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Abstract

A growing body of evidence highlights the intricate linkage of exteroceptive perception to the
rhythmic activity of the visceral body. In parallel, interoceptive inference theories of affective
perception and self-consciousness are on the rise in cognitive science. However, thus far no
formal theory has emerged to integrate these twin domains; instead, most extant work is
conceptual in nature. Here, we introduce a formal model of cardiac active inference, which
explains how ascending cardiac signals entrain exteroceptive sensory perception and
uncertainty. Through simulated psychophysics, we reproduce the defensive startle reflex
and commonly reported effects linking the cardiac cycle to affective behaviour. We further
show that simulated ‘interoceptive lesions’ blunt affective expectations, induce psychoso-
matic hallucinations, and exacerbate biases in perceptual uncertainty. Through synthetic
heart-rate variability analyses, we illustrate how the balance of arousal-priors and visceral
prediction errors produces idiosyncratic patterns of physiological reactivity. Our model thus
offers a roadmap for computationally phenotyping disordered brain-body interaction.

Author summary

Understanding interactions between the brain and the body has become a topic of
increased interest in computational neuroscience and psychiatry. A particular question
here concerns how visceral, homeostatic rhythms such as the heart beat influence sensory,
affective, and cognitive processing. To better understand these and other oscillatory
brain-body interactions, we here introduce a novel computational model of interoceptive
inference in which a synthetic agent’s perceptual beliefs are coupled to the rhythm of the
heart. Our model both helps to explain emerging empirical data indicating that perceptual
inference depends upon beat-to-beat heart rhythms, and can be used to better quantify
intra- and inter-individual differences in heart-brain coupling. Using proof-of-principle
simulations, we demonstrate how future empirical works could utilize our model to better
understand and stratify disorders of interoception and brain-body interaction.
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Introduction

The enactive view of perception-implied by active vision and inference-suggests an intimate
co-dependency between perception and the active sampling of our sensorium. In this work,
we take the embodied view to its ultimate conclusion and consider perception as a function of
the physical and physiological body we use to ‘measure’ the world. In particular, our focus is
on the coupling-or interaction-between interoceptive and exteroceptive perception; namely,
how bodily states and states of affairs beyond the body are inferred—and how inference about
each domain affects the other. For example, does what we see depend upon our autonomic sta-
tus and how does visual perceptual synthesis affect sympathetic or parasympathetic outflow?
Similarly, if precisions are tied to bodily rhythms, then the metacognitive ability to monitor
and integrate these signals is also likely closely related to interoceptive inference. The body is,
in essence, an ensemble of fluctuating systems with biorhythms nested at multiple timescales.
How then do these physiological fluctuations interact with perceptual and metacognitive infer-
ences in the exteroceptive domains?

There is a rapidly growing body of evidence suggesting that bodily and autonomic states
affect perceptual and metacognitive decisions [1-11]. Much of this evidence emphasizes the
dynamic aspect of our physiology; usually assessed in terms of how perceptual choice or sub-
jective confidence depends upon the phase of some physiological cycle. Most of the empirical
evidence suggests that biorhythms gate or modulate the way that sensory evidence is accumu-
lated during perception [3,12-14]. In the predictive coding literature, this is usually treated as
fluctuating, context sensitive, changes in the precision of sensory sampling (e.g., the precision
or gain of prediction errors). Clear examples of this include the fast waxing and waning of pre-
cision during active visual sampling. For example, saccadic suppression-during saccadic eye
movements—alternates with attention to fixated visual information every 250 ms or so. This
process of actively sampling the environment via ballistic saccade itself varies with the cardiac
cycle [15-17]. At still slower timescales, respiratory [11,18-21] and gastric cycles [22-24] are
coupled to neuronal oscillations and behaviour. Given the ample evidence for a close linkage
of these rhythms of the body with those of the brain and sensory epithelium, we hypothesized
that many of these effects may arise from a process of interoceptive self-inference [25,26], that
is, inference about fluctuations in sensory precision induced by these brain-body rhythms.

Our focus on the multimodal integration of interoceptive and exteroceptive domains is
driven by the overwhelming evidence for interoception as a key modality in hedonics, arousal,
emotion and selfhood [22,27-37]. This is generally treated under the rubric of interoceptive
inference; namely, active inference in the interoceptive domain. There are several compelling
formulations of interoceptive inference from the perspective of neurophysiology, neuroanat-
omy and, indeed, issues of consciousness in terms of minimal selfhood. For example, the inte-
gration of interoceptive precision has been advanced as a key mechanism underpinning both
interoceptive awareness and the stability of the body schema [38,39]. More generally, brain-
body rhythms and their association with interoception has been proposed as a key influence
on embodied perception [18,22]. This newly emerging computational view of brain-body
interaction may also carry important new insights for dissociating unique brain-to-body or
body-to-brain phenotypes in computational psychiatry and neurology [40-45].

However, a key limitation thus far is that the majority of extant work interlinking predictive
processing and interoceptive inference has been of a conceptual nature, underpinned by some
notion of active (Bayesian) inference about states of the world (including the body). More
recently, active inference models have been utilized to develop formal models of interoceptive
awareness in the gastric and cardiac domain [46,47], as well as emotional and affective infer-
ence [36,43,48]. In this work, we offer a formal mathematical analysis that casts brain-body
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interactions in terms of temporal coupling between interoceptive and exteroceptive inference,
in the hope of providing a point of reference for both theoretical and empirical investigations.

In brief, we constructed a minimal active inference architecture to simulate embodied per-
ception and concomitant arousal. Here, we focused on simulating interactions between the
cardiac cycle and exteroceptive perception. In principle however, our simulation provides a
computational proof-of-principle that can be expanded to understand brain-body coupling at
any physiological or behavioral timescale. Using a Markov decision process formulation, we
created a synthetic subject who exhibited physiological (cardio-acceleration) responses to
arousing stimuli. Our agenda was twofold: first, to provide a sufficiency proof that-in at least
one example-the interaction between interoception and exteroception emerges from the nor-
mative (formal) principles of active inference. Furthermore, having an in-silico subject at
hand, means that we can simulate the effects of various disconnections and pathophysiology.
For example, we can examine the effect of deafferentation of interoceptive signals on arousal,
exteroceptive perception, and the posterior uncertainty associated with these signals—a key
input for metacognition in the interoceptive domain.

Second, we constructed our synthetic subject in such a way that the same paradigm could
be replicated in real subjects. The motivation for this is that the active inference scheme used
below has an associated process theory [49]. In other words, neuronal and behavioral
responses associated with inferential processes can be simulated on a trial-by-trial basis. This
means that we can use electrophysiological, eye tracking, pupillometry and other physiological
proxies to test various hypotheses that can be instantiated in the model [50]. Crucially, this
provides a link between neuronal and behavioural responses—as characterised by the latency
between stimuli onset and autonomic responses (e.g., heart rate acceleration or variability). In
this paper, we will focus on the basic phenomenology and results thereof. In subsequent work,
we will use this formalism to model real responses under various experimental manipulations.

In what follows, we briefly describe the generative model and inversion scheme used to sim-
ulate cardiac arousal responses. We then demonstrate the results of anatomical (deafferenta-
tion) lesions on perceptual and metacognitive signals (i.e., the uncertainty or posterior entropy
associated with interoceptive and exteroceptive beliefs), as well as simulated belief updating.
Finally, we will examine the effects on synthetic heart-rate variability when changing the preci-
sion of various prior beliefs that underlie perceptual inference. We conclude with a discussion
of the implications for existing research in this area—and how this research could be informed
by a formal approach providing guidelines to discovery.

Methods

Markov decision process

The simulations reported below build upon the notion of active inference. This is a ‘first-prin-
ciples’ approach to understanding (Bayes) optimal behaviour. Simply put, active inference
treats the brain as using an internal (generative) model of the world to explain exteroceptive,
proprioceptive, and interoceptive sensory data. By optimizing beliefs about variables in this
model (perceptual inference), or by changing their internal or external environment (action),
creatures can ensure their sensations and prior beliefs are consistent. The term ‘belief’ here is
used in the technical sense of a Bayesian belief, or probability distribution, typically considered
to be sub-personal. A Markov decision process (MDP) is a form of probabilistic generative
model that describes the sequential dynamics of unobserved (hidden) variables (e.g., the cur-
rent state of the cardiac cycle) and the sensations they cause (e.g., baroreceptor signals). In this
paper, we deal with a special case of a Markov decision process known as a partially observed
Markov decision process (or POMDP). The difference between the two is that the latter
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include unobserved variables, while other forms of MDP assume all information is directly
available to the agent employing that model. The hidden variables of an MDP are hidden states
(s;) and sequences of actions or policies (7). Within this model there are four kinds of preci-
sion; namely, sensory precision in the visual (o) and cardiac () domains and the precision of
state transitions among interoceptive and exteroceptive states ({). For clarity, we will refer to
the precision of transitions as (inverse) volatility and use precision to refer to sensory (i.e., like-
lihood) precision. The generative model then embodies the conditional dependencies between
these variables, as expressed graphically in Fig 1. While we provide a brief overview here, we
refer readers to [49,51] for more technical detail.

It is important to be clear about what is meant by precision, which can be a confusing con-
cept when first encountered. Technically, precision is a feature of a probability distribution,
and can be thought of in several complementary ways: the negentropy of that distribution, its
inverse temperature, or its inverse (co)variance. All of these quantify the uncertainty in a given
distribution, where uncertainty grows as precision declines. This means precision is only
meaningful when we ask which distribution it is applied to. In this paper, the precisions we
deal with primarily relate to the likelihood distributions (i.e., the probability of sensory data
given their latent or hidden causes). In this context, precision becomes the quality or reliability
of sensory data (c.f,, that can be read as a sensory signal-to-noise ratio).

Hidden states generate observable sensory data with probabilities expressed in a likelihood
matrix A. The states evolve through time according to a transition probability matrix, B and
depend only on the state at the previous time, and on the policy, 7,. Finally, we equip the gen-
erative model with preferences (C), prior beliefs about initial states (D), and prior beliefs about
policies. Beliefs about policies have two parts. The first of these is a fixed bias (E). This may be
thought of as a habit; i.e., ‘What I expect to do’ a priori. The second is a belief that the most
probable policies are those that have the lowest expected free energy (G); i.e., ‘what I expect to
do’ after considering the consequences of action. A simple intuition for the latter is to think of
the selection between alternative courses of action as we might think of Bayesian hypothesis
testing (i.e. model comparison); namely, planning as inference [52,53]. Here, each policy can
be thought of as an alternative hypothesis about ‘how I am going to behave’. These are evalu-
ated in terms of prior beliefs (E), and the (predicted) evidence future data affords (G). Just as
free energy is used to approximate the evidence data affords a hypothesis, expected free energy
evaluates the expected evidence, under beliefs about how data are actively generated. As
expressed in Fig 1, expected free energy can be separated into two parts. ‘Risk’ quantifies how
far predicted observations deviate from preferred outcomes. Minimizing this ensures mainte-
nance of homeostasis. ‘Ambiguity’ quantifies the uncertainty in the mapping from states to
outcomes. Minimizing this component ensures that salient, uncertainty-resolving data are
sought (leading to epistemic, information gathering, behavior).

Synthetic cardiac arousal

Using the MDP scheme detailed above, we set out to simulate a cardiac arousal response to
threatening stimuli (e.g., a vicious looking spider), in comparison to non-arousing stimuli
(e.g., some flowers). To do this, we had to define ‘arousal’ and its interoceptive correlates. To
keep things as simple as possible, we assumed the subject’s generative model included two
sorts of hidden states (interoceptive and exteroceptive—and that she could adopt two modes of
engagement with the world (relaxed and aroused). These sorts of generative models are gener-
ally cast as Markov decision processes, whereby transitions among (hidden) states generate
observable outcomes in one or more modalities. The modalities considered here were extero-
ceptive (non-arousing versus arousing visual stimuli) and interoceptive (the cardiac phase;
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Fig 1. A Markov decision process generative model: the factor graph on the left illustrates the conditional
dependencies, and independencies, between the variables in the generative model (see the main text for a
description of the variables). The variables are shown in circles (with filled circles showing observable variables). An
arrow from one variable to another indicates that the latter depends upon the former. The square nodes each represent
probability distributions. The panels on the right give the forms of the distributions (associated with each square node)
in the generative model, in addition to defining the expected free energy, and specifying the factorization of the
approximate posterior (variational) distributions the agent possesses. In this figure, the tilde symbol (~) means a
sequence over time. The o is a softmax (normalized exponential) distribution. H is a vector of the likelihood entropy
(where each element of the vector corresponds to an alternative state). The bold o is a predicted observation, while the
italicized o represents realized observations. Generally, bold refers to the parameters of the generative model, while
italicized symbols represent the random variables described by the model.

https://doi.org/10.1371/journal.pcbi.1010490.g001

diastolic or systolic). Having defined the nature of the state space generating outcomes, this
model can then be parameterised in a relatively straightforward fashion as outlined above. For
any set of A,B,C,D, and E parameters, one can then simulate active inference using standard
marginal message passing schemes [54] to optimize expectations about hidden states of the
world-and the action or policy currently being pursued (technically, a policy is a sequence of
actions. In what follows, we only consider policies with one action) [49,55].

Crucially, inference about policies rests upon prior beliefs that the policies will minimise
expected free energy in the future. This expected free energy has both epistemic and instru-
mental terms; namely; the ability of any particular course of action to resolve uncertainty
about hidden states (known as salience, Bayesian surprise, information gain, etc.) [56-59] and
the pragmatic affordance (known as expected value, utility, reward, etc.) as specified by the
prior preferences [60].

To capture the fundaments of multimodal integration of interoceptive and exteroceptive
modalities, we assumed the following, reasonably plausible, form for the model. The synthetic
subject had to infer which of two policies she was pursuing: a relaxed policy or an aroused pol-
icy. These are defined operationally in terms of transitions among interoceptive states. Here,
we model this in terms of two distinct forms of cardiac cycling among diastolic and systolic
bodily states. When relaxed, the probability transitions among cardiac states meant that there
were two phases of diastole and one of systole. Conversely, when aroused, the first diastolic
state jumped immediately to systole. In brief, this means that being aroused causes cardiac
acceleration and increases the average amount of time spent in systole. The outcomes gener-
ated by these states were isomorphic; in other words, there was a simple likelihood mapping
from states to sensations; such that the subject received a precise or imprecise interoceptive
cue about the current cardiac status (i.e., diastole or systole).
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Fig 2. The generative model. This schematic illustrates how hidden states cause each other and sensory outcomes in the interoceptive

and exteroceptive
outcomes that wo

domain. The upper row describes the probability transitions among hidden states, while the lower row specifies the
uld be generated by combinations of hidden states that are inferred on the basis of outcomes. The green panel specifies

the model’s prior preferences; namely, the sorts of outcomes it expects to encounter. Please see main text for a full explanation. Although
this figure portrays interoceptive and exteroceptive outcomes as separate modalities, they were in fact modelled as combinations—so that

the prior preferen

ces could be evaluated (this is necessary because the preferred physiological outcome depends upon the visual cue). In

this model, the precisions are denoted by Greek letters and control the fidelity of various probabilistic mapping is (i.e., the likelihood or
A matrices and the transition or B matrices).

https://doi.org/10.1

371/journal.pcbi.1010490.002

Here, we modelled interoceptive and exteroceptive modalities using a joint factorial
approach. Probably the simplest way to understand the joint modelling of exteroceptive and
interoceptive modalities is with reference to Fig 2. The important message from this figure is
that the same hidden states generate outcomes in both modalities. In practice, this means that
combinations of exteroceptive and interoceptive observations are generated by the hidden
states (and therefore combinations of multimodal sensations inform inferences about hidden
states). The joint modelling is reinforced by the specification of preferences over all combina-
tions of observations.

On the exteroceptive side, we considered two states of the visual world; namely, the subject
was confronting an arousing or non-arousing visual object. The corresponding visual modality
again had two levels (arousing versus non-arousing picture). Crucially, the fidelity or precision
of this mapping depended upon the interoceptive state. When the subject was in systole, this
mapping became very imprecise. In other words, all outcomes were equally plausible under
each hidden state of the visual world. Conversely, during diastole, there was a relatively precise
likelihood mapping. This is the crucial part of our model that links the state of the body to the
way that it samples the world. Put simply, precise visual information is only available during
certain parts of the cardiac cycle, which itself depends upon the state of arousal (i.e., the policy
currently inferred and selected). This can be thought of as a simple approximation of cardiac
and other bodily timing effects, expressed as a momentary occlusion or attenuation of sensory
input by (for example) afferent inhibitory baroreceptor effects [3,7,8,12,17,32,61-63], or by the
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brief flooding of the retina during cardiac contraction. We note however that this linkage of
interoceptive and exteroceptive precision is but one operational hypothesis regarding how fre-
quently observed effects on cardiac, respiratory, and gastric cycles could be defined—and
should accordingly be treated more as a proof of principle than a definitive empirical model of
brain-body coupling. Nevertheless, this minimal model evinces some of the curious and famil-
iar results in empirical studies of visceral-perceptual coupling.

This simple structure produced some remarkable results that speak to the intimate relation-
ship between interoception and exteroception. These phenomena (see below) rest upon the
final set of beliefs; namely, preferred outcomes. Here, the subject believed that she would be,
on average, in a systolic state when confronted with an arousing picture and in a diastolic state
otherwise. These minimal prior preferences then present the subject with an interesting prob-
lem. She has to choose between extending periods of precise evidence accumulation (i.e., a
relaxed state with more diastolic episodes) and sacrificing precise information, via cardio-
acceleration, should she infer there is something arousing ‘out there’. However, to infer what is
‘out there’, she has to resolve her uncertainty, through epistemic foraging; i.e., maintaining a
relaxed state. More precisely, the generative model ensures a preference for a combination of
‘systole’ and the ‘arousing picture’ outcomes and a combination of ‘diastole’ and the ‘non-
arousing picture’ outcome. We therefore hypothesized that at the beginning of each trial or
exposure to a picture, subjects would be preferentially in a relaxed state until they had accumu-
lated sufficient evidence to confidently infer the visual object was arousing or not. If arousing,
she would then infer herself to be aroused and enter into a period of cardio-acceleration (illus-
trated in Fig 3). Every simulation started off with a weak prior over hidden states that the pic-
ture was not arousing-and a weaker prior in favor of the relaxed policy.

A) Cardiac Response to Unexpected Fear Stimulus B) Visceral Weighting of Fear Expectations
6.5 1 - T 1
1 9 [ | 1
6l = [ | 1
1 % 08r | 1
ks (I 1
©» 55} f > [ 1
© —
o 1 =061 1 1
£ 5 1 § (I 1
g 1 o [ |
e 1 0 04r\1 1
4.5 1 g
1 © .
== Healthy Interoception
4+ ! === Healthy Interoception §0-2 rve : . = |nteroceptive Lesion
1 == |nteroceptive Lesion 1N} - I 1 = = Spider Presentation
I = == Spider Presentation I I 1 = == Heartbeat
3.5 1 L L L | . 0 1.1 L 1 L L L | )
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Fig 3. Simulated Physiology and Perceptual Inference. To establish the face validity of our model, we first set out to reproduce some
basic psychophysiological phenomenology and establish how these phenomena change under ‘healthy’ (i.e., normative) versus ‘visceral
lesion’ parameter settings. To do so, we fed agents a fixed sequence of cardiac and exteroceptive stimuli, such that the first 14 trials
constituted a ‘baseline’ period of cardiac quescience (i.e., a steady heart rate), in the absence of arousing stimuli. On the 15th trial, an
unexpected arousing stimulus (a ‘spider’) is presented and a further 85 trials simulated. This simulation was repeated for 60 simulated
participants, each with randomized starting values, half of which had ‘lesioned’ interoceptive precision (B = 0.5, blue lines). Under these
conditions our synthetic subjects exhibit a clear ‘startle’ or ‘defense’ reflex (Graham and Clifton, 1966; Sokolov, 1963), characterized by
an immediate cardio-acceleration (left panel) and a dramatic shift in the posterior expectation of encountering another threatening
stimulus. Interestingly, during the baseline period the posterior expectation of encountering a threat stimulus oscillates with the
heartbeat; i.e., the lesioned subjects show both an attenuation of the cardiac response and a blunted belief update. Note that for the right
panel, only trials 1-40 are shown. On the left, blue lines show summed heartbeats (time spent in systole) for 15-trial bins; on the right,
lines depict the median posterior probability that the agent will see a spider on the next trial. See Methods and Results for more details.

https://doi.org/10.1371/journal.pcbi.1010490.9003
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By carefully adjusting the precision of sensory evidence (through adjusting the A matrix),
we could trade-off the evidence accumulation against these imperatives to simulate the elabo-
ration of an arousing response to, and only to, arousing stimuli. Furthermore, we anticipated
that a failure to implement a selected policy of arousal would both confound inference about
the policy being pursued (i.e., an aroused state of mind) and-importantly-confidence about
the exteroceptive state of affairs. The latter can be measured quantitatively in terms of the
entropy or average uncertainty over hidden exteroceptive states (after taking a Bayesian model
average over policies). This leads to the prediction that confidence in perceptual categorisation
would not only evolve over time but would depend upon interoceptive inference, with implica-
tions for metacognitive inferences at higher levels of the hierarchy not here implemented. We
tested this hypothesis in silico through various lesion experiments reported in the subsequent
sections (Figs 3-5). In what follows, we illustrate the belief updating and arousal responses
under ‘normal’ priors (i.e. precisions) based upon the generative model above (summarized
graphically in Fig 2).

For the purposes of this paper, the generative model and process are assumed to be identical
i.e., that the generative model is a good model of its environment, in the spirit of the good reg-
ulator theorem [64]. Conceptually, this assumes an important connection between brain,
body, and external environment: namely that a particular kind of body and a particular kind of
environment implies a particular kind of brain. Given that the brain regulates the body and
environment, this implication is reciprocal. An alternative approach would have been to use a
fixed generative process, and to assume alternative models that deviate from this process. This
may be more interesting in the context of autonomic pathologies, in which the brain fails to
regulate its environment in the way it anticipates.

Simulations

We implemented a minimal model of interoceptive inference: in the sense that one’s state of
active engagement with the world may be inferred from its interoceptive and exteroceptive
consequences. In this minimal model, the two domains of perception are coupled by-and only
by-sensory attenuation: i.e., attenuation of sensory precision in the visual domain during
(inferred) systole. Precision refers to the reliability or confidence ascribed to a given probabi-
listic belief. Within this model there are four kinds of precision; namely, sensory precision in
the visual (o) and cardiac (B) domains and the precision of state transitions among interocep-
tive and exteroceptive states ({). For clarity, we will refer to the precision of transitions as
(inverse) volatility and use precision to refer to sensory (i.e., likelihood) precision. To see how
these precisions manifest in the equations of the generative model, please see Fig 2. In this
example, because there are only two states, the corresponding parameters of the generative
model control both the expected contingencies and their precision. In other words, when o (or
B) decreases to 1/2, sensory signals become imprecise and completely ambiguous. In what fol-
lows, we will focus on manipulations of precision under a canonical volatility of { = 0.9. In
other words, we will assume that our synthetic subject believes state transitions among phases
of the cardiac cycle follow each other fairly reliably with a 90% probability. Similarly, if there is
a flower ‘out there’, then there is a 90% probability that it will remain there at the next sample.
Cardiac and visual stimuli were generated by the same precisions and volatilities as assumed
by the subject’s generative model.

We conducted three sets of simulations to illustrate the sorts of behaviours that emerge
under this active inference scheme-and to establish the construct validity of the model in rela-
tion to empirical phenomena that speak to the influence of interoception on exteroception and
vice versa. This enabled us to illustrate the basic phenomenology of our agent-in terms of
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simulated perceptual inference and cardiac physiology—under some differing levels of sensory
precision.

In the first set of simulations (Fig 3), we focused on the physiological and psychological
response to arousing stimuli. To do so, we tested the hypothesis that the unexpected presenta-
tion of a ‘spider’ would induce an aroused state-as reflected in an increased heart rate—and a
greater posterior expectation of encountering an arousing spider stimulus on the next trial. To
evaluate this hypothesis, we supplied the subject with a fixed sequence of 15 stimuli-in both
the cardiac and visual domains-and examined the posterior beliefs about the next exterocep-
tive state following a period of relaxed cardiac input. Note that this is possible precisely because
our generative model includes beliefs about the future-including the next hidden state and
subsequent sensory sample. Here, we used as outcome measures the agent’s evoked cardiac
acceleration response (calculated by binning the number of systole events across the experi-
ment) and the agent’s posterior belief that the next stimulus would be threatening. These simu-
lations were repeated 60 times with randomized starting values, such that the first thirty
‘healthy’ agents were compared to an ‘interoceptive lesion’ group for whom interoceptive pre-
cision had been attenuated (B = 0.5). This enabled us to not only establish the interaction of
arousal-based expectations and cardiac arousal, but also to demonstrate how these responses
change when interoceptive sensory precision is ablated.

In the second set of simulations (Fig 4), our focus moved from perceptual to metacognitive
signals. Here, we examined the interaction between exteroceptive and interoceptive sensory
precision on the one hand and their coupling to cardiac timing and metacognitive uncertainty
(posterior confidence) on the other. Our goal here was to illustrate how both interoceptive and
exteroceptive precision interact to influence the uncertainty signals that form the basis of
metacognitive inference, and to link these to empirical findings showing that cardiac arousal
biases confidence [1,65]. We note however that our model does not constitute a full generative
or hierarchical model of metacognitive inference itself: rather, we here examine the influence
of first-order interactions in interoceptive and exteroceptive precision on uncertainty, which
implies a difference of input to a putative, higher-order metacognitive system [66-70]. Meta-
cognitive, in this context, is used in a technical sense to refer to the updating of beliefs about
beliefs. In this setting, this translates into predictions of predictability or precision; where pre-
cision is itself an attribute of a (Bayesian) belief about the causes of sensations. There are argu-
ments that this kind of metacognitive belief updating underwrites sensory attenuation,
selective attention and perhaps sentience per se [71-73].

For these simulations, we used the uncertainty about inferred exteroceptive and interocep-
tive states (as quantified by the summed entropy of posterior beliefs for each state) as outcome
measures, simulated under a range of cardiac and visual precision settings (Fig 4A). To further
illustrate how these effects oscillate with the cardiac rhythm, we separated these measures for
each phase of the cardiac cycle (early diastole, late diastole, systole). We then repeated these
analyses comparing ‘healthy’ interoceptive inference agents (0. & p = 0.9), to agents for whom
either exteroceptive or interoceptive precision was lesioned (o or B = 0.5, respectively). Note
that there is nothing special about these numerical values, which were chosen simply to dem-
onstrate substantive changes in behaviour. Their particular values become more meaningful
when active inference models are fit to empirical choice behaviour: e.g., [50]. In virtue of our
coupling of exteroceptive sensory precision to the cardiac cycle, we anticipated that metacog-
nitive uncertainty (scored by the negative entropy of posterior beliefs) would depend on the
precision of both interoceptive and exteroceptive states, and that this effect would clearly oscil-
late with the cardiac cycle. Further, we expected in the extreme case of our ‘lesioned’ subjects,
these effects would be further exacerbated such that interoceptive and exteroceptive uncer-
tainty would increase dramatically, under their respective lesion conditions.
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Fig 4. Simulating the influence of interoceptive and exteroceptive precision on uncertainty. To explore how interoceptive inference
may shape metacognition, i.e., inference over inferred sensory uncertainty, we measured the summed entropy of beliefs for both
exteroceptive (top panels) and interoceptive (bottom panels) states. By simulating the full range of sensory precision values, from
lesioned precision (o or B = 0.5) to extremely high precision (o or B = 1), the predominant pattern of interactions is revealed. A) For
exteroceptive inferences (i.e., the agent’s belief that a spider or flower is present), the principle entropy gradient is characterized by
reductions in exteroceptive precision. This effect is modulated in part by interoceptive precision; for example, the lowest uncertainty is
obtained when interoceptive and exteroceptive precision are maximal. B) Separating exteroceptive uncertainty by each phase of the
cardiac cycle reveals a clear effect of the heartbeat on belief entropy, which is modulated most strongly by lesioning the precision of
exteroceptive predictions. Lesioning interoceptive uncertainty does raise the overall level of exteroceptive uncertainty, but to a lesser
degree. Note that altering exteroceptive precision only affects the diastolic phases (as precision is already attenuated during systole).
Interoceptive lesions preclude precise inferences about the cardiac phase, so reduce the discrepancy in uncertainty between these phases.
C) Similar to exteroceptive belief, interoceptive metacognition is predominately influenced by interoceptive precision. D) The cardiac
cycle also modulates the overall uncertainty of interoceptive beliefs; this effect is greatly increased when interoceptive precision is
lesioned. Interestingly, exteroceptive lesions primarily reduce the differentiation between cardiac states.

https://doi.org/10.1371/journal.pcbi.1010490.9004

Finally, to complement these simulations we modelled the response of first and second
order statistics of the physiological responses to changes in sensory precision. These were
based upon simulated heart rate (frequency of systole) and the heart rate variability (HRV)
assessed over multiple trials or heartbeats (Fig 5). Our objectives here were; 1) to test the
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Fig 5. Synthetic Heart-Rate Variability (HRV) and Interoceptive Computational Phenotyping. To illustrate the potential of our
approach as a generative model of physiological reactivity, we produced synthetic heartbeat traces and analyzed these with a standard
time-frequency approach under various canonical parameter settings. A) Synthetic ECG traces produced by convolving a standard QRS-
wave function with systole events generated by our model. B) These where then transformed into RR-intervals by assuming an 350ms
sampling rate, C) Power spectra of RR-intervals were calculated using Welch’s method and categorized as ultra-low (ULF), low, (LF),
high (HF), and very high frequency (VHF) bands for each simulated agent. Physiological responses were then summarized in terms of
beats-per-minute (BMP) and sympathovagal balance (ratio of area under curve for each frequency band, aLF/aHF) [74]. To illustrate the
potential of our approach for interoceptive computational phenotyping, we simulated three different agents—one with healthy
interoceptive inference (bottom left), another with extremely precise visceral sensations (bottom middle), and another with overly
precise priors for the aroused (sympathetic) policy (bottom right). These each produce unique interoceptive inference ‘fingerprints’; i.e.,
the individual patterns of heart-rate variability produced by these parameter settings. In this example, extremely precise visceral
sensations reduce heart-rate and shift overall peak frequency to the high-frequency domain, whereas overly precise arousal priors induce
strong heart-rate acceleration coupled with attenuated ultra-low and ultra-fast oscillations. In the future, these idiosyncratic patterns
could be used to identify maladaptive interoceptive inference from heart-rate data.

https://doi.org/10.1371/journal.pcbi.1010490.9005

hypothesis that fluctuations in both low-and high- frequency synthetic heart rate variability
can be produced by altering the balance of interoceptive sensory precision versus the prior pre-
cision for the aroused sympathetic policy, and 2) to illustrate how generative modelling of
interoceptive active inference can be used to phenotype maladaptive inference parameters
from observed heart-rate data (i.e., interoceptive inference phenotyping). For this analysis, we
simulated 1000 trials under three canonical parameter settings designed to resemble potential
neuropsychiatric phenotypes of interest: healthy interoception (o = 0.8, = 0.8, prior probabil-
ity of parasympathetic policy = 55%), extremely precise interoceptive sensation (= 0.8, f =1,
prior probability of parasympathetic policy = 65%), and hyper-precise arousal priors (o = 0.8,
B = 0.8, prior probability of sympathetic policy = 75%). This prior probability is specified in
the E-vector, which provides a prior probability for the two alternative policies. The values
used here were MDP.E = [11/20, 9/20] for the baseline policy (slight parasympathetic prefer-
ence), MDP.E = [13/20, 7/20] for the parasympathetic policy and MDP.E = [5/20, 15/20] for
the sympathetic policy.

The resulting time-series of systole events from each agent were then convolved with a
canonical QRS-wave response function and transformed into normalized beat-to-beat RR-
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intervals. To normalize the (arbitrary) sampling rate of each time-series, we assigned a 350ms
repetition time (TR) for each state of the MDP simulation, such that the healthy agent had a
heart rate of approximately 60 BPM. The time intervals between successive synthetic R-peaks
were then calculated. As the RR interval data is unevenly sampled, the time series was linearly
interpolated. The power spectrum was then estimated using Welch’s method. In line with con-
ventional HRV analysis, the power spectra were then categorized into four frequency bands
corresponding to ultra-low (0-0.04 Hz), low (0.04-0.15 Hz), high (0.15-0.4 Hz), and very-
high (> 0.4 Hz) frequency categories. Finally, to summarize the physiological response of each
agent, we calculated the beats per minute (BPM) and the ratio between low and high frequency
components (LF/HF), i.e., sympathovagal gain or balance. Sympathovagal balance is thought
to index the balance of sympathetic and vagal outflows and is frequently implicated in stress
and other psychophysiological and clinical disorders [74,75] but see [76-78] for critique. Sym-
pathovagal balance was calculated as the ratio of area under the curve (AUC) for low and high-
frequency HRV; AUCH/ AUC™.

Results
Simulated physiology and perceptual active inference

To explore the face validity of our model, we simulated the basic psychophysiological behavior
of our active inference agent. This involved simulating a fixed series of stimuli (states) in
which the heartbeat was forced to remain relaxed—and only non-arousing (flower) stimuli
were presented. On the 15th trial, an unexpected spider stimulus was presented, and the simu-
lation continued for a further 85 trials. Thus, by evaluating the evolution of the agent’s syn-
thetic interoceptive physiology and exteroceptive beliefs, before and after the quiescent
baseline period, we hoped to reproduce and illuminate well-known psychophysiological phe-
nomena such as the defensive startle reflex [79,80] in which the heart-rate accelerates greatly
following an unexpected, threatening stimulus.

This analysis, illustrated in Fig 3, revealed several interesting aspects of interoceptive active infer-
ence. Over 60 simulations there was a clear and robust increase in heart-rate acceleration, following
the presentation of the unexpected or novel threat stimulus. During subsequent experiences of its
own heartbeat and arousing versus non-arousing stimuli, this response habituates, resulting in a
gradual heart-rate deceleration from the evoked cardiac response. This robust modulation of
heart-rate was accompanied by a jump from an expected probability of encountering a spider of
about 25% to almost 65% following the spider presentation. This combined response of both the
heartbeat and fear-expectations is further underscored by the curious oscillation of cardiac states
and the expected probability of observing a spider; note the uptick in expectations of approximately
5% on each systole event (denoted by the pink dotted line on Fig 3, right panel). In sum, it is as if
the agent “hallucinates” or misperceives a threatening affective outcome both when baseline arousal
is high, and when the linkage between interoceptive states and outcomes is severed.

A simple explanation for this result is that, during presentation of a stream of flowers, we
can confidently infer a safe external environment. This accounts for the relatively low proba-
bility of inferred spiders in the earlier part of the plot. However, during systole, attenuated
integration of exteroceptive data leads to greater uncertainty. Going from a confident infer-
ence in the absence of a spider to a more uncertain inference necessarily increases the proba-
bility of a scary environment during this cardiac phase. This offers a simple perspective on
previous experimental work suggesting that fear-stimuli are potentiated when presented in
synchrony with the heart [5,32]; namely, that a mechanism underlying this effect can be found
in the link between cardiac active inference and affective expectations. In short, under genera-
tive models of an embodied world-in which sensory sampling depends upon fast fluctuations
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in bodily states—there is a necessary dependency of Bayesian belief updating (i.e., perceptual
inference) across all modalities on interoception.

When comparing these effects in the healthy agent to our sample of ‘lesion patients’, a few
sensible but counter-intuitive consequences ensue. In the physiological domain, when pre-
sented with the unexpected arousal stimulus, the lesioned agent shows a blunted cardiac accel-
eration response, which remains diminished throughout the simulated trials. This blunting
effect is mirrored for negative affective expectations in the immediate post-stimulus (e.g., trials
15-20) period, further underlining the close link between visceral and exteroceptive inference
in our agent. The reason for this blunting is found in the variable exteroceptive precision antic-
ipated during different cardiac phases (see also Fig 4B). A visual impression-consistent with a
spider-is highly informative during diastole but must be treated with suspicion during the sen-
sory-attenuated systolic phase. This implies a blunting of belief-updating in response to a spi-
der, when we are unsure of cardiac phase (compared to when we are confident of a diastolic
phase). A further interesting result is found when examining the controlled baseline period
(trials 0-15); baseline fear expectations in the interoceptive lesion group are actually slightly
enhanced by about 5-10% posterior probability. This lends an interesting, embodied twist to
the literature on ‘circular inference’, psychosis and hallucinations [81,82], suggesting that the
disruption of interoceptive precision may be one mechanism underlying hallucinations, par-
ticularly those that are affective and/or somatic in nature.

Simulating the influence of sensory precision on belief uncertainty

We next performed a series of simulations to tease apart how interoceptive and exteroceptive
precision (and their disruption) influence variables important for metacognition such as the
uncertainty in our agent’s beliefs. To do so, we first measured the Shannon entropy for intero-
ceptive and exteroceptive inferences (summed across both factors of posterior beliefs) under a
full range of precision settings from 0.5-1. To highlight the oscillatory nature of cardiac effects,
we then calculated the same entropy measure separately for each cardiac state (early diastole,
late diastole, systole). Finally, we compared these ‘healthy’ simulations to extreme degradations
in sensory precision (exteroceptive and interoceptive ‘lesions’), to better understand how dis-
ruptions of each modality are integrated in perceptual uncertainty, a key first-order input for
metacognitive inference. These lesions can be read as a simulation of total cardiac deafferenta-
tion through vagotomy (as was sometimes performed for stomach ulcers) [83], or in the case
of perturbed higher-order arousal priors, lesions of the insular cortex [84,85].

This analysis revealed first of all that, in our simplified model, uncertainty is largely influ-
enced by the unimodal precision of each domain. For both exteroceptive and interoceptive
inferences, the slope of the uncertainty gradient (Fig 4A and 4C) was predominantly character-
ized by degradations in the precision of the corresponding modality. However, this modularity
is not complete; exteroceptive uncertainty is at its lowest when interoceptive and exteroceptive
precision are maximal. Similarly, although interoceptive uncertainty is largely driven by inter-
oceptive precision, small interactions with exteroceptive precision can be observed in the plot-
ted uncertainty gradient. One interesting isomorphism, however, is that overall interoceptive
uncertainty is less affected by exteroceptive precision. This is likely due to that fact that in our
model, the cardiac cycle directly modulates exteroceptive precision, whereas exteroceptive
states only indirectly modulate interoceptive responses, via policy selection.

This intricate relationship of the cardiac cycle and uncertainty is further teased apart in Fig
4B, which shows clearly that exteroceptive confidence oscillates with each phase of the heart-
beat, being highest at diastole. This is an unsurprising feature of our model: on each diastole,
exteroceptive sensory precision drops effectively to null. Interestingly however, average
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exteroceptive uncertainty is modulated in a fairly linear fashion by visceral and exteroceptive
lesions: average entropy is increased modestly by lesioning interoceptive precision and more
robustly by exteroceptive lesions. Whereas interoceptive lesions caused the greatest increase in
interoceptive entropy, exteroceptive lesions seem to exert a specific effect of unbinding entropy
from the individual cardiac state, again mirroring the isomorphic representation of these states
in uncertainty. This is a sensible finding, as the manipulation leads to relatively high uncer-
tainty in the mapping between hidden states and outcomes during all cardiac phases, not just
during the previously attenuated systolic phase. This sort of chronic hypo-arousal-as a conse-
quence of a failure to contextually modulate precision-is not unlike that which may under-
write the negative symptoms of schizophrenia or depression [86-89].

Synthetic Heart-Rate Variability (HRV) and embodied computational
phenotyping

In our final set of simulations, we illustrated how the interoceptive inference approach devel-
oped here offers a new means for analyzing and interpreting fluctuations in observed physio-
logical data. Our goal here was to demonstrate the potential for generative modelling and
‘embodied computational phenotyping’; i.e., the identification of specific parameters of brain-
body interaction underlying maladaptive interoceptive inference in psychiatric and other
health-harming disorders; e.g., [90]. This approach could for example, be expanded to model
either brain-body interaction during explicit interoceptive decisions [91,92], or to cases of pas-
sive brain-body interaction, i.e., during experiments presenting stimuli at specific phases of
the heart, breath, or stomach (see, e.g., [93]).

To this end, we generated synthetic cardiac data by convolving our train of cardiac events
with an ECG response waveform. Following standard methods, we then calculated the normal-
ized beat-to-beat intervals and performed a time-frequency analysis of the resulting RR-inter-
val data. By repeating this analysis for a ‘healthy” agent under normative values, an agent with
overly precise interoceptive signals (i.e., p = 1), and an agent with overly precise prior beliefs
about its own arousal, we illustrate how individual HRV fingerprints are linked to unique pat-
terns of interoceptive active inference.

This analysis showed that, despite the exceedingly simple (biomechanically speaking) condi-
tions of our model, sensible and interesting patterns of heart-rate variability emerge for different
combinations of interoceptive sensory and prior precision. Specifically, we found that whereas
the healthy agent exhibited a relatively relaxed profile in terms of heart rate and sympathovagal
balance (BMP = 63.5, peak frequency = 0.14 Hz)-predominated by low versus high frequency
oscillations (aLF/aHF = 0.52)-an agent with extremely precise visceral sensations exhibited a
mild downshift in heart-rate (BPM = 59.5) coupled with an overall increase in high-frequency
oscillations (aLF/aHF = 0.51, peak frequency = 0.25). In contrast, the agent with overly precise
arousal priors showed a strong bimodal modulation of both ultra-low and ultra-high frequen-
cies HRV (peak frequencies = 0.04 Hz & 0.34 Hz, respectively), coupled with a strong increase
in heart-rate (BPM = 84) and high versus low-frequency outflow (aLF/aHF = 0.47). These
results speak to the unique role of different active inference parameters in producing highly idi-
osyncratic patterns of HRV. In the future, our model may be enhanced to subserve computa-
tional phenotyping of individual differences and/or patient subgroups categorized by the
balance of visceral precision and arousal policy priors from raw HRV data alone.

Discussion

In the present work, we have introduced a formal model of interoceptive inference as applied
to exteroceptive, affective, and metacognitive signals. Through a variety of simulations, we
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demonstrated that this model can reproduce a variety of psychological and physiological phe-
nomena, each of which speak to a unique domain of the burgeoning interoceptive inference
literature [27,29,33,35], and the application of interoceptive inference to computational psy-
chiatry [42,44,46,47]. This formulation of interoceptive inference reproduces some of the finer
details of physiological responses to arousing stimuli that, crucially, are emergent properties
under the simple assumption interoceptive and exteroceptive states are coupled to one
another.

The form of the generative model and proposed neurobiological belief updating scheme
used in this paper are generic: exactly the same scheme has been used to simulate a whole
range of processes, from neuroeconomic games to scene construction and attentional neglect
[49,94]. The key aspect of the generative model introduced here is that the quality (i.e., preci-
sion) of sensory information depends upon fluctuations in (inferred) autonomic states. This
simple fact underwrites all of the phenomenology illustrated above; both in terms of simulated
physiology and accompanying belief updates. The explicit inclusion of interoception into
active inference licenses us to talk about ‘affect’ in the sense that affective inference is thought
to emerge under models that generate multimodal predictions that encompass the interocep-
tive domain. Furthermore, casting everything as inference enables a metacognitive stance on
belief updating, in the sense that one can quantify uncertainty invested in beliefs about states
of the body, states of the world and, indeed, states of (autonomic) action.

In particular, we show that by simulating periodic attenuation of exteroceptive sensory
inputs by the cardiac cycle, affective, fear-like expectations become intrinsically linked to affer-
ent interoceptive signals through a startle reflex-like phenomenon. This linkage not only
induces oscillatory synchrony between the heartbeat and exteroceptive behavior, but also
propagates to metacognitive uncertainty (i.e., the entropy of posterior beliefs). This latter find-
ing speaks to numerous reports of metacognitive bias (e.g., confidence-accuracy dissociation)
by illustrating how the precision of interoceptive states can directly influence exteroceptive
uncertainty [1,95,96], which is presumed to be integrated by higher-order inferences in many
process models of metacognition [66-68,70]. By simulating synthetic heart-rate variability
(HRYV) responses, we further illustrated how idiosyncratic patterns of aberrant interoceptive
precision-weighting can be recovered through generative modelling of physiological
responses, opening the door to computational phenotyping of disordered brain-body interac-
tion in the spirit of (Schwartenbeck P and K Friston 2016). Further, we found that simulated
lesions of visceral information increased our synthetic agent’s anticipation of encountering a
fear-stimulus, highlighting the close relationship between aberrant interoceptive inference and
a kind of exteroceptive ‘hallucination’. In what follows, we outline some of what we view as the
most promising future directions for this work, sketch a proposed neuroanatomy underlying
our model, and point out a few limitations for consideration.

By focusing on the periodic nature of the cardiac cycle, and concomitant influences on
exteroceptive perception, our goal was to provide a proof-of-principle, illustrating how visceral
and exteroceptive signals could be combined under active inference. Our aim was not to sug-
gest that our model provides a definitive view of interoceptive inference or metacognition;
indeed, we view the present work as a starting point that can be taken forward in a variety of
research directions, some of which are outline below. In particular, we note that our model
focuses primarily on interactions of a sensory nature between interoceptive and exteroceptive
channels. It demonstrates that both perceptual beliefs and associated uncertainties are coupled
under this model in interesting ways, which would presumably influence higher order emo-
tional (e.g., whether one experiences fear or not) or metacognitive (e.g., whether one is certain
if a heartbeat has occurred or not) inferences in hierarchical models, with temporal depth
[37,47,48,70,91]. However, we note that our model does not explicitly parameterize these deep
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temporal processes that are likely to be a fruitful area for future formal and empirical
development.

In this paper, we formalized the hypothesis that frequently reported effects of cardiac tim-
ing on perception could arise as a function of periodic sensory attenuation-but the reader
should feel encouraged to test their own competing hypotheses within the openly available
MDP framework. Our intention here was also not to prioritize cardiac-brain interaction
over e.g., gastric or respiratory cycles, but instead to provide a toy example, to show how
these systems may be subjected to formal analyses. This was motivated by the large predomi-
nance of research on cardiac-brain interaction (see e.g., [5] for review); however, we do
anticipate that the periodic attenuation of sensory precision by visceral signals is likely to
provide a general explanation of brain-body interaction in other viscerosensory and viscero-
motor domains.

Neurophysiologically, the principal means by which cardiac signals influence the central
nervous system is through the afferent cardiac baroreceptors. These pressure-sensitive neu-
rons, located primarily in the aorta and carotid artery, are triggered by the systolic pressure
wave generated when the heart contracts. Far from being restricted to homeostatic function
only, it was first reported (nearly a century ago) that afferent baroreceptor outputs induce a
general inhibitory effect on cortical processing [3,12,97]. These findings were later extended
by Lacey and Lacey [7] who proposed the “neurovisceral afferent integration hypothesis”, pos-
iting that cardiac acceleration and deceleration serve to respectively disengage or engage with
an exteroceptive stimulus via cortical inhibition.

In parallel, the soviet psychologist Evgeny Sokolov proposed that novelty-evoked heart-rate
deceleration was a core component of the ‘orienting reflex’ [80]. By reducing overall cardiac
output, this reflex served to limit the contribution of cardiac signals to cortical noise boosting
overall signal-to-noise ratio. Sokolov (1963) first described the orienting reflex as an ‘embod-
ied’ mechanism for boosting to signal-to-noise and thus enhancing processing of the oddball
stimulus. The reflex consists primarily of the rapid deployment of saccades to the oddball stim-
ulus, freezing of the muscles of the head and neck so as to orient the visual organs towards the
stimulus, and an immediate cardiac deceleration. In light of their presumed inhibitory influ-
ence (Lacy and Lacy, 1968), the cardiac deceleration was thought to primarily reduce cortical
noise; when coupled with the other bodily components of the response it was thought that
effective overall signal would be maximized. In contrast, Sokolov theorized that the defensive
startle reflex, in which an extremely strong (e.g., the loud bang of a starting gun) or unexpect-
edly aversive (e.g., the sudden presentation of a spider) stimulus evokes cardiac acceleration—
facilitated the disengagement of cortical processing, to initiate fight-or-flight responses. These
theories in turn sparked a wave of empirical studies attempting to link cardio-acceleration and
deceleration responses to increased or decreased exteroceptive sensitivity, which continues to
this day [2,4,5,8-10,98-103].

While these findings highlight the intricate relationship between cardiac timing and extero-
ceptive psychophysics, so far, a consistent pattern of findings (e.g., sensory signal enhancement
and/or inhibition) has failed to emerge (see Elliott, 1972 for one critique). A cursory review of
this literature reveals evidence for both exteroceptive enhancement and suppression, depend-
ing upon the specific nature of the exteroceptive stimuli (i.e., whether they are inherently aver-
sive, sociocultural, or neutral in nature), the context of the arousal (including specific stimulus
and response timing), and other psychophysiological moderators; such as age, gender, and
overall physical fitness. Accordingly, more recent proposals have focused on more modality-
specific exteroceptive enhancement by cardiac signals. For example, that cardiac-exteroceptive
effects specifically potentiate fear or threat signals [32] or the generation of a subjective first-
person viewpoint [22].
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We offer a unique synthesis of these views, expressed in terms of interoceptive inference. In
our model, the cyclic influence of the heart on exteroception is exerted primarily through the
attenuation of sensory precision on each systolic contraction, which in turns influences the
selected arousal policy as determined by the agent’s preferences. The coupling of sensory attenua-
tion to the cardiac cycle endorses the notion that baroreceptors exert an inhibitory influence on
the brain. Beyond this direct effect, our model can also be understood in light of the well-known
relationship between intrinsic noise fluctuations in the brain and cardio-respiratory cycles
[13,104]. Physiological oscillations exert non-neuronal influences on spontaneous brain activity
via a variety of more or less direct causal influences; for example, at each heart beat visual input to
the retina is briefly attenuated by a pulsatile blood inflow. Similarly, with each cardio-respiratory
cycle, fluctuations in cerebral pulsatile motion and blood pressure induce neurons to spontane-
ously fire, shaping the ‘infraslow’ brain dynamics [13,105,106] that influence the overall global
dynamics of neural excitability and connectivity [107,108]. Our suggestion is that, insofar as the
brain must model its own dynamic noise trajectories as a function of active self-inference, non-
neuronal sources of variability such as inscribed by visceral rhythms must be incorporated within
the brain’s generative model of its own percepts. Interoceptive fluctuations are thus an important
influence over the precision of exteroceptive sensory channels, and interoception is itself the
means by which the brain infers and controls its own pathway through these precision trajecto-
ries. The modelling introduced here can thus be expanded beyond the cardiac domain to the
more general problem of modelling how spontaneous fluctuations in neurovisceral cycles (includ-
ing heart-rate variability) influence information processing and behaviour.

What then, explains the lack of consistent results within the cardiac timing literature? In
contrast to the binary on/off hypotheses proposed by Lacey or Sokolov, our simulations high-
light the context-sensitive manner by which ascending visceral signals modulate the precision
of both interoceptive and exteroceptive inferences. For example, our simulation of the startle
response (illustrated in Fig 3) clearly indicates that the functional impact of cardio-ballistic
responses is coupled to the agent’s baseline prior expectations, as well as the overall precision
of active inference and policy selection. In this sense, whether a specific cardiac response is
likely to potentiate or inhibit a specific domain (e.g., fear) depends upon the specific weighting
of arousal policy priors, the precision of incoming exteroceptive and interoceptive sensations,
and the linkages thereof as determined by the task itself. In other words, the specific balance of
prior beliefs and sensory information, in a given cognitive or affective domain, must be
addressed before one can predict the exact directionality of an interoceptive effect on percep-
tion, or vice versa. Here, we modelled the generation of arousal as a function of hyper-parame-
ters governing the preferred autonomic policy. In the future this can be unpacked further by
examining the divergence between prior and posterior beliefs about these policies (e.g.,
through inferred epistemic value). Through Landauer’s principle, this divergence may be
equated with the associated metabolic costs of computation and the conceptual notion of inter-
oceptive self-modelling [35,109,110].

It is also interesting to consider the relationship between this model and theories in psy-
chology, such as Mowrer’s 2-factor theory [111], which posits that affective learning such as
threat conditioning depends upon an interaction between simple Pavlovian conditioning and
the general law of effect. Active inference posits a similar kind of circular causality, so these
two factors are mutually interlinked. That is to say, you infer that you are scared based on
some set of physiological prediction errors and contextual priors (e.g., I see a bear, and my
heart is racing, so I must be afraid), but also that fear is itself a hypothesis which engages physi-
ological reflexes through active-inference (I am running away, therefor I should be aroused
and scared). In this sense, the model presented here could be seen as applying the two-factor
approach to a particular interaction between instrumental and Pavlovian forms of learning.
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The computational neuroanatomy of interoceptive inference

Having addressed the construct validity of our model, we now speculate as to some likely neu-
ronal substrates of the message passing implied by variational inference. Interoceptive infer-
ence can be broken down into four core functional domains: basic sensory-motor control,
conscious interoceptive (perceptual) awareness, metacognitive monitoring, and hedonic
(intrinsic) value. In our model, we focused primarily on the simplest possible implementation
of interoceptive inference, corresponding to the sensory-motor domain (i.e., ascending and
descending cardiac pathways) and their low-level interaction with exteroceptive inference, via
neuromodulatory gain control. Future work will benefit from expanding upon our representa-
tion of uncertainty to include the computation of epistemic and/or intrinsic value as proxies
for these higher-order interoceptive and metacognitive systems [112,113].

Accordingly, in our sketch of the putative neuroanatomy underlying cardiac active infer-
ence (Fig 6), we focus primarily on the neuronal substrates that inscribe low-level viscerosen-
sory and visceromotor control, as well as some hierarchically superior regions related to
emotional salience and interoceptive awareness. For simplicity, our model depicts only the
minimal neuronal message passing scheme implied by our generative model; as such, we have
omitted many of the intermediary relay nodes; e.g., in the thalamus and ventral visual stream.
Afferent baroreceptor signals are transmitted along the ascending vagus to the rostrum of the
nucleus tractus solitarus [115,116]. From here, ascending viscerosensory signal are projected
via brainstem and midbrain nuclei to the thalamus, somatosensory cortex, and posterior insula
[117,118]; ascending cardio-sensory outcomes are thus encoded in the NTS and then passed to
the posterior insular cortex (PIC) as inferred interoceptive states. The PIC has a well-known
role as primary viscerosensory cortex; electrical stimulation of this area elicits phantom vis-
ceral sensations (e.g., pain, heart-rate acceleration) [119,120] and bolus isoproterenol infusions
increase the intensity of cardiorespiratory sensations and concomitant PIC activations
[121,122]. In parallel, visual sensory outcomes are passed via the second cranial nerve to the
superior colliculus, where they inform exteroceptive inference in the amygdala, which is well-
situated to process salient emotional stimuli [123,124]. These interoceptive and exteroceptive
expectations then converge in the anterior insular cortex (AIC), where they inform the selec-
tion of the appropriate autonomic policy. Finally, the selected policy is passed down the hierar-
chy via descending pathways (e.g., by von Economo neurons), to eventually engage the rostral
nucleus ambiguus and descending vagus, decelerating the heart-rate when the relaxed policy is
selected. Collectively, the scheme represents a multimodal reflex arc interlinking exteroceptive
and interoceptive domains to specific patterns of cardio-ballistic responses.

Within this scheme, we suggest that the rostral anterior cingulate (ACC) controls the preci-
sion of ascending visceral outcomes and inferred interoceptive states via neuromodulatory
gain control [125,126]. Further, interoceptive and exteroceptive state precisions here interact
indirectly through global neuromodulatory influences, possibly through regulation of nor-
adrenaline by the ACC (via descending influence on the locus coeruleus). Neurobiologically
and functionally speaking, the AIC and ACC share similar profiles; both are densely populated
with Von Economo neurons (VENs), which are well-suited for the long-range modulation of
neural activity across the cortex [127], and also contain diverse populations of noradrenergic,
dopaminergic, and opioidergic neurons. Both regions further share an integrative connectivity
structure, with projections to both lower-level visceral-motor brainstem nuclei and higher-
order regions implicated in decision-making, metacognition, and self-awareness, such as the
ventromedial and dorsomedial prefrontal cortices [128-132]. However, the AIC is more
densely interconnected with the PIC whereas the ACC is more closely related to uncertainty
and decision-making. On this basis, we propose that whereas the AIC integrates the visceral
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Fig 6. Computational neuroanatomy of interoception. The schematic above shows the form of the neuronal message passing implied
by active inference for the generative model depicted in Fig 2. We have related this to the anatomical networks that could implement
these inferences. The sensory observations in our simulations are visual and interoceptive (cardiac). These sensations are carried by
cranial nerves IT and IX respectively. Cranial nerve II targets the superior colliculus in the midbrain. This structure sends short latency
visual data to the amygdala, which is well placed to make inferences about emotionally salient stimuli. The amygdala additionally
receives downstream visual data from the ventral visual stream in the temporal lobe. Cranial nerve IX carries information from the
carotid sinus baroreceptors to the nucleus tractus solitarus in the brainstem. This nucleus communicates with the posterior insula (via
thalamic and PAG relays); the anterior cingulate monitors and controls the precision of this ascending visceral information via
neuromodulation, possibly via feedback through noradrenergic pathways (not shown). The posterior insula and amygdala interact with
one another but also project to the anterior insula. This targets the nucleus ambiguus (via brainstem relays such as the periaqueductal
gray), which gives rise to the vagus (X) nerve. The vagus nerve targets neurons in the cardiac plexus that project to both the sinoatrial
node and the atrioventricular node of the heart, slowing its rhythm. The nucleus tractus solitarus additionally participates in a reflex loop
implicating the sympathetic control of the cardiac cycle, but this is omitted for simplicity. The functional anatomy suggested here
implies the anterior insula might play a similar computational role in autonomic policy selection to the basal ganglia in selection of
policies involving the skeletal muscles [114]. Note that inscribed directed influences (blue arrows), are not assumed to be monosynaptic—
for simplicity, many intermediary relay nodes have been omitted.
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010490 September 13, 2022 19/27


https://doi.org/10.1371/journal.pcbi.1010490.g006
https://doi.org/10.1371/journal.pcbi.1010490

PLOS COMPUTATIONAL BIOLOGY Cardiac active inference

and exteroceptive states required for the regulation of arousal policies, the ACC is likely to reg-
ulate the gain or precision of these interactions. It is worth noting that this model may explain
the widespread, seemingly unspecific activation profiles of these areas [133,134], as the genera-
tive model specified here suggests both form part of an integrated hierarchical circuit by which
interoceptive and exteroceptive states interact: e.g., either through the regulation of arousal
policies or through the modulation of ascending viscero-sensory precision.

What about metacognitive or reward-related interoceptive processes? Although we do not
model these higher-order functions, the model can be expanded to include the explicit repre-
sentation of policy uncertainty and epistemic value as the mechanisms underlying metacogni-
tive self-inference; i.e., the integrative self-model that combines exteroceptive and
interoceptive predictions into a conscious schema [39,68]. In this case, we would expect that
the VMPFC and DLPFC are likely to be engaged in inferences about variables (e.g., those
derived from expected free energy such as epistemic and intrinsic value) that contextualize the
inferences performed by the AIC and ACC over longer timescales [55,60].

Limitations and future directions

The model and simulations presented here represent a minimal proof-of-principle demonstrating
how cyclic interactions of interoceptive and exteroceptive perception could arise directly from the
principles of active inference. Here, our primary goal was to move the literature beyond purely
conceptual analyses of ‘interoceptive inference’, to provide a formal model sub-serving direct
hypothesis testing. As such, we focus primarily on reproducing commonly reported phenomena,
rather than empirical cross-validation or biological plausibility. The model as presented is thus a
demonstration of formal theory, and substantive further work will be needed to develop an obser-
vation model of empirical heart-brain interactions or associated physiological data: c.f.,, [46,135].

Along these lines, we imagine a variety of interesting further applications of the modelling
developed herein. For example, the present MDP scheme could be expanded to include more
biologically realistic cardiac parameters, or to include other visceral modalities such as gastric
or respiratory fluctuations. Similarly, the exteroceptive states modelled here could be adapted
to a variety of experimental tasks to capture embodied influences on, for example, active spatial
navigation [136-138], active reward learning [139,140], interaction between the cardiac cycle
and ballistic saccades [15,17,50], or metacognitive inferences [1,65,112]. These and other
future directions will hopefully guide a newly embodied approach to computational psychia-
try, enabling the detailed phenotyping of clinical populations in terms of aberrant interocep-
tive inference.

Data and code availability

The underlying MDP scheme here is available as part of the open-access distribution of
SPM12. A demonstration of the scheme can be accessed by typing >>DEM into the Matlab
command prompt and selecting the Interoception demo from the graphical user interface
that appears. Further, all the code required to generate the simulations and figures herein can
be found at the following github page: https://github.com/embodied-computation-group/
cardiac-active-inference. Full installation instructions can be found in the following code
wrapper, which reproduces all figures and simulations: https://github.com/embodied-
computation-group/cardiac-active-inference/blob/master/paper_wrapper.m
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