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Abstract

Transcranial alternating current stimulation (tACS) represents a promising non-invasive

treatment for an increasingly wide range of neurological and neuropsychiatric disorders.

The ability to use periodically oscillating electric fields to non-invasively engage neural

dynamics opens up the possibility of recruiting synaptic plasticity and to modulate brain func-

tion. However, despite consistent reports about tACS clinical effectiveness, strong state-

dependence combined with the ubiquitous heterogeneity of cortical networks collectively

results in high outcome variability. Introducing variations in intrinsic neuronal timescales, we

explored how such heterogeneity influences stimulation-induced change in synaptic con-

nectivity. We examined how spike timing dependent plasticity, at the level of cells, intra- and

inter-laminar cortical networks, can be selectively and preferentially engaged by periodic

stimulation. Using leaky integrate-and-fire neuron models, we analyzed cortical circuits

comprised of multiple cell-types, alongside superficial multi-layered networks expressing

distinct layer-specific timescales. Our results show that mismatch in neuronal timescales

within and/or between cells—and the resulting variability in excitability, temporal integration

properties and frequency tuning—enables selective and directional control on synaptic con-

nectivity by tACS. Our work provides new vistas on how to recruit neural heterogeneity to

guide brain plasticity using non-invasive stimulation paradigms.

Author summary

Brain stimulation techniques, such as transcranial alternating current stimulation (tACS),

are increasingly used to treat mental health disorders and to probe brain function. Despite

promising results, it remains unclear how these non-invasive interventions impact both

the dynamics and connectivity of neural circuits. We developed an interdisciplinary

framework showing that heterogeneity in neuronal timescales, and its consequences on
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cellular excitability and temporal integration properties of cortical neurons, may lead to

selective and directional control on synaptic modifications by tACS. Differences in neu-

ron responses resulting from timescale mismatch establishes phase- and frequency-spe-

cific tuning relationships which may be recruited by periodic stimuli to guide synaptic

plasticity. We confirmed this using both intra—and inter-laminar cortical circuit models

comprised of multiple cell types. Our work showcases how heterogeneity might be used to

guide synaptic plasticity using non-invasive stimulation paradigms.

Introduction

Over the past decade, there has been a growing interest in using transcranial electrical stimula-

tion in the study of brain function and diseases [1–3]. Such findings have raised the fascinating

prospect of manipulating neural activity in a controlled manner, engaging neural circuits at a

functional level to manipulate cognition and treat neurobiological disorders. In addition to

their reported clinical effectiveness as a treatment of major depression disorder [4, 5], epilepsy

[1, 6], Parkinson’s disease [7] and stroke [8, 9], transcranial electrical stimulation has given

neuroscientists practical tools for examining the relationship between oscillatory neural activ-

ity and brain function through the use of rhythmic stimuli [10–13]. Periodically fluctuating

electric fields, such as transcranial alternating current stimulation (tACS), are believed to

enable the interference with and/or manipulation of the timing of neural signaling, impacting

neural function both locally (i.e. individual cells and synapses) and globally (i.e. populations of

neurons) [14–16].

Despite these advances, it remains unclear how tACS reliably modifies the connectivity—as

opposed to the dynamics—of neural circuits. Indeed, beyond tACS’s immediate effect on neu-

ronal populations’ activity, concurrent changes in synaptic connectivity and especially how

they relate to stimulation waveforms, remains challenging to assess [17]. The entrainment of

neurons’ spike timing and/or phase by tACS [15, 16] suggests that temporally varying stimula-

tion might recruit synaptic LTP/LTD, notably through spike-timing dependent plasticity

(STDP)[18–21], leading to persistent changes in network dynamics and connectivity. How-

ever, tACS outcomes remain to this day notoriously ephemeral and variable: induced changes

in excitability vary considerably between stimulation sites, repeated trials and subjects, often-

times vanishing after stimulation offset [22–24] and shown to be state-dependent [25, 26].

Understanding the source of this variability must imperatively be addressed to optimize exist-

ing tACS paradigms and their effect on brain plasticity to consolidate their clinical efficacy.

One important source for such variability is the large variance in the timescales expressed

by cortical neurons, resulting from diverse circuit motifs, morphology, spatial orientation and

other intrinsic neuronal biophysical properties [27]. Such variations in cellular timescales not

only influence how cortical neurons respond to stimulation, but further constrain the timing

of neural signaling and resulting changes in synaptic connectivity. Defined as the product of

neuron capacitance and membrane resistance [28], the membrane time constant (MTC) is a

key biophysical parameter impacting neuronal timescale expression, varying across multiple

orders of magnitude within and between cell types, cortical layers and/or brain regions [27,

29–32] as well as with input statistics [33]. The MTC influences not only shapes spike timing

and phase, but also reflects the net consequence of varied biophysical attributes on cellular

excitability and integration of temporally-varying stimuli [27, 34–36]. A natural consequence

of this is that some neurons and/or cortical layers may be more responsive than others to

rhythmic, phase- and frequency-specific entrainment. Far from limiting, this divide might
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instead open up the possibility of selectively targeting cortical circuit connections using tACS

with properly calibrated waveforms, capitalizing on the heterogeneity of cortical circuits to

guide synaptic modifications.

With this in mind, we here reconcile the heterogeneity of cortical circuits and tACS-medi-

ated changes in synaptic plasticity. The response of cells and populations to periodic entrain-

ment has been well characterized, both experimentally [15, 16, 37] and with the use of

computational models [10, 17, 37, 38]. We here complement and extend these by exploring

how tACS at various frequencies engages brain plasticity in the presence of timescale hetero-

geneity. To model such heterogeneity, we randomly sampled membrane time constants from

probability distributions informed by experimental data, and examined how such differences

impacted the variability of neuronal responses to tACS. We deliberately set our network

model in a regime where tACS elicits neuronal depolarization, to characterize how heteroge-

neity and tACS interact with STDP at temporal scales accessible by our simulations. We

further discuss these limitations below. Our results suggest that, counter-intuitively, heteroge-

neous asynchronous populations might be more susceptible to efficient, directionally selective

control of synaptic plasticity. Specifically, using leaky integrate-and-fire (LIF) neurons with

synapses endowed with Hebbian spike-timing dependent plasticity, we explored the depen-

dence of synaptic long-term potentiation (LTP) and depression(LTD) on tACS frequency in

1) pairs of mutually synapsed neurons; as well as 2) intra-; and 3) inter-laminar cortical cir-

cuits of excitatory and inhibitory neurons, whose MTC distributions follow layer-specific

probability distributions as well as connectivity fitted on cortical physiological data [32, 39].

Exposing these different heterogeneous systems to tACS, our results show that timescale het-

erogeneity establishes distinct phase-relationship profiles between cells, cortical layers and

stimulation waveforms. Far from limiting, such differences enable selective and directional

control on intra- and inter-laminar connectivity. We hence propose tACS might capitalize on

such timescale heterogeneity to guide synaptic plasticity both non-invasively and

purposefully.

Results

Cortical timescale heterogeneity and response variability to periodic

stimulation

The temporal integration and postsynaptic response of neurons to both endogenous and exog-

enous inputs is highly variable, notably due to different intrinsic timescales resulting from vari-

ous combinations of biophysical properties, such as threshold value, rheobase, and neuronal

timescales [27, 34–36]. For instance, the membrane capacitance and resistance, reflecting the

net influence of various biophysical attributes, differentiate neurons in terms of the rate at

which presynaptic stimuli are integrated, as well as the timescale of the output they generate.

The resulting membrane time constant (MTC; τm) varies significantly both within and across

cortical layers, strongly influencing neuronal responses: neurons with smaller and larger MTC

exhibit shorter and longer integration times, respectively. As depicted in Fig 1A MTCs of pyra-

midal neurons in cortex layers are distributed, ranging from few milliseconds in superficial

layers (Fig 1A, layers I-III) to tens of milliseconds in deeper layers (Fig 1, layers V-VI). Such

timescale heterogeneity results in variability in neuronal excitability and frequency tuning

[40]. Endowing leaky-integrate-and-fire (LIF) neurons with such different MTCs (Eq 2; see

Materials and methods and Table 1), one may see how timescale heterogeneity translates into

net differences in excitability, as illustrated in Fig 1. Membrane time constants shape individ-

ual neuron response function, both without (Fig 1B1) and with (Fig 1B2) temporally varying

stimulation.
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The heterogeneity in timescales across cortical neurons further has important consequences

from the perspective of synaptic plasticity and its potential recruitment by tACS. This can be

seen in Fig 1C1–1C3, where we plotted exemplar membrane potentials and spiking responses

of periodically stimulated neurons across different values of MTCs and stimulation frequen-

cies. Faster (i.e. smaller τm) neurons are more susceptible to entrainment across a broader

Fig 1. Timescale heterogeneity across cortical layers. Heterogeneity in timescale, modelled through cellular variations in membrane time constants

(MTC) translates into variability in excitability. (A) The probability density functions (PDF) of membrane time constant across human cortical layers

[32]. Panel (B1) and (B2) show the Frequency-Input curve in sham and the stimulation condition (ωs = 25(Hz)), respectively. The firing rate ρ has been

calculated from 10s simulated time series for difference input currents ΔI and averaged over 10 trials with As = 0.5(mV), μ = 5.5(mV), σ = 1(mV), and

τref = 0 ms (see Eq 2). (C1), (C2) and (C3) present the temporal evolution of the membrane potential of deterministic LIF neurons at ωs = 15, 25, and 35

(Hz), respectively. Used parameters: As = 0.5(mV), μ = 5.9(mV), σ = 0(mV), and τref = 0 ms.

https://doi.org/10.1371/journal.pcbi.1010736.g001

Table 1. Neuron model parameters, synaptic inputs, and plasticity for coupled neurons. More information is pro-

vided in the figures’ caption.

Parameters Values Description

τm 4. . .20 ms, Varies in each figure. Neuron membrane time constant (MTC)

Vrest -60 (mV) Rest membrane potential

g0 0.1 (mV) Initial Synaptic weigh

td 0.5 ms Axonal delay

τd 3 ms Synaptic decay time constant

vthr -54 (mV) Threshold value

τref 2 ms Refractory time

Iz μ = 5.5 (mV), σ = 1 (mV) Input current

As 0.5 (mV) Stimulation amplitude

https://doi.org/10.1371/journal.pcbi.1010736.t001
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range of stimulation frequencies: their spiking response remains phase locked to the stimula-

tion even as the stimulation frequency increases. In contrast, slower (i.e. longer τm) cells are

less susceptible to entrainment as stimulation frequency increases: phase locking at lower stim-

ulation frequencies vanishes as the stimulation frequency increases.

Membrane time constant heterogeneity, either across cells or cortical layers, shapes phase

relationships between neuronal responses and tACS stimulation, resulting in various degrees

of susceptibility to entrainment. This is illustrated in Fig 2, where we plotted MTC-induced

phase relationships between neuronal spiking of LIF neurons with varying MTCs under peri-

odic stimulation at various frequencies. While increasing either MTCs and/or stimulation

frequency suppresses the net neuron’s firing response, they also impact the slope of the spiking

phase (Fig 2B1–2B3). Ought to the manifest variations of timescales observed within and

across cortical layers (MTCs; c.f. Fig 1), the results of Fig 2 suggest that stimulation-induced

changes in synaptic plasticity might be both neuron-, layer- and stimulation-frequency depen-

dent. We note that this type of behavior is not exclusive to the LIF model neurons portrayed

here, being observed in more complex neuron models as well (see [41]).

Fig 2. Neuronal timescales shape phase-relationships between neuron responses and periodic stimuli. (A1) Exemplar spiking and phase of an

individual neuron with MTC (τm) of 10 ms under periodic stimulation. The red line is the periodic stimulation with ωs = 5(Hz) and the purple line

shows the phase of stimulation. The black lines locate neuronal spiking times computed by integrating the single neuron LIF-model. (A2) The resulting

phase histogram of spiking activity of the LIF neuron shown in (A1). The vertical axis gives the number of spikes that occurred at appropriate

stimulation phase as of x-axis. Note that this is bimodal because the stimulation (at ωs = 5Hz) depolarising the neuron enough to make it fire repeatedly

during one stimulation oscillation period. (B1)-(B3): Phase response relationships to periodic stimulation of increasing frequency (for different MTC τm
= 6, 10, 14 ms). These results were obtained by taking the average over 10 independent trials, over 10s of simulation time. Here we used μ = 5.5(mV), σ =

1(mV) and As = 1(mV).

https://doi.org/10.1371/journal.pcbi.1010736.g002
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Neuronal timescale mismatch guides plasticity in individual synapses

We first examined the simplest network motif expressing timescale heterogeneity: we consid-

ered a pair of mutually synapsing LIF excitatory neurons, while investigating how MTC mis-

match shapes the magnitude and directionality of tACS-induced synaptic modifications at the

level of an individual synapses. We hypothesized that MTC disparity in such a two neuron net-

work, and the resulting timescale separation, can be recruited using tACS to selectively and

directionally potentiate and/or depress synapses. To model plasticity, we endowed each syn-

apse in this simple model with Hebbian spike-timing dependent plasticity (STDP) [40, 42, 43]

(see Materials and methods). As synaptic weight modifications follow spike timing differences

(i.e. ΔT) between pre- and post-synaptic neurons, membrane time constant diversity and its

consequence on spike phase will influence synaptic modifications induced by periodic stimula-

tion. To this end, stimulation amplitude was deliberately increased to induce depolarization

across a wide range of MTCs to expose the interaction between tACS and spiking phase and

their effect on synaptic plasticity. We first set the MTC value of the pre-synaptic neuron to

tð1Þm ¼ 10 ms, while the MTC of the post-synaptic neuron was set to either tð2Þm ¼ 6 ms, 10 ms
or 14 ms, respectively. Distributions of spike timing differences f(ΔT)—between any pair of

pre- and post-synaptic spikes, DT ¼ tpostsp � tpresp are plotted in Fig 3A1 and 3A2. Set in the asyn-

chronous regime, both neurons in the network were stimulated identically. We note that

throughout, the Hebbian STDP mechanism and its associated parameters (see Materials and

methods) remained unchanged.

As shown in Fig 3A1, in the absence of stimulation (i.e. sham), the spike timing difference

distribution is flat: the asynchronous firing of both pre- and post-synaptic neurons prevents any

preferential and/or directional synaptic modification. This indicates that synaptic weights

between neurons remain on average, constant. However, by applying tACS, MTC mismatch

between the neurons, and the resulting disparity in their spiking phase responses, polarizes the

spike timing difference distribution (Fig 3A2 when ωs = 25(Hz)), eliciting preferential directions

in synaptic modification. As can be seen in Fig 3A3, a net gain and directionality of stimulation-

induced changes in synaptic connectivity was found to be dependent on 1) the mutual arrange-

ment of pre- versus post-synaptic neurons’ MTCs; and 2) on the specific choice of stimulation

frequency. For a pre-synaptic neuron with τm = 10 ms, stimulation-induced synaptic potentia-

tion could be observed when coupled to a slower (i.e. τm = 14 ms) post-synaptic cell. The oppo-

site happens whenever coupled with a faster (i.e. τm = 6 ms) post-synaptic neuron, and synaptic

depression can be observed. The magnitude of synaptic potentiation and/or depression was

further found to scale with tACS stimulation frequency. To see this, we fixed the pre-synaptic

MTC to tð1Þm ¼ 10 ms while systematically varying tð2Þm over values ranging from 4ms to 20 ms
and across stimulation frequencies up to 50(Hz), examining resulting synaptic modification

amplitude and directionality. As can be seen in Fig 3B, the difference between the neurons’

MTCs not only supports the previous results but further shows that net changes in synaptic

weights (i.e. potentiation or depression) and their direction can be tuned in a stimulation-fre-

quency specific manner. Taken together, the above analysis indicates that MTCs disparity in a

two-neuron network motif, through resulting change in spike timing difference distribution,

enables selective, direction and stimulation frequency-specific changes in synaptic connectivity.

Directional tACS-induced synaptic plasticity in a heterogeneous cortical

layer

To generalize our observations, we analyzed a sparse network of N = 10, 000 LIF neurons,

modeling the response of a neuronal population, representing a single cortical layer, to tACS
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(see Materials and methods). We characterized the influence of timescale heterogeneity

amongst cell types on intra-laminar synaptic recruitment by periodic stimulation and the

dependence on its frequency. Such heterogeneity was introduced in the network by randomly

sampling individual MTC from independent normal, positive definite distributions with mean

mtm ¼ 10 ms and standard deviation stm ¼ 3 ms (see Fig 4A). This approach captures intra-

laminar variability both between (i.e. excitatory and inhibitory) and within (i.e. subtypes of

pyramidal and interneurons) cell types, collectively expressing heterogeneous MTC and result-

ing integration properties.

tACS efficacy has been shown to be highly state-dependent, enhanced for regimes of

asynchronous neural activity where endogenous oscillations are suppressed [25, 26]. We

hence focused on a regime of asynchronous spiking to quantify tACS-induced synaptic

changes in the absence of endogenous oscillations. To do this, we set the network’s parame-

ters (see Table 2) so that the network resides in a balanced state, for which neurons exhibit

Fig 3. Timescale mismatch between two synapsing neurons yields direction- and stimulation-frequency dependent synaptic plasticity. In (A1) and

(A2), we plotted the distribution of spike timing difference, f(ΔT), between neuron (2) and neuron (1), where DT ¼ tð2Þsp � tð1Þsp , at two stimulation

frequencies ωs = 0, 25(Hz), respectively. This distribution was obtained over 10s simulation time. Here tð1Þm ¼ 10ms and the MTC of neuron (2) is

changing from tð2Þm ¼ 6ms; 10ms to 14ms. For instance, the purple line indicates the distribution of ΔT between post-synaptic neuron (2) and pre-

synaptic neuron (1). In (A3), we plotted the mean synaptic weight change Dg , cf. Eq (7) in the Materials and methods section. The dashed line denotes

the stimulation frequency used in (A2) to calculate the ΔT. We schematically relate the MTC of neurons to the size of circles in (B) top panel, i.e. a larger

diameter represents a larger MTC. The top and bottom circles denote the MTC of neuron (2) and neuron 1, respectively. The heatmap plot in (B)

bottom, shows the synaptic weight modifications between coupled excitatory neurons (i.e. synapse from neuron (1) to neuron (2), g1!2), over different

stimulation frequencies (y-axis) and second neuron’s MTC (x-axis). The MTC of neuron (1) kept at tð1Þm ¼ 10ms (indicated by the vertical dashed line).

The initial value of synaptic weight between neurons is g0 = 0.1(mV). (see Table 1).

https://doi.org/10.1371/journal.pcbi.1010736.g003
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asynchronous irregular (AI) activity (see Fig 4C1, 4C2 and 4C3) [44]. Stimulation amplitude

was set at As = 1mV to ensure that neurons are strongly entrained to the stimulation. This

amplitude is further within the range of the values observed experimentally [21, 45]. All cells

were stimulated identically. We note that throughout, STDP (i.e. Eq 6, see Materials and

methods) was effective both within the excitatory population (i.e. E! E) as well as between

excitatory and inhibitory population (i.e. E! I and I! E).

To quantify directionality and associated changes in synaptic weights, we grouped neurons

according to their timescales and compared how tACS modified their mutual synaptic connec-

tivity. Specifically, we compared the (changing) connectivity within and between groups with

different timescale (i.e. MTC) statistics i.e., fast responding (tE;I
<

m 2 ftm ⩽ 8 msg) versus

slowly responding (tE;I
>

m 2 ftm ⩾ 12 msg) neurons, as well as with cells whose MTC resides

close to the chosen mean value(tE;I
ð0Þ

m ¼ 10� 0:5 ms). Here (E) stands for excitatory and (I)

for inhibitory neurons.

We examined the response of this cortical layer network before, during, and after stimula-

tion while quantifying associated synaptic modifications. Specifically, the network’s dynamic

Fig 4. tACS modulation of a cortical layer network of heterogeneous excitatory and inhibitory neurons in the asynchronous state. (A) The MTC

distribution for excitatory and inhibitory neurons with mtm ¼ 10 ms and stm ¼ 3 ms. (B) shows the number of neurons with MTC as y-axis locked to

phase of stimulation (with ωs = 25(Hz)) as x-axis for one second of simulation time. (C1) to (C3) present the time evolution of spiking activity of 500

randomly selected neurons (250 E and 250 I neurons) for Pre-stim./Sham, Stim. and Post-stim. periods, respectively. The blue stars represent the

spikes of neurons with tð0Þm 2 ½9:5 10:5�ms, the red squares and line (green circles and line) correspond to the spikes and firing rate of neurons with

t<m 2 ftm⩽ 8msg (t>m 2 ftm⩾12g), respectively. (D1) to (D3) show the average of synaptic input across different neurons categories shown in legend, in

Pre-stim./Sham, Stim. and Post-Stim. periods, respectively. i.e. E< is the mean synaptic inputs averaged over excitatory neurons with t<m. (E1) to (E3)

show the firing rates of excitatory and inhibitory neurons in Pre-Stim./Sham, Stim. and Post-Stim. periods, respectively.

https://doi.org/10.1371/journal.pcbi.1010736.g004
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was simulated for a period of t = 60 seconds (simulation time) and subjected to a tACS-like

periodic stimulation during an epoch ranging from t = 4s to t = 40s. Representative responses

of neurons amongst the groups defined above, before (t = 2s), during (t = 10s) and after

(t = 40s) tACS stimulation at ωs = 25(Hz) (we generalize our conclusions to a broader range of

stimulation frequencies later) are plotted in Fig 4C1, 4C2 and 4C3 respectively. In absence of

stimulation (Fig 4C1; sham), asynchronous firing can be observed across all neurons, irrespec-

tive of MTC differences. Set in the balanced state, the net synaptic input taken across all cells

in the network is close to zero (Fig 4D1, resulting in weak and uncorrelated firing rates (Fig

4E1). The average firing rates in sham period were accordingly distributed around a mean of

5(Hz), for both excitatory and inhibitory neurons. In contrast, in presence of stimulation,

strong amplitude, phasic responses can be observed following tACS entrainment. Due to MTC

heterogeneity (Fig 4B), firing phase was expectedly found to vary across the network in an

MTC-specific way in presence of stimulation. Similarly to what was observed in Fig 2, phases

at which individual cells are responding increases with MTC, confirming that stimulation

engaged different neurons differently in networks as well. Such responses where further found

to be timescale group-specific: Indeed, as can be seen in Fig 4C2, the phase of firing and ampli-

tude were found to vary with MTCs. This can be seen from the mean synaptic inputs, whose

phase and amplitude varied with respect to cell type (E vs I) as well as MTC characteristics. Fir-

ing rates of both excitatory and inhibitory populations also increased compared to sham (Fig

4E2). We highlight that such increase in firing rate—which is not consistently observed experi-

mentally [15, 16, 46]—is here a direct consequence of our choice of tACS amplitude, causing

both depolarization and entrainment. Similar results, obtained with smaller tACS amplitudes,

were not accompanied by significant changes in firing rates (see S1 Fig).

Table 2. Parameters of the populations. In Fig 6 the number of neurons are N = 12000 which is distributed among 4

equal cortical layers. For more information about populations, see appropriate caption and Materials and methods

section.

Parameters Values Description

NE 8000 Number of excitatory (E) neurons

NI 2000 Number of inhibitory (I) neurons

Pxy 10%, x, y 2 [E, I] Connectivity probability among neurons

τm mtm ¼ 10, stm ¼ 3 ms Neuron membrane time constant (MTC)

Vrest -60 ± 0.2 (mV) Resting membrane potential

gE!E
0

5E-5 (a.u.), σg = 0.1g0 Initial Synaptic weigh among E to E neurons

gE!I
0

5E-5 (a.u.), σg = 0.1g0 Initial Synaptic weigh among E to I neurons

gI!E
0

25E-5 (a.u.), σg = 0.1g0 Initial Synaptic weigh among I to E neurons

gI!I
0

25E-5 (a.u.), σg = 0.1g0 Initial Synaptic weigh among I to I neurons

gmin 0.01 × g0 Minimum Value of synaptic weight

gmax 2 × g0 Maximum value of synaptic weight

Esyn E = 0 mV, I = -85 mV Reversal potential

td 0.5–1 ms Axonal delay

τr 0.5 ms (AMPA), 0.5 ms (GABAa) Synaptic rise time constant

τd 3 ms (AMPA), 5 ms (GABAa) Synaptic decay time constant

vthr -54 (mV) Threshold value

τref 2 ms Refractory time

Iz μ = 5.5 (mV) and σ = 1 (mV) Mean input current and noise SD.

As 1 (mV) Stimulation amplitude

https://doi.org/10.1371/journal.pcbi.1010736.t002
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While network activity reverts to pre-stimulus state after stimulation (see Fig 4C3, 4D3 and

4E3), the mean synaptic input do differ compared to the pre-stimulation/sham period, indica-

tive of changes in intra-laminar synaptic connectivity between groups –and neurons—with

differing MTCs statistics.

Our results indicate that timescale mismatch plays an important role in the selective

recruitment of synaptic plasticity by tACS. Indeed, resulting effects of MTC heterogeneity on

intra-laminar synaptic modifications due to tACS entrainment are shown in Fig 5. In Fig

5A1, 5A2 and 5A3 we plotted the distribution of synaptic weight between and amongst excit-

atory and inhibitory neurons with near average MTCs (i.e. 10 ms; tE;Ið0Þm ), synapsing onto neu-

rons with either faster (tE;I
<

m ) and/or slower (tE;I
>

m ) MTCs. Due to MTC mismatch, synaptic

weight distributions are shifted in a MTC- and stimulation frequency-specific dependent

manner. Synapses between slower (i.e. longer MTC) and faster (i.e. shorter MTC) respond-

ing neurons were potentiated, and were otherwise depressed, irrespective of cell type. This

symmetry between cell type results from identical MTC distributions for both excitatory and

inhibitory populations, although they encompass variations within each cell-type. In the

Fig 5. tACS-induced changes in intra-laminar synaptic connectivity. (A1)-(A3) Distribution of synaptic weights among excitatory and inhibitory

neurons. In each inset plot we plotted the homogeneous case when all neurons have the same MTC, stm ¼ 0 at two stimulation frequencies, ωs = 0, 25

(Hz). In (B1)-(B6) and (C1)-(C6) we plotted the change of synaptic weight distributions when the MTCs were selected heterogeneously and

homogeneously, respectively. (B1,B2,B3) and (B4,B5,B6) show the time evolution of distribution of synaptic weights for synapses from neurons with τ0

= 10 ms to neurons with t<m and t>m, respectively when ωs = 25(Hz), As = 1(mV). The stimulation is turned ON at Time = 4(s) and turned OFF at

Time = 40(s). On top of each plot the category of synaptic weights is mentioned, i.e. (B1) shows the synaptic weights among excitatory neurons with tð0Þm
to neurons with t<m. In (C1,C2,C3) and (C4,C5,C6), we plotted the synaptic weights changes in Sham and Stim. states (inset plots in A1-A3) respectively.

The colorbar encodes the relative frequency of synapses with respect to synaptic weights as vertical axis.

https://doi.org/10.1371/journal.pcbi.1010736.g005
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homogeneous case, in which all neurons possess the same MTCs (stm ¼ 0), synaptic weights

remained stable, and tACS entrainment does not lead to any preferential changes in weight

distribution. These results mirror those observed in the simple two-neuron motif examined

in Fig 3. To quantify the evolution of synaptic weight distribution before, during and after

tACS entrainment, we plotted in Fig 5B1–5B6 the time-averaged synaptic weights for the

illustrative case where the stimulation frequency is set at ωs = 25(Hz). This illustrative fre-

quency was selected as it yield the maximal change in synaptic weight distribution (Fig 5A1,

5A2 and 5A3). After stimulation onset (t = 4s), entrainment results in directional synaptic

weight modification: synapses between average and fast neurons (tE;I
ð0Þ

m ! tE;I
<

m ) are

depressed, while those linking average and slow neurons (tE;I
ð0Þ

m ! tE;I
>

m ) are potentiated, irre-

spective of cell type. Such changes saturate due to a net cancellation between potentiation

and depression. At stimulation offset (t = 40s), synaptic weights slowly converge back to

their pre-stimulation values, although displaying increased variance compared to baseline.

Whenever MTC heterogeneity is removed, (stm ¼ 0), no synaptic modification could be

observed (Fig 5C1–5C6), either without (Fig 5C1, 5C2 and 5C3) or with tACS stimulation

(Fig 5C4, 5C5 and 5C6). In both of these cases, the distribution of synaptic weights remained

around the baseline value. Taken together, these findings indicate that timescale variations

through MTC heterogeneity enables tACS to guide intra-laminar synaptic plasticity in a

directional and frequency-specific manner.

tACS engagement of inter-laminar connectivity

Motivated by these results, we questioned whether timescale heterogeneity, and the resulting

variability in neurons’ response to periodic stimuli, could be solicited to engage and modify

inter-laminar connectivity in superficial cortical networks, which are preferentially recruited

during tACS [37, 47–49]. Cortical layers are populated by both pyramidal cells and interneu-

rons with diversified biophysical profiles [32, 39]. To examine this possibility, we extended our

analysis using a model of recurrently connected neuronal population. Individual cortical lay-

ers, and their associated intra-laminar connectivity, were modeled as recurrently connected

populations of excitatory and inhibitory LIF neurons, using the same parameters and sitting in

the same dynamical regime as reported above. We connected this multi-layer cortical model

using known inter-laminar projections between cortical pyramidal cells in the primate brain

[39, 50] (Fig 6A. See Materials and methods for model description.). Layer-specific timescales,

reflected through distinct MTC distributions, were imported from the Allen institute cell data-

base [32](i.e. Fig 1A). We assumed that the modulatory effect of tACS on the neurons’ mem-

brane potential remained the same across layers.

Consistent with our previous findings, stimulation enabled the selective potentiation and/

or depression of inter-laminar connectivity in a tACS frequency- and MTC-dependent man-

ner. In Fig 6B, we plotted the net changes in synaptic weight distributions amongst excitatory

cells whose synapses traverse different layers, and across different tACS frequencies. Here the

synapses with the minimum value of 5ms difference in the coupled neurons’ MTC have been

analyzed. Inter-laminar connectivity from layers expressing statistically shorter MTC (e.g.

layers III-IV) towards those with longer MTC (i.e. layers V-VI) were potentiated, while the

reverse directions were depressed. Maximal effects could be seen at stimulation frequencies

ranging from the theta to the beta range (i.e. 5 − 15Hz), and were weak outside that range. The

net difference between the sum of synaptic weights, taken before and at the end of the stimula-

tion epochs, also reveals directional, layer-specific synaptic modifications (Fig 6C). Both the

magnitude and the direction of overall synaptic weights depend on the stimulation frequency.

These imply changes in inter-laminar connectivity: For instance note the sign and strength of
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overall synaptic weight among connections from IV to VI: while the stimulation at 15Hz

potentiate the connections, stimulation at 35Hz depresses the connections.

Discussion

Membrane time constants (MTC) vary both within and across cell types, influencing cellular

excitability [27, 29–32] as well as the neuron’s agility with respect to incoming stimuli [51].

Our simulations provide a proof-of-principle that timescale variations observed between cells,

within and across cortical layers, allow tACS to guide intra- and inter-laminar connectivity,

and that resulting modifications in synaptic connectivity are frequency-specific. Ought to this

diversity of timescales, the distinct responsiveness of neurons to tACS gives us the possibility

of engineering neural connectivity, either locally or among brain regions. Indeed, for a given

tACS frequency, neurons with smaller MTC are potentially capable of responding at higher fir-

ing rates, becoming effective dynamical hubs [52] and promoting the potentiation of synapses

they project to. Such synaptic changes might hence promote the formation of new stimula-

tion-induced routes for information transfer. While our model does not reproduce nor predict

the persistence of those synaptic modifications beyond stimulation offset due to the simplicity

of our plasticity rule, we however provide insight regarding how to reliably engage cellular and

inter-laminar connectivity. Transcranial electrical stimulation paradigms such as tACS prefer-

entially target superficial (multi-layered) cortical networks. Our results hence provide strong

support for the pursuit of non-invasive stimulation techniques not only to modulate neural

activity, but to engage and guide synaptic plasticity. More detailed modeling approaches are

warranted to better characterize the complex interplay between individual neurons’ biophysi-

cal features, mutual synaptic connectivity, and the potential influence of brain stimulation.

Seminal experimental [15, 16] and computational [46] studies have reported no significant

increase in firing rate during tACS, in contrast to our simulations where elevated spiking was

observed. Experimental results remain however conflicted [21, 53–55] and the nature of such

Fig 6. Modifications of cortical layers connectivity due to tACS. (A) Illustrative schematics of inter-laminar excitatory connections. (B) Synaptic

modifications among excitatory neurons between cortical layers IV to III. The solid (dashed) lines show the histogram of synaptic weights among

neurons with t>m (t<m) to neurons with t<m (t>m). The minimum MTC difference across neurons is 5ms. The colors indicate the frequency of stimulation,

ωs. (C) Corresponds to the net difference in inter- and intra-laminar synaptic weights induced by tACS at different stimulation frequencies. The heat

map encodes for potentiation (positive values) or depression (negative values). For details of the network connectivity and its parameters see the

Materials and methods section.

https://doi.org/10.1371/journal.pcbi.1010736.g006
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disparity remains to be fully elucidated. We have deliberately conducted our simulations in a

regime of high tACS amplitude sufficient to cause depolarization of neurons, to amplify result-

ing STDP-induced synaptic changes and evaluate their dependence on MTC disparity at tem-

poral scales accessible by our simulations. In this regime, increased stimulation amplitude

engage and modulate the neurons membrane potential and firing rate across a wider rang of

MTCs [46, 53], where changes in firing rates are known to engage synaptic plasticity [21, 56].

We have nonetheless extended our analysis to low tACS amplitude regimes to evaluate the

robustness of our findings (see S1 and S2 Figs). These additional simulations show that stimu-

lation-induced changes in synaptic weights scale with tACS amplitude. Despite no significant

change in firing rate, spike timing phase-locking lead to small MTC-specific synaptic modifi-

cations (cf. S1 and S2 Figs). These observations are in line with results previously reported [15,

16, 46] and suggest that the effective tACS amplitude (measured at the level of individual neu-

rons) represents an important source of variability [57]. By construction, our model is devoid

of many anatomical and experimental constraints that are known to hinder tACS efficacy and

overall signal-to-noise ratio on membrane potential, such as skull shunting [57, 58] and cellu-

lar orientation [16, 59, 60]—which certainly influences the (effective) magnitude of neural

responses to tACS. Importantly, although it is certainly possible to entrain neural population

at small tACS amplitudes without altering their net firing rate, our simulations suggest that

such approaches may fail to modify synaptic weights through STDP (see S1 Fig). We further

note that in regimes of asynchronous irregular activity (like the one considered in our work),

stimulation may not recruit resonance [10], in contrast to what would be expected in oscillat-

ing network where low amplitude stimulation [37, 53] may reliably modulate network activity

and alter firing rates [10, 61]. Despite these limitations, our study reveals selective and direc-

tional synaptic modifications that are both heterogeneity- and stimulation frequency specific.

We believe those results represent an important conceptual step forward the optimization of

tACS (which historically suffers from severe inter-trial and inter-subject variability, and whose

clinical efficacy/utility has been debated [57]) as well as other neuromodulatory paradigms

(such as TMS or intracranial stimulation, in which firing rates do vary significantly during

stimulation [62–64]). We believe these conclusions are important—and further illustrate the

relevance of computational modelling in exploring parameter ranges that are not (currently)

accessible in experiments, notably to guide new avenue of investigation.

Our results have been obtained for neurons and/or networks residing in the asynchronous

irregular state (AI) [44], for which endogenous oscillations are suppressed or absent. While

the interplay between tACS periodic waveforms and endogenous oscillations has been the pri-

mary focus of most studies [10, 15–17, 37], its efficacy has been shown to exhibit a strong

state-dependence, maximized for regimes of irregular, asynchronous neural activity [25, 26],

not oscillatory ones. Given that correlated neural activity reflects redundant, information-poor

states [65, 66]: the recruitment of, interference with, and/or amplification of endogenous

neural oscillations might hence prevent effective control on brain plasticity and instead pro-

mote tACS outcome variability. Our results indeed suggest that intrinsic rhythmic activity,

such as those that would arise through recurrent interactions, limits the ability of exogenous

stimulation (i.e. tACS) to engage synaptic connectivity. Indeed, the global phase alignment

resulting from endogenous oscillatory activity leads to a suppression of time-scale differences

amongst neurons. We hypothesize that this form of competition between endogenous and

exogenous entrainment could be at play in the state-dependent effects of tACS reported both

experimentally [25] as well as computationally [26]. However, tACS does emulate a state of

synchronization which has been proposed to play an important role for memory formation

and consolidation [67]. Such oscillatory modulation, and its interference with endogenous

rhythms, may explain part of its effectiveness in the treatment of a wide range of neurological
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and neuropsychiatric disorders. As such, the diversity and organization of MTCs, as well as a

other cellular biophysical parameters, is ought to play a fundamental functional role in the

modulation of specific intra and extra-laminar connectivity, unfolding yet another dimension

by which transcranial stimulation might be used in the clinics. Such considerations are left for

future work.

While insightful, our model nonetheless suffers from limitations. First, we considered neu-

ronal populations with random intra-laminar connectivity [68], which remains a simplifica-

tion for the cortical connectivity observed experimentally [69]. Moreover, it is important to

note that axonal and/or synaptic delays may influence the stimulation-phase relationships and

hence impact STDP-induced synaptic modification [70] while retaining the obtained results

qualitatively. In addition, our study considers the summed MTC distribution to account for

sub-cell-type differences. Further work should introduce cell-specific variations in MTC to

examine the potential influence of tACS on recruiting excitatory-inhibitory connectivity. We

should also mention that our results are valid in the context where stimulation-induced pertur-

bations are salient enough relative to recurrent pre-synaptic current i.e. entrainment of mem-

brane potential is required. This was guaranteed in our model by selecting appropriate tACS

amplitude while the network expresses—due to the choice of parameters—asynchronous

irregular activity. Lastly, our results are limited to the weak connectivity regime, where plastic-

ity follows a Hebbian STDP rule. Moving forward, the inclusion of a larger variety of synaptic

plasticity mechanisms (notably between cell types) [42] might further enhance the physiologi-

cal relevance of our model and further extend the dynamic range expressed by the network,

both with and without tACS.

Materials and methods

Spiking neuron model

Our simulations are based on standard Leaky-Integrate-and-Fire (LIF) excitatory and inhibi-

tory neurons [28]. This model reliably simulate the response of neurons to incoming input

current based on neuron’s MTC. The following differential equation describes the evolution of

the neuron’s membrane potential as a function of incoming input

tm
dv
dt
¼ ðVrest � vÞ þ Iz þ Isyn þ Is; ð1Þ

for which the solution can be written as

vðtÞ ¼ Vrest þ v0e� t=tm þ
1

tm

Z t

� 1

e� ðt� t0Þ=tmðIzðt
0Þ þ Isynðt

0Þ þ Isðt
0ÞÞdt0; ð2Þ

where τm is the MTC, v is the membrane potential with initial value v0, Vrest is the resting

membrane potential, Iz is white noise input current with mean value μ and standard deviation

σ. The variable Isyn represents the synaptic input. The Is represent the tACS-induced current,

which we assumed has a sinusoidal form, i.e. Is = As sin(2πωst + θ), where As is the amplitude

of the periodic signal, ωs is the angular frequency, and θ is the phase of stimulation. We solved

Eq 1 with Euler–Maruyama method and time step dt = 0.1ms. When the membrane potential

crosses the threshold value, vthr = −54(mV), a spike is elicited, and the membrane potential

resets to its resting value Vrest = −60 ± 0.2(mV) for a period of τref = 2 ms representing the neu-

ronal refractory period Note that larger refractory periods alter the firing rate distribution,

but the results remain consistent. We used the given parameter values in Table 2, which are in

the physiological range [40, 71]. Without loss of generality, it is possible to use re-scaled and

dimensionless parameters to generate similar results.
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Assuming a purely passive neuron (i.e. non-spiking) and is subjected to Gaussian white

noise (μ = 0) combined with periodic input, then the membrane potential spectral power dis-

tribution reads

SðoÞ �
1

1þ 4p2t2
mo

2
2s2 þ

A2
s

4
dðo � osÞ þ dðoþ osÞð Þ

� �

; ð3Þ

where δ(�) is the Dirac delta function. In other words, the passive LIF-neuron behaves like a

low pass filter diminishing larger frequencies and the MTC τm defines the filter’s edge fre-

quency 1/τm.

The total presynaptic input for a neuron i is given by

Iisyn ¼
XNE

j¼1

gEij Sijðt � tdÞðvi � Ej
synÞ þ

XNI

j¼1

gIijSijðtÞðvi � Ej
synÞ ð4Þ

where gE; I
ij are synaptic weights associated with connections between either excitatory (E) and

inhibitory (I) pre-synaptic neurons towards a post-synaptic neuron i. Esyn is the reversal potential

for E and I pre-synaptic neurons. The above sum is taken over NE excitatory and NI inhibitory

pre-synaptic neurons. The resulting synaptic response function Sij(t) at connections from neuron

j to neuron i is modeled as

SijðtÞ ¼
e
t� tjsp � t

ij
d

tr � e
t� tjsp � t

ij
d

td

tr
td

tr
td � tr

� �

�
tr
td

td
td � tr

� �
ð5Þ

where tjsp is the time of spike of jth neuron, and tijd is the axonal delay between pre-synaptic

neuron, j, and post-synaptic neuron, i. The τd is the decay time constant associated with

GABAa and/or AMPA receptors.

Spike Timing-Dependent Plasticity (STDP)

Plasticity in our network (both for a pair of neurons and excitatory and inhibitory popula-

tions) was modeled using Hebbian spike-timing dependent plasticity [40, 43]. To avoid biased

synaptic changes (i.e. preferential LTP/LTD), we chose a symmetric STDP Hebbian learning

rule [72, 73]. Specifically, synaptic weight modification in our model follows

DgDT>0 ¼ Aþð1 � g=gmaxÞe� DT=g
þ

DgDT<0 ¼ � A� ðg=g0ÞeDT=g
�

g ¼ g þ Dg

ð6Þ

Synaptic changes resulting from the rule above are plotted in Fig 3A3. The term A+(1 − g/gmax)

and A−(g/g0) which depends on the on-line value of synaptic weight, g(t), represent rates of

synaptic potentiating and depression respectively, ensure us to be in soft-bound regime [74].

The γ+ and γ− are decay time constants. DT ¼ tpostsp � tpresp represents the time difference

between the spiking time of pre- and post-synaptic neurons. Whenever ΔT is positive (nega-

tive) the synaptic weight between pre to post neurons gets potentiated (depressed). The

constant gmax denotes the maximum achievable synaptic weight, while g0 denotes the initial

synaptic weight, uniform across all synaptic connections prior to learning.

Synaptic changes are bounded within a physiologically relevant range by setting the maxi-

mum and minimum value of synaptic weight to gmin = 0.01g0 and gmax = 2g0. Therefore, every
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time the synaptic weights overpass these limits, this condition will impose the value to those

mentioned limits to ensure the synaptic weight remains between boundaries. Baseline synaptic

connectivity and threshold were selected to set the network in a weak coupling, subthreshold

regime, in which an isolated pre-synaptic spike does not guarantee post-synaptic firing.

Throughout this report, we used Eq 6 for synaptic modification and our choice of STDP

parameters are: A+ = 2A− = 0.02 and γ± = 10 ms.
In Fig 3A3 The effective synaptic weight in coupled neurons is estimated based on the fre-

quency distribution of spiking time differences DT ¼ tð2Þsp � tð1Þsp between post and pre-synaptic

neurons (such as Fig 3A1 and 3A2). As explained above, the STDP rule, Eq 6, defines the syn-

aptic weight change subjected to ΔT. Then the mean synaptic weight change is given by the

STDP-rule weighted by the frequency of ΔT

Dg ¼
Z 0

� 1

A� e
DT=g� f ðDTÞdDT þ

Z 1

0

Aþe
� DT=gþ f ðDTÞdDT ð7Þ

f(ΔT) is the frequency distribution of ΔT. Note that the distribution varies by changing the

stimulation frequency. The outcome of this integral predicts the direction of synaptic modifi-

cation at each stimulation frequency (cf. Fig 3A3).

Intra- and inter-laminar network model

We modeled a sparse network of leaky-integrate-and-fire (LIF) neurons (see Eq 1), with a 4:1

ratio of excitatory and inhibitory neurons [75] and with fixed intra-laminar connection proba-

bility of 0.1 [50, 76]. The choice of LIF neurons is motivated by the need to balance physiologi-

cal relevance and computational tractability for the network sizes we considered (see below)

[77]. The baseline synaptic weights and other parameters have been selected within the

reported physiological range [50] and in line with previous studies on LIF cortical network

models (see [40, 71, 77, 78] and references therein), and are further summarized in Table 2. In

the intra-laminar case, N = 10000 (i.e. 8000 excitatory cells, 2000 inhibitory cells; Figs 4 and 5),

while N = 12000 in the inter-laminar case (i.e. 2400 excitatory cells, 600 inhibitory cells per

layer; Fig 6. The equal number of neurons in each layer is an arbitrary choice for simulating

purposes). To preserve sparse connectivity between cortical layers, the inter-laminar connec-

tion probability was set to 0.05 between excitatory neurons of each layer whenever such a con-

nection was observed, and set to zero otherwise [39, 50]. Inter-laminar connections between

inhibitory neurons were neglected.

To study the effect of timescale heterogeneity, we randomly sampled neuronal MTCs

(i.e. τm) from various probability distributions whose statistics are within the experimen-

tally measured range for cortical neurons [27, 29, 32]. In the intra-laminar case (i.e. Figs 4

and 5), τm was randomly sampled from a Gaussian distribution with mean mtm ¼ 10 ms
and standard deviation stm ¼ 3 ms (see Fig 4A). To quantify synaptic weight modification

between neurons with different MTCs, we identified synapses linking presynaptic cells

whose MTCs ranged around the mean of this distribution (i.e. tð0Þm 2 f9:5 10:5g ms)
towards post-synaptic cells whose MTCs are away from the mean (i.e. tð0Þm � 2 ms). We

index such synapses with > (<): t<m 2 ftm⩽8 msg) and (t>m 2 ftm⩾12 msg. We averaged

these synaptic weights at every 500ms in the last 5 seconds of stimulation. These were fur-

ther averaged over 5 independent trials. The resulting synaptic weight distributions are

plotted in Fig 5. In Fig 6 to quantify synaptic weight modification, we considered the

synapses between neurons that the difference in their MTCs is more than 5ms (i.e.

t>m � t
<
m ⩾5 ms).
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In the inter-laminar case (i.e. Fig 6), we used empirical MTC values measured across corti-

cal layers [27, 29, 32]. The probability density functions for each layer are plotted in Fig 1A.

These data were collected from the Allen Institute Cell Feature Database for human neurons

[32]. Since the resulting MTCs are distributed over a wider range compared to the intra-lami-

nar case above, we adjusted the neurons’ rheobase so that the resulting input current leads the

cell in a dynamical regime similar to the one plotted in Fig 4.

Supporting information

Previous experimental [15, 16] and computational [46] studies have reported no significant

increase in firing rate during tACS, in contrast to our simulations where elevated spiking was

observed. We have selected a regime of high tACS amplitude to characteririze the influence of

MTC heterogeneity on STDP under tCAS. Ought to the fact that STDP operates as a function

of spike timing differences (and hence MTC), it is essential to alter the spiking time of pre-and

post-synaptic neurons to induce selective synaptic weights modifications. Achievement of this

goal, because of the wide range of neurons MTCs, is notably possible through increasing the

amplitude of stimulation, resulting in increase in firing rates. We have nonetheless extended

our analyses to low tACS amplitude regimes to evaluate the whether MTC-specific synaptic

changes may occur in absence of significant changes in firing rates during tACS at various fre-

quencies. We first revisited our simulations for smaller tACS amplitudes (As = 0.2 mV� 1 mA
� 1 V/m, See [53]), [15, 16] over an extended time (t = 5 − 110 s). As shown in S1 Fig, weak

stimulation amplitude is capable of entraining neuron spike timing while preserving firing

rates. Small, yet noticeable synaptic modification can nonetheless be observed. Compared to

results presented in Fig 4 (high tACS amplitude regime) this occurs through the expense of los-

ing the specificity in spiking time/phases, which translates into a reduction of STDP-mediated

synaptic modifications. We next considered parameters that would support increased sensitiv-

ity to tACS at smaller amplitudes, such as distance to threshold. Modelling this through an

additional input current (μnew = μ + Δμ = 5.7 mV in Iz, Eq 1) does change firing rates while

modifying the aforementioned specified synapses (see S2 Fig). We also confirmed that no sig-

nificant synaptic changes would be induced in these regimes even over long stimulation peri-

ods. These additional simulations show that stimulation-induced changes in synaptic weights

scale with tACS amplitude. Despite no significant change in firing rate, spike timing phase-

locking lead to small MTC-specific synaptic modifications (cf. S1 and S2 Figs). These observa-

tions are in line with results previously reported [15, 16, 46].

S1 Fig. Network activity in low stimulation amplitude regime. (A1) to (A3) are showing the

distribution of neurons’ firing rate at stimulation frequencies ωs = 20, 25, 30Hz, respectively, at

different time points: (t = 1, 2s) pre-stimulation epoch, (t = 50, 100s) stimulation epoch, and

(t = 116, 119s) post-stimulation epoch. (B1) to (B3) are the raster plots of neural population’s

spiking activity, at mentioned time points and stimulation frequencies. (C1) to (C3) show the

distribution of synaptic weights at stimulation frequencies 20, 25, and 30 Hz, and among dif-

ferent sets of synapses, gE!E, gE!I, and gI!E. The stimulation amplitude is As = 0.2mV.

(EPS)

S2 Fig. Network activity in low stimulation amplitude regime and smaller distance to

threshold. The distance to threshold of all neurons, is reduced by increasing the input current

to μ = 5.7mV. (A1) to (A3) are showing the distribution of neurons’ firing rate at stimulation

frequencies ωs = 20, 25, 30Hz, respectively, at different time points: (t = 1, 2s) pre-stimulation

epoch, (t = 50, 100s) stimulation epoch, and (t = 116, 119s) post-stimulation epoch. (B1) to

(B3) are the raster plots of neural population’s spiking activity, at mentioned time points and

stimulation frequencies. (C1) to (C3) show the distribution of synaptic weights at stimulation
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frequencies 20, 25, and 30 Hz, and among different sets of synapses, gE!E, gE!I, and gI!E. The

stimulation amplitude is As = 0.2mV.

(EPS)
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