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Abstract

Motivation

Piwi-interacting RNAs (piRNAs) play a critical role in the progression of various diseases.

Accurately identifying the associations between piRNAs and diseases is important for diag-

nosing and prognosticating diseases. Although some computational methods have been

proposed to detect piRNA-disease associations, it is challenging for these methods to effec-

tively capture nonlinear and complex relationships between piRNAs and diseases because

of the limited training data and insufficient association representation.

Results

With the growth of piRNA-disease association data, it is possible to design a more complex

machine learning method to solve this problem. In this study, we propose a computational

method called iPiDA-GCN for piRNA-disease association identification based on graph con-

volutional networks (GCNs). The iPiDA-GCN predictor constructs the graphs based on

piRNA sequence information, disease semantic information and known piRNA-disease

associations. Two GCNs (Asso-GCN and Sim-GCN) are used to extract the features of both

piRNAs and diseases by capturing the association patterns from piRNA-disease interaction

network and two similarity networks. GCNs can capture complex network structure informa-

tion from these networks, and learn discriminative features. Finally, the full connection net-

works and inner production are utilized as the output module to predict piRNA-disease

association scores. Experimental results demonstrate that iPiDA-GCN achieves better per-

formance than the other state-of-the-art methods, benefitted from the discriminative fea-

tures extracted by Asso-GCN and Sim-GCN. The iPiDA-GCN predictor is able to detect new

piRNA-disease associations to reveal the potential pathogenesis at the RNA level. The data

and source code are available at http://bliulab.net/iPiDA-GCN/.
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Author summary

PiRNAs play critical roles in various biological processes and the abnormal expression of

piRNAs may lead to diseases. Meanwhile, several biological experiments show that piR-

NAs have the potential to be biomarkers or therapeutic targets to diagnose and prognosti-

cate diseases. Some computational methods have been proposed to detect piRNA-disease

associations, and provide promising results. However, with the increasing discovery of

piRNA-disease associations, the existing methods fail to capture nonlinear and complex

association patterns because of the limited training data and insufficient association repre-

sentation. To overcome above questions, a novel computational method named iPiDA-

GCN is proposed for piRNA-disease association identification based on graph convolu-

tional networks. iPiDA-GCN constructs heterogeneous biological networks, and designs

Asso-GCN and Sim-GCN modules for learning hidden association patterns in different

biological networks. The experimental results show that iPiDA-GCN is able to detect new

piRNA-disease associations, and outperforms the other state-of-the-art methods.

This is a PLOS Computational Biology Methods paper.

Introduction

Piwi-interacting RNAs (piRNAs) are a kind of novel small non-coding RNAs (ncRNAs) with

24–35 nucleotides [1,2], often binding to Piwi-subfamily Argonaute proteins [3]. Recently, it is

indicated that piRNAs play critical roles in various biological processes by emerging evidences,

such as slicing transposable elements in animal’s germline [4], genome defence [5], histone

modification [6].

More and more studies have revealed that piRNA abnormal expression leads to many dis-

eases, including cancers, neurodegenerative diseases, geriatric diseases, etc [7]. Several biologi-

cal experiments show that piRNAs are able to be potential biomarkers or therapeutic targets to

diagnose and prognosticate diseases [7,8]. Therefore, it is essential to identify piRNA-disease

associations to uncover the pathogenesis of diseases by developing computational methods.

Some databases for piRNA-disease interaction have been constructed. For example, piRDi-

sease v1.0 [9] collects 7939 manually curated associations between 4796 piRNAs and 28 dis-

eases. NcRPheno [10] is a comprehensive ncRNA-disease database containing 1282

experimentally validated piRNA-disease associations. MNDR v3.0 [11] has been proposed to

integrate different kinds of ncRNA-disease associations supported by biological literatures,

where 13128 piRNA-disease associations between 13365 human piRNAs and 21 diseases are

collected. The newly constructed databases store more and more piRNA-disease association

information. As a result, the interactions between piRNAs and diseases become sparser and

more complex. Therefore, advanced machine learning techniques which are able to fully make

use of the available data are the keys to enhance the predictive performance of piRNA-disease

association identification.

To reveal the complex interactions between ncRNAs and diseases, several computational

methods for ncRNAs-diseases association detection have been proposed. There are mainly

three categories of methods for ncRNAs-diseases association detection, including methods

based on similarity measure [12,13], methods based on machine learning [14,15] and methods

based on network [16]. The research on piRNA-disease association detection is still needed,

because the performance of existing computational predictors is still relatively low. Recently,
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several methods based on machine learning have been proposed for predicting piRNA-disease

associations. For example, Wei et.al. [17] proposed the first piRNA-disease association predic-

tor iPiDA-PUL employing positive unlabeled learning to select negative samples from all unla-

beled piRNA-disease associations. With the development of deep learning and its efficiency in

processing non-linear data, the deep learning methods are used to extract the features for

piRNA-disease predictor [18–20]. For example, the iPiDA-sHN [18] predictor extracted fea-

tures by Convolutional Neural Network (CNN), and then trained Support Vector Machines

(SVMs) with selected high quality negative samples and positive samples. DFL-PiDA [19]

based on extreme learning machine model employed a convolutional denoising auto-encoder

to extract hidden features. The iPiDA-GBNN predictor [20] based on GrowNet [21] stacked

auto-encoder to extract piRNA features.

The existing predictors provide promising results for detecting novel piRNA-disease associ-

ations. However, there are still three main problems: (i) With the rapid growth of data, meth-

ods based on machine learning showed lower generalization ability and failed to capture more

complex and nonlinear relationships between piRNAs and diseases in larger and sparer data-

sets. (ii) The existing predictors all represent piRNA-disease associations by concatenating

piRNA and disease attribute features, ignoring the structure semantic information of biologi-

cal networks. (iii) The existing deep-learning-based methods treat piRNA-disease association

data as Euclidean or grid-like structure data. In fact, the piRNA-disease associations are orga-

nized as networks, where the piRNAs or diseases are modelled as vertices, and the associations

are viewed as edges. As a result, the existing methods fail to capture complex interactions

among piRNA and disease entities, and learn the hidden association patterns in the graph-

structured data [22]. To process the complex graph structure data efficiently with deep learn-

ing methods, graph convolutional networks (GCNs) [23,24] are proposed to generalize CNN

from grid-structured data to graph-structured data, and learn node representations by captur-

ing complex graph structure information and aggregating neighbour node information in the

graph. Due to GCN’s powerful ability of capturing complex structure information and poten-

tial association patterns, it has also been successfully applied to various tasks in bioinformatics,

such as disease-gene association detection [25], drug-target interaction prediction [26,27] and

drug repositioning [28].

Inspired by the effectiveness of GCN to capture nonlinear association patterns from com-

plex networks, a novel computational method named iPiDA-GCN is proposed to identify

piRNA-disease associations. In particular, two GCN modules are designed to capture the rich

semantic information of different biological networks. Asso-GCN module is applied to learn

node representations from the piRNA-disease association network, where piRNA node fea-

tures are learned from associated disease nodes, and disease node features are learned from

associated piRNA nodes. Sim-GCN modules are used to further learn the node representations

from two homogeneous similarity networks, where piRNA node representations are obtained

based on the piRNA neighbour information, and disease node representations are obtained in

the same way. Finally, we treat this problem as a link prediction task, and predict the piRNA-

disease association scores based on learned features. The experimental results show that iPi-

DA-GCN outperforms the other state-of-the-art methods, and the visualization of the predic-

tion results further illuminates the advantages of iPiDA-GCN.

Materials and methods

Datasets

The comprehensive ncRNA–disease database MNDR v3.0 [11] (http://www.rnadisease.org/)

contains the latest and largest piRNA-disease dataset among all the existing piRNA-disease
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databases. The human piRNAs with sequence information are extracted from piRBase v3.0

(http://bigdata.ibp.ac.cn/piRBase/) [29]. After removing duplicate associations, 11981 experi-

mentally verified piRNA-disease associations containing 10149 piRNAs and 19 diseases are

collected. The datasets are represented as:

Sall ¼ Sindependent þ Sbenchmark

Sall ¼ Sþall [ S
�

all

Sbenchmark ¼ Strain þ Svalidation

ð1Þ

8
><

>:

where the dataset Sall is divided into a benchmark set Sbenchmark and an independent test set

Sindependent. S
þ

all represents the positive set containing 11981 positive associations and S�all repre-

sents the negative set containing 180850 negative associations. The benchmark set Sbenchmark is

randomly divided into five subsets, where four subsets are considered as the training set Strain,

and the remaining one is used as the validation set Svalidation. The hyperparameters of our

method are optimized on the validation set via five-fold cross validation. The influence of

hyperparameters on the performance of iPiDA-GCN is shown in S1 Supplementary Material

Finally, the model is evaluated on the independent test set Sindependent to compare with the

other related methods.

Method overview

In this section, we propose a predictor iPiDA-GCN based on GCN to predict piRNA-disease

associations. The framework of iPiDA-GCN is shown in Fig 1, it mainly contains three steps:

heterogeneous network construction (Fig 1A), GCN-based node feature extraction (Fig 1B)

and association prediction for piRNAs and diseases (Fig 1C).

Network construction

Edge representation. There are three types of edges in the constructed piRNA-disease

network. One type of the edges is the original interactions between m piRNAs (m = 10149)

and n diseases (n = 19). The piRNA-disease association adjacency matrix is represented as APD

in Eq 2, where ai,j = 1 if the i-th piRNA is associated with the j-th disease with experimental

verification, otherwise ai,j = 0.

APD ¼

a1;1 a1;2 . . . a1;n

a2;1 a2;2 � � � a2;n

..

. ..
. . .

. ..
.

am;1 am;2 � � � am;n

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð2Þ

The other two types of edges named ‘similarity edge’ are contained in the similarity subnet-

works, and calculated based on the biological entities’ information. Specifically, piRNA-

piRNA similarity Sp is obtained based on piRNA sequence information, downloaded from

piRBase v3.0 [29]. The sequence information contains the attribute information of non-coding

RNAs, and the Smith-Waterman alignment algorithm [30] can effectively capture the func-

tional similarities among RNAs. In this study, the piRNA sequence similarity Sp(pi, pk)
between i-th piRNA pi and k-th piRNA pk is computed as:

Sp pi; pkð Þ ¼
SWðpi; pkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SWðpi; piÞ � SWðpk; pkÞ
p ð3Þ
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where the SW(pi, pk) is the sequence alignment value between the i-th piRNA and k-th piRNA

calculated by the Smith-Waterman alignment algorithm [30].

Disease-disease similarity is computed based on disease ontology (DO) [31], which is used

as a standard representation of human disease in biomedical ontologies [32]. DO is capable of

translating molecular findings from high-throughput data to clinical relevance. DOSE [33]

provides different semantic similarity algorithms based on DO terms. The algorithm based on

Directed Acyclic Graph (DAG) [34] has been widely used in ncRNA-disease association detec-

tion [35–37]. It cannot only provide consistent semantic similarities, but also can detect poten-

tial relations between complex diseases. Therefore, the disease semantic similarity between

Fig 1. The flowchart of iPiDA-GCN. iPiDA-GCN mainly contains three modules: (i) Heterogeneous network construction (Fig 1A). Three kinds of edges are collected

in the heterogeneous piRNA-disease association network, including piRNA-piRNA similarities, disease-disease similarities and piRNA-disease interactions. (ii) GCN-

based node feature extraction (Fig 1B). Asso-GCN and Sim-GCN modules are designed to continuously learn node features from different subnetworks of piRNA-disease

association network. Specifically, Asso-GCN captures hidden associated features of heterogeneous nodes from piRNA-disease interaction subnetwork, while Sim-GCN

captures hidden associated features of homogeneous nodes from two similarity subnetworks. (iii) Association prediction for piRNAs and diseases (Fig 1C). Three fully

connected layers are employed to learn the low-dimensional representations of piRNAs and diseases. Finally, association scores between piRNAs and diseases are

computed through inner product operation.

https://doi.org/10.1371/journal.pcbi.1010671.g001
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disease dk and disease dj is be calculated as [34]:

Sd dk; dj

� �
¼

P
t2Tk\Tj

ðSdk
ðtÞ þ Sdj

ðtÞÞ
P

t2Tk
Sdk
ðtÞ þ

P
t2Tj

Sdj
ðtÞ

ð4Þ

where Tk is the set containing all diseases in the DAG of disease dk, and Sdk
ðtÞ denotes the

semantic contribution of disease t2Tk to the k-th disease calculated by [34]:

Sdk
ðtÞ ¼ maxfa � Sdk

ðt0Þjt0 2 children ofðtÞg if dk 6¼ dj

Sdk
ðtÞ ¼ 1 otherwise

ð5Þ

(

where α is the semantic contribution factor set as 0.5 following [34]. The farther the distance

between disease t and its ancestor is, the lower the semantic contribution of disease t to disease

dk is.

Node representation. There are two types of nodes representing piRNAs and diseases in

the constructed heterogeneous piRNA-disease association network. In this study, random

walk with restart (RWR) [38] is employed to optimize the connectivity relationships among

the same biological entities, especially for the non-neighbouring and higher-order nodes, and

then the optimized similarity matrices are used as the initial feature matrices. The piRNA

sequence similarity matrix and disease semantic similarity matrix are used as the input of

RWR. The initial node features can be obtained by considering the global topology informa-

tion of each network. The piRNA node representation generated by RWR is calculated as [38]:

Pkþ1

i;j ðiÞ ¼ ð1 � aÞei;j þ aP
k
i;jðiÞSpðpi; pjÞ ð6Þ

PðiÞ ¼ ½P1i;1ðiÞ;P
1

i;2ðiÞ; . . . ;P1i;j ðiÞ; . . . ;P1i;mðiÞ� ð7Þ

where Pk
i;jðiÞ denotes the probability of walking from piRNA node pi to node pj after k steps. ei,j

denotes the initial probability of walking from piRNA node pi to node pj, which is the element

of an identity matrix. Sp(pi, pj) denotes the transition probability obtained from similarity

matrix Sp, α is the restart probabilities. The probability of pi associated with all the other

piRNA nodes are concatenated to generate the node representation P(i) for piRNA pi. Simi-

larly, the disease node representation D(i) can be represented as [38]:

Dkþ1

i;j ðiÞ ¼ ð1 � aÞei;j þ aD
k
i;jðiÞSdðdi ;djÞ

ð8Þ

DðiÞ ¼ ½D1i;1ðiÞ;D
1

i;2ðiÞ; . . . ;D1i;j ðiÞ; . . . ;D1i;nðiÞ� ð9Þ

To overcome the problem of insufficient representation, the feature dimension of each dis-

ease node is further extended from 19 to 1000 with polynomial features derived from the origi-

nal input features, which can better reflect the interactions of different features in different

dimensions. Specifically, polynomial features denote the polynomial combinations of the fea-

tures with degree less than or equal to the specified degree. For example, given a disease node

represented by the semantic similarities with three diseases a, b and c, it can be extended by

degree-2 polynomial features as ½a; b; c; a2; a� b; a� c; b2; b� c; c2�.

GCN-based node feature extraction

The key step of identifying piRNA-disease associations is node representation based on Graph

Convolution Network (GCN). GCN can aggregate neighbour node information, and capture

the hidden network structures to powerfully extract discriminative node features. Therefore,
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we employ GCN to learn the features of piRNA and disease nodes from the heterogeneous

piRNA-disease association network.

Let Hl2Rd denotes the node embedding of l-th GCN layer, the node embedding Hl+12Rd is

computed by (l+1)-th GCN layer according to [24] as:

Hlþ1 ¼ s ~D � 1
2~S ~D � 1

2HlWl
� �

ð10Þ

~S ¼ Iþ S ð11Þ

~Dði; iÞ ¼
X

j
~Sði; jÞ ð12Þ

where S is the adjacency matrix denoting the relationships among all nodes in the network,

and I is an identity matrix. ~D represents the degree matrix of ~S, Wl denotes the trainable

parameter matrix of GCN model, σ(�) is a nonlinear activation function.

Two main modules Asso-GCN and Sim-GCN are designed to extract node representation.

As shown in Fig 1B, Asso-GCN is adopted to aggregate node information from the piRNA-

disease interaction network, Gasso = {Vp, Vd, Ep−d} where Vp and Vd represent piRNA and dis-

ease nodes respectively, while Ep−d represents the interactions between piRNA and disease

nodes. The piRNA node features are captured from neighbor disease node information and

vice versa. Secondly, Sim-GCN is further used to capture semantic information from two dif-

ferent homogeneous similarity networks. The node representations obtained by Asso-GCN

are viewed as initial node features in Sim-GCN module. The constructed piRNA-piRNA simi-

larity network Gp = {Vp, Ep−p} and disease-disease similarity network Gd = {Vd, Ed−d} are two

main inputs for Sim-GCN. PiRNA node representations are generated by capturing neighbor

piRNA information and disease node representations are learned from neighbor disease infor-

mation. It is worth noting that batch normalization [39] is conducted following each deep

learning module so as to reduce internal covariate shift and increase stability.

The reasons why we designed Asso-GCN and Sim-GCN modules to learn node representa-

tions in turn are as followings: In Asso-GCN module, GCN captures node information from

the bi-partite piRNA-disease graph, where node representations are only learned from their

heterogeneous neighbor nodes. However, piRNA-disease associations are too sparse to pro-

vide enough information for GCN to capture discriminative representations. Therefore, we

introduce side information, including disease semantic similarity and piRNA sequence simi-

larity. Then, we performed Sim-GCN on the similarity networks to fine-tune the node repre-

sentations by their homogeneous neighbor nodes.

Association prediction for piRNAs and diseases

To further eliminate redundancy and noise, three consecutive fully connected layers are

designed to extract high-level node features. There are 400, 200 and 100 neurons in each layer.

Given a piRNA node representation hpi
and a disease node representation hdj

extracted from

GCN modules, the final piRNA and disease node representation h0pi and h0dj can be obtained

through the dense operation. Then the association score between piRNA pi and disease dj is

calculated as:

Ui;j ¼ h0pih
0

dj
T ð13Þ

where U is the final prediction score matrix. The higher the element Ui,j is, the more likely

piRNA pi is associated with disease dj.
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The mean square error is adopted as the loss function to minimize the Frobenius norm of

the difference between predicted score matrix U and label matrix APD. However, the number

of negative associations is much more than that of positive associations. In order to alleviate

the imbalance of training samples, α-enhanced loss function [25,40] focusing on positive sam-

ple learning is used, and can be formulated as:

Loss ¼ k~APD � Uk2

F þ mkWk
2

2
ð14Þ

where

~APD ¼
0 if APDði; jÞ ¼ 0 or APDði; jÞ 2 Sindependent

a otherwise
ð15Þ

(

~APD is the enhanced association matrix generated based on the original adjacency matrix

APD. α is a hyper parameter controlling the margin between true labels and predicted scores. μ
is a decay factor regulating all trainable model parameters W. U is the predicted score matrix

predicted by iPiDA-GCN.

Performance evaluation

PiRNA-disease association identification can be viewed as a link prediction task. Two widely

used evaluation metrics, including AUC (area under the receiver operating characteristics

curve) and AUPR (area under the precision recall curve) [41,42] are used to measure the per-

formance of different methods. The higher AUC and AUPR are, the better the performance of

the method is [43].

Results and discussion

The effect of GCN layers

GCN is the key module of iPiDA-GCN, which can aggregate information from neighbor

nodes and obtain representations of piRNAs and diseases. The number of GCN layers has an

important impact on the predictive performance. The influence of the different number of

GCN layers is shown in Table 1, from which we can see the followings: (i) iPiDA-GCN turns

to approximately randomly guess without using GCN module (layers = 0), where the input fea-

tures are directly processed by fully connected layers and inner production. It achieves better

performance when using GCN to capture the potential network structures. The reason is that

limited GCN layers cannot capture enough structural information, while stacking more GCN

layers can expand the receptive field with aggregating high-order connected node information

to obtain expressive representations. (ii) When more layers are added, the performance of iPi-

DA-GCN gradually increases in terms of both AUC and AUPR, but its performance decreases

when more than two layers are added. The reason is that more layers may introduce more

noise and irrelevant information into node representation learning, leading to over-smoothing

Table 1. The impact of GCN layers on the predictive performance of iPiDA-GCN on Sbenchmark.

Number of Layers AUC AUPR

0 0.5373 0.5328

1 0.6461 0.6320

2 0.6822 0.6620

3 0.6785 0.6566

4 0.6782 0.6606

https://doi.org/10.1371/journal.pcbi.1010671.t001
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and performance decrement [44,45]. We conclude that GCN with two layers cannot only cap-

ture the complex interaction patterns, but also incorporate the node attribute features for

representation learning so as to enhance the predictive ability.

Impact of the different components on the performance of iPiDA-GCN

There are three main components in iPiDA-GCN for extracting node features, including a

fully connected network, Asso-GCN and Sim-GCN. To analyze the contributions of different

components in iPiDA-GCN, three comparative baseline predictors (iPiDA-FN, iPiDA-As-

soGCN and iPiDA-SimGCN) are constructed, where iPiDA-FN is constructed only by a fully

connected network, while iPiDA-AssoGCN and iPiDA-SimGCN are constructed by combin-

ing different GCN modules and fully connected networks. Their performance along with iPi-

DA-GCN is shown in Table 2, from which we can see the followings: (i) Compared with

iPiDA-FN, two predictors based on GCN modules achieve much better performance, indicat-

ing that GCN contributes to node representations; (ii) Sim-GCN plays a more important role

than Asso-GCN for capturing semantic information from two similarity networks; (iii) iPi-

DA-GCN is superior to all the other baseline predictors, indicating that different components

are complementary and contribute to extracting high-level node features, leading to perfor-

mance improvement.

Performance comparison among different methods

To demonstrate the effectiveness of iPiDA-GCN, three state-of-the-art predictors are com-

pared, including iPiDA-PUL [17], iPiDA-sHN [18] and piRDA [46]. All these three predictors

have released the source codes or constructed the web servers, facilitating fair performance

comparison. Furthermore, in order to evaluate the impact of different learning node represen-

tations on the performance of piRNA-disease association prediction, a predictor iPiDA-DW

based on the node representation algorithm DeepWalk [47] is also compared with our

method, which performs on the heterogeneous piRNA-disease network ignoring node attri-

bute information, and computes association scores followed by full connection networks and

inner production. The results of various methods on Sindependent are listed in Table 3, from

which we can see the followings: (i) iPiDA-GCN achieves the best performance; (ii) Compared

with the methods based on node attribute iPiDA-PUL [17], iPiDA-sHN [18] and piRDA [46],

iPiDA-GCN is able to capture hidden structural features, leading to better performance; (iii)

Compared with iPiDA-DW which is a method based on network embedding, iPiDA-GCN

cannot only incorporate hidden structural and attribute features, but also can learn discrimi-

native node representations through two-level GCNs.

Visualization of predicted associations by iPiDA-GCN

In order to explore why iPiDA-GCN is able to accurately predict the potential associations

between piRNAs and diseases, the prediction results of three piRNA-disease associations in

the test set (<piR-has-1002, Parkinson’s disease>, <piR-has-10009, Parkinson’s disease> and

Table 2. The performance of iPiDA-FN, iPiDA-AssoGCN, iPiDA-SimGCN and iPiDA-GCN on Sindependent.

Method AUC AUPR

iPiDA-FN 0.5291 0.5107

iPiDA-AssoGCN 0.5603 0.5767

iPiDA-SimGCN 0.6765 0.6559

iPiDA-GCN 0.7149 0.7036

https://doi.org/10.1371/journal.pcbi.1010671.t002
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<piR-has-10111, Cardiovascular disease>) are selected, and visualized in Fig 2, from which

we can see the followings: (i) iPiDA-PUL [17] and iPiDA-sHN [18] predict that piR-has-1002

and piR-has-10009 are associated with cardiovascular disease without experimental verifica-

tion. iPiDA-PUL is a discriminative model based on manually constructed features, failing to

learn complex association patterns. iPiDA-sHN adopts CNN to extract node features, but

Table 3. Performance comparison among different methods on Sindependent.

Method AUC AUPR

iPiDi-PULa 0.6653 0.6550

iPiDA-sHNb 0.5226 0.5203

iPiDA-DWc 0.6317 0.6211

piRDAd 0.4939 0.5116

iPiDA-GCNe 0.7149 0.7036

a Results obtained by reproducing the iPiDi-PUL predictor with the help of its source code with parameters

(n_components = 200, n_estimators = 150, max_features = 0.2, number of ensemble learner = 5)
b Results obtained by reproducing the iPiDA-sHN predictor with the help of its source code with parameters

(C = 1.0, kernel = ‘rbf’, gamma = 1)
c The parameters number-walks = 10, walk-length = 80, window-size = 10
d The results are generated with the help of the web server of piRDA (http://nsclbio.jbnu.ac.kr/tools/piRDA/).

Because piRDA is constructed based on an outdated dataset, it can only predict the piRNAs associated with 13

diseases in Sindependent. Therefore, only the prediction results for these associations are evaluated

e The parameters epoch = 2000, learning rate = 0.001, weight decay factor = 1.0.

https://doi.org/10.1371/journal.pcbi.1010671.t003

Fig 2. The prediction visualization of iPiDA-GCN and compared methods. These figures are plotted with the help of

Gephi [49]. The nodes shown in orange and purple represent diseases and piRNAs, respectively. Pink lines denote the

similarity associations between piRNAs, and black and red lines denote piRNA-disease associations in the training set

and test set, respectively. The piRNA-disease associations predicted by different models are represented by blue lines.

https://doi.org/10.1371/journal.pcbi.1010671.g002
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CNN is not suitable for analyzing the graph-structured piRNA-disease association data [48].

(ii) iPiDA-GCN correctly predicts the piRNA-disease associations in the test set, owing to its

informative features learned by aggregating graph structure information from the complex

piRNA-disease network. Therefore, iPiDA-GCN outperforms the other existing methods for

predicting these three piRNA-disease associations.

Case study

In order to evaluate the performance of iPiDA-GCN for identifying piRNAs associated with

known diseases, four important and major diseases (“Cardiovascular disease”, “Renal cell car-

cinoma”, “Alzheimer’s disease” and “Parkinson’s disease”) are selected and their associated

piRNAs are predicted by using iPiDA-GCN. Table 4 lists the top 5 predicted piRNAs for each

disease. It can be seen from Table 4 that 19 of the 20 predicted piRNA-disease associations

have been verified by the biological literatures. For example, piR-hsa-31280 is down-regulated

in cardiovascular disease tissues [50]. piR-hsa-8245 is up-regulated in cardiovascular disease

tissue and has a higher expression about 5-fold in cardio sphere (CS) compared with cardio-

sphere-derived cells (CDC) [50]. piR-hsa-10732 shows down-regulation in renal cell carci-

noma tissue [51]. The expression of piR-hsa-28131 is different in Alzheimer’s disease-affected

brain compared with the normal human brain [3]. In addition, the top five identified piRNAs

associated with Parkinson’s disease (PD) are differently regulated in cells between control and

PD-patients [52]. The prediction results show that iPiDA-GCN can discover new potential

piRNA-disease associations, where the unconfirmed associations can be viewed as candidates

to provide guidance for biological experiments in the future.

Table 4. The top 5 piRNAs associated with different diseases predicted by iPiDA-GCN.

Disease Rank piRNA Evidencea

Cardiovascular disease 1 piR-hsa-1191 PMID:27131603

2 piR-hsa-31280 PMID:27131603

3 piR-hsa-8245 PMID:27131603

4 piR-hsa-18089 PMID:27131603

5 piR-hsa-27115 PMID:27131603

Renal cell carcinoma 1 piR-hsa-10732 PMID:26071182

2 piR-hsa-29578 PMID:26071182

3 piR-hsa-9186 PMID:26071182

4 piR-hsa-19501 PMID:26071182

5 piR-hsa-3161 PMID:26071182

Alzheimer’s disease 1 piR-hsa-28131 PMID:28127595

2 piR-hsa-2107 PMID:28127595

3 piR-hsa-1207 PMID:28127595

4 piR-hsa-12790 Unconfirmed

5 piR-hsa-2106 PMID:26934981

Parkinson’s disease 1 piR-hsa-356 PMID:29986767

2 piR-hsa-6015 PMID:29986767

3 piR-hsa-5249 PMID:29986767

4 piR-hsa-24512 PMID:29986767

5 piR-hsa-10122 PMID:29986767

a The detected piRNA-disease associations are validated by the biological literatures in PubMed. The PMIDs of these literatures are listed.

https://doi.org/10.1371/journal.pcbi.1010671.t004
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Conclusion

In this study, we propose a novel computational method called iPiDA-GCN to identify

piRNA-disease associations based on graph convolutional networks. Experimental results

show that iPiDA-GCN is superior to the other state-of-the-art methods. Three main factors

attribute to the superior performance of iPiDA-GCN: (i) Multiple biological data sources are

used to construct the heterogonous piRNA-disease association network, covering more infor-

mative interactions among biological entities; (ii) Asso-GCN and Sim-GCN modules are

designed to reasonably capture the graph structure information and hidden association pat-

terns; (iii) iPiDA-GCN obtains final piRNA and disease features with three fully connected

networks, which is able to filter noise, and extract meaningful information.

Besides, although iPiDA-GCN is designed for piRNA-disease association detection, it has

the potential to be extend to other biological link prediction tasks, such as protein-protein

interaction prediction [53], RNA-gene interaction detection [54,55].
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