
1 0 0 0

0 Θ̂ðkÞ
2 0 0

0 0 . .
.

0

0 0 0 Θ̂ðkÞ
M

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð4Þ

where Θ̂ðkÞ
l for k = 1, . . ., K have the same dimensions and correspond to the same subset of

genes: Cl. It would imply that instead of solving the RCFGL problem for full Θ(k), one can

solve the RCFGL problems for ΘðkÞl for l = 1, . . ., M independently. This drastically reduces

the computational complexity. Let the dimension of each block ΘðkÞl be pl × pl (the size of the

subset Cl is pl), where
PM

l¼1
pl ¼ p: The ADMM algorithm discussed in the last section,

involves eigen-decomposition of K many p × p matrices which takes up computational com-

plexity of O(Kp3). Whereas, solving block RCFGL problems will only have the computational

complexity of K
PM

l¼1
Oðp3

l Þ. The proof of Theorem 1 can be found in S1 Text.

Tuning parameter selection. Following the suggestion of [43, 48] for selecting the tuning

parameters λ1, λ2, we use an approximation of the Akaike information criterion (AIC),

AICðl1; l2Þ ¼
XK

k¼1

½nktrðS
ðkÞΘ̂ðkÞ

l1 ;l2
Þ � nk logðdetðΘ̂

ðkÞ
l1 ;l2
Þ þ 2Ek�

Θ̂ðkÞ
l1 ;l2

is the precision matrix estimated for the k-th condition using the tuning parameters λ1

and λ2, and Ek is the number of unique non-zero elements in Θ̂ðkÞ
l1 ;l2

. A grid search can then be

performed to select λ1 and λ2 that minimize the AIC(λ1, λ2) score. However, as pointed out by

[43], such an approach may tend to choose models that are too large to be useful. Thus, in

many cases, model selection is better guided by practical considerations, such as network

interpretability and stability.

Effect of ordering of the conditions. Our penalty term, PRCFGL(Θ) only considers

sequential differences between the conditions. It implies that different ordering of the condi-

tions would yield different penalty levels. For example, suppose there are three conditions: 1, 2

and 3, where the network of 1 is same as that of 3 but the network of 2 is totally different (Θ(1)

= Θ(3) 6¼Θ(2)). If we consider the sequence (1, 3, 2), PRCFGL(Θ) will include the terms:

w13
ij jΘ

ð1Þ

ij � Θð3Þij j that encourage similarity in the estimated networks of 1 and 3. But, if we con-

sider the sequence (1, 2, 3), PRCFGL(Θ) will not include those terms, thereby not encouraging

similarity between Θ(1), Θ(3). Thus, it can be potentially more powerful to use a particular

ordering of conditions that places more similar conditions closer. We study the effect of mis-

specified ordering in our simulation studies.
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The ordering can be based on biological information available about the degree of similarity

across the conditions, for instance, relationship in cell lineages. Alternatively, we can use hier-

archical clustering based on the gene expression data, Y(k), k = 1, . . ., K, and other sophisticated

data-driven ways of obtaining a suitable ordering. As an example, here we discuss a simple

method based on comparing the sample covariance matrices across the conditions. More spe-

cifically, we compute the sample covariance matrix for ever condition k,

SðkÞ ¼ ðYðkÞ � 1nk
�YðkÞÞTðYðkÞ � 1nk

�YðkÞÞ=nk. Then, we consider the Euclidean distance between

a pair of conditions (k, k0) as,

dðk; k0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnk

i¼1

Xnk

j¼1

ðSðkÞi;j � Sðk
0Þ

i;j Þ
2

s

:

We subject the generated distance matrix (between all the conditions) to hierarchical cluster-

ing to identify conditions that are closer or farther from each other and use these relationships

to order the conditions in RCFGL. In our simulation studies, this procedure was able to detect

the right ordering every time.

Software implementation. We mainly make use of Condat et. al.’s algorithm [47] avail-

able as a c code and a Python module named proxTV to build our package named RCFGL

available here. We provide a Jupyter notebook [55] with detailed guidance for fitting the

RCFGL model. Additionally, we provide an implementation of the FMGL model that we refer

to as RFGL, an acronym for rapid fused graphical lasso. The order of the conditions can be

specified by the users. We also provide functions for visualizing the estimated networks and

compare them across conditions. The developed package can be found at this link, https://

github.com/sealx017/RCFGL. All code used in the simulation studies of this manuscript are

also provided with detailed documentation.

Simulation setup. We considered seven different simulation scenarios, (S1), (S2), . . ., and

(S7), with varying levels of differentiation across conditions described below. In each of the

scenarios, we considered 500 genes and 100 subjects. Each gene co-expression network con-

sisted of 5 equally sized sub-networks, each made of 100 genes.

1. In the first four simulation scenarios, our goal was to compare RCFGL with other three

methods i.e., FGL, FMGL (referred to as, RFGL), and CFGL in terms of both estimation

accuracy and computational time.

(a). In both (S1) and (S2), three conditions were considered i.e., K = 3. In (S1), the first two

networks were exactly the same, whereas the third network shared only three sub-net-

works common with the first two and the other two sub-networks were generated inde-

pendently. In (S2), the first two networks were again exactly the same but the third one

did not share any sub-network common with the first two i.e., all 5 of its sub-networks

were generated independently.

(b). In both (S3) and (S4), four conditions were considered i.e., K = 4. In (S3), the first two

and the last two networks were the same as each other. In (S4), only the first two net-

works were the same and the other two were different.

2. In the last three simulation scenarios, we studied the effect of the ordering of the conditions

on RCFGL’s performance for three and four conditions. In (S5), three conditions were con-

sidered. The first and third conditions had the same networks, whereas the second network

was entirely different. In (S6) and (S7), four conditions were considered. In (S6), the first

and third networks were the same and the other two were different. In (S7), the first and

fourth networks were the same and the other two were different.
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All of the scenarios are summarized in terms of the precision matrices of different condi-

tions in Fig 1. Next, we describe how the above networks and corresponding edge-weights

were simulated.

To mimic real-world biological network structures [48, 56], we used the Barabasi-Albert

model [57] to simulate the unweighted network topology, i.e., the adjacency matrix with indi-

cator elements, 1 if an edge was present between a pair of genes and 0 otherwise. Next, the k-th

weighted network, A(k) was generated as,

AðkÞij ¼

1 if i ¼ j

0 if ði; jÞ‐th element of the k‐th adjacency matrix was 0

� UnifðDÞ if ði; jÞ‐th element of the k‐th adjacency matrix was 1

8
>>><

>>>:

where Unif(D) refers to a uniform distribution with D = [−0.9, −0.6] [ [0.6, 0.9]. To ensure

that the weighted network was positive definite, an eigen-value adjustment was performed as,

A�(k) = A(k) + |δ(k)|I, where δ(k) was the smallest eigen-value of A(k). Based on A�(k), covariance

matrix Σk = [Sk(i,j)] was constructed as,

Skði;jÞ ¼
½A�ðkÞ�� 1

ði;jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½A�ðkÞ�� 1

ði;iÞ½A�ðkÞ�
� 1

ðj;jÞ

q :

With the covariance matrix Σk (and, consequently Θ(k)), the gene expression vector of the i-th

subject under condition k was simulated as yðkÞi � Npð0;ΣkÞ. Ten replications were considered

in every simulation scenario and average findings were reported.

Real data. RNA expression from three brain regions was measured using high-through-

put RNA sequencing on the Illumina HiSeq 4000 platform and a poly-A selection protocol

(GSE173141). The original data set [58] included tissue from 88 alcohol and drug naïve hetero-

geneous stock rats and most rats had RNA-Seq libraries from all the regions. The average

Fig 1. The relationship between the precision matrices across conditions in different simulation scenarios. Notice that in (S1), the first two

conditions had the exactly same networks, whereas the network of the third condition was partially similar, sharing only the first three blocks. In (S2)

and the following simulation scenarios, there was no such partial similarity considered and the conditions either shared the full network or they were

entirely dissimilar.

https://doi.org/10.1371/journal.pcbi.1010758.g001
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number of raw reads per rat and brain region was 26.7 million. After extensive quality control,

83 rats remained with RNA-Seq from the lateral habenula (LHB) core, 84 rats with data from

the infralimbic (IL) cortex, and 82 rats with data from the prelimbic (PL) cortex [59, 60].

Reads were trimmed to remove adaptors and low-quality base calls using cutAdapt [61]. They

were then aligned to the Ensembl Rat transcriptome using RSEM (RNA-Seq Expectation-Max-

imization; [62]). An upper quantile scaling was initially applied to the estimated read counts

for individual genes using the betweenLaneNormalization function from the EDASeq package

in R [63]. A regularized (r)log was then used to transform the read counts using the DESeq2

package in R [64]. Finally, a batch effects adjustment was made using the ComBat function in

the sva R package [65]. For this manuscript, we focused on 15,421 protein-coding genes com-

mon across all three brain regions and 64 rats having data available for all of those genes in all

three brain regions. More details about the dataset can be found in S1 Text.

Measures for evaluating performance. In the simulation studies, the estimation perfor-

mance of the methods were assessed based on both network topology and edge-weights.

Denote the true precision matrices as Θ(k) and the estimated precision matrices by Θ̂ðkÞ for

k = 1, . . ., K. We first determined the true and false positives and false negatives in the follow-

ing way. If the ij-th edge was present in the true network of the k-th condition i.e., ΘðkÞij 6¼ 0

and was also identified in the estimated network i.e., jΘ̂ðkÞ
i;j j � tol, it was counted as a true posi-

tive (TP). Here, tol was a chosen level of tolerance to define an edge and it was kept at 0.01.

Similarly, if the edge was absent in the true network i.e., ΘðkÞij ¼ 0 but was identified in the esti-

mated network, it was counted as a false positive (FP). If the edge was present in the true net-

work but was not identified in the estimated network i.e., jΘ̂ðkÞ
i;j j < tol, it was counted as a false

negative (FN). Next, the precision (= TP
TPþFP) and recall (= TP

TPþFN) were computed to plot the

precision-recall curves. To judge the accuracy of edge-weight estimation, we computed the

sum of squared error (SSE) between the estimated and the true precision matrices:
PK

k¼1

Pnk
i¼1

Pnk
j¼1
ðΘðkÞi;j � Θ̂ðkÞ

i;j Þ
2
. We compared the run-times of the methods based on a

MacOS system with 32 GB RAM and intel i9 CPU with 8 cores.

In the real data analysis, first we compared the run-times of the different methods. Next, we

compared the estimation performance of RFGL and RCFGL to assess the advantages of condi-

tion adaptive estimation in this context. To demonstrate how similar the results from RCFGL

and CFGL were, we inspected the top Z edges of every brain region based on the absolute

value of the estimated precision matrices. Let the sets of the top Z edges detected by CFGL for

regions LHB, IL and PL be respectively denoted by M1, M2 and M3 and those by RCFGL be

denoted as N1, N2 and N3. In mathematical terms, we looked at the following proportion also

known as the Jaccard index [66],

propðZÞ ¼
jð[3

i¼1
MiÞ \ ð[

3
i¼1

NiÞj

jð[3
i¼1MiÞ [ ð[

3
i¼1NiÞj

ð5Þ

for different values of Z. A value close to 1 for prop(Z) would imply both the methods pro-

duced the same top Z edges. As discussed earlier, the penalty terms of RCFGL and CFGL share

a special inequality, PCFGL(Θ, λ1, λ2, W)� PRCFGL(Θ, λ1, λ2, W�), where W� is a set of modi-

fied weight matrices defined as, W� = (W�12, W�23), where W�12 = W12 + W13 and W�23 = W23

+ W13 (see Proposed method section and S1 Text). Thus, to achieve better agreement with

CFGL, we fitted RCFGL with the modified set of weight matrices W�.

To examine the biological relevance of results from the network analysis by RCFGL, we

first identified the hub-genes in every brain region, defined as the genes with more than five

connections. Then, we checked which of those hub-genes had similar degree in the medial
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prefrontal cortex regions IL and PL but different degree in the LHB region. Finally, we studied

the functional enrichment separately for the two sets of genes: the ones whose degree

decreased from IL and PL to LHB and the others whose degree increased from IL and PL to

LHB. Functional enrichment was evaluated using the ShinyGO tool (version 0.76.2; http://

bioinformatics.sdstate.edu/go/; [67]) specifying the KEGG Pathway and the Gene Ontology

(GO) Biological Process database for simplicity. The pathways with at least three related genes

and FDR< 0.05 were reported.

Results

Simulation study

We evaluated the performance of RCFGL in seven simulation scenarios described in Simula-

tion setup section. For fitting FGL and CFGL, we used the corresponding R packages and for

fitting FMGL (referred to as, RFGL) and RCFGL, we used our package. The methods RFGL,

FGL, RCFGL, CFGL were denoted by different colored lines in all the figures. They were run

with the same sets of hyperparameters, (λ1, λ2). Different λ1’s resulted in different numbers of

edges detected, and different values of λ2 modulated the similarity penalty from low to high.

Simulation with three conditions. The difference between (S1) and (S2) lied in the level

of similarity across the networks. As discussed in Review of methods, FGL and RFGL both

assume that networks of all the conditions share same level of similarity. Scenario (S1) was

close to that assumption, whereas (S2) violated it since the third network did not share any

similarity with the first two. Figs 2 and 3 respectively show the the precision-recall curves for

Fig 2. Comparison of edge detection performance for simulations with three conditions. Top and bottom rows

respectively correspond to the precision-recall curves in scenario (S1) and scenario (S2). The x and y axes respectively

correspond to recall and precision of the methods for different values of λ1. Three different values of λ2 are considered.

https://doi.org/10.1371/journal.pcbi.1010758.g002

PLOS COMPUTATIONAL BIOLOGY RCFGL: Rapid condition adaptive fused graphical lasso

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010758 January 6, 2023 12 / 26

http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
https://doi.org/10.1371/journal.pcbi.1010758.g002
https://doi.org/10.1371/journal.pcbi.1010758


edge detection and the SSE of the methods. Fig 4 shows the comparison of the run-times of

different methods. The comparison is demonstrated across low to high values of λ1 since it

controls how dense the networks will be and a denser network may take more time to be

estimated.

Since CFGL is a condition adaptive extension of FGL and RCFGL is a condition adaptive

extension of RFGL, it would be sensible to compare the methods pairwise. In scenario (S1), all

the methods had nearly identical precision-recall curves for edge detection (Fig 2), especially

for smaller values of λ2. However, in scenario (S2) where the assumption of same level of simi-

larity across all the pairs of conditions was violated, CFGL and RCFGL respectively achieved

better precision-recall curves than their non-condition adaptive counterparts FGL and RFGL.

In addition CFGL and RCFGL showed significantly lower SSE compared to FGL and RFGL in

both the scenarios for all three values of λ2 (Fig 3). This illustrates the advantage of the condi-

tion adaptive methods over the simpler ones especially when some pairs of conditions share

different levels of similarity. CFGL had significantly higher run-time compared to all the other

methods, whereas RFGL and RCFGL took just fractions of that time (Fig 4). RFGL was notably

faster than FGL. So, when there are many genes and a large number of conditions, RFGL can

be used over FGL for a much faster network exploration. RCFGL was also faster than FGL,

such that one can perform a condition adaptive network estimation in a similar amount of

time taken by a non-condition adaptive network estimation model such as FGL.

Simulation with four conditions. Next, we evaluated the performance of RCFGL in sce-

narios with four conditions. In this case the CFGL R package was not usable and was omitted

Fig 3. Comparison of edge-weight estimation performance for simulations with three conditions. Top and bottom

rows respectively correspond to the SSE of methods in scenario (S1) and scenario (S2). The x and y axes respectively

correspond to the total number of edges detected and SSE for different values of λ1. Three different values of λ2 are

considered.

https://doi.org/10.1371/journal.pcbi.1010758.g003
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from comparison. Scenario (S3) is close to the assumption of FGL and RFGL that all the net-

works share same level of similarity, whereas (S4) violates that assumption. RCFGL had consis-

tently better precision-recall curves compared to the other methods in all the scenarios (Fig 5).

For larger values of λ2, the precision-recall curve of RFGL was very close to the curve of FGL.

RCFGL also had significantly lower SSE compared to RFGL and FGL in both the scenarios for

all the values of λ2 (Fig 6). RCFGL took significantly lower run-time compared to FGL, espe-

cially for smaller λ1’s (Fig 4). It reaffirmed our earlier point that using RCFGL one can perform

a condition adaptive network estimation even faster than a non-condition adaptive network

estimation model such as FGL.

Sensitivity with respect to ordering of the conditions. Next, we studied the impact of

different orderings of the conditions on RCFGL. Note that in (S7), two conditions ‘far’ from

each other (conditions 1 and 4) had the same networks, whereas in (S6), two conditions rela-

tively closer (conditions 1 and 3) had the same networks. We compared the performance of

RCFGL with ‘incorrect’ ordering of conditions ((1, 2, 3) for (S5) and (1, 2, 3, 4) for (S6) and

(S7)) with RCFGL with ‘correct’ ordering of conditions ((1, 3, 2) for (S5), (1, 3, 2, 4) for (S6),

and (1, 4, 2, 3) for (S7)). In the plots, we referred to the latter as RCFGL-C and it was

expected to perform the best. We compared regular RCFGL and RCFGL-C with FGL

because it was the only method that would not be affected by the ordering (CFGL would also

not be affected but could not be used with 4 conditions). Fig 7 displays the SSE for edge-

weight estimation. In (S5), RCFGL and RCFGL-C had similar SSE values except for the

smallest λ2. In both (S6) and (S7), for smaller values of λ2, RCFGL-C had noticeably better

Fig 4. Comparison of run-time for simulations with three and four conditions. Top row corresponds to the run-

times in seconds of different methods in scenario (S1) and scenario (S2). Bottom row corresponds to the run-times in

scenario (S3) and scenario (S4). For the x-axis λ1 is varied from low to high generating increasingly sparser networks.

For each value of λ1, the average run-time over three values of λ2 is reported.

https://doi.org/10.1371/journal.pcbi.1010758.g004
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SSE compared to RCFGL. However, RCFGL had better SSE compared to FGL for all the val-

ues of λ2. Therefore, it could be concluded that the effect of ‘incorrect’ ordering will have

more of an impact with more than three conditions, particularly when two conditions ‘far’

from each other are similar.

The procedure we discussed in Effect of ordering of the conditions section to identify the

ordering was able to detect the correct order in every scenario i.e., it placed the similar condi-

tions side by side, the conditions (1, 3) in (S5), (S6) and (1, 4) in (S7). Therefore, using the pro-

posed order-detection procedure, we achieved the best possible performance of RCFGL-C.

Real data analysis

In the real data, the true networks are unknown and thus, we focused on checking the consis-

tency of the estimated networks by different methods and their run-times, followed by a brief

gene set enrichment analysis. The medial prefrontal cortex regions regions IL and PL are

anatomically closer, and have been found to be similar in terms of overall structure and regula-

tory functions in many studies [68–70]. In our dataset as well, IL and PL were found to be sim-

ilar in terms of the gene-expression based on hierarchical clustering (S2 Fig) compared to

LHB. The condition adaptive methods, such as CFGL and RCFGL, were expected to detect

more edges common between IL and PL compared to FGL and RFGL.

Time comparison. FGL and CFGL both would be computationally infeasible to run on all

of 15,421 genes. So, we focused on smaller sets of genes obtained by pruning based on coeffi-

cient of variation (CV) [71]. To prune, we concatenated the gene expression data from all the

Fig 5. Comparison of edge detection performance for simulations with four conditions. Top and bottom rows

respectively correspond to the ROC curves in scenario (S3) and scenario (S4). The x and y axes respectively correspond

to false positive rate (FPR) and true positive rate (TPR) for different values of λ1. Three different values of λ2 are

considered.

https://doi.org/10.1371/journal.pcbi.1010758.g005
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regions and computed the CV (ratio of mean to SD) of every gene. Next, we removed the

genes which had CV less than a certain cut-off from the analysis. For example, removing the

genes with CV< 0.02 left us with 1,106 genes, whereas removing the genes with CV< 0.04

left us with only 201 genes. We considered five such CV cut-offs, 0.015, 0.02, 0.025, 0.03 and

0.04. RFGL and RCFGL consistently took just fractions of the time taken by FGL and CFGL

(Table 2). For the CV cut-off of 0.015, there were 4706 genes in the sample. In that case, we

only reported the time taken by RFGL and RCFGL since both FGL and CFGL would be taking

an exorbitant amount of time (more than 10 hours) to converge. It should also be mentioned

that we had applied RFGL and RCFGL on the full dataset with 15,421 genes using a much

more powerful Dell PowerEdge R740XD server with Intel Xeon Gold 6152 2.1G X (2) CPU

having 44 cores, and they respectively took around 4 and 7 hours.

Comparison of RFGL and RCFGL. Next, we compared the networks estimated by RFGL

and RCFGL. We considered the set of 557 genes, obtained by pruning the full set of genes

based on the CV cut-off of 0.025. To address the variability in the estimated networks, we

repeated the following procedure 50 times. Each time, we randomly selected 500 genes from

the set of 557 genes and estimated the networks using RFGL and RCFGL for λ1 = 0.01 and

three values of λ2. To investigate brain-region specificity of the edges detected by the two

methods, we partitioned the identified edges into seven mutually exclusive categories: LHB

region only, IL region only, PL region only, LHB-IL shared, IL-PL shared, PL-LHB shared,

and common between all regions. Fig 8 displays the box-plot of the proportion of edges

detected by the two methods. As mentioned earlier, we expected the regions IL and PL to

Fig 6. Comparison of edge-weight estimation performance for simulations with three conditions. Top and bottom

rows respectively correspond to the SSE of methods in scenario (S3) and scenario (S4). The x and y axes respectively

correspond to the total number of edges detected and SSE for different values of λ1. Three different values of λ2 are

considered.

https://doi.org/10.1371/journal.pcbi.1010758.g006
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share more edges compared to region LHB and condition adaptive methods should be better

at capturing that. Consistent with the expectation, we noticed that RCFGL detected more

IL-PL specific edges compared to RFGL with the difference becoming increasingly apparent as

λ2 increased. We performed a pairwise t-test to determine statistical significance of this obser-

vation. For the three values of λ2, 0.02, 0.03 and 0.04, the respective p-values were 0.01, 6e-12

and 2e-16, which indicated increasing statistical significance of the difference between the

numbers of IL-PL specific edges detected by RFGL and RCFGL. RCFGL also detected more

LHB specific edges. RFGL produced more edges common between all regions. A large value of

λ2 implies imposing a very high similarity penalty that would force the estimated networks of

the three regions to be very close to each other. Thus, as we increased λ2, both the methods

Fig 7. Comparison of edge-weight estimation performance for simulations studying effect of ordering. Top row

corresponds to scenario (S5) which has three conditions, and the next two rows correspond to scenario (S6) and (S7)

each of which has four conditions. The x and y axes respectively correspond to the total number of edges detected and

SSE for different values of λ1.

https://doi.org/10.1371/journal.pcbi.1010758.g007

Table 2. The run-times of different methods (in seconds) with the genes left after pruning based on different CV

cut-offs. λ1 and λ2 were respectively kept at 0.01 and 0.02. The mark “X” means that we could not run those methods

due to inordinate amount of time required.

CV cut-off (# genes left) RFGL FGL RCFGL CFGL

0.040 (201) 2 20 14 36

0.030 (376) 7 102 27 145

0.025 (557) 15 335 64 470

0.020 (1106) 62 1468 172 2548

0.015 (4674) 1511 X 3237 X

https://doi.org/10.1371/journal.pcbi.1010758.t002
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produced more edges common between all three regions and fewer edges specific to a single

region or a pair of regions.

Comparison of RCFGL and CFGL. Next, we compared the performance of RCFGL to

CFGL on the set of 557 genes (CV cutoff < 0.025). We kept λ1 at 0.01 and varied λ2 from low

to high. We compared the top Z edges detected by the two methods to investigate the degree of

agreement. We used the measure prop(Z) from Eq 5 for several values of Z. The top edges

detected by RCFGL and CFGL matched by a great degree (prop(Z) > 0.85) in all the cases

(Table 3). The agreement expectedly increased as λ2 increased because for large values of λ2,

the difference between the penalty terms of RCFGL and CFGL becomes minimal, making

them theoretically very close.

Gene set enrichment analysis. Our next goal was to identify biological functions of the

hub-genes of the estimated networks by RCFGL using the methodology described in section

Measures for evaluating performance. We ran RCFGL on the set of 1106 genes (CV

cutoff < 0.02) with λ1 = 0.01 and varying values of λ2 = 0.001, 0.0025, 0.005, 0.01 and 0.05.

Refer to S1 File for the full list of genes. The lowest value of AIC was observed for λ2 = 0.01 and

Fig 8. Comparison of edge detection by RFGL and RCFGL in real data. The y axis corresponds to the proportion of

edges in seven mutually exclusive categories out of all the edges. The categories are coupled and displayed in three

columns. The first column has edges specific to different regions. The second column has edges specific to different

pairs of regions, and the third has edges common to all the regions. The rows from top to bottom respectively

correspond to three different values of λ2, 0.02, 0.03 and 0.04.

https://doi.org/10.1371/journal.pcbi.1010758.g008

Table 3. Proportion of overlap of the top edges detected by RCFGL and CFGL. The cells correspond to prop(Z) for

varying values of Z and λ2.

Z λ2 = 0.01 λ2 = 0.015 λ2 = 0.02

100 0.86 0.94 0.95

300 0.89 0.93 0.96

500 0.92 0.95 0.97

700 0.94 0.94 0.97

https://doi.org/10.1371/journal.pcbi.1010758.t003
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we interpreted the corresponding network estimates. There were 11 genes that were highly

connected in the medial prefrontal cortex regions IL and PL but lost that connectivity in the

LHB. These eleven genes were highly enriched (FDR < 0.01) for “Response to corticosteroid”

(GO: 0031960) and similar GO terms. This follows what is known about the differences

between these two brain regions. The medial prefrontal cortex has a well-established role as

one of the primary sites for stress regulation and as a key site for glucocorticoid actions [72].

In contrast, the LHB is further downstream and receives stress-related signals from the medial

prefrontal cortex [73]. Likewise, 57 genes were highly connected in the LHB but lost that con-

nectivity in the medial prefrontal cortex. These genes were enriched for “Intestinal immune

network for IgA production” (KEGG Pathway). Microglial cells are the dominant immune-

related cell type in brain. Several studies recently have demonstrated the heterogeneity of these

cells across brain regions [74, 75], so it is not surprising that the connectivity of genes related

to immune response differed across brain regions. Additional enrichment results can be found

in Tables 4 and 5, respectively listing the top pathways detected using the two sets of hub-

genes: the genes whose degree decreased from IL and PL to LHB and the genes whose degree

increased. Refer to S2 and S3 Files for the names of these two sets of genes. Fig 9 shows the esti-

mated networks between these two sets of genes in the three brain regions. The networks cor-

responding to the regions IL and PL looked more similar to each other than LHB.

Discussion

We present a method, named rapid condition adaptive fused graphical lasso (RCFGL) for

estimating gene co-expression networks of multiple conditions jointly. Similar to an existing

Table 4. Top pathways detected by the enrichment analysis of the hub-genes whose degree decreased from IL and PL to LHB.

Enrichment FDR # Hub-genes in Pathway # Background Genes in Pathway Fold Enrichment Pathway

0.005 3 18 48.8 Response to corticosterone

0.009 3 27 34.87 Response to mineralocorticoid

0.009 3 108 30.51 Response to calcium ion

0.035 3 113 18.78 Response to glucocorticoid

0.048 3 165 13.56 Response to ketone

0.048 3 127 15.25 Response to corticosteroid

0.048 2 58 40.68 Cellular response to calcium ion

0.048 3 189 13.56 Response to alcohol

https://doi.org/10.1371/journal.pcbi.1010758.t004

Table 5. Top pathways detected by the enrichment analysis of the hub-genes whose degree increased from IL and PL to LHB.

Enrichment FDR # Hub-genes in Pathway # Background Genes in Pathway Fold Enrichment Pathway

0.026 4 68 48.8 Leishmaniasis

0.026 4 108 34.87 Toxoplasmosis

0.026 4 91 30.51 Staphylococcus aureus infection

0.026 5 167 18.78 Tuberculosis

0.026 4 91 13.56 Systemic lupus erythematosus

0.026 5 72 15.25 Antigen processing and presentation

0.026 3 43 40.68 Intestinal immune network for IgA production

0.026 3 26 13.56 Asthma

0.033 3 60 13.56 Inflammatory bowel disease

0.033 5 70 13.56 Viral myocarditis

https://doi.org/10.1371/journal.pcbi.1010758.t005
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method named condition adaptive fused graphical lasso (CFGL), we compute data-driven

weight terms between every pair of conditions storing information about pair-specific co-

expression patterns. We include the weight terms in a sequential fused lasso penalty, a penalty

earlier considered in a method named fused multiple graphical lasso (FMGL). As CFGL is

interpreted as a condition adaptive extension of the method fused graphical lasso (FGL),

RCFGL can be interpreted as a condition adaptive extension of FMGL. Unlike CFGL, RCFGL

is computationally much faster and can be used to analyze more than three conditions

together. As we have seen in the simulation studies and real data analysis, the performance of

RCFGL and CFGL are very comparable. Both the methods outperform non-condition adap-

tive methods FMGL (referred to as RFGL in the figures) and FGL. We have demonstrated how

fast RCFGL is compared to CFGL and even FGL in most of the cases.

We considered simulation scenarios with both three and four conditions. With three condi-

tions, RCFGL and CFGL both achieved better precision-recall curves and smaller sum of

squared error (SSE) than the non-condition adaptive methods FMGL and FGL, especially

when there was a different level of similarity between the conditions. Furthermore, RCFGL

took just a fraction of time taken by CFGL. With four conditions as well, RCFGL achieved

superior performance than both FMGL (RFGL) and FGL, in addition to being computation-

ally much faster than FGL. As an example real data analysis, we analyzed gene expression data

from three brain regions, two medial prefrontal cortex regions IL and PL and another region

Fig 9. The networks between the hub-genes whose degree changed from IL and PL to LHB. The top row corresponds to the genes

whose degree decreased from IL and PL to LHB, while the bottom row corresponds to the genes whose degree increased.

https://doi.org/10.1371/journal.pcbi.1010758.g009

PLOS COMPUTATIONAL BIOLOGY RCFGL: Rapid condition adaptive fused graphical lasso

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010758 January 6, 2023 20 / 26

https://doi.org/10.1371/journal.pcbi.1010758.g009
https://doi.org/10.1371/journal.pcbi.1010758


named LHB, from a heterogeneous stock panel of rats. We first compared the time taken by

different methods to estimate the co-expression networks with varying sets of genes, showing

again the computational feasibility of RCFGL. Then, we compared the performance of FMGL

(RFGL) and RCFGL. The results demonstrated that network estimation was likely superior in

the latter since it could detect more edges shared only between IL and PL, two medial prefron-

tal cortex regions that are expected to be more similar compared to the other region LHB.

Finally, we performed enrichment analysis with the hub-genes of the estimated networks by

RCFGL whose degree decreased from IL and PL to the LHB region, finding association with

stress regulation and glucocorticoid actions.

Even though our method is developed for the purpose of estimating gene co-expression net-

works, it can be applied to any dataset that requires joint estimation of multiple networks and

would benefit from taking into account condition specificity. In this paper, we have considered

a maximum of four conditions. But, the run-time of RCFGL is approximately linear with

respect to the number of conditions which makes it scalable for any number of conditions as

long as the results remain interpretable. However, one limitation of both RCFGL and CFGL is

that the weight-terms which capture information about pair-specific co-expression patterns,

are binary. That is the weight for an edge between a pair of conditions takes value 1 if the edge

is expected to be present in both the conditions and 0 otherwise. Future extensions will allow

for continuous valued weight terms that will allow for more flexibility and can potentially

improve performance.

RCFGL is implemented in the form of an open-source software package based on C and

Python, available with a detailed Jupyter notebook at this link, https://github.com/sealx017/

RCFGL. The package also implements the non-condition adaptive method, FMGL (RFGL).

Note that the authors of FMGL provide a package that requires MATLAB and thus, it is

not entirely open-source. Our package can be used as an open-source alternative of their pack-

age. The package also includes several tools for downstream analyses such as comparing net-

works across conditions and visualizing common or pair-specific networks. The code used to

generate and analyze the datasets of the simulation studies are also provided with detailed

documentation.
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The content is solely the responsibility of the authors and does not necessarily represent the

official views of the National Institutes of Health.

Supporting information

S1 Fig. Workflow of the proposed method. Expression data of multiple (p) genes are available

in multiple (K) conditions at the start. In the next step, pair-specific patterns of similarity and

dissimilarity between consecutive pairs of conditions are explored. In the final step the full

model is fitted to jointly estimate all the networks using the proposed model.

(TIFF)

S2 Fig. Hierarchical clustering based on the gene-expression data of three brain regions.

We concatenated the expression data of the 1106 genes (left after pruning based coefficient of

variation (CV) cut-off of 0.02) and computed the Euclidean distance between each pair of

brain regions. Next, hierarchical clustering was performed on the distance matrix revealing the

order of similarity.

(TIFF)
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S1 Text. Proof of the theorem, connection between the penalty terms and quality control

steps. We provide the proof of the theorem for detecting block-diagonal structure in the preci-

sion matrices and derive the connections between the penalty terms used in different methods.

We also list the quality control steps used in the real data pruning.

(PDF)

S1 File. List of all the genes used in the enrichment analysis. We provide the list of 1106

genes used in the enrichment analysis.

(CSV)

S2 File. List of the hub-genes whose degree decreased from IL and PL to LHB. We provide

the list of the genes whose degree were lower in the networks of IL and PL than the network of

LHB.

(CSV)

S3 File. List of the hub-genes whose degree increased from IL and PL to LHB. We provide

the list of the genes whose degree were higher in the networks of IL and PL than the network

of LHB.

(CSV)
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