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Abstract

5-Fluorouracil (5-FU) is a standard chemotherapeutic agent to treat solid cancers such as

breast, colon, head, and neck. Computational modeling plays an essential role in predicting

the outcome of chemotherapy and developing optimal dosing strategies. We developed an

integrated mechanistic pharmacokinetics/pharmacodynamics (PK/PD) model examining

the influence of 5-FU, as an S-phase specific double-strand break (DSB)-inducing agent, on

tumor proliferation. The proposed mechanistic PK/PD model simulates the dynamics of criti-

cal intermediate components and provides the accurate tumor response prediction. The

integrated model is composed of PK, cellular, and tumor growth inhibition (TGI) sub-models,

quantitatively capturing the essential drug-related physiological processes. In the cellular

model, thymidylate synthase (TS) inhibition, resultant deoxynucleoside triphosphate (dNTP)

pool imbalance, and DSB induction are considered, as well as 5-FU incorporation into RNA

and DNA. The amount of 5-FU anabolites and DSBs were modeled to drive the kinetics of

the pharmacological tumor response. Model parameters were estimated by fitting to litera-

ture data. Our simulation results successfully describe the kinetics of the intermediates reg-

ulating the 5-FU cytotoxic events and the pattern of tumor suppression. The comprehensive

model simulated the tumor volume change under various dose regimens, and its generaliz-

ability was attested by comparing it with literature data. The potential causes of the tumor

resistance to 5-FU are also investigated through Monte Carlo analysis. The simulation of

various dosage regimens helps quantify the relationship between treatment protocols and

chemotherapy potency, which will lead to the development of efficacy optimization.

Author summary

Computational modeling plays an essential role in predicting the outcome of chemother-

apy and developing optimal dosing strategies. In this study, we developed a computational
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model examining the influence of a chemotherapeutic agent, 5-fluorouracil, on tumor

proliferation. 5-fluorouracil is a standard chemotherapeutic agent used to treat solid can-

cers such as breast, colon, head, and neck. Our model traces the dynamics of critical inter-

mediate components and generates the accurate tumor response prediction in a

physiologically-based manner for colon cancer. The comprehensive model simulates the

tumor volume change under various dosage regimens, and its generalizability is attested

by the validation against literature data. We used the models to investigate potential causes

of the tumor resistance to 5-fluorouracil. Our model simulations for various dosage regi-

mens help quantify the relationship between treatment protocols and chemotherapy

potency.

Introduction

In this study, we developed a novel mechanistic PK/PD model that integrates a detailed cellular

model with the classical PK/PD models to analyze the treatment outcome of the chemothera-

peutic agent 5-fluorouracil (5-FU) in colon cancer. The modeling framework enables the

quantitative analysis of the drug metabolism together with the downstream antiproliferative

events by providing process models for the distribution of 5-FU from its entry into the body to

interstitial fluid outside the tumor cells and to its cellular uptake. In the cell model, the connec-

tion of cellular level molecular events that lead to tumor suppression are modeled in detail.

Over the past decades, pharmacokinetics/pharmacodynamics (PK/PD) models have been

widely used in predicting therapeutic outcomes through the evaluation of the causal concen-

tration-effect relationships [1]. Specifically, the PK model concentrates on drug disposition in

plasma and/or tissues and describes drug exposure stages. In contrast, the PD model examines

the pharmaceutical responses (e.g., tumor volume, white blood cell counts) following the drug

treatment. The structures of the PK models differ based on the type of the drug, route of

administration (i.e., oral absorption, intravenous injection, intravenous infusion), as well as

the availability of clinical data. Commonly used compartment PK models in the literature are

one compartment, two-compartment and three-compartment models. The one-compartment

PK model considers the drug distribution in the whole organism as homogeneous [2]. The

two-compartment PK model represents the transfer of substances between central (richly per-

fused organs) and peripheral regions (poorly perfused organs) of the human body [3, 4]. One

central and two peripheral compartments constitute three-compartment PK models [5, 6].

The multicompartment pharmacokinetics models are preferred over the one-compartment

model, because they can accurately represent the plasma concentration-time profile [7]. The

pharmacokinetic profile in the central or peripheral compartment is the input of the PD

model. The drug transport across the cell membrane is modeled as the irreversible or revers-

ible exchange with the tumor compartment [8]. The PD model for tumor response comprises

the kinetics of the control group and the treated group. The population tumor growth kinetics

in the absence of the drug intervention is described by ordinary differential equations, includ-

ing a growth term and a death term. Exponential, Mendelsohn, linear, logistic, Gompertz, and

Bertalanffy are the common options for simulating the normal tumor growth patterns [9]. Spe-

cifically, exponential, Mendelsohn, linear, and surface growth terms predict that tumors will

continue growing without an upper bound. Logistic, Gompertz, and Bertalanffy models pre-

dict that tumors will grow to some maximum size and reach a stable equilibrium at that point,

based on the finding that the tumor growth is subject to the limited nutrition supply and extra-

cellular cues [9, 10]. Under the effect of tumor therapy, the tumor growth is altered and
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deviated from its baseline level. As a key player in PD model, the exposure-effect relationship

(Edrug) driving the drug-induced tumor kinetics is modeled as a function of drug concentra-

tion, which can be linear, log-linear and sigmoid [11, 12]. The involvement of drug effect in

tumor growth dynamics can be modeled in various ways, depending on the biological question

researchers propose to address, the assumptions on which the model construction is based,

and the availability of experimental data. In general, the pharmacodynamic models take one or

more of the forms of the hypothetical effect compartment model, indirect response model and

signal transduction model, irreversible effect model, and complex mechanism-based model

[13]. The interpretations of these PD models are provided as follows. The hypothetical effect

compartment reproduces the true site of drug action and is applied between the PK and PD

model only when the slow onset of observed effects can be explained by the rate-limiting drug

distribution to the target site [14]. The indirect response model captures the nonlinear expo-

sure-effect relationship and reflects how the reversible drug action alters the turnover of the

drug response variables. Specifically, the sigmoid Emax,damage can be added to the production

and loss term to represent either inhibitory or stimulatory effects of drug disposition on the

production or the loss of the responses [15, 16]. The PD model encompassing the signaling

pathways incorporates the time-dependent intermediate steps connecting the drug-receptor

complex and pharmacodynamic response. The time elapsed from drug binding to the onset of

the measurable responses is modeled by a transit compartment approach [17, 18]. The irre-

versible effect model is similar to the indirect response model in certain contexts where the

tumor growth is incorporated. But this type of PD model is only applicable to the compounds

with irreversible anti-tumor effects and does not alter the turnover rate of a biomarker. The

mechanism-based pharmacodynamic models extend from the indirect response model and

consider the multiple drug-related mechanistic events represented by the ordinary or partial

differential equations defined for the model variables [19]. The underlying physiological pro-

cesses also warrant the additional modeling components to capture the biological

phenomenon.

In recent years, researchers have shown great interest in employing PK/PD models for the

prediction of tumor responses to 5-FU. Several conventional PK/PD models in the context of

5-FU treatment have been proposed, in which the transit compartment model is employed to

describe the progressive effect on damaged tumor cells [20–22]. Although researchers have

gained desirable analysis outcomes through the PK/PD models, the physiological effects under

tumor treatment are barely captured. To delve into the complex cellular responses towards

chemotherapy and to realize precise prediction, the mechanistic details need to be incorpo-

rated in the model design phase. In the literature, semi-mechanistic PK/PD models have been

built for 5-FU in recent years, which employ both biological complexity and predictive power

of a typical empirical model. In the model developed by Arshad et al. [23], three transit com-

partments describing blood cell maturation were used to explore the relationship between

5-FU exposure and myelosuppression. In a physiologically-based PK model [24], the activities

of the metabolic enzymes regulating the metabolism of Capecitabine to 5-FU are considered to

pursue a better prediction of the therapy efficacy. The study [25] aiming for characterizing the

PK/PD relationship for LY2835219 developed an integrated model incorporating CDK4/6

inhibition, cell-cycle arrest, and tumor growth inhibition. Altinok et al. proposed a cellular

automaton model coupled with a PK model to investigate the effects of circadian rhythms on

the therapeutic outcome of 5-FU [26]. Recognizing the benefits brought about by this type of

computational model, we developed a mechanistic PK/PD model which encompasses multi-

level biological phenomenon to capture the drug actions of 5-FU in the tumor cells.

5-FU exhibits its cytotoxicity through a metabolic pathway that has been widely studied

since its approval. 80%-90% of 5-FU is further decomposed into simple molecules through
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catabolism taking place in the liver by dihydro-pyrimidine dehydrogenase (DPD), while its

active forms of metabolites are produced through anabolism in tumor cells [27]. It is 5-FU

anabolites that intervene in the normal cellular functions and exhibit deleterious effects on

tumor growth. Fluoro-deoxyuridinetriphosphate (FdUTP) and fluorouridine triphosphate

(FUTP) are the products of sequential phosphorylations initially catalyzed by thymidine phos-

phorylase (dThdPase) and uridine phosphorylase (UrdPase) or orotate phosphoribosyl trans-

ferase (OPRT), respectively [28, 29]. They are ultimately incorporated in RNA and DNA

through the action of DNA polymerase, causing genomic instability. The conversion of 5-FU

to fluorodeoxyuridine (FUDR) is followed by the production of fluorodeoxyuridylate

(FdUMP) catalyzed by thymidine kinase (TK). FdUMP binds to thymidylate synthase (TS) at

its nucleotide site in competition with deoxyuridine monophosphate (dUMP) and forms a ter-

nary complex with a folate analog 5,10-methylenetetrahydrofolate (CH2THF) as a co-sub-

strate, leading to reversible inactivation of TS enzymatic activity and inhibition of thymidine

production [30, 31].

Accumulating evidence indicates that TS inhibition is the determinant of 5-FU’s anti-

tumor effects and its activity has been demonstrated to be the predictor of tumor response to

5-FU treatment [31–33]. Hence, in our model, the dNTP pool imbalance caused by TS inhibi-

tion is attributed to the key factor in the formation of deleterious DNA fragmentation. The

intactness of the components in the dNTP pool is required for DNA replication and DNA

repair machinery to perform with high fidelity [34]. The thymidine deprivation and resulting

dUMP accumulation can give rise to the perturbation of the biosynthesis of the other deoxynu-

cleotides (dATP, dGTP, dCTP) via multiple feedback mechanisms. Interruption of biosynthe-

sis of DNA precursors caused by the deficiency of the enzymes involved in nucleotide

metabolism can give rise to futile DNA damage repair and accumulated DSBs [35]. (F)dUTP

insertions into DNA facilitated by dUMP accumulation are recognized and excised by uracil

DNA glycosylase (UNG), the first responder of the BER pathway [36]. But the uracil bases are

incorporated repeatedly, causing the futile cycling repair by BER [36]. The accumulation of

BER intermediates such as AP sites and single-strand breaks (SSBs) and persistent breakages

triggers the formation of DSBs, resulting in cell cycle arrest, activation of homologous recom-

bination repair(HRR), and apoptosis pathways. Indeed, some studies have established the rela-

tionship between the dNTP pool imbalance and 5-FU cytotoxicity [32, 37].

In this study, we constructed a detailed mechanistic model linking the concrete drug

actions of 5-FU to the prediction of pharmacodynamic response of colon cancer cells. The cel-

lular model focuses on 5-FU anabolism, RNA and DNA misincorporation, TS inhibition lead-

ing to contamination of the dNTP pool, and induction of DSBs when the cell population

proceeds through the S phase, all of which are believed to be essential biological events upon

the administration of 5-FU. In addition, we used the γ-H2AX foci count to approximate DSBs,

γ-H2AX is the canonical biomarker of DSBs, and its qualitative consistency with DSBs has

been well established in the literature [38]. The tumor growth inhibition (TGI) model is built

based on the combination of the life span model and the indirect response model, and the

dynamics of the normal tumor growth is captured by the logistic growth model involving car-

rying capacity. Considering the suppressive effect of drug on tumor growth, 5-FU anabolites

are modeled to inhibit the tumor growth and 5-FU-induced DSB formation is modeled accel-

erate the conversion of proliferating cells to damaged cells, which quantitatively captures the

observations that the induction of DSBs by 5-FU and 5-FU anabolites are candidate predictive

markers of 5-FU treatment efficacy [39, 40]. In addition, the TGI model is constructed and val-

idated using literature tumor volume data observed from the tumor xenografts administered

with different dosage regimens. Another advantage of our mechanistic model is that the simu-

lation-based resistance analysis can be conducted to provide the computational assessment of
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the potential causes of tumor resistance to 5-FU treatment. We not only examined the role of

individual reactions in causing tumor resistance to 5-FU but also took into account the inter-

actions among multiple factors. By comparing the time courses corresponding to these simula-

tion scenarios and the time course of the tumor volume measured in 5-FU resistant cell line,

we computationally identify which events contribute significantly to the drug resistance. Fur-

thermore, we carried out global sensitivity analysis by applying the Morris method to screen

out the subsets of the parameters with considerable effects on model outputs and then applying

Sobol analysis that allows for the analysis of parameter interaction effects.

Materials and methods

Our mechanism-based model is composed of PK, cellular, and tumor growth inhibition (TGI)

sub-models, the last two of which constitute the PD model. The model diagram is shown in

Fig 1. The PK model is used to compute the concentration-time profile, and the TGI model

focuses on the kinetics of tumor growth post-treatment. Our cellular sub-model captures phys-

iological processes at the molecular level and connects the drug distribution in plasma and

pharmacological response towards the drug action.

PK model

The PK model is described by a two-compartment plasma-peripheral model with Michaelis-

Menten clearance [8, 41–43]. The central compartment models the drug distribution in the

central plasma. All the remaining tissue space is captured by a hypothetical compartment,

referred to as the peripheral compartment so that the exchange of drug substances between

central blood (compartment 1) and auxiliary region of human body (compartment 2) given by

a linear kinetics, and non-linear elimination collectively describe the drug fate in the circula-

tory system.

The levels of 5-FU in the central plasma (A1(t), pmol�mg−1) and in the peripheral regions

(A2(t), pmol�mg−1) change according to the Eqs (1) and (2).

dA1ðtÞ
dt

¼
Q12

V2

A2ðtÞ �
Q12

V1

A1ðtÞ �
Vmax 1 � C1ðtÞ
Km1 þ C1ðtÞ

ð1Þ

dA2ðtÞ
dt

¼
Q12

V1

A1ðtÞ �
Q12

V2

A2ðtÞ ð2Þ

CðtÞ ¼
AðtÞ
V

ð3Þ

where Q12 is volume of 5-FU cleared inter-compartmentally between central and peripheral

space per minute. V1 and V2 are the volumes of the central and peripheral compartments,

respectively. Vmax 1 and Km1 describe the process of elimination of 5-FU from central plasma.

Cellular model

The cellular model is built using a compartmental modeling approach, which is one of the

common techniques utilized to model biochemical pathways. In the previous model involving

similar molecular complexity developed by Wolf et al [44], the drug transfer from interstitial

fluid to intra-cellular space and the emergence of products of drug action are considered. In

our work, we construct a model including a more detailed description of physiological events

associated with 5FU cytotoxicity. The cellular model considers the 5-FU concentration in
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interstitial fluid (compartment 3), formation of 5-FU anabolites (compartment 5), insertion of

FUTP, FdUTP into RNA and DNA (compartment 6 and 7) binding of FdUMP to TS (com-

partment 9), changes in the components of the dNTP pool caused by reduced TS catalytic

activity (compartment 10) and DSB induction as a response to imbalanced dNTP pool (com-

partment 11). For the purpose of modeling, the compounds are assumed to dissolve in a

Fig 1. Schematic representation of PK, cellular and tumor growth inhibition (TGI) model. (A) PK model; (B) Cellular and TGI model. A1:amount of

5-FU in central plasma; A2: amount of 5-FU in peripheral compartment; Cp(t): 5-FU concentration in central plasma. A3: amount of 5-FU in interstitial

fluid; A4: amount of 5-FU in the intra-cellular domain; A5: amount of 5-FU anabolites; A6: incorporation of FUTP into RNA; A7: incorporation of

FdUTP into DNA; A8: amount of dUMP;A9: amount of TS-FdUMP complex; TSf: amount of free TS; TStotal: amount of total TS; Nucp: extent of dNTP

pool imbalance; NDSB: count of 5-FU induced DSBs;NDSB,deviation: deviation of 5-FU induced DSBs from baseline; P: amount of proliferating cells; D:

amount of damaged cells. V: volumes of compartments; Vmax;K;m: Michaelis–Menten parameters; Q: clearance between neighboring compartments; k:

rate constant; T: delaying parameters; G0: production rate of dUMP;; λd: death rate of tumor cells without 5-FU; fHRR: rate of repair of DSBs by HRR.

EDSB: measure of contribution of DSBs in producing damaged cells.

https://doi.org/10.1371/journal.pcbi.1010685.g001
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spatially homogenous environment and be confined in the compartments, in which certain

reactions with the respective compounds as reactants would take place. The rate of change of

these reactions are represented by the influx and efflux of corresponding compartments. The

dynamics of those species are subject to a group of differential equations described by the law

of mass action and the Michaelis-Menten kinetics. The time evolution of physiological inter-

mediates, as the output of the cellular model, is involved in the determination of drug effect

measures, driving the ultimate pharmacodynamic responses.

5-FU in interstitial fluid and its anabolism. The differential equations describing

the evolution of 5-FU in interstitial fluid (A3(t), pmol�mg−1), intra-cellular 5-FU (A4(t),
pmol�mg−1) and 5-FU anabolites(A5(t), pmol�mg−1) are formulated in Eqs (4), (5) and (6). The

kinetics of 5-FU in interstitial fluid (A3(t), pmol�mg−1) is governed by unidirectional transmis-

sion from central plasma [45, 46], first-order elimination from the extracellular domain (k03)

and update and removal of 5-FU molecule across the tumor cell membrane [46]. The influx

and efflux transporters anchored on the cell membrane contribute to uptake and clearance of

5-FU drug molecules [47]. Considering that the drug diffusion into the target cell is limited by

the maximum number of available uptake transporters, the Michaelis kinetics, characterized

by the saturation curve, is applied to describe the process of absorption of 5-FU by tumor cells.

It is difficult to detect the individual low molecular-weight 5-FU anabolites (i.e. fluoronucleo-

tides and fluoronucleosides, denoted as FNUC) accurately despite using high precision tech-

niques [48]. Therefore, FNUCs are collectively represented by variable A5(t) and are modeled

to be uniformly distributed and non-diffusing in one compartment. The rate of formation of

A5(t) is through 5-FU anabolism. The decomposition of the TS-FdUMP complex and removal

of 5-FU from RNA account for the replenishment of A5(t). The decrease of amount of A5(t) is

regulated by the incorporation of FdUTP and FUTP into DNA and RNA and attachment of

FdUMP on TS.

The time-dependent levels of incorporated FU residues into RNA(A6(t), FU-RNA, and

DNA((A7(t), FU-DNA) are the solution of Eqs (7) and (8). The influxes into compartment 6

and compartment 7 quantitatively capture the incorporation of 5-FU into RNA and DNA,

receptively, the rates of which are driven by the kinetics of 5-FU anabolites (A5(t)). The efflux

terms in Eqs (7) and (8) describe the efficiency of excision of uracil bases by cell-intrinsic

repair machineries. Different from the linear kinetics for FU-RNA, Michaelis-Menten kinetics

is applied to FU-DNA since FdUTP insertion into DNA and restoring FU-containing DNA is

regulated by protein enzymes. According to the experimental data regarding 5-FU insertion

into genomes, the process of removing genomic 5-FU is not instantaneous but rather lasts for

days. It is also shown in the literature that the initiation of cell cycle checkpoint and futile cycle

DNA repair are the two main causes of delayed DNA repair process. The persistence of uracil

analogs in genomes challenges genomic stability, initiating the cell cycle checkpoint and pre-

venting cell cycle progression. The cellular repair machineries are precipitously assembled.

However, the futile cycling repair, the causes of which have been discussed at length in the

introduction, leads to the accumulation of unrepaired mismatched bases and impeded opera-

tion of DNA repair proteins. In conformity with the underlying mechanism, the rates of loss

of FU-RNA and FU-DNA are the function of past states of FU-RNA and FU-DNA, realized by

two delaying parameters (Td,RNA, Td,DNA). Specifically, for t� Td,RNA(Td,DNA), the loss of geno-

mic 5-FU in RNA(DNA) is modeled as the kinetics without delay, while, for t> Td,RNA(Td,

DNA), the elimination of FU-RNA (FU-DNA) is considered as a process that depends on the

past state of FUTP (FdUTP) insertion into RNA(DNA).

Overall, the differential equations governing the dynamics of extracellular 5-FU (A3(t),
pmol�mg−1), intra-cellular 5-FU (A4(t), pmol�mg−1), 5-FU anabolites(A5(t), pmol�mg−1), FU-
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RNA(A6(t), pmol�mg−1) and FU-DNA (A7(t), pmol�mg−1) are shown below.

dA3ðtÞ
dt

¼ Q31CpðtÞ þ
Vmax;effluxA4ðtÞ
Km;efflux þ A4ðtÞ

�
Vmax;influxA3ðtÞ
Km;influx þ A3ðtÞ

� k03A3ðtÞ ð4Þ

dA4ðtÞ
dt

¼ �
Vmax;effluxA4ðtÞ
Km;efflux þ A4ðtÞ

þ
Vmax;influxA3ðtÞ
Km;influx þ A3ðtÞ

�
Vmax;54A4ðtÞ
Km;54 þ A4ðtÞ

ð5Þ

dA5ðtÞ
dt

¼
Vmax 54 � A4ðtÞ
Km54 þ A4ðtÞ

þ
k56A6ðtÞ

ð1þ k06A6ðt � Td;RNAÞÞ
glag;RNA þ k59A9ðtÞ

� k65A5ðtÞ þ
Vmax 75 � A5ðtÞ
Km75 þ A5ðtÞ

þ k95ðTStotal � TS � dUMPÞA5ðtÞ
� � ð6Þ

dA6ðtÞ
dt

¼ k65A5ðtÞ �
k56A6ðtÞ

ð1þ k06A6ðt � Td;RNAÞÞ
glag;RNA ð7Þ

With A6(t) = 0, for −Td,RNA� t� 0

dA7ðtÞ
dt

¼
Vmax;75 � A5ðtÞ
Km;75 þ A5ðtÞ

�
Vmax;7 � A7ðtÞ

ðKm;7 þ A7ðtÞð1þ k07A7ðt � Td;DNAÞÞ
glag;DNA ð8Þ

With A7(t) = 0, for −Td,DNA� t� 0.

In which Cp(t) denotes concentration of 5-FU in central plasma, which is solely defined by

the PK model, Q31 is the volume of 5-FU cleared from central plasma to extracellular space per

unit time, Vmax,influx along with Km,influx describes the saturable uptake, Vmax,efflux and Km,efflux

describe the saturable removal, k03 is the first order rate of eliminating 5-FU from interstitial

fluid, Vmax,54 is the maximum rate of 5-FU anabolism, and Km54 is the corresponding half satu-

ration value. k56 and k65 are the first order rates of incorporating FUTP into and removing

FUTP from RNA. k06 and Td,RNA as well as k07 and Td,DNA, describe the delayed excision of

incorporated FU residues from RNA and DNA. γlag,RNA and γlag,DNA are used to adjust curve

shape. The DNA polymerase with limited catalytic capability controls the insertion of FdUTP

into DNA, expressed by parameters Vmax,75 and Km,75. Vmax,7 and Km,7 represent the rate of

removal of FdUTP from DNA by UNG. Initial conditions for each compartment are zero. The

units of incorporation of 5-FU into DNA and RNA are fmol� μg−1 DNA and pmol� μg−1 RNA,

as shown in the data source literature, which are converted to pmol�mg−1 tissue through the

concentration of DNA and RNA(0.2 μg/mg tissue and 2 μg/mg tissue respectively) [49].

The next dynamics we need to model is the binding of FdUMP to TS, which is considered

to be the main contributor to 5-FU cytotoxicity. The study on analyzing the protein structure

of E.coli TS [50] found that the methylation of dUMP to dTMP by TS with CH2THF as the

methyl donor is a sequential process in which the dUMP binds at the active site of TS before

CH2THF does. However, from the quantitative perspective, the differences in rate between the

nucleotide/folate-ordered and random binding mechanism of reaction at TS is minimal [51].

Thus, for the sake of simplicity, we assume that the reaction involving dUMP is subject to

rapid-equilibrium random mechanism instead of the ordered bi-substrate reaction. Since

FdUMP and dUMP share the common biochemical properties in terms of covalent binding to

TS [52], the pattern of interaction between FdUMP and TS is also in the manner of rapid equi-

librium, demonstrated by the first term in Eq (9). It is also assumed that the free TS is saturated

with CH2FH4.

To model the rate of TS-FdUMP complex formation, the quantity of TS enzyme over time

is also considered, as shown in Eq (10). It is a consistent finding that the TS expression
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increases in response to 5-FU treatment [53–55]. TS expression at both protein and mRNA

levels are regulated by multiple factors such as activation of cyclin/CDK complexes and its

auto-regulatory feedback [56]. The increase in TS level after 5-FU exposure, with contributing

factors still indefinite, may be related to gene amplification and disrupted synthesis regulation

[56]. Therefore, it is more appropriate to estimate the total empirically content of TS by a

mono-exponential equation.

Free FdUMP binding sites (TSf) is expressed in terms of the all available FdUMP binding

sites (TStotal), and FdUMP-bound TS enzyme (TS-FdUMP). In the literature that we use as the

data source, the experimental measurements of TStotal are carried out after and TSf are carried

out before the dissociation of the ternary complex respectively [57]. Pretreatment TSf level is

set as initial level of TStotal. The amounts of TStotal and TSf upon exposure to 5-FU are deter-

mined by Eqs (10) and (11).

The kinetics of TS-FdUMP complex(A9(t), pmol�mg−1) is expressed by Eq (9). Eqs (10) and

(11) are the analytical expressions for TSf and TStotal.

dA9ðtÞ
dt

¼ k95ðTStotal � ½TS � dUMP�ÞA5ðtÞ � k59A9ðtÞ � k09A9ðtÞ ð9Þ

TStotal ¼ TS0½aþ ð1 � aÞexpð� kdtÞ� ð10Þ

TSf ¼ TStotal � ½TS � FdUMP� ð11Þ

In which the rate of enzyme-substrate complex formation is denoted as k95. k59 represents

the complex dissociation rate. The complex dissociation is accompanied by the release of

FdUMP and the recovery of free TS. k09 represents the first-order process of complex degrada-

tion. The production rate of the TS-FdUMP complex is proportional to (TStotal − [TS-dUMP]),

implicating that the competition between dUMP and FdUMP on the TS nucleotide binding

site impedes the attachment of FdUMP to TS. α is the ratio of increased TS synthesis rate in

the presence of drug to the normal synthesis rate of TS, kd is the ratio of degradation rate mea-

sured in treated cells and normal degradation rate constant, TS0 is the level of TS protein prior

to 5-FU administration.

It is assumed that there is an instantaneous equilibrium relationship between free dUMP
and TS-dUMP-folate ternary complex. Therefore, the complex [TS-dUMP] is given by Eq (12).

½TS-dUMP� ¼
dUMPf � TSf

KdUMP

ð12Þ

where KdUMP is the dissociation constant for the enzyme-substrate complex and is the ratio of

reverse and forward rate constants.

It is more convenient to express complex [TS-dUMP] as a function of free TS and the total

dUMP(dUMPtotal) that is the sum of free dUMP and [TS-dUMP] complex, since the quantities

of free TS and total dUMP are variables considered in the cellular model. By solving free

dUMP out of total dUMP and [TS-dUMP], we can get the new expression for variable dUMPf
that is

dUMPtotal

1þ
½TSf �

KdUMP

� �. Following this, [TS-dUMP] can be further expressed in terms of dUMPtotal
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and TSf, as shown in Eq (13).

½TS � dUMP� ¼
dUMPtotal

1þ
TSf
KdUMP

� � �
TSf
KdUMP

¼
dUMPtotal � TSf
KdUMP þ TSf

ð13Þ

The zero order synthesis, production of dTMP catalyzed by TS and degradation influence

time-amount curve of total dUMP(A8(t), pmol�mg−1) (Eq (14)).

dA8ðtÞ
dt

¼ G0 � rTS � k08A8ðtÞ ð14Þ

where G0 is the zero-order rate constant of dUMP synthesis. k08 is the first-order degradation

rate of dUMP. rTS represents the rate of conversion of dUMP to dTMP catalyzed by TS, which

is responsible for the loss of total dUMP. The expression of rTS is shown in Eq (15) and is line-

arly dependent on the amount of dUMP/TS/folate ternary complex through the catalytic rate

constant kcat.

rTS ¼ kcatðA8ðtÞ � dUMPf Þ

¼ kcat½TS � dUMP�

¼ kcat �
dUMPtotal � TSf
KdUMP þ TSf

ð15Þ

dNTP pool imbalance. The perturbation of components in the DNA precursor pool

(denoted as Nucp) is influenced by aggregated effects of 5-FU stimulated TS inhibition, cellular

nucleotide salvage pathway, and nucleotide feedback. Nucp is represented by the variation of

the total amount of deoxynucleotides at a given time point versus the corresponding control

level, following the same methodology as [58]. The mathematical expression for Nucp is deter-

mined as Eq (16).

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
P

x2f all dNTPs gx
P

x02f all dNTPs gx0

!2 
v
u
u
t ð16Þ

In which x0 and x denote the size of each constituent of dNTP pool before and after 5-FU treat-

ment, respectively. The initial value of Nucp is zero, implicating that prior to treatment there is

no tendency towards unusual nucleotide biosynthesis. As the level of all dNTPs decrease or

increase drastically from the baseline x0, the perturbation measure would increase accordingly.

The data used for model fitting is also converted to the measure of perturbation according to

Eq (16).

The time profiles of TSf and TStotal, determined in the cellular model, are connected with

changes of Nucp by introducing a new variable called perturbation in TS inhibition (TSp) into

this submodel. The degree of TS inhibition is evaluated by the ratio of the number of free

FdUMP binding sites (TSf, pmol�mg−1) and the total available TS binding sites (TStotal,
pmol�mg−1) [56]. TSp is quantified as the deviation of TS inhibition measured post-treatment
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(TSf/TStotal) from the normal portion of free TS levels (TSf0/TStotal0) (Eq (17)).

TSp ¼
TSf=TStotal
TSf 0=TStotal0

ð17Þ

With initial condition of 1, the value of TSp varies within the range 0 to 1. TSp vanishes when

TS nucleotide binding sites is fully occupied by FdUMP.

We applied and modified the scheme previously developed by Setzer et al [58] to simulate

the dNTP pool imbalance induced by 5-FU. The degree of dNTP pool imbalance is quantified

based on the two assumptions: 1). The 5-FU cytotoxicity is directly related to dTTP and the

alteration of dNTP is the direct and immediate product of TS inhibition; 2). Any disruption of

dNTP supplies as a result of TS inhibition would impede the normal process of DNA replica-

tion. The kinetics of dNTP pool imbalance is decided by the two differential equations, one for

variable Nucp as discussed above and one for variable U. The cellular nucleotide salvage path-

way is activated in the face of intra-cellular thymidine starvation caused by TS inhibition. Thus

U is invented to describe the propensity of the cellular nucleotide salvage pathway to diminish

the disturbance in the levels of constituents in the pool. The dynamics of U follow the pattern

of a negative feedback loop (Eq (19)). As the first terms in Eqs (18) and (19) show, the rates of

production of Nucp and U both increase as the perturbation in TS inhibition are elevated, and

finally converge to corresponding upper bounds(k1 and k10). Therefore, as no FdUMP is

attached to TS, all the binding sites on TS are available for dUMP, and the fluctuation in dNTP

would return to baseline level. In addition, the collective effects of TSp, Nucp and U impose

negative components to the rate of change of Nucp and are represented by the third term in

Eq (18) which is smaller for the smaller level of TSp and larger for the greater level of Nucp and

U. Besides, the second term in Eq (18), solely dependent on the level of Nucp, describes the

amelioration of disturbance by biochemical interactions among components in the dNTP

pool. The kinetics of Nucp and U are described by the differential equations(Eqs (18) and (19)).

dNucpðtÞ
dt

¼
k1ð1 � TSpÞ

gdNTP

kgdNTP2 þ ð1 � TSpÞ
gdNTP �

k3Nucp
1þ k4Nucp

�
k5U � Nucp

ð1þ k6UÞð1þ k
gdNTP
7 ð1 � TSpÞ

gdNTPÞð1þ kBNucpÞ

ð18Þ

dU
dt
¼

k10ð1 � TSpÞ
gdNTP

kgdNTP8 þ ð1 � TSpÞ
gdNTP
�

k9U
1þ kAU

ð19Þ

In which γdNTP is a hill parameter. All the other parameters are the unitless quantities.

DSB induction. dNTP pool imbalance and cellular repair pathways are implicated in the

production and elimination of DSBs, denoted as NDSB(t) in the model. The intactness of DNA

precursors in the dNTP pool partially guarantees the success of DNA biosynthesis and DNA

damage repair [32]. The perturbed dNTP pool caused by TS inhibition would result in double

strand DNA break during DNA replication in the S phase [32, 37]. In response to the aberrant

DNA duplex structure, the cell cycle checkpoints are triggered to allow the repair machinery

to restore the genomic stability; if the DNA repair fails, apoptosis pathway would be activated

to clear the damaged cells [34].

The literature data shows that the induction of DSBs caused by 5-FU is delayed following

the occurrence of dNTP pool imbalance. Such an assumption is also biologically reasonable

since the two cellular events are occurred at different molecular levels and are related to cell

cycle progression. In the absence of detrimental effects of dNTP pool imbalance, the
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generation of severe DNA lesions depends on the zero-order rate constant k0. The outflow

term
Vmax;HR�NDSBðtÞ
Km;HRþNDSBðtÞ

stands for the efficiency of normal DNA repair responses. Mathematically,

the dynamics of DSB generation (NDSB(t)) for 0� t� Td is governed by Eq (20)

dNDSBðtÞ
dt

¼ k0 �
Vmax;HRNDSBðtÞ
Km;HR þ NDSBðtÞ

ð20Þ

By contrast, the rate of formation of 5-FU-induced DSB depends on the past states of perturba-

tion in dNTP pool (Nucp) and is modeled as a full sigmoid formula so that the amount of DNA

fragmentation caused by 5-FU may converge to an upper limit Vmax,dNTP. The elimination of

DSB is mediated not only by DNA repair response, but also by the availability of DNA precur-

sors [59]. It has been suggested that the polymerization of DNA in the course of homologous

recombination repair (HR) is obstructed by imbalanced nucleotide pools resulting from

FdUMP binding to TS [60]. Therefore, the kinetics of HR efficiency decreases as the perturba-

tion in the dNTP pool is elevated. For t> Td, the dynamics of DSB induction is governed by

Eq 21.

dNDSBðtÞ
dt

¼ k0 1þ
VdNTP � Nucpðt � Td;DSBÞ

gDSB

KgDSB
dNTP þ Nucpðt � Td;DSBÞ

gDSB

 !

�
Vmax;HR � NDSBðtÞ

ðKm;HR þ NDSBðtÞÞðNucpðt � Td;DSBÞ
gDSB � kgDSBi þ 1Þ

ð21Þ

with Nucp(t) = 0 for −Td,DSB� t� 0.

In which the delaying effect of dNTP pool imbalance on NDSB(t) is modeled as the explicit

delay parameter Td,DSB. γDSB is used to adjust the shape of the curve.

5-FU-mediated disturbance in genomic stability (NDSB,deviation(t)) is qualified on the basis

of kinetics of NDSB(t) and is incorporated into the TGI model. NDSB,deviation(t) measure devia-

tion of the DSBs exclusively caused by dNTP pool contamination from the time-dependent

baseline level, given by Eq (22)

NDSB;deviationðtÞ ¼
NDSBðtÞ � NDSB0

ðtÞ
NDSB0

ðtÞ
ð22Þ

In which NDSB,deviation(t) is a unitless quantity. The time course of NDSB,0(t) is simulated based

on the placebo treatment [61]. The value of NDSB,deviation(t) is zero when no drug is adminis-

tered and NDSB0
ðtÞ is the number of DSB in the absence of any medical intervention and is var-

ied with time as it is probable for other endogenous factors to induce DSBs to a lesser extent.

Tumor growth inhibition model

The TGI model is built on the basis of the indirect response model and life span model. It is

assumed that the overall tumor cell population, denoted as T, comprises proliferative and dam-

aged cells. The pharmaceutical response examined in this module is the change of tumor vol-

ume(cm3). Accordingly, the tumor growth inhibition (TGI) model is composed of the

differential equations governing the kinetics of proliferating cell population (P(t)) and
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damaged quiescent cell population (D(t)), as shown in Eqs (23) and (24).

dPðtÞ
dt

¼
ICgTv

50

ICgTv50 þ A5ðtÞ
gTv
lgPðtÞ � 1 �

PðtÞ
Pmax

� �

� 1þ
Emax;damageNDSB;deviationðtÞ

gTv

ECgTv50;damage þ NDSB;deviationðtÞ
gTv

 !

ldPðtÞ

ð23Þ

dDðtÞ
dt

¼ ld
Emax;damageNDSB;deviationðtÞ

gTv

ECgTv50;damage þ NDSB;deviationðtÞ
gTv PðtÞ

� ld
Emax;damageN

gTv
DSB;deviationðt � Td;TvÞ

ECgTv50;damage þ N
gTv
DSB;deviationðt � Td;TvÞ

Pðt � Td;TvÞ

ð24Þ

T ¼ P þ D ð25Þ

Pð0Þ ¼ T0; PðtÞ ¼ 0; t < 0;DðtÞ ¼ 0; t < 0 ð26Þ

Where Td,Tv is the mean life span of damaged cells. Cells D would be processing the damage

for Td,Tv until they are eliminated from the entire tumor cell population. A5(t) is amount 5-FU

anabolites at time t, computed in cellular model. IC50 is the concentration of 5-FU anabolites

that causes the 50% decrease in tumor proliferation rate. Emax,damage is the maximal fractional

factor of DSB-induced stimulatory effect on the production of damaged quiescent cells.

EC50,damage is the level of NDSB,deviation necessary to produce the half-maximal stimulatory

effect. λg is the tumor growth rate. λd is the natural death rate. Pmax is the carrying capacity of

tumor growth. γTv is a curve-adjusting parameter, whose value is fixed as 0.2. The initial value

of P(t) is the last measurement of tumor volumes before administration starts, while the initial

value of D(t) is zero.

The TGI model incorporates two mechanistic components, 5-FU anabolites and 5-FU

induced DSBs to account for the inhibition of tumor proliferation by 5-FU treatment. Their

individual effects on the pharmacological responses are mathematically formulated by full sig-

moid Emax,damage model, giving rise to Ea(t) (Eq (27)) and EDSB(t) (Eq (28))

EaðtÞ ¼
ICgTv

50

ICgTv50 þ A5ðtÞ
gTv

ð27Þ

whose value is subject to the upper limit of 1. The smaller the value of IC50, the more respon-

sive tumor cells would be to the suppressive effects imposed by 5-FU anabolites.

Likewise, NDSB,deviation(t) is presumed to enhance the loss of proliferative cells with the rate

given by EDSB(t)

EDSBðtÞ ¼
Emax;damageN

gTv
DSB;deviationðtÞ

ECgTv50;damage þ N
gTv
DSB;deviationðtÞ

ð28Þ

The maximum allowable value of EDSB(t) is Emax,damage. Emax,damage, EC50,damage and IC50 are

drug-sensitivity parameters and modulate the potency of the chemotherapy.

Two different scenarios associated with the TGI model are discussed in detail.

1. Tumor dynamics in the absence of drug intervention

The dynamics of proliferative cells in the absence of drug intervention is mediated by

PLOS COMPUTATIONAL BIOLOGY Computational analysis of 5-fluorouracil anti-tumor activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010685 November 17, 2022 13 / 34

https://doi.org/10.1371/journal.pcbi.1010685


Eq (29).

dPðtÞ
dt
¼ lgPðtÞ � 1 �

PðtÞ
Pmax

� �

� ldPðtÞ ð29Þ

In normal circumstances, the proliferative tumor cells would grow according to the logistic

model and naturally shrink according to the rate constant λd. Linear constant λd regulates

the rate of the conversion from the proliferating cells to dead cells which is not affected by

chemotherapy. Since in this case, there is no extra DSBs that are triggered by 5-FU treat-

ment, the term (
Emax;damageN

gTv
DSB;deviation

ECgTv
50;damageþNDSB;deviationðtÞ

gTv
) is zero, meaning that no damaged cells emerge from

normally cycling cell population. Taken together, the three parameters λg, Pmax, λd outline

the tumor growth pattern in the absence of medical intervention.

2. Treatment responses

With 5-FU treatment, the tumor progression is assumed to be subject to 5-FU anabolites

and DSBs induced by the perturbed dNTP pool. The effects of two quantities are modeled as

hill functions and serve as system biomeasures driving tumor dynamics, as shown in

Eq (24). The biochemical reactions mediated by 5-FU anabolites result in abnormality in

DNA replication and repair, leading to the incomplete preparation for cell division. Such

feature is reflected by the term Ea(t) that is in inverse proportion to the concentration of

5-FU anabolites. Besides, as a contributory factor in 5-FU cytotoxicity, 5-FU-induced DSBs

are responsible for the production of damaged cells with a rate EDSB(t). Therefore, in our

model design, the increase of quiescent tumor cells is driven by the irreversible transition

from proliferative tumor cells instead of their proliferation. The tumor cells that incur DSB

lesions are not deemed to be eliminated from the entire tumor cell population instan-

taneously after the onset of DSB, and yet they would undergo progressive stages of damage

before they die, which is biologically plausible since the processing of DSB is related with

time-dependent signal cascades regulating cell cycle progression. To that end, the life span

model, as reviewed in literature [62, 63], is implemented to capture the elongated survival

time of non-growing cells. As components of the life span model scheme, the delay differen-

tial equation (DDE) is incorporated in the TGI model and describes the delayed onset of the

observed drug effects. Td,Tv denotes the mean transit time through all the damage stages for

P(t). Therefore, in the case of 5-FU treatment, the alterations of variable A5(t),NDSB,deviation(t)
directly change the dynamics of tumor growth. The damaged cells would emerge once 5-FU

induced DSB is above the baseline value NDSB0
ðtÞ. Between the two consecutive doses, NDSB,

deviation(t) and A5(t) are expected to return to zero and the change in tumor volume would

then become a function of λg, Pmax, λd, claiming the pattern of unperturbed tumor growth.

Besides, the rate constant of tumor natural death and the baseline rate of irreversible conver-

sion from the proliferative to quiescent cells are assumed to be equal toλd.

Model implementation and Parameter estimation

We utilized the Bayesian inference method to estimate the expected values of the model

parameters as the Bayesian inference can capture the uncertainty of model parameters given

the experimental data. Specifically, the Markov chain Monte Carlo (MCMC) technique is

applied to obtain the approximated expected values. In order to address the computational

intensity and the difficulty of convergence of the posterior distributions when the model

parameters are estimated simultaneously, we conducted the parameter estimations in a

sequential manner as follows: We fitted the model parameters of the plasma concentration
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first and fixed the parameter values as the means of the samples generated by the MCMC tech-

nique to estimate the parameters defined in the cellular model. In a similar way, the expected

values of cellular model parameters were fixed for fitting of the TGI model. Accordingly, the

model parameters are collected in four disjoint sets, denoted as Θi, i = 1. . .4. Specifically, Θ1

stands for the set of PK parameters; Θ2 represents the set of parameters regulating the kinetics

of variables ranging from A3 (5-FU in the interstitial fluid) to A9(TS-FdUMP complex); Θ3

represents the set of the parameters in the ODE equations for Nucp, and NDSB. Θ4 represents

the parameters in the TGI model. The posterior distribution is formulated by the product of

the likelihood function and the prior distribution. The likelihood function is expressed

through the additive noise model describing the difference between the observed value of the

model variables and their predictions. The likelihood function for estimating the parameters

in the parameter set Θi, i = 1. . .4 is calculated as Eq (30):

Liðdi j Θi;σiÞ ¼
Yni

j¼1

Lijðdij j Θi; sijÞ

¼
Yni

j¼1

1

ð2ps2
ijÞ

Lij=2
exp �

1

2s2
ij

jjf ijðΘiÞ � dijjj
2

 ! ð30Þ

where dij; i ¼ 1 . . . 4; j ¼ 1 . . . ni; dij 2 R
Lij represents the time series data of the j th model var-

iable(denoted as Rij) whose kinetics are governed by the parameters in Θi. The difference

between each measurement and model prediction of Rij is described by the measurement

noise εij. We assumed that εij are independent random variables and normally distributed

with zero mean and the variance s2
ij. Instead of keeping εij constant, we treated them as ran-

dom variables whose marginal distributions can be learned from the data. f ijðΘiÞ 2 R
Lij repre-

sents the simulated time course of j th variable using the parameter set Θi. The choice of the

prior distribution for each model parameter is listed in the Supporting Information S3 Text. It

is assumed that all the parameters are random variables and are independent of each other.

Thus, the joint posterior distribution of the model parameters in the parameter set Θi,

i = 1. . .4 can be determined by Eq (31).

pðΘi j diÞ / Liðdi j Θi;σiÞpðΘiÞpðσiÞ

/ Liðdi j Θi;σiÞ
Ymi

k¼1

pðyikÞ
Yni

j¼1

pðsijÞ
ð31Þ

where mi represents the number of parameters in Θi. We used the robust adaptive Metropolis

algorithm(RAM) [64] as the MCMC technique. The mean values of the estimated parameters

together with the credible regions for each parameter are listed in Table 1. The histograms of

the estimated posterior distributions for the model parameters are provided in the Supporting

Information S3 Text.

Results

Model construction

PK model. The PK model is composed of central and peripheral compartments. The

parameters in the PK model are determined by fitting the model to the plasma concentration

data measured on animal models injected with a single 100 mg/kg 5-FU dose [65]. To main-

tain unit consistency throughout the integrated model, the unit of 5-FU plasma concentration

is converted to a molarity concentration unit pmol/mL from μg/mL via the molar mass of 5-FU
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(130.077 g/mol). The time course of 5-FU in the peripheral compartment is estimated from

the PK data. The parameter estimates are shown in Table 1 and simulated concentration-time

curves for compartments 1 and 2 are shown in Fig 2. From the result of parameter estimation,

the estimated volume of the central compartment is smaller than that of the peripheral com-

partment, which agrees with the estimation results shown in the previous PK/PD study [20].

Table 1. Parameter estimates for PK and cellular model.

Parameter Unit Posterior mean(q0.25,q0.75) Parameter Unit Posterior mean(q0.25,q0.75)

PK model Cellular model

Vmax μ g�mL−1 �min−1 329.539(313.795,346.084) TS inhibition

Q21 mL�mg−1 �min−1 320.071(39.926,680.584) k95 min−1 0.038(0.035,0.043)

V1 mL� (mg tissue)−1 16823.472(15776.621,18123.180) k59 min−1 2.882(2.877,2.888)

V2 mL� (mg tissue)−1 2999.821(2715.355,3266.188) k09 min−1 0.152(0.138,0.171)

Km μ g�mL−1 17334.977(16261.304,18220.139) KdUMP a 21.935(21.932,21.938)

Cellular model G0 mg�min−1 0.155(0.131,0.185)

5-FU in interstitial fluid and its anabolism kcat min−1 17.430(17.419,17.444)

Q31 mL�mg−1 �min−1 0.981(0.915,1.033) k08 min−1 0.032(0.021,0.044)

Vmax,influx pmol�mg−1 �min−1 538.451(537.306,539.436) αTS a 2.021

Km,influx mL� (mg tissue)−1 171.153(170.931,171.378) kd a 1.034

Vmax,efflux pmol�mg−1 �min−1 536.642(536.044,537.006) TS0 pmol�mg−1 1.860e-2

Km,efflux pmol�mg−1 6.704(6.571,6.829) s2
TS b 0.203(0.199,0.207)

k03 min−1 135.995(134.929,137.845) s2
dUMP b 2(1.9999,2.0001)

Vmax,54 pmol�mg−1 �min−1 27.138(26.149,28.348) dNTP pool imbalance

Km,54 pmol�mg−1 2325.154(2324.075,2326.215) k1 a 0.213(0.211,0.215)

5-FU incorporation into DNA and RNA k2 a 32.50(32.49,32.51)

k65 min−1 0.089(0.082,0.096) k3 a 3.713(3.711,3.714)

k56 min−1 0.521(0.518,0.525) k4 a 73.389(73.368,73.409)

k06 min−1 0.114(0.111,0.119) k5 a 3.695(3.682,3.705)

γlag,RNA a 0.310(0.299,0.326) k6 a 0.303(0.302,0.305)

Vmax,75 pmol�mg−1 �min−1 0.0199(0.0171,0.0223) k7 a 3.339(3.334,3.345)

Km,75 pmol�mg−1 0.8398(0.8344,0.8467) k8 a 1.382(1.375,1.387)

Vmax,57 pmol�mg−1 �min−1 5.534(5.525,5.542) k9 a 0.27672(0.27663,0.27684)

Km,57 pmol�mg−1 0.95908(0.95894,0.95922) kB a 35.65(35.63,35.67)

k07 min−1 0.808(0.796,0.819) kA a 6.038(6.022,6.054)

γlag,DNA a 0.554(0.549,0.560) k10 a 0.0794(0.0789,0.08)

Td,RNA day 0.396(0.363,0.428) γdNTP a 1.500e-1

Td,DNA day 4.360(4.344,4.378) s2
dNTP b 0.013(0.0068,0.0158)

s2
intra b 199.9999(199.9888,200.0107) DSB induction

s2
FNUC b 200.004(199.974,200.033) Vmax,dNTP min−1 10.516(10.515,10.519)

s2
DNA b 2.009(1.996,2.022) Vmax,HR Thousands count/min 10.082(10.072,10.087)

Km,HR Thoudands count 194.020(194.014,194.028)

ki min−1 0.121(0.112,0.129)

k0 min−1 2.803(2.789,2.815)

γDSB a 0.6

Td,DSB Day 1.801(1.800,1.802)

s2
DSB b 199.9999(199.9995,200.0003)

a: unitless parameter

b: variance of the measurement noise.

https://doi.org/10.1371/journal.pcbi.1010685.t001
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The elimination phase of the peripheral compartment is slower than that of the central

compartment.

Cellular model. The cellular model is composed of 5-FU concentration in interstitial

fluid (Eq (4)), intra-cellular 5-FU(Eq (5)) formation of 5-FU anabolites (Eq (6), insertion of

FUTP, FdUTP into RNA and DNA (Eqs (7) and (8)), binding of FdUMP to TS (Eq (9)) and

dUMP (Eq (14)), perturbed dNTP pool caused by reduced TS catalytic activity (Eq (18)) and

DSB induction (Eq (19)), whose trajectories are expressed by the solutions of the differential

equations. The parameters in the cellular model are estimated by fitting to data measured on

colon xenograft tumors. The literature data sources are enumerated in Table 2 and the param-

eter estimates are provided in Table 1. The initial values of the variables are derived from liter-

ature data, that is the content of species at 0 h upon exposure to 5-FU. Instead of fitting to

literature deta, the time course of A3(t) is estimated dependent on the fluxes between compart-

ment 3 and the neighboring measurable quantities.

As shown in the model simulations (Fig 3C), the accumulation of 5-FU anabolites begins

within minutes upon exposure to 5-FU, subsequent to the transmission of 5-FU from intersti-

tial fluid to intra-cellular space. The model is able to capture the sharp decrease of non

FdUMP bound TS enzyme in parallel to a rapid increase in dUMP, indicating pronounced

inhibition of TS activity. In Fig 3F and 3G, it can be observed that the peak of dUMP amount

and the lowest level of free TS enzyme coincide at roughly 5 hours after 5-FU administration,

after which the decline in dUMP is accompanied by the restoration of free TS. In terms of

5-FU incorporation into the DNA, as demonstrated in both model simulation (Fig 3D and 3E)

and literature data, the fraction of FU-RNA is higher than that of FU-DNA. Such a phenome-

non may be related to the fact that RNA replication happens all the time in the cell while DNA

replication only happens in the S phase. In addition, the duration of incorporation of 5-FU in

Fig 2. Model simulation of 5-FU concentration in central and peripheral compartment. Blue solid circle represents

literature data; red solid curve, time profile of 5-FU in central plasma; yellow dash-dotted curve, the time profile of

5-FU in peripheral compartment. black dashed line: 0.7 credible regions of model simulation of central compartment;

black dotted line: 0.7 credible regions of model simulation of peripheral compartment.

https://doi.org/10.1371/journal.pcbi.1010685.g002
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Table 2. Literature data for the model variables.

Moleuclar species Model

variable

Data

source

Experiment Dose Route of

adiministration

5-FU in plasma A1(t) [65] in vivio, C57/BL6 mice bearing colon 38 tumors 100 mg/kg IP injection

intracellular 5-FU A3(t) [66] in vivo, Female C57BL/6 mice 8 bearing C38 murine colon tumor 115 mg/kg. IP injection

5-FU anabolites A4(t) [66] in vivo, Female C57BL/6 mice 8 bearing C38 murine colon tumor 115 mg/kg. IP injection

FUTP incorpoartion into

RNA

A6(t) [67] in vivo, Female BALB/c mice bearing colon 26-B tumor 80 mg/kg IP injection

FdUTP incorporation into

DNA

A7(t) [68] in vitro, Colon26-B tumors 80 mg/kg -

TS-dUMP A9(t) [57] in vivo, Male and female Wistar rats bearing dimethylhydrazine

(DMH)-induced colon carcinoma

100 mg/kg IP injection

Total TS TStotal [57] in vivo, Male and female Wistar rats bearing dimethylhydrazine

(DMH)-induced colon carcinoma

100 mg/kg IP injection

dUMP A9(t) [69] in vivo, BALB/c mice bearing colon tumor 06/A 80 mg/kg IP injection

dNTP pool Nucp(t) [70] in vitro, L5178 lymphoma cells 1 μM -

DSB NDSB(t) [61] in vitro, myeloid leukemia (OCI-AML2) cells 3μmol/L -

a: unitless parameter

b: variance of the measurement noise.

https://doi.org/10.1371/journal.pcbi.1010685.t002

Fig 3. Time profiles of intermediate components in cellular model. (A) 5-FU in interstitial fluid, (B) intra-cellular 5-FU, (C) 5-FU anabolites, (D)

F-RNA, (E) F-DNA, (F) % Free TS, (G) dUMP, (H) dNTP pool imbalance, (I) double-strand break generation. Red curve, model simulation; solid blue

circle, literature data points; and error bar represents standard errors. The shaded areas represent the 0.7 credible regions.

https://doi.org/10.1371/journal.pcbi.1010685.g003
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RNA and DNA is longer than that of other substances, which can be explained by the involve-

ment of cell cycle kinetics in regulating the genomic activity. Fig 3I depicting the formation of

DNA lesions caused by 5-FU shows that in the early stages following the 5-FU administration,

DSBs are maintained at a certain level before their count noticeably increase after approxi-

mately 40 hours and ultimately reaches an equilibrium state. In comparison with the timing of

onset of other species, the appearance of 5-FU-induced DNA fragmentation is delayed,

because 5FU can only exert anti-tumor effects when DNA replication takes place. By visually

comparing Fig 3G and 3H, we also noticed that the maximum values of dNTP pool imbalance

and 5-FU-induced DSB are reached asynchronously, in terms with the observations shown in

the experimental studies focusing on the impacts of dNTP pools on the generation of lethal

DNA damage and cell fate [37]. However, the time elapsed between the peak of dNTP pool

imbalance and the generation of 5-FU-initiated DSB may be different if the model is fit to dis-

tinct colon cell lines with differential growth pattern and initial cell cycle phase. The histo-

grams of the cellular model parameters are given in the Supporting Information S3 Text. We

classified the parameters into identifiable and unidentifiable groups according to the compact-

ness of the supports and shapes of their distributions. As shown in Fig B and Fig C in Support-

ing Information S3 Text, most of the parameters apart from Q31, Km,influx, k63, γlag,DNA, Td,DNA,

k95, k59, G0, kcat, k3, k4, k5, kB, and kA, ki are identifiable.

Tumor growth inhibition model. We applied the mechanistic PK/PD model to the dos-

age regimens shown in Table 3 to probe the alteration in the dose-related parameters as the

changes of doses and injection schedules. The parameters in PK and cellular model are kept

the same as the ones obtained from colon xenograft tumors given a single 100 mg/kg 5-FU.

The initial values of 5-FU in central plasma are varied according to the dosing schemes. The

PK model is reloaded at the frequency of dose administration. The parameters describing the

kinetics of control groups are estimated for all the dose regimes whose data are from various

sources in the literature, keeping the same value for γTv. The Fig 4 demonstrates that the

model simulations using the mean parameter estimates shown in Table 4 are consistent with

the tumor volume dynamics in literature data. Moreover, due to the lack of repeated experi-

mental measurements from the plasma-treated (PBS) control groups, the zero net growth rate

around the maximum level is assumed, indicating that the model parameterization could not

explain tumor growth above the equilibrium. As the drug effect wears off, the tumor volume

would eventually approach an asymptote equal to Pmax, the value of which is directly estimated

from the time series data with the limited duration. For dosage regimens (1), (2), (3), (5), the

parameters in the TGI model are estimated by fitting the literature data, forming models (1),

(2), (3), (5). Following this, the parameter estimates for the TGI model 3 are reused on proto-

cols (4), (6), and (7) except for the drug-irrelevant parameters, considering that they have the

Table 3. The nine different dosage regimens that are evaluated in our study.

TGI model Dosage regimen Cell line Literature

(1) 100mg/kg, weekly for 4 weeks Colon 38 [71]

(2) 50 mg/kg, daily for 4 days Colon 26 [72]

(3) 20 mg/kg, twice a week for 3 weeks HT 29 [73]

(4) 20 mg/kg, three times a week for 3 weeks HT 29 [74]

(5) 5 mg/kg, daily for 9 days SW620 [75]

(6) 20 mg/kg, twice a week for 3 weeks SW620 [76]

(7) 20 mg/kg, every other day for 2 weeks SW620 [77]

(8) 50 mg/kg, every other day for 6 times sensitive LS174T [78]

(9) 50 mg/kg, every other day for 6 times resistant LS174T [78]

https://doi.org/10.1371/journal.pcbi.1010685.t003
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same amount of single dose and similar dosing schedules. The estimated value of Td,Tv from

model (3) is also applied to models (8) and (9). On the other hand, the estimation of TGI

parameters except for Td,Tv for the protocols (8) and (9) are carried out separately due to their

unique dosing structures and type of cell line. Besides, the parameters governing normal

tumor growth pattern (i.e. λd, Pmax, λg) are estimated for each protocol since the experimental

data for each protocol is from a different study in the literature, and is subject to the character-

istics of the cell lines and progression phases of the xenograft tumors. The control group data

is used to characterize the parameters λd, Pmax, λg. The literature tumor volume data are nor-

malized to the respective starting values. It is also assumed that for each model, the first doses

are injected at 0 h after the treatment course begins.

The values of parameters shown in Table 4 also agree with the extent of adverse effects of

the studied dosage regimens. Among all the nine models, the estimated value of IC50 for model

(1) is the largest. It is partially due to more anabolites that are synthesized from a higher level

of drug exposure to tumor cells. The DSB-related parameters Emax, EC50,damage of model (2) are

the highest, which is caused by the acute accumulation of DNA lesions as a result of daily

administration. As for the mild dose schedule featuring models (1) and (3), the amount of sin-

gle dose plays a more dominant role in determining the levels of Emax and EC50,damage, which is

indicated by the larger value of the two model parameters for injection of 100 mg/kg 5-FU

than that of 20 mg/kg 5-FU. The values of those growth-related parameters are subject to the

characteristics of the cell lines and progression phases of the specific xenograft tumors. Overall,

the parameter estimates of 9 xenograft tumor models examined in this study fall in the same

order of magnitude. Besides, the computational analysis of 5-FU anabolites-effect relationship

(Ea(t)) and DSB-effect relationship (EDSB(t)) are documented in Supporting Information S1

Text. Fig D—Fig L in Supporting Information S3 Text show the histograms for the estimated

TGI model parameters. The identifiable and unidentifiable parameters for the TGI models (1)

Fig 4. Time-dependent outputs of the 9 TGI model using parameter estimates shown in Table 4. Red line represents the time course of the control

group; blue line represents the time course of colon tumor growth treated with corresponding dosage regimens shown in Table 3; triangle, literature

data for the control group; circle, literature data for the treated group; error bar, standard errors; asterisk on x-axis represents injection time. The

shaded areas in each panel represent the 0.7 credible intervals.

https://doi.org/10.1371/journal.pcbi.1010685.g004
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—(9) are listed on the figure captions in Supporting Information S3 Text. We conducted a

global sensitivity analysis where we first used the Morris method to screen the parameters that

have more influence on the model outputs. Then the variance-based global sensitivity analysis,

often referred to as Sobol method, is conducted based on the selected parameters. The Morris

method revelaed that the changes in the parameters Km, Km,efflux, Km,54, Km,influx, Pmax, Vmax,

efflux, Vmax,54, Vmax,75, Vmax,influx, Vmax, λd, λg, k03, k56, k59, k95, k65 created considerable pertur-

bations on the model output and these were chosen to be analyzed using the Sobol analysis.

The detailed discussion of the analysis and the results are provided in Supporting Information

S2 Text. We further used the Sobol global sensitivity to identify the degree of the changes in the

model outputs produced by the joint interactions of the input parameters. The first order and

total order Sobol index of each parameter with the tumor volume at 5th, 25th and 45 day after

treatment begins are given in Supporting Information S2 Text. The results show that model

outputs at 45 th day are more sensitive to λg, Pmax, Vmax,efflux, and Vmax,influx than the other

input factors, which is consistent with the result of preliminary screening by Morris method.

Quantitative evaluation of treatment efficacy using established TGI models

We further examined extensively the effect of dosage regimens on cytotoxic effects of 5-FU by

looking at the area under the curves of Ea(t) and EDSB(t) (denoted as AUCe,a and AUCe,damage

respectively), the area under the time profiles of A5(t) and NDSB,deviation (denoted as AUCa and

AUCDSB respectively), the trajectories of Ea(t) and EDSB(t) (shown in S1 Text), and tumor

responses (Fig 4). The numerical results of AUCe,a, AUCe,damage, AUCDSB, and AUCa are shown

in Table 5. AUCe,a and AUCe,damage are used as the indicators of the cumulative cytotoxic effect

of the drug and can be used to predict cumulative tumor responses. Following the model

design, AUCe,damage increases with the accumulation of drug exposure, while AUCe,a experi-

ences the opposite trend. For the protocols (1), (3), (4), (6), (7), their accumulative doses over a

week are similar, so is the accumulative effect of Ea(t) and EDSB(t). But by close comparison of

the individual AUCe,damage, the DNA damage caused by 100 mg/kg weekly injection exerts

more significant anti-tumor effects among those regimens. And the treatment with 20 mg/kg

5-FU every other day (model (7)) stands out with the smallest AUCe,a. Furthermore, through

the comparison of the AUC measures calculated for the protocol (2) and protocol (8), we can

observe that the moderate dose coupled with the intense dose frequency can lead to striking

anti-tumor effects. The AUCDSB and AUCa corresponding to daily 50 mg/kg 5-FU treatment

are the extremest in comparison with those of other schemes. Likewise, the associated trajec-

tory of the relative tumor volume change also demonstrates that daily administration of 50 mg/

kg 5-FU for 4 times shows more noticeable cytotoxic effects and causes the tumor shrinkage

Table 5. AUC and AUCe for 9 TGI models.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

AUC a
e;a 4.7900 2.3128 4.9206 3.8823 5.0412 4.9206 3.1336 3.9429 3.8757

AUC a
e;DSB 1.2874 33.1088 0.3889 0.4494 1.7674 0.3895 0.4631 0.7832 2.4385

AUC a
a 162.4190 396.7319 17.2567 25.8850 4.2039 17.2567 34.5052 194.0453 194.0453

AUC a
DSB 2.8343 4.0616 0.9044 1.1920 0.6292 0.9044 1.3578 3.6296 3.6296

a: Calculated by integrating the time courses over a week

AUCe,a and AUCe,damage are calculated by integration of the profile of Ea(t) and EDSB(t) over a week respectively.

AUCa and AUCDSB, calculated in the same way as AUCe,a and AUCe,damage, are the area under the time profile of

normalized count of DSB(NDSB,deviation) and the amount of 5-FU anabolites (A5(t)).

https://doi.org/10.1371/journal.pcbi.1010685.t005
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within the first week after the treatment begins. Such phenomenon can be explained by the

observation that the intracellular drug action mediators with extensive amounts resulted from

frequent injections are present and continue to take effect over a protracted period of time.

The simulation results of models (3), (4), (7) and the corresponding calculated AUCe show that

given the same size of dose and period of treatment, the more frequent drug injection results in

the more eminent drug efficacy. It is also worth looking at the time profiles of EDSB(t) and Ea(t)
for model (1) to assess the combinations of high dose and less frequent schedule. It can be

observed that while the drug effects would fade away during the dose intervals, high doses with

a weekly schedule can still yield drastic tumor suppression.

Taken together, 5-FU suppresses cell proliferation of colon cancer in a time- and dose-

dependent manner and the accumulative PK exposure can improve the overall therapeutic

efficacy. The treatment with daily injection of 50 mg/kg 5-FU four times exhibits the most det-

rimental effect on tumor burden. A high-dose 5-FU taken over long period may produce sig-

nificant anti-tumor effects. Regarding the same doses given over the same treatment duration

at specific intervals, the more intense schedule may increase the likelihood of exposing vulner-

able tumor cells to 5-FU and yields a more significant anti-tumor effect.

Simulation analysis of tumor resistance towards 5-FU exposure

In this section, we investigate various scenarios on the mechanisms underlying the resistance

of tumor responses towards 5-FU treatment using numerical simulations. We evaluated simul-

taneous changes in physiologically-related parameters that would generate a resistant behav-

ior. We summarized the parameter variations we used to identify possible resistance

mechanisms on Table 6, which also lists how these variable changes reflect the biologically rele-

vant resistance mechanisms studied in the literature. The last three entries on the table show

our novel hypothesis on other possible causes that might lead to treatment resistance. Consid-

ering that resistance may be caused by interwoven cellular pathways, we simulated the simulta-

neous changes of certain factors to examine the aggregate effects. The Monte Carlo method is

applied to generate N(= 500) parameter sets and time courses of tumor volume change are

simulated for each parameter set. Each parameter set comprises the concerned parameters

with newly sampled values from their associated sampling intervals(Eq (32)) and the

Table 6. The range of variation for each parameter and their corresponding biological implication.

Table 5: The range of variation for each parameter along with the underlying biological implication

Parameter Upper bound Lower bound Biological implication from literature

Vmax,54 - 2 fold decrease Decreased accumulation of anabolites [56]; metabolism may predict tumor sensitivity to 5-FU therapy [40]

Km,54 2 fold increase - Decreased accumulation of anabolites

G0 10 fold increase 10 fold decrease dUMP accumulation [56]

kcat 10 fold increase 10 fold decrease dUMP accumulation

k08 10 fold increase 10 fold decrease dUMP accumulation

k95,complex - 10 fold decrease decreased enzyme affinity for FdUMP [56, 79]

k59,complex 10 fold increase - Decreased stability of ternary complex [56, 79]

k09,complex 10 fold increase - Decreased stability of ternary complex [56, 79]

k5,dNTP 10 fold decrease The effects of salvage pathway on lessoning dNTP pool imbalance [80].

Td,DSB 2 fold increase - Delayed 5-FU-induced DNA fragmentation and cytotoxicity in the resistant cell lines [79].

αTS 10 fold increase - Increased TS protein expression [53, 56]

Td 10 fold increase - The delay of transforming the proliferating cells to damaged cells

Emax,damage - 10 fold decrease The reduced effect of DNA fragmentation on production of damaged cells

EC50,damage 10 fold increase - The reduced effect of DNA fragmentation on production of damaged cells

https://doi.org/10.1371/journal.pcbi.1010685.t006
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remaining parameters with baseline values. The resultant time courses are examined for their

closeness to the resistant tumor response to identify the parameter changes that resulted in a

resistant behavior. The baseline values of parameters are the ones defined for PK and cellular

model and the TGI model 8 (sensitive LS174T cell line). The dosage regimen adopted by the

model simulations for resistance analysis is the one corresponding to the TGI models (8) and

(9). The resistant tumor response is assumed to be the simulation of the TGI model (9). The

parameters we experimented on in this section are the ones related with 5-FU drug actions

and resistance mechanisms, which are Vmax,54, Km,54, G0, kcat, k08, k59, k95, k09, k5,dNTP, Td,DSB,

αTS, Td, Emax,damage, EC50,damage. The simulation scenarios highlighting their combined effects

are: (A) Increased TS expression plus reduced production and stability of TS-FdUMP com-

plex, (B) Accumulation of dUMP plus reduced production and reduced stability of TS-FdUMP

complex, (C) Decreased accumulation of anabolites plus reduced production and stability of

TS-FdUMP complex, (D) Reduced production and stability of TS-FdUMP complex plus

delayed production of DNA fragmentation, (E) Effect of the salvage pathway plus delayed pro-

duction of DNA fragmentation., (F) The delay of production of damaged cells and the effect of

the salvage pathway., (G) The reduced effect of DNA fragmentation on the production of dam-

aged cells plus reduced stability of TS-FdUMP complex. As the effects of specific parameters

are analyzed, the values of the others in the model are fixed.

pli þ rand� ðpui � p
l
iÞ ð32Þ

Where pli and pui are the lower bound and upper bound of parameter pi. rand represents a ran-

dom number drawn from the standard uniform distribution. The ranges of variation for each

parameter are shown in Table 6.

The departure of each tumor growth time course simulated using a new set of parameters

from the time course for resistant LS174T tumor cells (model (9)) is calculated as the sum of

the Euclidean distances between the coupled points on the two time course trajectories. The

time course closest to the insensitive / resistant tumor response is the one with the smallest

departure. The mean time course for a certain case is calculated by averaging all the computed

time courses. Maximal and minimal time courses among all the simulation results are deter-

mined by calculating the ℓ2-norm of Euclidean distances between the sample points along

certain path and x-axis. Table 7 demonstrates parameter variations that can give rise to

tumor response closest to the resistant LS174T xenograft tumor(model (9)) for all the seven

cases A–G.

The results that are given in Fig 5 demonstrate that the cases (A), (B), (C), (D), (G) achieve

the goal of generating the kinetics of tumor volume close to that of TGI model (9). The treat-

ment response of sensitive LS174T xenograft tumor we chose as the baseline level has changed

into a resistant response through the coupling of the decreased accumulation of 5FU anabo-

lites and the change in the kinetics of dUMP, TS-FdUMP complex, 5-FU induced DSB, and

tumor volume. Fig 5C shows that the decreased net production rate of anabolites accompanied

by the reduced stability of TS-FdUMP complex can lead to the mean resistant response even

beyond the reference resistant response. For cases (D)and (E) involving the increase in Td,DSB,

the mean time course of 5-FU-induced DSB captures the delaying occurrence of 5-FU induced

DSBs and decreased peak values, compared to DSBs induction in the absence of tumor resis-

tance. It can be explained by the depletion of TS-FdUMP complex and strengthened thymi-

dine salvage pathway that reduces the DSB production caused by 5-FU interference, and the

salvage pathway with expanded capacity may have more striking effects than decreased

FdUMP binding to TS. Among the cases (A), (B), (C), (D) and (G) examining the effect of

TS-FdUMP complex related parameters, the highest levels of mean and closest time courses of
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5-FU induced DSBs are smaller than the reference level with case (A) and case (C) having the

smallest peak values, indicating that the increased TS expression and fewer anabolites may fur-

ther obstruct the generation of 5-FU induced DSBs. Although the cases (A), (B), (C), (D) and

(G) already produce the striking inhibition on DSBs counts, the case (F) leads to the most

Fig 5. The simulation result of resistance analysis. The first column is the time profiles of tumor volume; second column, 5-FU anabolites, third

column: 5-FU induced DSB. Each row represents each aforementioned scenario. Red dash-dotted line, model simulation of resistant LS174T xenograft

tumor; blue solid line: model simulation of sensitive LS174T xenograft tumor; yellow dashed line, the mean time course of 500 computed time courses;

Θclosest denotes the parameter set associated with the time course of tumor volume closest to the tumor resistance response; purple dotted line: the time

course generated by Θclosest.

https://doi.org/10.1371/journal.pcbi.1010685.g005

Table 7. Values and fold change from the baseline of the 11 parameters considered in resistance analysis producing the simulations closest to the time course of

resistant LS174T xenograft tumor.

Parameter Case A Case B Case C Case D Case E Case F Case G

Vmax,54 2.225e+01(1.2 fold #)

Km,54 2.688e+03(1.2 fold ")

G0 3.406e-01(2.2 fold ")

kcat 5.417e+01(3.1 fold ")

k08 6.769e-03(4.7 fold #)

k95,complex 3.434e-02(1.1 fold #) 3.432e-02(1.1 fold #) 1.178e-02(3.3 fold #) 3.289e-02(1.2 fold #) 2.410e-02(1.6 fold #)

k59,complex 1.810e+01(6.3 fold ") 6.175e+00(2.1 fold ") 1.853e+01(6.4 fold ") 3.515e+00(1.2 fold ") 3.119e+00(1.1 fold ")

k09,complex 1.235e+00(8.1 fold ") 1.479e+00(9.7 fold ") 8.614e-01(5.6 fold ") 1.257e+00(8.2 fold ") 1.342e+00(8.8 fold ")

k5,dNTP 3.451e+01(9.3 fold ") 2.285e+01(6.2 fold ")

Td,DSB 1.104e+01(6.1 fold ") 2.261e+00(1.3 fold ")

αTS 1.037e+01(5.1 fold ")

Td 3.886e+03(2.9 fold ")

Emax,damage 6.461e-01(1.3 fold #)

EC50,damage 6.872e+02(9.3 fold ")

https://doi.org/10.1371/journal.pcbi.1010685.t007
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significant effect by plummeting NDSB to its baseline. The cases (D) and (G) demonstrate simi-

lar resistance responses in terms of the tumor volume and magnitude of 5-FU induced DSBs.

Generalizability of the mechanism-based model

The generalizability and accuracy of our proposed mechanism-based model on the prediction

of tumor responses given a specific dose and dosage regimen are evaluated in this section. We

applied different dosing schedules to the TGI model developed above to see how well it can

capture the literature data for the target dosing schedules. The values of efficacy-related param-

eters (i.e. Emax, EC50,damage, IC50, Td,Tv) are kept the same for models (3), (4), (6), (7), because

these models have the same amount of single dose, implying that the levels of drug-related

intermediates are expected to be the same for the single administration. Because the cell line

differences have been addressed through control groups, as shown in Table 4, the distinct dose

schedules should be the sole drug-regulated factor that drives the differences in the outputs of

these models. Therefore, the efficacy-related parameters (i.e. Emax, EC50,damage, IC50, Td,Tv,) of

models (4), (6) and (7) are kept equivalent to those of model (3).

In order to facilitate the assessment of model generalizability, we organized the TGI models

except for models (1), (2), (8) and (9) into three different groups according to the rules defined

as follows: (A) models with the same type of xenograft tumor and the same single dose but

with different frequencies; (B) models with a different type of xenograft tumor under the same

protocols; (C) models with a different type of xenograft tumor under the same amount of dose

but different frequencies. Models (3) and (4) fall under scenario A. Models (3) and (6) satisfy

the condition of scenario B. The last scenario C involves models (3), (4), (6), (7). Fig 4D indi-

cates that the model 4 simulations for protocol (4) given in Table 3 moderately captures the

data, which suggests that the model is structurally stable in the face of changes in the dose fre-

quency. Regarding scenario B, the selections of protocols (3) and (6) from Table 3 show that

the differences in treatment responses are caused by the distinction in the types of xenograft

tumor. Fig 4C and 4F show that the model simulations agree well with literature data, indicat-

ing that our model can adapt to the different tumor types merely through adjusting the param-

eters for normal tumor growth. Lastly, the experimental measurements of model (3), (4), (6),

and (7) suggest that changing dose schedules and types of cell lines influence tumor responses

to multiple doses, which parallels the simulations of these four models. The model outcomes

of (3), (6) and (7) successfully capture the experimental dynamics, whereas model (4) has a

moderate fit to the experimental data. From the generalizability standpoint, model (4) that

shares the same efficacy-related parameters was able to capture the general trend in the

observed data. Based on the outcomes of evaluation discussed above, it can be concluded that

the proposed model constructed under a certain dosing scheme is capable of predicting the

tumor responses towards a similar dosing scheme or the one with the same amount of dose

but different administration frequency, as long as the control tumor growth has been captured

by the model with no drug input.

We utilized our models to computationally experiment with dose regimens that are different

than the ones given in Table 3 to further examine the anticancer efficacy of 5-FU treatment.

We developed four hypothetical regimens with different combinations of doses, dosing fre-

quencies and treatment durations than the ones we used from the literature. The regimens

used for these computational experiments are (A) 100 mg/kg on day 1 of weeks 1 to 6 of an

eight-week cycle, for a total of 4 cycles; (B) 50 mg/kg twice a week of weeks 1 to 6 of an eight-

week cycle, for a total of 4 cycles; (C) 100 mg/kg on day 1 of weeks 1 to 3 followed by 50 mg/kg

twice a week of weeks 4 to 6, for a total of 4 cycles (32 weeks); (D) 50 mg/kg twice a week of

weeks 1 to 3 followed by 100 mg/kg on day 1 of weeks 4 to 6, for a total of 4 cycles (32 weeks).
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The simulation results are shown in Fig 6. Despite having the same total amount of doses over

a week, dosage regimens (A) and (B) result in notably different treatment outcomes due to the

difference in administration times. The simulation result in Fig 6B shows that within the first

cycle, the consecutive twice-a-week injection of 50 mg/kg 5-FU causes a significant tumor

shrinkage while the tumor still grows under weekly injection of 100 mg/kg as shown in Fig 6A.

Fig 6C and 6D demonstrate that the order of administration of different dosage regimens

makes a difference for the treatment options comprising mixed doses. Injection of 50 mg/kg

5-FU twice a week for three weeks following weekly injection of 100 mg/kg 5-FU can inhibit

the tumor growth more than the regimen with the opposite order. Computationally, all of the

dose regimens presented here show more favorable treatment outcomes compared to the TGI

model (1) with the dose regimen 100mg/kg administered weekly for four weeks. Comparison

between TGI model(1) and dosing regimen (3) on relative tumor change between three weeks

and seven weeks after treatment reveals that shortening the intervals between consecutive

lower dosages might yield better outcomes of cytotoxicity. It should be noted that these dose

regimens are developed to conduct computational experiments on treatment outcomes and it

is necessary to experimentally identify the toxicity profiles and the maximum tolerable doses

for the evaluation of dosing schedules before they can be used in a clinical setting. It can be con-

cluded from the computational experiments that applying dosage regimens with high potency

after the ones with less potency may result in clinically favorable treatment outcomes.

Discussion

Mathematical modeling is a powerful tool for capturing the target pharmacology and making

predictions on tumor response by translating current understanding towards underlying

Fig 6. The simulation results associated with the four novel dosage regimens. The regimens under consideration are (A) 100 mg/kg on day 1 of

weeks 1 to 6 of a eight-week cycle, for a total of 4 cycles; (B) 50 mg/kg twice a week of weeks 1 to 6 of a eight-week cycle, for a total of 4 cycles; (C) 100

mg/kg on day 1 of weeks 1 to 3 followed by 50 mg/kg twice a week of weeks 4 to 6, for a total of 4 cycles (32 weeks); (D) 50 mg/kg twice a week of weeks

1 to 3 followed by 100 mg/kg on day 1 of weeks 4 to 6, for a total of 4 cycles (32 weeks). Red dash line: model simulation of control; blue solid line:

simulation results associated with the four dosage regimens; purple diamond-shaped dot: time of injection of 100 mg/kg 5FU; green round dot: time of

injection of 50 mg/kg 5FU.

https://doi.org/10.1371/journal.pcbi.1010685.g006
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mechanisms into rigorous mathematical terms. Our physiology-based model allows for the

analysis of the dynamics of critical intermediate components related to 5-FU effective drug

actions on different time scales and across physical domains. Our cellular model quantitatively

reflected the drug effects and related the mechanisms of TS inhibition with disturbance in the

dNTP pool and induction of DSBs. The tumor heterogeneity was integrated into the TGI

model. The combination of inhibition of proliferating progenitor cells and production of dam-

aged quiescent cells characterized the dynamics of suppressed tumor growth. We converted

the time profiles of the 5-FU anabolites and 5-FU-induced DSBs into nonlinear measures of

drug effect on inhibiting tumor growth rate and simulating the loss of proliferative cells to pro-

vide a realistic prediction of the kinetics of tumor progression under 5-FU treatment. The inte-

grated computational model has the potential to promote the identification of contributions of

the physiological intermediates on the clinically favorable responses and potentially enable the

precise prediction of medical treatment by antagonistic agents.

Like the other mathematical models, our model is inevitably influenced by a certain level of

uncertainty. The uncertainty may stem from the insufficient measurements, parameter estima-

tion, and alternative model structures, which propagate and aggregate as the model progresses.

Furthermore, the solution of the dynamic model could be distracted by a local minimum, in

the sense that the model is inherently un-convex. This means that we cannot solely depend on

the point estimates provided by the optimization scheme involving the minimization of the

objective function. Instead, gaining the knowledge of the joint posterior distribution of model

parameters is beneficial in terms of recognizing model identifiability. To that end, we imple-

mented the sampling-based Bayesian inference method through the MCMC technique. The

model identifiability was examined by plotting the histograms for each parameter in the sam-

ple set. In addition, although the time course measurements for system variables are collected

from different literature, we attempt to constrain the scope of data to in vivo or in vitro mea-

surements under 100 mg/kg 5-FU treatment.

Examination of the combined effect of doses, dosage regimens and duration of treatment

via the established model helps us seek the concealed relationship among the treatment proto-

cols. When simulating different dosage regimens, we adapt to the lack of time-series data of

fluorinated compounds under other amounts of drug dose than 100 mg/kg by using the cellu-

lar model obtained using 100 mg/kg data collections. This may be due to the fact that the 5-FU

anabolites possess a rapid rate of transformation, and capturing them under smaller doses to a

precise degree may run into technical difficulties. Therefore, it is unrealistic to reevaluate the

parameters of the cellular model for each dosing regimen. We used the cellular model deter-

mined by fitting to 100mg/kg literature data to simulate all the aforementioned dose and dose

schedules. From the model simulations under multiple dosage regimens, we found that a single

high dose outperforms the divided dose in terms of drug efficacy of causing tumor shrinkage.

Besides, the more intense schedules are able to yield higher therapeutic efficacy compared to

the protocols with the same doses and treatment course but less frequent schedules. Taken

together, our model can provide an accurate prediction of pharmacological responses to differ-

ent dosage regimens. Through such investigation, based on our comprehensive model, it has

the potential to advance the quantification of chemotherapy potency and to facilitate the devel-

opment of efficacy optimization.

We also extended the application of the model to the analysis of tumor resistance responses

to the cellular defense mechanisms attributed to tumor insensitivity towards 5-FU, influencing

the final treatment outcome. For instance, deoxyuridine triphosphate nucleotidohydrolase

(dUTPase), an enzyme catalyzing the degradation of FdUTP to FdUMP, plays a contributory

role in enhancing tumor resistance. The experimental study suggests that the cellular (F)dUTP

accumulation resulting from dUTPase activity may be related to the insensitivity of tumor to
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fluoropyrimidine-induced cytotoxicity [79]. Moreover, based on the experiments conducted

on mice bearing murine mammary carcinoma, the researchers have found that the incorpo-

ration into RNA can be blocked by deoxyuridine (dUrd), rescuing the tumor cells from the

lethal toxicity of FUra [81]. Homologous recombination repair (HR) can protect the tumor

cells against exogenous insults. DSBs can be repaired by HR with high fidelity [82]. The expres-

sion level of the HR proteins is also related to the tumor resistance to the 5-FU anti-tumor

effects [60]. In addition, it has been proposed that a slow-down in cell cycle and the reduced

expression of CDK2 protein can prevent the incorporation of 5-FU metabolites into DNA

[56]. However, all the cellular mechanisms described are more or less relevant to 5-FU

-induced TS inhibition since TS is a key player in cellular nucleotide metabolism. Therefore,

we conducted the analysis of tumor resistance responses around 5-FU induced TS inhibition

and its downstream events, such as the dNTP pool imbalance and DSB induction. As a result

of our computational analysis, the decreased accumulation of 5FU anabolites, variations of

dUMP from baseline, reduced production of TS-FdUMP complex, and eased pressure from

5-FU induced DSB may bring about the tumor resistance responses.

Taken together, our integrated model forms a nested multi-scale structure and quantita-

tively connects the effects of 5-FU on tumor growth with genome instability and PK-depen-

dent physiological turnover processes, facilitating simulation studies and resistance analysis.

The PK, cellular, and tumor growth inhibition models were arranged in accordance with the

mechanistic sequence, providing a realistic description of physiological events that ultimately

decide the tumor fate. By fitting to literature data measured from preclinical animal models

under different dosage regimens, the proposed model showed robust predictive performance

and can simulate the PK and PD profiles under different protocols, reflecting that the model

has the potential of being applied in the protocol designing phase. Our proposed semi-mecha-

nistic PK/PD approach provides insight towards translation from xenograft tumor study to

clinical efficacy analysis in a computational manner. The model simulations can also provide a

tool for researchers to compare and evaluate the impacts of various possible dose and dose fre-

quencies on the improvement of drug efficacy, driving the selection of desirable chemotherapy

treatment.
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