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Abstract

Many decision-making studies have demonstrated that humans learn either expected val-

ues or relative preferences among choice options, yet little is known about what environ-

mental conditions promote one strategy over the other. Here, we test the novel hypothesis

that humans adapt the degree to which they form absolute values to the diversity of the

learning environment. Since absolute values generalize better to new sets of options, we

predicted that the more options a person learns about the more likely they would be to form

absolute values. To test this, we designed a multi-day learning experiment comprising

twenty learning sessions in which subjects chose among pairs of images each associated

with a different probability of reward. We assessed the degree to which subjects formed

absolute values and relative preferences by asking them to choose between images they

learned about in separate sessions. We found that concurrently learning about more images

within a session enhanced absolute-value, and suppressed relative-preference, learning.

Conversely, cumulatively pitting each image against a larger number of other images across

multiple sessions did not impact the form of learning. These results show that the way

humans encode preferences is adapted to the diversity of experiences offered by the imme-

diate learning context.

Author summary

Learning relative preferences between a pair of options is effective in guiding choice

between them, but might lead to error in choosing between options that have not been

paired against each other even if we know each option well. This problem of generalizing

relative preferences to novel decision contexts increases as the number of options gets

larger, since the more options there are the more likely we are to encounter choices

between new sets of options. To solve this problem, people may learn the expected reward

associated with each individual option—that is, its ‘absolute value’, by means of which any

pair of options can be compared. Thus, we hypothesized that the more options a person

learns about, the more likely they would be to form absolute values as opposed to relative

preferences. We constructed a novel multi-day reward learning experiment to specifically

test this hypothesis. We found that concurrently learning about more images indeed

enhances absolute-value learning and suppresses relative-preference learning. The
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findings clarify what learning conditions promote the formation of generalizable prefer-

ences that can help reach optimal decisions across different contexts, an ability that is vital

in the real world where experience is limited and fragmented across multiple continuously

shifting contexts.

Introduction

A large body of decision-making research suggests that humans learn from experience the

expected value of different available options (hitherto referred to as these options’ absolute val-

ues; [1–5]). That is, as people try out different options and observe their reward outcomes, it is

thought that they track the average reward associated with each option, and this allows them

to choose options with higher expected value. The main benefit of this so-called value learning
is that it makes it easy to choose from any set of options, including options that have not been

previously considered in relation to one another, simply by comparing their absolute values.

In this sense, absolute values act as a “common currency” that serves to generalize preferences

across contexts that offer different combinations of options [6–8]. Evidence that value learning

is implemented by the brain emerged from early foundational work on primates indicating

that brainstem dopaminergic neurons instantiate prediction errors—differences between

actual and expected reward—that are well suited for algorithmic implementations of value

learning [9]. Since then, many human brain imaging studies have shown that activation in the

orbitofrontal cortex (OFC) and other regions is correlated with expected value during reward

learning and other types of economic decision-making tasks [5,10,11].

New evidence, however, has cast into question whether humans indeed learn absolute

expected values or may be instead learning relative preferences among limited sets of options.

Two recent studies showed that people’s choices reflect relative preferences because when they

are rewarded for choosing one out of two options, they do not only form a preference in favor

of the option they chose, but also a preference against the option they did not choose [12,13].

Neural data reveal a similar picture. Neural firings in areas considered to encode value such as

the OFC and the striatum have been found to encode normalized values that, in fact, have no

absolute meaning and can only be interpreted as relative preferences compared to other

options sampled in the same context [14,15]. Such relative preference encoding is evident even

when each individual option is encountered separately [16,17]. These studies among others

[18–25], have led researchers to propose alternative models of learning, according to which

humans learn preferences between options without encoding the absolute value of each option

[7,8,26–29].

Here, we test a novel hypothesis that humans flexibly adapt the degree to which they form

absolute expected values and relative preferences based on the opportunities and incentives

afforded by the environment. It is well established, across a wide range of machine learning

applications, that learning environments that provide a more diverse set of learning exemplars

aid generalization of learned information to new input patterns and unfamiliar contexts

[30,31]. In the case of learning to maximize reward, the set of exemplars corresponds with the

set of possible options, and learning about a broader set of options could make it more clearly

evident that the value of an option does not depend on the other options it is pitted against—

that is, that each option has an absolute value. Additionally, the broader the set of options, the

greater is the space of possible choice sets (i.e., a choice set is a set of simultaneously available

options from which one chooses), some of which have yet to be encountered. The prospect of

having to choose among novel sets of previously encountered options makes it worthwhile to
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form preferences that can be used to choose among such sets, which is precisely what absolute

values are best suited for. By contrast, relative preferences produce suboptimal choices among

unfamiliar choice sets, since they only encode how valuable options were relative to the other

options they were previously pitted against [12,27].

These considerations suggest at least two types of training diversity may support and incen-

tivize value learning. The first type of diversity relates to how many options a person learns

about concurrently within a given learning session (henceforth, concurrent diversity), whereas

the second type of diversity is the number of alternative options a given option is cumulatively

pitted against, across all learning sessions (henceforth, cumulative diversity). These two types

of diversity are dissociable since an option can be learned concurrently with fewer other

options, yet across multiple learning sessions it may be cumulatively pitted against more other

options.

To test the impact of concurrent and cumulative diversity on the formation of absolute val-

ues, we designed a novel multi-day reward learning experiment comprising twenty learning

sessions. In each session, subjects’ goal was to maximize their reward by choosing among pairs

of images, each of which was associated with a fixed probability of reward. The probabilities

were not told to subjects and could only be learned through trial and error, by observing the

reward outcomes of chosen images. To manipulate concurrent diversity, we varied how many

images subjects learned about concurrently in each learning session. To manipulate cumula-

tive diversity, we varied the total number of other images each image was pitted against over

two separate learning sessions. Critically, the multi-session design allowed us to assess the for-

mation of absolute values by asking subjects to choose between images that were never directly

paired together during learning. To enhance the distinction between absolute values and rela-

tive preferences, we had images with the same reward probability learned against other images

with either mostly lower or mostly higher reward probabilities. An absolute value learner

would have no preference among these images, whereas a relative preference learner would

prefer the option that ranked higher in its original learning context.

Results

27 subjects (ages 20 to 30; Mean = 24 ±.5) completed two learning sessions a day of a reward

learning task over a period of ten days (Fig 1). In low-concurrent-diversity sessions, subjects

learned about three images at a time, whereas in high-concurrent-diversity sessions, subjects

learned about six images at a time. Every image appeared in two learning sessions, but low-

cumulative-diversity images were pitted against the same images in both sessions whereas

high-cumulative-diversity images were pitted against different images.

Subjects formed preferences in favor of more rewarding images

To validate our task, we first determined whether subjects successfully learned to choose

images associated with higher reward probabilities. Subjects indeed tended to choose the more

rewarding image out of each pair, doing so with 86% (SEM ±1%) accuracy during learning

(Fig 2A; chance performance = 50%). As can be expected, subjects’ performance was lower in

the conditions that required learning about more images (i.e., high concurrent diversity; Fig

2B, left panel) or about more pairs of images (i.e., high cumulative diversity; Fig 2B, right

panel). However, subjects performed considerably above chance in all conditions, and showed

gradual improvement with each new image as they tried out choosing it and observed its out-

comes (Fig 2C). These results confirm that the task was effective in getting subjects to form

preferences among images based on how often each image was rewarded.
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Concurrent diversity increased generalization

A hallmark of value learning is the ability to generalize learned preferences to novel settings.

To test generalization, we had subjects choose between images that had not been previously

pitted against each other (‘novel pair’ testing trials). We compared subjects’ accuracy on these

trials to accuracy in choosing between images that subjects had encountered during learning

(‘learned pair’ testing trials). Novel and learned pairs involved the same images and presented

subjects with similarly difficult choices, in the sense that the time elapsed since learning was

roughly the same (novel pairs = 1.88 days ±.08, learned pair = 1.75 ±.08 following learning), as

was the average difference in reward rate between the two images that made up a pair (reward

rate difference: Δnovel−pair = 48.4% ±2%, Δlearned−pair = 49.1%±3%). However, only novel pairs

presented subjects with choices between images learned in different games with different sets

of other images. This presents no challenge to an absolute value learner, but a relative prefer-

ence learner might end up choosing an image with a lower expected value simply because it

was learned against worse images (and thus acquired a higher relative value). For this reason, a

pure absolute value learner can be expected to perform equally well in choosing between novel

and learned pairs, whereas a relative preference learner should perform worse in choosing

between novel pairs.

We found that subjects successfully chose the image with the higher reward probability in

83% of novel-pair trials (SEM ±2%; chance performance = 50%). This level of accuracy, how-

ever, was significantly lower than the accuracy subjects demonstrated on learned-pair trials

(Mean = 87% SEM ±3%; bootstrap p = .03). Subjects thus generalized their preferences well,

but did not do so perfectly.

We therefore asked whether success in generalization was affected by the diversity of learn-

ing experiences. To quantify generalization, we computed the drop-off in accuracy from

learned-pair to novel-pair testing trials. Since we found no interaction between the effects of

concurrent and cumulative diversity (p = .86 bootstrap test), we separately examined each

while marginalizing over the other. Strikingly, we found that accuracy did not significantly dif-

fer between novel-pair and learned-pair trials for images learned in conditions of high concur-

rent diversity (Fig 3; Mean = -1% ±2%; p = .68, bootstrap test). Conversely, for low-

concurrent-diversity images, subjects performed substantially worse in choosing between

Fig 1. Experimental design. (A) Reward learning game. On each trial, subjects were asked to choose one of two

circular images. Following their choice, subjects either received or did not receive a reward of 1 coin based on a fixed

reward probability associated with the chosen image (0, 1/3, 2/3, or 1). Each game consisted of 48 such ‘learning’ trials,

interleaved with 24 ‘testing’ trials wherein subjects chose between images about which they learned in prior sessions.

Outcomes were not revealed in testing trials to prevent further learning. Every image first appeared in 64 learning trials

over two sessions before subjects were tested on it. ITI: inter-trial-interval. (B) Daily schedule. Each day, subjects

performed two experimental sessions on a specially designed mobile phone app [32] one in the morning (on average,

at 8:56 am, and no earlier than 6:00 am) and one in the evening (on average, at 6:12 pm, and no earlier than 4:00 pm).

In each session, subjects played two games in which they learned about a total of six images. (C) Experimental

conditions. Four experimental conditions were implemented along 10 days of learning, each lasting two to three days.

Each condition is illustrated via a representative selection of six pairs of images subjects chose between in two different

sessions. Within the low concurrent diversity condition (left two columns), three images were learned over the span of

each game, whereas in the high concurrent diversity (right two columns) six images were learned over the span of two

games. Thus, in both conditions, each image appeared in 32 learning trials per session. In the low-cumulative-diversity

conditions, each image was pitted against the same two images in two consecutive learning sessions, whereas in the

high-cumulative-diversity conditions, images were pitted against different images (sometimes in two nonconsecutive

sessions; see Methods for details). Three days of training, as opposed to two, were required for high-cumulative-

diversity conditions so that each image could be pitted against different images in its two learning sessions. Conditions

were randomly ordered, and equal in terms of average reward probability and number of images learned per session.

Testing trials involved choosing between two images the subject already chose between during learning (Learned-pair

trials, 25% of testing trials) or novel pairings of images learned separately (Novel-pair trials, 75% of testing trials). On

average, pairs were tested 27 ±.8 times.

https://doi.org/10.1371/journal.pcbi.1010664.g001

PLOS COMPUTATIONAL BIOLOGY Training diversity promotes absolute-value-guided choice

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010664 November 2, 2022 5 / 28

https://doi.org/10.1371/journal.pcbi.1010664.g001
https://doi.org/10.1371/journal.pcbi.1010664


Fig 2. Overall performance. n = 27 subjects. A) Choice accuracy as a function of trial type and condition. A choice

was considered accurate if the subject selected the image with the higher reward probability. Subjects performed

significantly above chance (50%) in all trial types and conditions (CI = [.834,.879]). The plot shows total (vertical lines)

and interquartile (boxes) ranges and medians (horizontal lines). Also shown are mean accuracies predicted by a

computational model that was fitted to subjects’ choices (circles; see details under Computational Formalization
below). B) Effect of training diversity on accuracy during learning. Accuracy was higher in sessions with low (91%

SEM ±1%) compared to high (87% SEM ±1%) concurrent diversity (pcorrected = .048, bootstrap test), and trended

higher in sessions with low (90% SEM ±1%) compared to high (88% SEM ±1%) cumulative diversity (pcorrected = .078,
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novel pairs (Mean = -7% ±2%; pcorrected = .004 bootstrap test). This difference between low and

high concurrent diversity was neither due to a difference in learned-pair trials nor in novel-

pair trials (S1 Table), but specifically reflected the drop-off in accuracy between them (pcorrected

= .015 bootstrap test).

In contrast, cumulative diversity did not impact the performance drop-off from learned-

pair to novel-pair trials (-3% ±2% vs -4.8% ±2% pcorrected = .29 bootstrap test). This was despite

the fact that pairs of images were encountered during learning half as many times in

bootstrap test). The plot shows individual subject accuracy (circles), group distributions of accuracy levels (violin),

group means (thick lines) and standard errors (gray shading). C) Learning curves for each experimental condition.

Accuracy in trials involving a given image as a function of how many trials the image previously appeared in. A drop-

off in accuracy can be observed for high-cumulative-diversity images (dark) at the beginning of the second session,

because these images were then pitted against new images. The plot shows group means (circles), standard errors

(vertical lines), local polynomial regression lines ([33]; curves) and confidence intervals (shading). Given that

performance was always above chance (50%), y-axes in panels B and C focus on this range.

https://doi.org/10.1371/journal.pcbi.1010664.g002

Fig 3. Generalization performance. n = 27 subjects. Drop-off in accuracy in novel-pair compared to learned-pair testing trials, as a function of training

diversity. Concurrent diversity had a significant effect on this measure of generalization (pcorrected = .004, bootstrap test) whereas cumulative diversity did not

significantly affect it (pcorrected = .29, bootstrap test). The plot shows individual subject accuracy (circles), group distributions of accuracy levels (violin), group

means (thick lines) and standard errors (gray shading).

https://doi.org/10.1371/journal.pcbi.1010664.g003

PLOS COMPUTATIONAL BIOLOGY Training diversity promotes absolute-value-guided choice

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010664 November 2, 2022 7 / 28

https://doi.org/10.1371/journal.pcbi.1010664.g002
https://doi.org/10.1371/journal.pcbi.1010664.g003
https://doi.org/10.1371/journal.pcbi.1010664


conditions of high cumulative diversity. For this reason, we expected that learned-pair perfor-

mance would be compromised by cumulative diversity, and this was indeed the case (as evi-

dent by comparing accuracy on learned-pair trials to the level of accuracy achieved at the last 5

trials of learning; Meanlow = -2.3% SEM ±1%, Meanhigh = -4.2% ±1%, p = .03 bootstrap test).

However, accuracy on novel-pair trials was similarly compromised by cumulative diversity

(Meanlow = -5.6% ±2%, Meanhigh = -7.9% ±2%, p = .026 bootstrap test), and thus no benefit to

generalization was observed.

These results show that increasing the number of options about which a person concur-
rently learns improves their ability to generalize their learned preferences to novel choice sets.

Concurrent diversity reduces influence of other options’ outcomes

The observed improved generalization suggested that concurrent diversity enhanced absolute

value learning. To further investigate this possibility, we examined another key consequence of

absolute value learning, namely, that the preferences it forms depend only on the available

images’ prior outcomes. By contrast, relative preferences also account for the outcomes of

other images against which the presently available images were pitted during learning. These

latter outcomes determined how each of the available images ranked compared to other

images during learning. Due to accounting for these outcomes, a relative preferences learner

should show no preference between images with similar rankings during learning even if their

absolute values differ, but favor similarly rewarded images that ranked higher in their original

learning context (i.e. a rank-bias).

In examining choices between similarly ranked images with different absolute values, we

found that concurrent diversity improved subjects’ accuracy (S1 Fig; Mean_high = .83±.02;

Mean_low = .78±.02; pcorrected = .035 bootstrap test), as consistent with a shift towards value

learning. By contrast, cumulative diversity impaired performance on such trials (Mean_low =

.82±.02 Mean_high = .77±.02 pcorrected = .02 bootstrap test), as consistent with its general detri-

mental effect on overall performance.

Visualizing choices between similarly rewarded images (i.e. less than 10% difference in

reward rate) showed that subjects preferred images that ranked higher during learning (i.e.,

that were pitted against images with lower reward probabilities) under low concurrent diver-

sity (Meanlow = 63% SEM ±6%, with 50% representing no preference between images) but not

under high concurrent diversity (Meanhigh = 49% SEM ±5%; Fig 4A). This difference between

conditions trended towards significance (p = .06 permutation test) and was not evident as a

function of cumulative diversity (Mean low = 57% ±7%, Mean high = 48% ±8%).

The above measure of rank bias, however, is limited in both sensitivity and validity. First, it

ignores the random differences that inevitably exist in the actual outcomes of similarly ranked

images. Second, it does not utilize the information that exists in subjects’ choices between dif-

ferently ranked images. Third, it is confounded by the fact that higher ranking images were

chosen more during learning, since they were pitted against less rewarding images. This latter

confound is important because it means that more outcomes were observed for higher-ranking

images, which may have allowed subjects to develop greater confidence regarding their value.

To address these challenges, we used a Bayesian logistic mixed model that predicted sub-

jects’ choices based on differences between the currently available images’ own reward history

(βOwn; i.e., proportion rewarded), the number of times each image was chosen (βTimes Chosen

i.e., sampling bias), and the reward history from trials in which the currently available images

were rejected in favor of other images (Fig 4B). The latter was separated into two separate

regressors, for prior outcomes of rejecting a presently available image in favor of the other

presently available image (βCurrent alternative) and of rejecting it in favor of any other image
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Fig 4. Effect of other options’ outcomes. A) Rank bias as a function of training diversity. Y-axis shows the percent of trials involving similarly rewarded

images in which subjects chose the image that ranked higher during learning. A subject’s image rankings were based on how many times the subject chose each

image over the other images it was pitted against (best, second-best, or worst, see Methods for further details). The plot depicts individual subjects’ choices

(circles), group distributions (violin), group means (thick lines) and standard errors (gray shading). B) Effect of reward histories on choice. The plot shows

the log odds effect on choice of three types of reward. Own: differences in reward history of currently available images. Current alternative: differences in

reward history when rejecting one available image in favor of the other available image. Other: differences in reward history when rejecting one of the available

images in favor of any other image.

https://doi.org/10.1371/journal.pcbi.1010664.g004
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(βOther). Importantly, only the latter regressor unequivocally captures the effect of other

images’ outcomes that are irrelevant for maximizing absolute expected value. To determine

whether the effects of different types of outcomes were modulated by training diversity, we

included regressors for concurrent and cumulative diversity and interactions between both

types of diversity and each type of reward history.

The results confirmed that in addition to the strong impact of an image’s own reward his-

tory (βOwn = 1.97 [1.63, 2.31]), preference for an image was inversely influenced by the out-

comes of both the current alternative (βCurrent alternative = -.43 [-.64, -.21]) and of the other

images it had previously been pitted against (βOther = -.53 [-.75, -.32]). Thus, the more subjects

were rewarded when not choosing an image, the less likely they were to prefer it on subsequent

trials. Most importantly, the influence of other images’ reward history was reduced by high

concurrent diversity (βOther×Concurrent = .39 CI = [.30, .49]). No additional interactions were

found (S2 Table), except for an interaction of cumulative diversity with the impact of an

image’s own outcomes, as consistent with cumulative diversity’s general detrimental effect on

performance. Thus, concurrent, but not cumulative, diversity reduced the influence of other

options’ rewards that are irrelevant for inferring absolute value.

Finally, to inquire whether the effect of cumulative diversity was indeed specific to trials that

exclusively probed absolute value, we examined subjects’ accuracy in novel-pair testing trials

wherein one of the images had both higher absolute and higher relative value than the other

image. Choosing correctly on such trials does not require absolute values. As expected, we found

no significant effect of concurrent diversity in these trials (pcorrected = .22). Here, too, we found a

trend for subjects to perform worse on images learned in high, as compared to low, cumulative

diversity (pcorrected = .052 bootstrap test). Taken together, the results indicate that concurrent

diversity specifically improved accuracy on trials that required absolute values to choose correctly.

Computational formalization of value and preference learning

Our results evidenced signs of both absolute value and relative preference learning. On one

hand, subjects successfully learned reward maximizing choices and generalized well to novel

choice sets, as consistent with absolute value learning. On the other hand, subjects performed

still better at choosing among familiar choice sets, and they preferred images that were rela-

tively more valuable in their original learning context, as consistent with relative preference

learning. Critically, learning about more images concurrently diminished or even eliminated

the signs of relative preference learning.

We next tested whether this set of results can be coherently explained as reflecting the oper-

ation of two learning processes—absolute value and relative preference learning—the balance

between which changes as a function of concurrent diversity. To do this, we fitted subjects’

choices during both learning and testing with a computational model that combines value and

preference learning (as proposed by [26]). We then examined the best-fitting values of the

model’s parameters to determine the degree to which value and preference learning were each

employed in each experimental condition.

To formalize absolute value learning, the model represents subject beliefs about the absolute

values of images as beta distributions, defined by two parameters ai and bi. This beta distribu-

tion represents the reward probability that is believed to be associated with each image given

the outcomes obtained for choosing it. Thus, ai and bi accumulate the number of times that

choice of image i was rewarded and not rewarded:

ai  gai þ O ð1Þ

bi  gbi þ ð1 � OÞ ð2Þ
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where O = 1 if the choice was rewarded and O = 0 if it was not. Here, γ serves as a leak parame-

ter allowing for the possibility that more recent outcomes have a greater impact on subjects’

beliefs (γ = 1 entails that outcomes are equally integrated, whereas γ<1 entails overweighting

of recent outcomes). The decision variable provided by this form of learning is the absolute

value (V) of image i, which is estimated as the expected value of the image’s beta distribution:

V ið Þ ¼
ai

ai þ bi
ð3Þ

To isolate the key computation distinguishing relative preference learning from value learn-

ing, we use the same learning rules defined above to generate a relative preference

W(i,j), for image i over image i, that accounts for all outcomes observed for choosing

between the two images. When applying Eqs 1 and 2 for preference learning, O = 1 if image i
was chosen and rewarded or if image j was chosen and not rewarded, and O = 0 if image j was

chosen and rewarded or if image i was chosen and not rewarded. To enable preference learn-

ing to exhibit preferences among previously unencountered pairs of images, a general relative

preference W(i) was computed for each image i by accumulating in the same fashion the out-

comes of choosing image i or the other image, across all learning trials involving image i.
Accounting for the outcomes of the other images distinguishes the relative preference W(i)
from the absolute value V(i).

When facing a choice between image i and image j, the probability that the model will

choose either image is computed based on a weighted sum of the images’ absolute value and

relative preference:

P choice ¼ ið Þ ¼
ebvalueVðiÞþbpreferenceW0ðiÞ

ebvalueVðiÞþbpreferenceW0ðiÞ þ ebvalueVðjÞþbpreferenceW0ðjÞ
ð4Þ

where W0(i) is itself a weighted sum of W(i) and W(i,j), with a free parameter controlling their

relative weights. Importantly, βvalue and βpreference are distinct inverse temperature parameters,

the respective magnitudes of which determine the degree to which absolute values and relative

preferences influence choice. Thus, the values of these parameters that best fit subjects’ choices

can be used to quantify the degree to which value and preference learning manifested in each

experimental condition [34,35]. To this end, we allowed the two inverse temperature parame-

ters to vary as a function of concurrent and cumulative diversity, for either learning or testing

trials.

Subjects combine value and preference learning

To determine whether a combination of value and preference learning was needed to explain

subjects’ choices, we compared the full model to two sub-models, one that only learns absolute

values (βpreference = 0) and one that only learns relative preferences (βvalue = 0), as well as to a

number of additional alternative learning models (see Methods). We found that the full model

accounted for subjects’ choices across both learning and testing trials significantly better than

the alternative models (Fig 5 and S5 Table). Moreover, only the full model was able to recreate

in simulation all the behavioral findings, including generalization performance, effect on

choice of outcomes for other images, and rank bias (see S2 Fig and Falsification of alternative

models in Methods).

Concurrent diversity enhances value learning

Examining the values of the parameters that best-fitted subjects’ choices across all trials

showed that value learning generally predominated over relative preference learning (βvalue = 4
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±.28 vs βpreference = 1.88 ±.22), as befitting a task that involves frequent choices between options

from different learning contexts. Importantly, however, preference learning manifested to a

greater extent in conditions of low concurrent diversity (low concurrent: βpreference = 2.6 ±.29;

high concurrent: βpreference = 1.44 ±.21; p<.001 permutation test), whereas value learning man-

ifested to a greater extent in conditions of high concurrent diversity (low concurrent: βvalue =

3.84±.31; high concurrent: βvalue = 4.33±.2 p<.001 permutation test).

By contrast to concurrent diversity, cumulative diversity inhibited value learning (low

cumulative: = 4.7 ±.5; high cumulative: βvalue = 3.5 ±.4; p< .001 permutation test) and had no

significant impact on preference learning (low cumulative: βpreference = 1.89 ±.13; high cumula-

tive: βpreference = 1.92 ±.1; p = .32 permutation test). These results indicate that concurrently

learning about a broader set of options enhances the use of absolute values for making choices.

Testing alternative interpretations

A necessary consequence of varying concurrent diversity is an extension of the duration of

learning, since twice as many trials are required to learn about twice as many images. This

raises the possibility that it was simply the duration of learning, and not the diversity of learn-

ing exemplars, that shifted learning from relative preferences to absolute values. To test this

interpretation, we implemented a variant of our model where a shift towards absolute-value

learning progresses gradually during learning irrespective of concurrent diversity. We com-

pared this model to a matched implementation of a concurrent diversity effect, that is, where a

gradually developing shift progresses towards value learning under high concurrent diversity

but towards preference learning under low concurrent diversity. Model comparison favored

the latter model over all other models (ΔBIC +741). This result indicates that shifts between

preference and value learning indeed developed gradually. Most importantly, though, this

result confirms again that the direction of the shift depended on concurrent diversity.

Fig 5. n = 27 subjects. A) Model comparison. Comparison of the combined Preference+Value model to models that

learn only absolute values or relative preferences. The models are compared by means of the Bayesian Information

Criterion (BIC; [36]). Lower BIC values indicate a more parsimonious model fit. B) Modeled Utilization of Value and

Preference Learning. Individual subject model parameter fits showing the effects of concurrent and cumulative

diversity on the degree to which preference and value learning manifested in subjects’ choices. Each dot represents a

subject. Dashed lines mark where utilization of the form of learning is equal for low and high diversity.

https://doi.org/10.1371/journal.pcbi.1010664.g005
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A second necessary consequence of concurrently learning about more images is that conse-

cutive presentations of an image will be separated by more intervening trials. Larger separation

might itself affect the predominant form of learning, either because values and preferences

decay during the intervening trials at different rates, or because a larger separation between

outcomes affects the degree to which subjects overweight recent outcomes in forming values

and preferences. To test the first possibility, we modified our model so as to allow values and

preferences to decay during the intervening trials (via the leak parameters γvalue, γpreference).
This model fitted the data worse (ΔBIC +220), ruling out decay during intervening trials. To

test the second possibility, we modified our model so that the overweighting of recent out-

comes (also controlled by the leak parameters) could vary as a function of diversity conditions.

This model too fitted the data substantially worse (ΔBIC + 350).

Finally, we examined an alternative hypothesis that participants make use of the transitivity

of relative preference, thereby inferring a global rank of items without learning the expected value

of each item. However, even among pairs of images with no transitive relation between them,

subjects were significantly above chance in selecting the higher value image (Mean = .82±.1).

Moreover, the effects of concurrent diversity on generalization were significant within this subset

of trials as well (pcorrected = .003 bootstrap test).

Thus, neither the duration of learning, nor the presumed effects of interleaving trials, nor

transitive inferences offer a successful alternative explanation for the enhancement of absolute

value learning by high concurrent diversity of learning exemplars.

Discussion

We found that increasing the number of options a person concurrently learns about shapes reward

learning in several ways. It first reduces performance during learning, but then leads to more suc-

cessful generalization, removes a bias in favor of options that ranked higher during learning, and

generally decreases the degree to which preference for an option is influenced by presently irrelevant

options’ outcomes. Computational modeling shows that all of these effects are coherently explained

by a shift away from relative preference and towards absolute value learning. These findings offer a

meaningful extension of previous demonstrations of absolute value [1,2,5] and relative preference

[12,13,27] learning in humans, by identifying key conditions under which the former is diminished

in favor of the latter, namely, conditions of high concurrent training diversity.

The enhancement of absolute values and inhibition of relative preferences that we observed

can best be understood in light of past suggestions that encoding context-specific information

aids performance as long as the agent remains within the learning context, but is ill suited for

generalizing policies to other learning contexts [37,38]. Relative preference learning is inher-

ently specific to the learning context and impairs generalization to novel choice sets. Our find-

ings show that such context-specific learning is promoted by a learning experience that limits

the possibility of encountering novel choice sets, specifically, by reducing the number of

options. In this sense, the shift between preference and value learning in our experiment can

be thought of as a rational adaptation. This perspective is supported by a recent finding that

value learning is enhanced by expectations of having to choose between options from different

learning contexts [39]. Here, though, we demonstrate that absolute value learning can be

enhanced even absent a direct manipulation of the need to choose between options from dif-

ferent learning contexts. Increasing the number of options is sufficient for this purpose. Con-

versely, with a low number of options, relative-preference learning remains clearly evident

despite subjects being aware of the need to choose across contexts.

Our findings agree with prior work showing that emphasizing comparisons between a lim-

ited number of specific images, for instance by repeatedly presenting subjects with a choice
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between the same two options and providing reward information about the foregone option,

promotes learning of relative values [27]. However, the process by which the formation of rela-

tive values in the latter experiments has so far been explained–namely, normalization to the

range of outcomes experienced during learning–cannot explain relative preference learning in

our experiment. This is because the range of outcomes in our experiments was the same in all

learning sessions. By contrast, the model we proposed here for relative preference learning

may coherently account for both our findings and the findings that had previously been attrib-

uted to normalization.

Though both concurrent and cumulative diversity increased task difficulty, as evident by

poorer performance during learning, cumulative diversity did not have the effect of improving

generalization. This result has two key implications. First, it contradicts previous suggestions

that it is task difficulty per-se that promotes absolute value learning [27]. Second, it suggests

that the formation of absolute values is not promoted by the global diversity of learning exem-

plars encountered during the entire course of learning, but rather, by the local diversity that

characterizes the immediate learning context.

We successfully ruled out several alternative explanations for the finding that concurrent

diversity promotes absolute value learning, including some possible effects of increased dura-

tion of learning and greater separation between consecutive choices of an image, both of

which are direct consequences of concurrently learning about more images. Another impor-

tant consequence of such learning, which we have not addressed here, is increased working

memory load [40]. Future experiments could disentangle the effects of number of images and

working memory load by introducing unrelated tasks during learning, so as to increase work-

ing memory load without changing the number of images about which subjects concurrently

learn.

Another open question remains as to a full functional description of the relationship

between concurrent diversity and absolute value learning. Our model, which was tested on

three (low diversity) or six (high diversity) concurrently learned images does not allow us to

extrapolate to learning with other set sizes. Clarifying the full functional relationship between

diversity and value learning can be aided by extending the current experimental approach to

testing additional levels of diversity, as well as by further developing a mechanistic understand-

ing of how diversity promotes value learning.

Several studies have investigated the neural basis of value [5,9,10,11] and preference

[12,14,15] learning in isolation, and the potential instantiation of relative preferences via sam-

pling from memory during choice [41–45]. However, it is yet unknown how the brain arbi-

trates between preference and value learning. One relevant line of work comprises studies on

how concurrent diversity influences the brain regions recruited for learning [40]. Though this

work has not examined absolute values and relative preferences, it has shown that increasing

the number of items people concurrently learn about strengthens activation in a striatal-fron-

toparietal network implicated in value learning. Future studies could investigate the involve-

ment of this network and other regions in arbitrating between value and preference learning

as environmental conditions change.

Conclusion

Our findings contribute to the ongoing debate concerning the extent to which people learn

absolute values versus relative preferences. We show that absolute-value learning depends on a

characteristic of the immediate learning context, namely, the diversity of learning experiences

it offers. We find that increased diversity, despite impairing performance in the short term,

has the effect of enhancing learning of absolute values which generalize well to novel contexts.
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Such generalization is essential for making decisions in real life where our experiences are

inevitably fragmented across many different contexts.

Contact for resource sharing

Further information and requests for resources or raw data should be directed to and will be

fulfilled by the Lead Contact, Levi Solomyak (levi.solomyak@mail.huji.ac.il).

Methods

Ethics statement

The experimental protocol was approved by the Hebrew University local research ethics com-

mittee, and written informed consent was obtained from all subjects.

Subjects

27 human subjects (14 male,13 female), aged 20 to 30 (Mean = 24 SEM ±.5), completed the exper-

iment which consisted of 3556 trials [46]. Given the size of the dataset obtained for each subject

(an order of magnitude greater than in typical learning experiments) and the effect size found in

similar prior literature [27], we expected that a meaningful finding would manifest as at least a

large effect (Cohen’s D = .8; [47]). We thus selected a sample size that would provide at least 80%

power of detecting such an effect (i.e., n> = 26). The experiment was discontinued midway for 3

additional subjects due to failure to complete learning sessions or evidence of random choosing.

Subjects were recruited from a subject pool at Hebrew University of Jerusalem as well as from the

Jerusalem area. Before being accepted to the study, each subject was queried regarding each of the

study’s inclusion or exclusion criteria. Inclusion criteria included fluent Hebrew or English and

possession of an Android smartphone that could connect to wearable sensors via Bluetooth Low

Energy. Exclusion criteria included age (younger than 18 or older than 40), impaired color dis-

crimination, use of psychoactive substances (e.g., psychiatric medications), and current neurologi-

cal or psychiatric illness. Subjects were paid 40 Israeli Shekels (ILS) per day for participation and

0.25 ILS for each coin they collected in the experimental task, which together added up to an aver-

age sum of 964 ±42 ILS over the entire duration of the study.

Subjects who missed two sessions of the experiment or who displayed patterns of making

random choices were automatically excluded from the study. Random choosing was indicated

by chance-level performance or reaction times below 1000 ms, which our previous experience

[32] suggested is consistent with inattentive performance.

Experimental design

To test for value and preference learning, we had subjects perform a trial-and-error learning

task over a period of 10 days. On each trial, subjects chose from one of two available images,

and then collected a coin reward with a probability associated with the chosen image. Each

game included 48 such learning trials involving a set of 3 images with reward probabilities of

either {0, .33,.66} or {.33, .66 and 1}. These probabilities were never revealed to the subjects.

Subjects were only instructed that each image was associated with a fixed probability of

reward. Subjects played four games a day, two in a morning session and another two in an

evening session. Over a total of 20 sessions, subjects learned about 60 unique images, each

appearing in 64 learning trials over two sessions.

To assess whether concurrent or cumulative diversity promotes absolute value learning, we

tested subjects on four experimental conditions involving either low or high levels of each type

of diversity. Task conditions were randomly ordered across days in order to avoid confounds
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related to fatigue or gradual improvement in learning strategy. Images learned in low cumula-

tive diversity conditions were learned over the span of two consecutive days. To satisfy the

constraints of high cumulative diversity concerning which images are pitted against which,

high cumulative diversity conditions spanned three days (see below). All four conditions

yielded the same expected payout, since the average reward probability associated with images

within each condition was .5.

To enhance the distinction between absolute values and relative preferences, we had images

with the same absolute value (i.e., equal reward probability) learned against other images with

mostly lower reward probabilities (i.e., in games where the probabilities were {0, .33,.66}; low

reward context) or mostly higher reward probabilities (i.e., in games where the probabilities

were {.33, .66 and 1}; high reward context). Within each day, an equal number of images were

learned in the high and low reward contexts.

Concurrent diversity

Low: In these conditions, the two games within each learning session were independent of one

another, each involving a distinct set of three images, with each trial randomly pairing two of

the three images. Thus, the number of images subjects had to concurrently track in these con-

ditions was limited to three.

High: Each session involved a set of six images, all of which were encountered in both

games. Consequently, in these conditions subjects had to concurrently track six images. To

equalize low and high concurrent diversity conditions in terms of the number of images each

image was pitted against within a game (two), as well as in terms of the total number of pairs

of images between which subjects chose within each session, the six images formed only six

different pairs. To enhance the impact of high concurrent diversity, unlike in the low concur-

rent diversity condition, images that were pitted against each other never had a common

image that they were both pitted against (Table 1).

Cumulative diversity

Low: Every image was pitted against the same two other images in two consecutive learning

sessions. Thus, in total, subjects chose between each pair of images 32 times. In these condi-

tions, subjects learned about twelve images in the span of two days.

High: Every image was pitted against two different pairs of images in two different learning

sessions (i.e., against a total of four other images). Thus, over the same number of trials involv-

ing the same number of images, subjects encountered twice as many image pairs compared to

the low cumulative diversity condition. Correspondingly, subjects chose between each pair of

images 16 times, half as much as under low cumulative diversity. To ensure that the opportu-

nity to learn relative preference was not hindered by a change in reward context midway

through learning, reward context was always the same (i.e., either high or low) in both learning

sessions of a given image. Implementing these criteria made it impossible to have subjects

learn about twelve images in the span of two days, and thus, we had subjects learn about 18

images across the span of 3 days (Table 2). Furthermore, pairing each image with different

images in two sessions meant that, for some stimuli, its two sessions could not be consecutive.

Thus, 58.33% of high cumulative diversity were learned over the course of two days.

This extension of the learning period conferred a small benefit to accuracy in testing trials,

as shown by a logistic regression on the number of days learning spanned (log odds accuracy

improvement = .12 CI = [.05 .19]). Reassuringly, this incidental effect ran counter to the over-

all effect of high cumulative diversity, which was to impair testing performance. Thus, it did

not change the interpretation of the main results.
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To assess the formation of absolute values, we had subjects choose between images about

which they had learned in two previous sessions (‘testing’ trials). Through the entire course of

learning, such testing trials were interleaved with the learning trials (every 3rd trial, 24 testing

trials total). Reward feedback was not shown on testing trials, but subjects were informed in

advance that these trials would be rewarded with the same probabilities with which they were

rewarded during learning. This reward was factored into the final bonus subjects received for

their performance. Testing trials always presented a choice between images learned within the

same condition. However, some of these images subjects had already chosen between during

learning (‘Learned Pair Trials’; 25% of testing trials), whereas other trials presented a choice

between images about which subjects learned in separate games (‘Novel Pair trials’; 75% of

testing trials). Half of novel-pair trials were designed to assess how well subjects performed in

general. These trials thus presented a choice between two images one which of was preferable

to the other both in terms of reward probability and in terms of how it ranked in reward prob-

ability compared to the other images it was learned with. The other half of novel-pair trials

were designed to distinguish between value and preference learning. Thus, half of these (25%

of all novel-pair trials) presented a choice between images with the same expected value but

that ranked differently in their original learning context, whereas the other half presented a

choice between images with the same relative rank but different values. Pairs that satisfied

these criteria were selected in random.

Table 1. Example image pairings in conditions of low and high concurrent diversity and reward context.

A) Concurrent diversity: Low; Reward context: Low

Stimulus Expected value Pitted against Optimal choice frequency

1 0 2 and 3 Never

2 .33 1 and 3 Half (over 1)

3 .66 2 and 3 Always

B) Concurrent diversity: Low; Reward context: High

Stimulus Expected value Pitted against Optimal choice frequency

4 .33 5 and 6 Never

5 .66 4 and 6 Half (over 4)

6 1 4 and 5 Always

C) Concurrent diversity: High; Reward context: Low

Stimulus Expected value Pitted against Optimal choice frequency

1 0 2 and 3 Never

2 .33 1 and 4 Half (over 1)

3 .66 1 and 5 Always

4 .66 2 and 6 Always

5 .33 3 and 6 Half (over 6)

6 0 4 and 5 Never

D) Concurrent diversity: High; Reward context: High

Stimulus Expected value Pitted against Optimal choice frequency

7 .33 8 and 9 Never

8 .66 7 and 10 Half (over 7)

9 1 7 and 11 Always

10 1 8 and 12 Always

11 .66 9 and 12 Half (over 12)

12 .33 10 and 11 Never

https://doi.org/10.1371/journal.pcbi.1010664.t001

PLOS COMPUTATIONAL BIOLOGY Training diversity promotes absolute-value-guided choice

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010664 November 2, 2022 17 / 28

https://doi.org/10.1371/journal.pcbi.1010664.t001
https://doi.org/10.1371/journal.pcbi.1010664


Within every session, we tested only the latest condition for which at least two learning ses-

sions were completed. This meant that in most days only one condition was tested. However,

equalizing the total number of testing trials across conditions required that there be on average

2 days (range 1–3) in which the morning and evening sessions tested different learning condi-

tions. The variation between subjects emerged because of Sabbath observance, which resulted

in some subjects completing only the morning session on Fridays (since sundown prevented

the completion of the second session) and either subsequently continuing the following even-

ing (Saturday evening) or the following day (Sunday morning).

In the morning session of the final day of the experiment (day 11), to ensure that there were

sufficient testing trials of images learned on days 9 and 10, subjects were presented with testing

trials from the last learned condition. In the afternoon session, subjects were presented with

testing trials that spanned across conditions. However, not all subjects performed these after-

noon trials, and some performed them incompletely. Therefore, the data from the afternoon

trials were not included in the main analyses.

Mobile platform

To test learning across multiple well-separated sessions, we modified an app developed by

Eldar et al [32] for Android smartphones using the Android Studio programming environ-

ment (Google, Mountain View, CA). The app asks users to perform experimental tasks accord-

ing to a predetermined schedule. Additional features of the app not relevant for the present

work include probing of changes in subjects’ mental state, including regular mood self-report

questionnaires and life events and activities logging, and recording of electroencephalographic

(EEG) and heart rate signals derived from wearable sensors connected using Bluetooth. All

behavioral and physiological data are saved locally on the phone as SQLite databases (The

SQLite Consortium), which are regularly uploaded via the phone’s data connection to a dedi-

cated cloud.

Table 2. Example arrangement of images across days in conditions of high cumulative diversity. Each number corresponds to an image subjects learned about. The

arrangement ensured that every image would be pitted against four distinct images across two learning sessions Brackets group images that were pitted against each other.

A) Low concurrent. Each game consisted of three images each pitted against the two other images. B) High concurrent. Each game consisted of six images, with each

image pitted against two other images.

A) Low concurrent

Day 1 Day 2 Day 3

Morning session

Game 1: {1,2,3} Game 1: {2,5,6} Game 1: {14,15,18}

Game 2: {7,8,9} Game 2: {8,11,12} Game 2: {13,16,17}

Evening session

Game 1: {1,4,5} Game 1: {3,4,6} Game 1: {13,14,17}

Game 2: {7,10,11} Game 2: {9,10,12} Game 2: {15,16,18}

B) High concurrent

Day 1 Day 2 Day 3

Morning session (both games)

{1,2},{1,3},{2,4},

{3,5},{4,6},{5,6}

{1,13},{1,14},{2,13}

{2,15},{3,14},{3,15}

{4,14},{4,15},{5,13}

{5,15},{6,14},{6,13}

Evening session (both games)

{6,7},{6,8},{7,9}

{8,10},{9,11},{10,11}

{7,16},{7,17},{8,16}

{8,18},{9,17},{9,18}

{10,16},{10,17},{11,17}

{11,18},{12,16},{12,18}

https://doi.org/10.1371/journal.pcbi.1010664.t002
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Daily schedule

Subjects first visited the lab to receive instructions, test the app on their phones, and try out the

experimental task (see Initial lab visit section below). Starting from the next day, subjects per-

formed two experimental sessions a day, one in the morning and one in the evening, over a

period of 10 consecutive days followed by a rest day, and a final day of testing. Each session

began with a 5-minute heart rate measurement during which subjects were asked to remain

seated. Following this, subjects put on the EEG sensor and played two games of the experimental

task. The app allowed subjects to perform the morning session from either 6AM, 7AM, 8AM or

9AM, as best fitted the subject’s daily schedule, and the evening session from 8 hours following

this time. Subjects were allowed to adjust the timing of the sessions according to their daily

schedule but were required to ensure a gap of at least 6 hours between successive sessions. On

average, subjects performed the morning session at 8:56AM (mean SD ± 40 min) and the even-

ing session at 6:12 PM (mean SD± 32 min). Subjects who were religiously observant were

allowed to suspend the experiment due to holiday observance as long as they resumed it the fol-

lowing day. Twenty five out of twenty-seven subjects took a holiday break, but only six of those

subjects took the break during learning about specific images (they had only completed one of

two learning sessions with those images). We evaluated whether these breaks resulted in accuracy

drop-off for these images relative to other images within the same condition for which learning

was uninterrupted but found no significant drop-off (Meanwith break = .87±.04, Meanwithout break =

.84±.03; p = .196 bootstrap test). As part of a larger data collection effort, subjects were also asked

to report their mood prior to playing each game as well as twice more throughout the day.

Materials

The experiment involved 60 images, which were abstract patterns collected from various inter-

net sources. To ensure that images were sufficiently distinguishable from one another we ran a

structural similarity analysis that assesses the visual impact of three characteristics of images:

luminance, contrast, and structure [48]. We considered as sufficiently distinguishable images

with a similarity index of at most .6, and this was verified by visual inspection.

Statistical analyses

All non-modeling statistical analyses were performed in R using RStudio. Statistical tests were

carried out using the bootstrap method with the “simpleboot” package. Correction for multiple

comparisons across the two types of diversity was carried out using the Benjamini–Hochberg

procedure.

Regression analyses

Regression analyses were performed using the “brms” package, which performs approximate Bayes-

ian inference using Hamiltonian Monte Carlo sampling. We used default priors and sampled two

chains of 10000 samples each. 1000 samples per chain were used as warm-up. To ensure conver-

gence, we required an effective sample size of at least 10000 and a R-hat statistic of at most 1.01 for

all regression coefficients. To evaluate an effect of interest, we report the median of the posterior

samples of the relevant regression coefficient and their 95% high density interval (HDI). A reliable

relationship is said to exist between a predictor and an outcome if the 95% HDI excludes zero.

Examining rank bias. To calculate whether subjects preferred images ranked higher in the

original learning context, we calculated each subject’s ranking of each image based on how many

times they chose the image relative to the other images it was pitted against (best, second-best, or

worst). If the difference in choice frequency between two images that were pitted against each
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other was below 10%, indicating no established ranking between them, then the pair was excluded

from the analysis (8% of trials). These rankings were then averaged across the two learning ses-

sions in which an image was learned about to generate an overall rank for the image. Finally, we

tested for a ranking bias by examining subjects’ choice between differently ranked but similarly

rewarded images (defined as less than a 10% difference in percent rewarded outcomes). Bias was

defined as a tendency to choose the image that had been ranked higher during learning.

Examining the influence of other options’ outcomes. To determine whether training

diversity modulated the influence on choice of past outcome of non-presently relevant images,

we used a Bayesian logistic mixed model predicting subjects’ choices. The predictors are

described below for a choice between image A and image B:

1. Own—Reward history of the currently available images in the current pair, computed as the

proportion of rewarded trials when option A was chosen versus any image minus the pro-

portion of rewarded trials when option B was chosen versus any image.

2. Current Alternative—Reward history of the currently available images in the previous times

the same images were pitted against each other, computed as the proportion of rewarded

trials when option A was rejected in favor of option B minus the proportion of rewarded

trials when option B was rejected in favor of option A.

3. Other—Reward history of choosing against the currently available images, computed as the

proportion of rewarded trials when option A was rejected in favor of any image other than

B minus the proportion of rewarded trials when option B was rejected in favor of any image

other than A.

4. Times Chosen—Computed as the number of trials in which option A was selected out of all

trials that included option A minus the number of trials when option B was selected out of

all trials that included option B.

5. Concurrent—concurrent diversity condition.

6. Cumulative—cumulative diversity condition.

All two-way interactions between each type of reward history and each type of diversity

condition: Concurrent×Own, Concurrent×Current Alternative, Concurrent×Other, Cumulati-
ve×Own, Cumulative×Current Alternative, Cumulative×Other.

To provide a concrete example, consider the following five-trial segment for which we cal-

culate the corresponding value of each regressor:

Trial 1: A vs B, A is selected and rewarded

Trial 2: B vs C, B is selected and is not rewarded

Trial 3: B vs C, C is selected and rewarded

Trial 4: A vs C, A is selected and is not rewarded

Current trial. Trial 5: A vs C

“Own” is calculated as the proportion of times A was rewarded when A was chosen (Trial 1,

Trial 4 for a total of A_own = 1/2) minus the proportion of times image C was rewarded when

chosen (Trial 3; C_own = 1/1). Thus, bown ¼
1=2
� 1 ¼ � 1=2

.

“Current alternative” is calculated as the proportion of times the subject was rewarded

when they rejected image A in favor of image C (no such trial exists so A_current alternative is

set to the null value of 1/2), minus the proportion of times the subject was rewarded when they

rejected image C in favor of image A (trial 4 –C = 0). Thus βcurrent alternative = 1
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“Other” is calculated as the proportion of times the subject was rewarded when they

rejected image A in favor of any image other than C (no such trials exist so A_other = 1/2)

minus the proportion of times the subject was rewarded when they rejected image C in favor

of any image other than A. In our case, image C was rejected in favor of image B (trial 2) and

image B is not rewarded (0/1) so the value of bother ¼
1

2

The probability of choosing image A over image B was thus modelled as:

Pðchoice ¼ iÞ � sðb0 þ bOwnOwnA� Bþ

bCurrent alternativeCurrent AlternativeA� BþbOtherOtherA� Bþ

bTimes ChosenTimes ChosenA� B þ bConcurrentConcurrentþ

bCumulativeCumulativeþ bConcurrent�OwnConcurrent � OwnA� B

þbConcurrent�Current alternativeConcurrent � Current AlternativeA� Bþ

bConcurrent�OtherConcurrent � OtherA� B þ bCumulative�OwnCumulative� OwnA� B

þbCumulative�Current alternativeCumulative� Current AlternativeA� Bþ

bCumulative�OtherCumulative� OtherA� BÞ

ð5Þ

where σ represents the logistic function. To account for between-subject variation, we included

random intercepts as well as random slopes for all predictors.

Computational formalization

Whereas the main components of the computational model are described in the main text,

here we detail precisely how preference and value learning were influenced by diversity condi-

tions. On each trial, a set of per-subject βpreference−baseline and βvalue−baseline parameters were

modulated by the following main effects and interaction parameters.

Main effects

b low
highconcurrent

and b low
highcumulative are ratios that represent the impact of concurrent and cumulative

diversity during learning on choice.

blearning
testing

is a ratio that represents how the influence of prior outcomes on choice differs

between learning and testing trials.

Interaction terms

b low
highconcurrent�

value
preference

and b low
highcumulative� value

preference
are ratios that represent the impact of training

diversity on the relative influence of value and preference learning on choice. The more either

ratio diverges from 1, the greater the impact diversity has on the balance between value and

preference learning.

b low
highconcurrent�

learning
testing

and b low
highcumulative�learning

testing
are ratios that represent the impact of training diver-

sity on the relative influence of prior outcomes on choices in learning compared to testing tri-

als; the more either ratio diverges from 1, the greater the impact diversity has on the relative

influence of prior outcomes on choices in learning compared to testing trials.

b value
preference�

learning
testing

is a ratio that represents the relative influence of value and preference learning

on choice differs in learning and testing trials. The more this ratio diverges from one, the more

preference and value learning are differentiated in the sense that one algorithm influences

choices more during learning trials and the other algorithm influences choices more during

testing trials.

Using these main effect and interaction parameters, βpreference and βvalue can be computed

for each trial type. Thus, for example, in a learning trial of low concurrent but high cumulative
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diversity we can calculate the inverse temperature for the value and preference algorithm as fol-

lows:

bpreference¼bpreference� baseline � b low
high

concurrent
� blearning

testing

�b low
high

cumulative
� b low

high
cumulative�

value
preference

� b value
preference

�
learning
testing

�b low
high

cumulative�
learning
testing

�b low
high

concurrent�
value

preference

� b low
high

concurrent�
learning
testing

bvalue¼bvalue� baseline � b low
high

concurrent
� b low

high
cumulative

� blearning
testing

�

blearning
testing

�
low
high

cumulative
� b low

high
cumulative�

value
preference

� blearning
testing

b low
high

concurrent
�

b low
high

concurrent�
value

preference

� b value
preference

�
learning
testing

ð6Þ

Alternative models

To identify the computations that guided subjects’ choices we compared the model presented

in the main text to several variations of this model, in terms of how well each fitted subjects’

choices. These included a model that only learns absolute values (βpreference = 0), a model that

only learns relative preferences (βvalue = 0), a model with leak parameters (γpreference and γvalue)

that vary across conditions (BIC +240), and a non-Bayesian learning model that, instead of

beta distributions, learns expected values and relative preferences based on a Rescorla-Wagner

update rule with fixed learning rates. This latter model includes all main-effect and interaction

parameters included in our winning model except for the learning rates αvalue, αpreference,

which replaced the leak parameters γvalue, γpreference ([49]; BIC +2370 relative to winning

model).

To test for a gradual shift towards absolute-value encoding as a function of time (see Ruling

Out Alternative Explanations), we implemented a model that scales the inverse temperature

parameter for value learning, βvalue, by eτ�trial(i,t), and the inverse temperature parameter for

preference learning, βPreference, by 1

et�trialði;tÞ. Here τ is a free parameter controlling the degree of

the shift, as a function of the number of trials that elapsed since image i was chosen at trial t.

These inverse temperatures apply specifically to the outcome obtained that trial.

To additionally determine whether our data might be better accounted for by prior work

which suggested that humans gradually shift towards value learning in similar RL experiments

[39], we implemented an alternative model which assumes that the shift towards absolute-

value encoding grows with the number of trials that elapsed since the beginning of the experi-

ment. This model, too, did not fit the data well as the original model that did not assume a con-

tinuous gradual shift (+BIC 353), likely because subjects were made aware from the beginning

of the experiment that they would need to generalize learned values.

Finally, we tested a beta-binomial model which allowed for asymmetries in the learning

process from rewarded and non-rewarded outcomes. This model indeed improved the fit to

the data but did not alter any of the main findings (S3 Fig)

Model fitting

We fit model parameters to subjects’ choices using an iterative hierarchical importance sam-

pling approach [32] using MATLAB. We first used 2.5 × 105 random settings of the parameter
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from predefined group-level distributions to compute the likelihood of observing subjects’

choices given each setting. We approximated posterior estimates of the group-level prior dis-

tributions for each of our parameters by resampling the parameter values with likelihoods as

weights, and then re-fit the data based on the updated priors. These steps were repeated itera-

tively until model evidence ceased to increase. To derive the best-fitting parameters for each

individual subject, we computed a weighted mean of the final batch of parameter settings, in

which each setting was weighted by the likelihood it assigned to the individual subject’s

decision.

Parameter initialization

Across both models, βpreference−baseline and βvalue−baseline were initialized by sampling from a

gamma distribution (k = 1, θ = 1), leak parameters (γpreference and γvalue) were initialized by

sampling from a beta distribution with (α = 9 and β = 1) and all other parameters were initial-

ized by sampling from a lognormal distribution (μ = 0, σ = 1).

Model comparison

For each model we estimated the optimal parameters by likelihood maximization. We then

applied the Bayesian Information Criterion (BIC) to compare the goodness of fit and parsi-

mony of each model. A so-called ‘integrative BIC’ [50] can be computed as follows: BIC = - 2

ln L + k ln n, where L is the evidence in favor of each model, estimated as the mean likelihood

of the model given random parameter settings drawn from the fitted group-level priors, k is

the number of fitted group-level parameters and n is the number of subject choices used to

compute the likelihood. This method has shown high reliability and efficacy in detecting dif-

ferences within and between subjects [50–53]. We validated the model comparison procedure

by simulating data using each model and using the model comparison procedure to recover

the correct model (S3 Table). To validate the BIC model comparison results, we also per-

formed model comparison using the Akaike information criterion (AIC) (S5 Table).

Statistical tests of parameter fits

Statistical significance of each interaction parameter was measured using a two tailed permuta-

tion test. First, we calculated the mean of the log fit across the 27 subjects to generate a sum-

mary statistic of how much the parameter deviates from 1. A mean of zero indicates that the

parameter of interest does not significantly scale the inverse temperature in either direction. A

mean significantly different from zero indicates the condition modulates the inverse tempera-

ture parameters in favor of either absolute values or relative preferences.

Thus, for each parameter of interest, we generated a null distribution composed of 1000

random permutations of the data, randomly shuffling the condition of interest (e.g., whether

the subject is in low or high concurrent diversity, which corresponds to inverting the impact of

the parameter). We then applied the full model fitting procedure to each permuted data set

and computed the p value by comparing the actual parameter fit to the distribution of parame-

ter fits for the permuted data. We validated our parameter fits through simulating data using

the best fitting parameters for each subject and then recovering those parameters (S4 Table).

Falsification of alternative models

In addition to model comparison, we examined whether alternative models generate predic-

tions that are falsifiable by the data. Simulations from a Preference-only model could not

account for subjects’ ability to perform generalization at a high level across conditions
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(Posterior model prediction: mean = .66 ±.1 vs Real data mean = .83±.2.), whereas a value-

only model could not account for the difference in accuracy between learned-pair and novel-

pair trials

(MeanΔconcurrent low = 0±1, MeanΔconcurrent high = 0±.1; p = .55 bootstrap). Furthermore,

such a model was unable to account for the effects of other images’ outcomes on image

choices. Specifically, the effect of other image’s outcomes was not significant CI = [-5.31,4.84]

nor was it modulated by concurrent diversity CI = [-4.45,5.76]. Thus, neither value learning

nor preference learning could account for subjects’ behavior alone.

Dryad DOI

https://doi.org/10.5061/dryad.1rn8pk0xr [46]

Supporting information

S1 Table. Performance on testing trials.

(DOCX)

S2 Table. Bayesian logistic regression of subjects’ choices on reward history, training diver-

sity, and past choice.

(DOCX)

S3 Table. Model validation. 10 full experimental datasets were simulated using each model.

Rows indicate the model used to simulate data and columns indicate the model recovered

from the data using the model comparison procedure.

(DOCX)

S4 Table. Validation of Parameter Recovery. We validated our parameter fits through simu-

lating data using the best fitting parameters for each subject and then recovering those parame-

ters. Our correlation between simulated and recovered parameters was at least .74 for all

parametes of interest that capture the effects of the experimental conditions, and at least .51 for

all other parameters.

(DOCX)

S5 Table. Model comparison using AIC. To validate the BIC model comparison results, we

also performed model comparison using the Akaike information criterion (AIC).

(DOCX)

S1 Fig. Choice accuracy on similarly ranked images with different expected values across

diversity conditions. Concurrent diversity improved subjects’ performance (Mean_high = .83

±.02; Mean_low = .78±.02; pcorrected = .035 bootstrap test). By contrast, cumulative diversity

impaired performance on such trials (Mean_low = .82±.02 Mean_high = .77±.02 pcorrected =

.04 bootstrap test), as consistent with its general effect on overall performance. The plot shows

individual subject accuracy (circles), group distributions of accuracy levels (violin), group

means (thick lines) and standard errors (gray shading).

(TIF)

S2 Fig. Data simulated using the combined value and preference learning model demon-

strates all key behavioral findings. To determine whether the model successfully captured

individual differences in our experiment, we examined how parameter fits correlated with

model-agnostic measures of behavior. As expected, we found that βvalue was significantly cor-

related with generalization performance (r = .7) while βpreference correlated with our measure

of rank bias (r = .5). We then validated the best-fitting model thoroughly by simulating, for
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each subject, 1000 data sets using their best fitting parameters and analyzing the simulated

data in the same fashion in which we analyzed the real data. This procedure showed the model

uniquely accounted for all of our behavioral findings (Fig 1) (A) In learning trials, performance

is better in conditions of low concurrent (Meanlow = 88% ±1% vs Meanhigh = 85%±1) and

cumulative (Meanlow = 85%±1% vs Meanhigh = 82%±1%) diversity. (B) Concurrent but not

cumulative diversity leads to better generalization (Concurrent: Meanlow = −7.8%±1% vs

Meanhigh = −1.2%±1 pcorrected < .001 bootstrap test; Cumulative Meanlow = −4%±1% vs Mean-

high = −6%±1 pcorrected = .23). (C) Concurrent but not cumulative diversity diminishes ranking

bias (Concurrent: Meanlow = 59% ±1% vs Meanhigh = 53%±1, p = .01, Cumulative: Meanlow =

56% ±1% vs Meanhigh = 54%±1). (D) The simulated choices show that preference for an image

is inversely influenced by the outcomes of both the current alternative (βCurrent alternative = -.46,

CI = [-.56, -.35]) and of the other images it had previously been pitted against (βOther = -.42, CI

= [-.54, -.30]). Furthermore, the influence of other images’ reward history is reduced by high

concurrent diversity (βconcurrent×other = .31, CI = [.22, .40]).

(TIF)

S3 Fig. Model fits of the winning model with asymmetric learning rates. To account for pre-

vious findings of asymmetric in learning from positive versus negative reward prediction

errors [54] we implemented a beta binomial model with asymmetric update rates. This modifi-

cation did not alter any of the main findings. Namely, preference learning manifested to a

greater extent in conditions of low concurrent diversity (low concurrent: βpreference = 3.07 ±.21;

high concurrent: βpreference = 1.76 ±.12; p<.001 permutation test) whereas value learning mani-

fested to a greater extent in conditions of high concurrent diversity (low concurrent: βvalue =

4.04±.18; high concurrent: βvalue = 4.54±.14 p<.001 permutation test). Furthermore, as in our

winning model, cumulative diversity inhibited value learning (low cumulative: = 4.99 ±.3; high

cumulative: βvalue = 3.78 ±.3; p< .001 permutation test) and had no significant impact on pref-

erence learning (low cumulative: βpreference = 1.60±.12; high cumulative: βpreference = 1.87±.14;

p = .11 permutation test)

(TIF)
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