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Abstract

The widespread, and in many countries unprecedented, use of non-pharmaceutical inter-

ventions (NPIs) during the COVID-19 pandemic has highlighted the need for mathematical

models which can estimate the impact of these measures while accounting for the highly

heterogeneous risk profile of COVID-19. Models accounting either for age structure or the

household structure necessary to explicitly model many NPIs are commonly used in infec-

tious disease modelling, but models incorporating both levels of structure present substan-

tial computational and mathematical challenges due to their high dimensionality. Here we

present a modelling framework for the spread of an epidemic that includes explicit represen-

tation of age structure and household structure. Our model is formulated in terms of tracta-

ble systems of ordinary differential equations for which we provide an open-source Python

implementation. Such tractability leads to significant benefits for model calibration, exhaus-

tive evaluation of possible parameter values, and interpretability of results. We demonstrate

the flexibility of our model through four policy case studies, where we quantify the likely ben-

efits of the following measures which were either considered or implemented in the UK dur-

ing the current COVID-19 pandemic: control of within- and between-household mixing

through NPIs; formation of support bubbles during lockdown periods; out-of-household iso-

lation (OOHI); and temporary relaxation of NPIs during holiday periods. Our ordinary differ-

ential equation formulation and associated analysis demonstrate that multiple dimensions of

risk stratification and social structure can be incorporated into infectious disease models

without sacrificing mathematical tractability. This model and its software implementation

expand the range of tools available to infectious disease policy analysts.
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Author summary

Non-pharmaceutical interventions have seen widespread use during the COVID-19 pan-

demic. Some of the most prominent such interventions act at the household level, with iso-

lation measures confining individuals to their own home and measures such as work and

school closure seeking to prevent transmission between members of different households.

In this study we develop a mathematical model of COVID-19 transmission in a population

of households which accounts for age-specific variation in behaviour. We demonstrate

how to perform simulations with our model as well as how to calibrate it to empirical esti-

mates of epidemic growth rate. We apply our model to four specific policy questions,

including the impact of within-household controls on transmission, the effect of support

bubble exemptions to between-household mixing controls, the effect of temporary relaxa-

tions to non-pharmaceutical interventions, and the possible impact of out-of-household

isolation measures. We provide an open source software implementation of our model so

that it can be used by researchers and policy experts interested in planning interventions

during subsequent stages of the COVID-19 pandemic and other future pandemics.

This is a PLOS Computational BiologyMethods paper.

Introduction

The current COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus first detected in

the human population in late 2019, has at the time of writing led to over 6.3 million confirmed

deaths arising from over 530 million confirmed cases [1], with the number of infections likely

to be much higher than confirmed cases due to factors such as asymptomatic infection [2].

While over 11 billion vaccine doses have now been distributed [1], in the earlier phases of the

pandemic governments throughout the world mounted various non-pharmaceutical interven-

tion (NPI) intended to reduce transmission [3].

Some NPIs have included measures common to many infectious disease outbreaks such as

hand and surface hygiene, some have included extension of measures commonly used for

infection control in clinical contexts (such wearing facemasks) to the community, and others

such as social distancing were more novel [4]. The possibility that masking and hand hygiene

could reduce spread of seasonal influenza, including within households, was considered before

the COVID-19 pandemic [5, 6], and also subject to study during it [7].

While these NPIs sought to reduce transmission in all contexts, others were primarily tar-

geted towards reducing transmission between households, including (TTI) policies that led to

detected cases isolating at home or the more general “lockdown” measures in which significant

restrictions were placed on between-household mixing for the whole population [3, 8].

Clearly, quantifying the likely impact of NPIs on infectious disease transmisison is impor-

tant in formulation of an appropriate policy response, and the inability to perform fully con-

trolled experiments in a pandemic situation means that mathematical modelling is often a key

tool [9]. In this work, we present a contribution to the attempt to model the impact of NPIs

with particular attention to the role of household structure. Households are the most funda-

mental unit of demographic aggregation and cause individuals to engage in repeated close con-

tacts that are likely to spread infection, and as such have been an important part of epidemic

modelling since the earliest days of the discipline [10].
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As such, household analyses have been carried out as part of the response to almost all sig-

nificant outbreaks, and in the context of the COVID-19 pandemic numerous studies have con-

sidered household transmission [11]. These have tended, however, to be based on final

outcomes in households, which is not appropriate for a situation that is rapidly changing over

time [12]. Where time is explicitly included in models with household structure, this is often

achieved through individual-based stochastic simulation, and can generate important insights

to questions such as the expected impacts of different (TTI) policies [13].

Household structure alone is, however, likely to be insufficient to capture the impacts of

NPIs. Combination of both age and household structure in epidemic models is sometimes nec-

essary even for prediction of simple epidemiological quantities such as peak prevalence of

infection or final outbreak size in the absence of interventions [14]. When attempting to pre-

dict more complex outcomes, and particularly the impact of interventions that involve house-

holds in a situation of significant heterogeneity in risk by age, it is however essential to include

both in models. In particular, there is significant additional complexity generated by the pro-

cess of transmission, with a mosaic of mixing patterns between people of different ages known

to have a significant impact on infectious disease dynamics [15]. Since the highly influential

POLYMOD study of Mossong et al. [16] these mixing patterns have increasingly been the sub-

ject of direct empirical observation, and this continued through the COVID-19 pandemic with

studies such as CoMix [17]. As well as the impacts of age on mixing, there has been consistent

strong evidence that age plays an important role in determining risk from COVID-19 [18],

with orders of magnitude of variability in risk of death due to COVID-19, with infection fatal-

ity ratios (IFRs) estimated from under 0.001% in the 5–9 age group to over 10% in the 80+ age

group [19]. Together, variable age IFRs and mixing patterns are believed to be responsible for

significant variability in outcomes between different countries [19, 20]. Evidence for the

impact of age on transmissibility and susceptibility has been more mixed [21–24].

In this paper we introduce an age- and household-structured model which expands on pre-

vious approaches by incorporating detailed data-driven age-stratified household composition

structures while retaining a mathematically tractable formulation in terms of ordinary differ-

ential equations. Analysis of such a differential-equation approach was provided for indepen-

dent households by Bailey [25], with the ‘self-consistent’ equations needed to capture between-

household transmission given by Ball [26]. Analytical and numerical approaches to these self-

consistent equations were provided by House et al. [27] and Ross et al. [28], demonstrating

that these equations can have significant benefits over individual-based stochastic simulations,

particularly when a comprehensive ‘sweep’ over parameters or exact calculation of quantities

such as early exponential doubling times is required. Hilton and Keeling [29] showed that this

methodology could be applied to the extremely large dimensions present in demographically

realistic populations. This study focused exclusively on early invasion dynamics and stochastic

equilibria of demographically structured epidemic models, with the modelling structure it

introduced unable to directly simulate the transient dynamics of an epidemic and thus unable

to model many standard control policies which act “in real time”. One of the aims of the pres-

ent study is to expand on this and previous approaches with a model which accounts for demo-

graphic structure while also allowing for direct simulation of transient epidemiological

dynamics.

In the Methods section of this paper, we introduce a formal mathematical structure for this

age- and household-structured model. We derive a formula for the susceptible-infectious

transmission probability (SITP), the probability that a susceptible individual is infected by an

index case in their own household, in terms of the within-household transmission rate, allow-

ing us to calibrate this within-household transmission rate to estimates of SITP which have

been calculated from observational studies [30]. We also derive an Euler-Lotka equation for
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our model, from which we can estimate a between-household transmission rate from empiri-

cal estimates of the growth rate of cases. This estimation method allows us to calibrate our

model to the population-level state of an epidemic at specific points in its evolution. This

makes our model ideally suited to a workflow taking a growth rate or doubling time estimate

as an input and returning projections of the impact of specific NPIs as an output. These two

formulae allow us to calibrate both the within- and between-household transmission intensi-

ties in our model to specific phases in the evolution of an epidemic based on empirical obser-

vations of the spread of infection. We then show how epidemic trajectories can be estimated

by solving a system of ODEs. We use this approach to perform interpretable parameter sweeps

over the decision space. The large dimensionality of the differential equation system presents a

computational challenge, and we provide an open-source implementation in Python of our

methods, which can be applied to quite general epidemiological scenarios. While vaccination

is beyond the scope of our current work, we also note that analytic results for critical vaccina-

tion thresholds should be available for the model we describe [31, 32].

A wealth of modelling studies of non-pharmaceutical interventions have been published since

the beginning of the pandemic, using frameworks including stochastic and deterministic com-

partmental models, branching processes, network models, and agent-based microsimulation

models, covering policies ranging from contact tracing to travel restrictions to school closures, as

well as possible exit strategies when interventions are withdrawn [33–40]. In the present study

we introduce an approach which can model the interplay between household structure and con-

trol policy in a deterministic compartmental setting; while microsimulation models of COVID-

19 have been developed which can account for household structure, they must be implemented

through repeat simulation [41]. Although one study has considered a similar formalism to ours

based on self-consistent equations in the context of NPIs during the COVID-19, it did not

attempt to combine household structure with stratification based on age or other risk classes [9].

To demonstrate the wide range of possible applications of our model, we present four policy

analyses based on commissions originally carried out for the UK Government’s Scientific Pan-

demic Influenza Group on Modelling (SPI-M) committee, and reflected in documents such as

the paper Reducing within- and between-household transmission in light of new variant SARS--
CoV-2, 14 January from The Scientific Advisory Group for Emergencies [42]. We first demon-

strate our model’s basic capacity to distinguish between two levels of social contacts by

comparing interventions targeted at the within-household level to those targeted at the

between-household level. We then carry out an analysis of “support bubble” exemptions dur-

ing lockdown periods which explores the impact of underlying household structure on the

infectious disease dynamics predicted by our model. In a similar vein, we carry out an analysis

of short-term relaxations of lockdown measures, during which members of distinct house-

holds are allowed to mix in specific limited capacities. This allows us to project the impact of

allowances for mixing during festive periods taking place during lockdown periods, while also

adapting our model to settings with a dynamically changing household contact structure. Our

final policy analysis explores out-of-household isolation (OOHI), an alternative to within-

household isolation which allows infectious individuals to isolate outside of their home in

order to minimise transmission to clinically vulnerable members of their own household.

Whereas the analyses of support bubbles and relaxations of lockdown measures focus on

changing the underlying contact structure of the model by merging households together, in

the analysis of OOHI we model the impact of changes to household contact structures caused

by individuals leaving and rejoining a household. Between them, these examples demonstrate

our models capacity to simulate not only the role of household-structured transmission in

infectious disease dynamics, but also the impact of changes to household structure on these

dynamics.
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Methods

General modelling framework

Model parameters are provided for reference in Table 1, along with the values used in this

work. In the first section of S1 Appendix we provide a description of the computational imple-

mentation of our model, as well as some basic benchmarking statistics.

Our model considers a population composed of a large number of individuals, with each

individual belonging to exactly one household. Each individual is also a member of a risk class,

which may correspond to an age band but could reflect other more general stratifications such

as vulnerability to infection due to comorbidity or behavioural risk factors relating to infection

such as non-socially distanced key work outside the home. Denoting these classes by C1, . . .,

CK, where K is the total number of classes in our stratification, we define the composition of a

household to be the vector N = (N1, . . ., NK), where Ni is the number of individuals of class Ci
who belong to the household. We will assume that the composition of a household is fixed, but

we emphasise that “belonging” to a household may not reflect a permanent physical presence;

our infectious dynamics assume individuals from different households mix at locations such

as schools and workplaces, while our modelling of out-of-household isolation allows house-

hold members to temporarily leave the household and return after a period of isolation. Our

assumption of a fixed household composition is based on the comparatively short time scales

involved in our modelling, over which the population-level impact of births, deaths, or perma-

nent movements between households on household compositions will be relatively small.

Each household member also belongs to one of L epidemiological compartments, which we

denote by X1, . . ., XL. The state of a household is given by the (K × L)-dimensional vector

x ¼ ðx1
1
; . . . ; xL

1
; . . . x1

K ; . . . xLKÞ, with xji denoting the number of individuals in class Ci who are

Table 1. Parameter notation, choices, and sources for the age- and household structured infection model.

Model Parameter Notation Value Source

All Doubling time T2 Varies by case

Growth rate r Varies by case

Susceptible-infectious transmission probability pN See Table 2 House et al. [30]

Density exponent d Varies by case Derived from SITP

Within-household transmission rate βint Varies by case Derived from SITP

Between-household transmission rate βext Varies by case Derived from growth rate

Within-household contact matrix Kint Prem et al. [43]

Between-household contact matrix Kext Prem et al. [43]

SEIR Incubation rate α 1/1.16 Hart et al. [44]

Recovery rate γ 1/9.64 Hart et al. [44]

SEPIR Prodromal relative transmission strength τP 3 Hart et al. [44]

Infectious onset rate α1 1/1.16 Hart et al. [44]

Symptom onset rate α2 1/4.64 Hart et al. [44]

Recovery rate γ 1/5 Hart et al. [44]

SEPIRQ Prodromal relative transmission strength τP 3 Hart et al. [44]

Infectious onset rate α1 1/1.16 Hart et al. [44]

Symptom onset rate α2 1/4.64 Hart et al. [44]

Recovery rate γ 1/5 Hart et al. [44]

Detection rate δ Varies in study

Isolation probability pQ Varies in study

Discharge rate ρ 1/14 Chosen for study

https://doi.org/10.1371/journal.pcbi.1010390.t001
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in compartment Xj such that
PL

j¼1
xji ¼ Ni. We emphasise that the composition refers only to

the set of risk classes represented in a household and their frequencies, whereas the state captures

the combination of risk classes and epidemiological compartments. This general formulation

allows us to talk about different epidemiological and population stratifications using a single

modelling framework. As an example, we can consider a simple two-age-class SIR model where

the population is divided into adults and children (see, for example, Keeling and Rohani [45]).

The K = 2 risk classes here are given by CC (children) and CA (adults), the L = 3 epidemiological

compartments are S (susceptible), I (infectious), and R (recovered) and the state of a household

is given by (SC, IC, RC, SA, IA, RA), where in keeping with convention we use upper-case letters

for both the classes themselves and the frequency of these classes within the household.

The state of each individual household evolves stochastically according to a set of transition

rates which summarise the epidemiological interactions and physiological processes relevant to

infection. These rates define a transition matrix Q, the (i, j)-th element of which, Qi,j, gives the

rate at which a household transitions from epidemiological state i to epidemiological state j. In

the limit of a large number of small households, it is possible to obtain a formal diffusion and

deterministic limit to these stochastic dynamics [46]. In such a large population limit, the proba-

bility that a household chosen uniformly at random from the set of households is in a given state

tends to the state distribution vector H, which evolves according to the system of equations

dH
dt
¼ HQ: ð1Þ

The state distribution H can be interpreted as capturing the expected proportion of house-

holds in each epidemiological state in a population made up of a large number of these house-

holds. To model a population consisting of more than one type of household, we can construct

a block-diagonal transition matrix whose blocks contain the transition events for each house-

hold composition. Because we assume that the composition of each household is fixed, there

are no transitions from one household type to another and so there will be no nonzero ele-

ments except within these these diagonal blocks.

The transition matrix Q can be written as a sum of two components: Qint, which captures

all the “internal” events in the household evolution, including infectious transmission from

one member of the household to another and individual-level, physiological transitions

between successive stages of infection and recovery, and Qext, which captures external imports

of infection into the household. We make this distinction because while the internal events

take place at fixed rates which depend only on the current epidemiological state of the house-

hold, the external import events depend on the state distribution of the entire population of

households. The population’s evolution is then given by the nonlinear system of equations

dH
dt
¼ H Qint þ QextðH; tÞð Þ: ð2Þ

Solving these equations gives us the proportion of households of each composition in each

epidemiological state over time. From this we can calculate quantities like the expected num-

ber of class Ci individuals per household who are in epidemiological compartment Xj, given by

hxjiðtÞi ¼
X

k

xjiðkÞHkðtÞ; ð3Þ

where xjiðkÞ is the number of class Ci individuals in epidemiological compartment Xj in state

xk ¼ ðx1
1
ðkÞ; . . . ; xL

1
ðkÞ; . . . ; x1

KðkÞ; . . . ; xLKðkÞÞ. The mean number of class Ci individuals per
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household is given by

hNiðtÞi ¼
X

k

X

j

xjiHkðtÞ; ð4Þ

which is independent of time t because household compositions are static. Dividing by average

household size gives us the proportion of the population which belongs to class Ci as hNii/hNi.
In the SIR model with children and adults described above, for example, the prevalence of

infection amongst children expressed as a proportion would be given by:

hICðtÞi ¼

X

k

ICðkÞHkðtÞ

hNCi
:

The proportion of households which are of composition N = (N1, . . ., NK) is

hN ¼
X

k2Z

HkðtÞ; Z ¼ k j
X

j

xjiðkÞ ¼ Ni; 8i 2 ½K�

( )

:

Here we write [n] for the set of natural numbers from 1 to n inclusive. Verbally, Z is the set

of states with the composition N.

The proportion of class Ci individuals which belong to households of composition N is then

hðNjiÞ ¼ NihN=hNCi
i. This is identical to the probability that an arbitrary individual of class Ci

belongs to a household of composition N, and so gives the probability that a newly infected

individual of class Ci in the early stages of an epidemic triggers a within-household infection in

a household of composition N.

Modelling infection events

Our model allows for two basic routes of infection: within-household (or internal) infection, and

between-household (or external) infection. Denote by I the set of indices of the epidemiological

states which contribute to infectious pressure. In this study we will work with two compartmen-

tal structures, the susceptible-exposed-infectious-recovered (SEIR) and susceptible-exposed-pro-

dromal-infectious-recovered (SEPIR) models. The two models differ by the absence and

presence respectively of a prodromal class, containing individuals who are currently infectious

but have not yet presented with symptoms. In the SEIR model, these prodromal individuals are

still implicitly present in the model population but are modelled as being indistinguishable from

the individuals in the (symptomatic) infectious class. In the SEIR model, the only state to contrib-

ute to infectious pressure is the infectious compartment (I ¼ f2g); in the SEPIR model, both

the prodromal and symptomatic infectious compartments contribute to infection (I ¼ f2; 3g).
In what follows, we assume that our compartmental structure includes a single susceptible com-

partment and that only individuals in this compartment can acquire infection, but our reasoning

easily extends to models with multiple such compartments. We assume that the rate of transmis-

sion from an infectious individual to a susceptible one is directly proportional to the amount of

time which those individuals spend in contact with one another.

Within-household transmission. Within-household infection events in class a occur at a

rate

Sa
X

b

XjI j

j¼0

binttjk
int
ab

xbj
ðN � 1Þ

d :
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Here βint measures the strength of within-household transmission, τj is the infectivity of

individuals in the jth infectious compartment (i.e. the jth compartment to appear in I), and

kintab is the mean proportion of each unit of time which class a individuals spend exposed to

class b individuals within their own household. The infectivities τj are dimensionless quantities

reflecting the relative amount of infection generated by individuals in each infectious compart-

ment. In each of the examples in this paper, we choose a scaling so that the (symptomatic)

infectious class I has a relative infectivity of 1. The average contact times are stored within a

within-household social contact matrix Kint with (a, b)th entry kintab . The exponent d determines

the level of density dependence in the within-household contact structure; when d = 0 within-

household contacts are entirely density dependent (risk of within-household infection

increases with household size), and when d = 1 the within-household contacts are entirely fre-

quency dependent (risk of within-household infection is independent of household size).

Between-household transmission. Between-household transmission events in risk class a
occur at a rate

Sa
X

b

XjI j

j¼0

bexttjk
ext
ab hx

b
j i; ð5Þ

where kextab is a between-household social contact rate taken from the between-household con-

tact matrix Kext and hxbj i is the proportion of individuals belonging to risk class b who are cur-

rently in epidemiological compartment j. Using Eq 3, this is a time-dependent quantity given

by

hxbj ðtÞi
hNbi

¼

X

k

xbj ðkÞHkðtÞ

hNbi
:

The estimation of the between-household transmission strength βext is covered in Section 1.

The external infection rates are the only time-dependent component of the household

dynamics, and depend on the global state of the population of households.

Throughout this study we use the contact matrix estimates derived by Prem et al. [43]. We

parameterise Kint as their “Home” coded estimate for the UK, while for Kint we subtract the

“Home” coded estimate from the “All locations” estimate to give us a matrix corresponding to

non-household contacts. These estimates were calculated prior to the COVID-19 pandemic

and thus may not reflect the changes induced by NPI’s. Although a follow-up study taking

these changes into account has since been published [47], in this study we use the original pre-

pandemic estimates because our models aim to make mechanistic forward projections of the

impact of NPI’s on the baseline pre-pandemic contact behaviour.

The SEPIR model. The basic compartmental structure used in this study is the SEPIR

model, but our software implementation of the model allows for arbitrary compartmental

structures. In this model, when a susceptible individual is infected they enter the exposed com-

partment, during which the infection incubates but the host is not yet infectious. From here

they enter a prodromal phase, during which they are infectious but do not show symptoms.

Once symptoms develop they enter the infectious class, and enter the recovered class once

they are no longer infectious. Prodromal and symptomatic/fully infectious individuals are

assumed to transmit infection with differing intensities. The state of a household stratified into

K risk classes is given by

ðS1;E1; P1; I1;R1; . . . ; SK ;EK ; PK ; IK ;RKÞ:
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Because we assume individuals can not move between risk classes (i.e. there is no aging in

our model) and that each event involves only a single individual, each state transition can be

expressed in terms of its impact on a single risk class. The transition rates of the within-house-

hold events for this model are as follows:

ðSa;Ea; Pa; Ia;RaÞ ! ðSa � 1;Ea þ 1; Pa; Ia;RaÞ at rate

Sabint

X

b

kintab
1

Nd
b
tPhPbi þ hIbið Þ

ð6Þ

ðSa;Ea; Pa; Ia;RaÞ ! ðSa;Ea � 1;Pa þ 1; Ia;RaÞ at rate aEEa ð7Þ

ðSa;Ea; Pa; Ia;RaÞ ! ðSa;Ea; Pa � 1; Ia þ 1;RaÞ at rate aPPa ð8Þ

ðSa;Ea; Pa; Ia;RaÞ ! ðSa; Ea; Pa; Ia � 1;Ra þ 1Þ at rate gIa: ð9Þ

Here τP is relative infectiousness of prodromal cases compared to symptomatic cases, αE is

the rate at which an infected individual becomes infectious so that 1/αE is the expected latent

period, αP is the rate at which a prodromal individual develops symptoms, so that 1/αP is the

expected prodrome period and (1/αE + 1/αP) is the expected latent period, and γ is the recovery

rate of symptomatic infections, so that 1/γ is the expected symptomatic period, (1/αP + 1/γ) is

the expected infectious period, and (1/αE + 1/αP + 1/γ) is the expected period from infection to

recovery.

External infection events in risk class a take place at a rate Λa(H(t)), which we obtain by

substituting our SEPIR compartmental structure into the formula for external infection rates

given in Eq 5:

LaðHðtÞÞ ¼ Sabext

X

b

kextab ðtPhPbi þ hIbiÞ:

Here hPbi and hIbi are the population-level prevalences of prodromal and symptomatic

infectious cases respectively in risk class b.

The SEIR model. Our model of short-term alleviation of NPIs allows for large household

bubbles which generate substantially more states in our Markov chain structure than the

smaller single households or support bubbles used in our other policy models. To reduce the

computational intensity of this model we replace the SEPIR structure with a SEIR structure.

This structure combines the prodromal and symptomatic infectious compartments from the

SEPIR structure into a single infectious compartment containing all individuals who are cur-

rently shedding virus. As in the SEPIR model, exposed and recovered individuals can not gen-

erate new infections, so the only compartment to contribute to the infection rates is the

infectious compartment. The transition rates of the within-household events for age class a are

given by

ðSa; Ea; Ia;RaÞ ! ðSa � 1;Ea þ 1; Ia;RaÞ at rate Sabint

X

b

kintab
hIbi
Nd
b

ð10Þ

ðSa; Ea; Ia;RaÞ ! ðSa;Ea � 1; Ia þ 1;RaÞ at rate aEa ð11Þ

ðSa;Ea; Ia;RaÞ ! ðSa; Ea; Ia � 1;Ra þ 1Þ at rate gIa; ð12Þ

where α is the rate at which exposed individuals develop infection and γ is the rate at which
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infectious individuals recover. External infection events in risk class a occur at rate

LaðHðtÞÞ ¼ Sabext

X

b

kextab hIbi;

where hIbi is the population-level prevalence of infectious cases in risk class b.

Estimation of within-household mixing parameters

We parameterise the within-household transmission strength βint and the density parameter d
using estimates of susceptible-infectious transmission probability (SITP). This SITP is the

probability that an average individual in an average household acquires infection from a single

index case in their own household at some point during that index case’s lifespan. For d> 0

the rate of transmission across any given pair will decrease with household size, and so esti-

mates of SITP are typically stratified by household size. The continuous-time Markov chain

structure of our model means that infections occur as the points of a Poisson process, so that

the SITP is equivalent to the probability that at least one event occurs in this Poisson process.

For compartmental structures with multiple infectious compartments, this Poisson process

will be divided into multiple stages with different associated rates and expected durations. If

the index case in a household of size N spends tj units of time in the jth infectious compart-

ment (i.e. the jth compartment to appear in I), then the probability that zero events happen in

this Poisson process is given by

exp � bint
1

Nd
Tint

XjI j

j¼0

tjtj

 !

: ð13Þ

Here Tint is the expected time which two individuals chosen uniformly at random from the

same household (itself chosen uniformly at random from the household composition distribu-

tion) spend in contact with each other per unit time. This is the leading eigenvalue of the matrix

NK int;

where N is a diagonal matrix with ith diagonal entry hNii/hNi, so that the product NKint gives

the within-household contact matrix Kint with each row scaled by the proportion of the popula-

tion belonging to the corresponding risk class.

The SITP for a household of size N, which we will denote by pN, is given by integrating Eq

13 over the exponentially distributed durations tj and subtracting from 1 to give the probability

that at least one event occurs:

pN ¼ 1 �

Z1

0

. . .

Z1

0

exp � bint
1

Nd
Tint

XjI j

j¼0

tjtj

 !
YjI j

j¼0

gjexp � gjtj
� �

dt0 . . . dtjI j ð14Þ

¼ 1 �
YjI j

j¼0

gj

Z1

0

. . .

Z1

0

exp �
XjI j

j¼0

bint
1

Nd
Tinttj þ gj

� �

tj

 !

dt0 . . . dtjI j ð15Þ

¼ 1 �
YjI j

j¼0

gj
1

1

Nd
bintTinttj þ gj

� �
ð16Þ

¼ 1 �
YjI j

j¼0

1

1

Nd
ðbint=gjÞTinttj þ 1

: ð17Þ
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Here γj is the rate at which individuals leave the jth infectious compartment, so 1/γj gives

the expected time spent in this compartment. Given a set of size-stratified estimates of SITP,

we estimate βint and d by fitting the formula in Eq 14 using least squares. In our software

implementation we perform this fitting using the minimize function from Scipy’s opti-
mize library [48]. All of our SITP estimates are taken from a previous analysis of data from

the Office for National Statistics (ONS) COVID-19 Infection Survey [30]. This analysis divides

the survey data into four tranches corresponding to different periods in the evolution of the

UK’s COVID-19 epidemic. For our fitting we use the estimates of SITP from Tranche 2 of the

data, running from September 1st to November 15th 2020, during which there was high preva-

lence of infection and minimal presence of variant strains. These estimates are quoted in

Table 2. The estimated SITP decreases with household size, although at a slower rate than

would be expected under purely density-dependent transmission (where doubling household

size would halve the SITP), suggesting an intermediate level of density dependence.

Estimation of growth rate from model parameters

In this section we introduce an Euler-Lotka equation approach for estimating the early expo-

nential growth rate of cases from the model parameters. This allows us to estimate the impact

of NPIs on the growth in cases when few people in the population are immune. The Euler-

Lotka equation we derive is linear in the between-household transmission rate, which gives us

a convenient method for estimating this transmission rate given an estimate of the early expo-

nential growth rate. For ease of notation, in this section we will assume we are working in

either an SEIR or SEPIR compartmental framework.

We start by introducing the concept of household outbreak type. A household containing at

least one exposed, prodromal, or infectious individual is said to be experiencing a household

outbreak of type i if the household composition is given by N(i) and the index case which trig-

gered the current outbreak was of class Ck(i). The functions N(i) and Ck(i) are defined such that

each i corresponds to a unique combination of household composition and index case class,

and we only consider combinations such that Nk(i)(i)> 0, since if this is not the case there will

be no members of risk class Ck(i) present to trigger the outbreak. Denote the number of house-

hold outbreak types byM. Let λ(t) be anM byM time-dependent matrix whose (i, j)-th entry

λij(t) gives the expected rate at which a household experiencing an outbreak of type i which

started at time 0 generates new outbreaks of type j at time t. Finally, we define I(t) to be a time-

dependentM-dimensional vector whose ith entry Ii(t) is the number of households currently

experiencing a household outbreak of type i. If the early exponential growth rate of the popula-

tion-level epidemic is r, then I will obey the following Euler-Lotka equation:

I ¼ I
Z1

0

λðtÞe� rtdt:

The rate λij(t) is given by

lijðtÞ ¼ HiðtÞFC

where Hi(t) is the state distribution of a household of type i at time t, F is an L by Kmatrix

Table 2. Estimated susceptible-infectious transmission probability by household size from House et al. [30].

Household size, N 2 3 4 5 6

SITP, pN 0.345 0.274 0.230 0.200 0.177

https://doi.org/10.1371/journal.pcbi.1010390.t002
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whose (s, c)th entry is the rate at which a household in state s generates cases in class c, and C is

a K byMmatrix whose (c, i)th entry gives the probability that an infectious case of age c trig-

gers a within-household outbreak of type i. The rate Fsc is given by

Fsc ¼ hNci
X

d

X

j2I

bextbjK
ext
cd x

j
dðsÞ;

where hNci is the proportion of the population who are in risk class c, xjdðsÞ is the number of

individuals of class d and epidemiological compartment j in a household in state s, βj is the rela-

tive infectivity of compartment j, and βext is the between-household transmission rate. From

this formula, we can decompose F as F ¼ bext
~F , a fact which we will use later in the estimation

of βext. From the definition of household outbreak type, Cci is equal to the probability that a

class c individual belongs to a household of composition N(i) if type i households have index

case class Ck(i) = c, and zero otherwise. Assuming that repeated imports into the same house-

hold are vanishingly rare in the early stages of the population-level outbreak, the evolution of a

within-household outbreak will depend only on the internal dynamics of the household, and so

HiðtÞ ¼ Hi
0
expðtQintÞ; ð18Þ

where Hi
0

is a point distribution centered on the initial state of type i households. For the SEIR

and SEPIR compartmental structures, this index state has Sc = Nc for c 6¼ k(i), and Sc =Nc − 1,

Ec = 1 for c = k(i), with all other entries of the state vector set to zero. If we denote the position

of this index state in our list of states by si, we can define a matrix H0 with (i, si)th entry equal to

1 and all other entries equal to zero for i = 1, . . .,M, which maps each outbreak type to its corre-

sponding initial state. Then our Euler-Lotka equation is given by

I ¼ IH0

Z1

0

expðtðQint � rIÞÞdtFC:

The household outbreak type profile during the early evolution of the population-level epi-

demic is thus given by the eigenvalue-1 eigenvector of

H0

Z1

0

expðtðQint � rIÞÞFCdt:

To estimate the growth rate r from model parameters, we apply a root-finding algorithm to

the function

f ðxÞ ¼ l � 1;

where λ is the leading eigenvalue of the matrix

H0

Z1

0

expðtðQint � xIÞÞFCdt:

On the other hand, given an empirical growth rate r, we can estimate βext using the decom-

position F ¼ bext
~F . If we define ~l to be the leading eigenvalue of

H0

Z1

0

expðtðQint � rIÞÞ~FCdt; ð19Þ
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then

bext ¼ 1=~l: ð20Þ

To calculate the integral
R1

0
expðtðQint � rIÞÞFCdt, we use the results of Pollett and Stefa-

nov on path integrals for Markov chains [49]. We can interpret this time-discounted integral

as describing a process identical to our within-household dynamics, but with a constant flow

of probability at rate r to an absorbing null state which has no other effect on the dynamics. If

we interpret V = FC as anM-dimensional household outbreak type-stratified reward function,

so that the sth row tells us the per-unit-time reward vector accumulated while in state s and the

ith column of the integral is precisely the expected number of household outbreaks of type i
generated during the lifetime of a given household outbreak, stratified by outbreak type. Using

the results of Pollett and Stefanov [49], this expected reward by type is given by the solution y

to the system of linear equations

ðrI � QintÞy ¼ Vi;

where Vi is the ith column of V. This reduces the integral calculation to a series of linear solves.

Construction, initialisation, and solution of the self-consistent equations

At the beginning of our model description we introduced the self-consistent equations (Eqs 1

and 2) which determine the evolution of an epidemic in a population of households. We now

outline the construction and solution of this system of equations from the rate equations we

have defined above and real-world household composition data.

Suppose that we have a list of all the household compositions which appear in the population,

along with the proportion of all households which have that composition. Data in this format is

typically available from census agencies, although it may require some processing; the UK’s

ONS, for instance, offers this information at a fine-grained geographical scale [50, 51], but this

needs to be aggregated in order to calculate a country-level distribution. Let hN be the propor-

tion of households in composition N = (N1, . . .,NK) with the set of households of sizeN being

HðNÞ ¼ N
�
�
�
�

X

i

Ni ¼ N

( )

:

Then the proportion of households of size N is

hN ¼
X

N2HðNÞ

hN:

Because very large households are rare in most populations while carrying a high computa-

tional cost in our model, we build our model population using a truncated version of the

household composition distribution where the largest households are removed. Letting Nmax

be the maximum observed household size, the proportion of individuals belonging to house-

holds of size N or larger is given by

h�N ¼

XNmax

n¼N

NhN

XNmax

n¼1

NhN

:
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Then, for instance, to remove the top 5% of the population by household size from the

household composition distribution, we just find the smallest value of N for which h�N< 0.05,

remove all the compositions with
PK

i¼1
Ni � N, and then renormalise what remains of the dis-

tribution. Performing this truncation on the 2011 UK census data, we find that 95% of the

population belongs to households of size six or smaller.

The transition matrix for our household-stratified epidemic model is constructed block by

block. For each composition N observed in the data, we construct a transition matrix QN

which describes the household-level epidemic process of a household in that composition. For

the household composition distribution of our model population to match that of the real pop-

ulation, we need the total probability corresponding to each block of Q to be equal to the pro-

portion of households in the corresponding composition. Because there are no off-block-

diagonal elements of Q (the composition of a household does not change), the probability cor-

responding to each block will not change as we solve the master equations, and so it is suffi-

cient to choose an initial probability vector H0 which meets this requirement. This can be

achieved by cycling over each household composition N, defining a conditional distribution

for households in composition N and then scaling by hN. However, there are a few standard

starting conditions which we will explain here.

To initialise the model with an entirely susceptible population, we assign probability hN to

the state

N1; 0; 0; 0; 0;N2; 0; 0; 0; 0; . . . ;NK ; 0; 0; 0; 0Þ

with Sa = Na for each risk class a. Thus if we denote the kth state in our list of states by

ðSk
1
; . . . ;RkKÞ, with composition N(k) = (N1(k), . . ., NK(k)), then we define H0 so that

Hk
0
¼

pNðkÞ if Ski ¼ NiðkÞ for i ¼ 1; . . . ;K

0 otherwise:

(

A simulation initiated with this zero-infection state will have completely static dynamics,

but if the infection events in our model are modified to include imports of infection from out-

side of the population then this initial condition can be used to simulate the beginning of an

epidemic.

To initialise the model with infection present, we need to specify not only the relative sizes

of each epidemiological compartment, but also the distribution of epidemiological status by

age class and household composition. Choosing an arbitrary distribution can create a patho-

logical starting condition in regions of phase space which are far away from the model’s usual

behaviour. This results in a long “burn in” period when solving the self-consistent equations,

during which the model state moves towards a more natural region of phase space. Because

cases and acquired immunity will accumulate during this burn-in period, a long burn-in

makes it difficult to simulate a realistic epidemic starting from specific infectious prevalence

and background immunity levels. While specific applications may call for their own distribu-

tions, in all of the examples presented in this paper we use an eigenvector approach which

attempts to find a distribution of cases close to the “natural” distribution during the early

growth of an epidemic. This approach aims to minimise the burn-in period so that epidemics

with specific starting infectious prevalence and background immunity levels can be simulated.

We will make the simplifying assumption that in our initial conditions all households are in

one of three points in their infectious history: (1) completely naive to infection with all individ-

uals susceptible; (2) at the very beginning of a within-household outbreak with exactly one

individual exposed and all other individuals susceptible; or (3) at the end of a within-house-

hold outbreak with all individuals either susceptible or recovered. We will define our initial
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conditions by defining distributions of households at points (2) and (3) in their infectious his-

tory, and then defining corresponding proportions of all-susceptible households so that we

obtain the correct household composition distribution. In the derivation of our growth rate

estimation formula in § above, we argued that if the early exponential growth rate of cases is r,
then we need to consider the leading eigenvalue of the matrix

H0

Z1

0

expðtðQint � rIÞÞFCdt;

and associated unit eigenvector I. This leading unit eigenvector defines the distribution of

within-household outbreaks by household outbreak type, so that the i-th element Ii tells us

what proportion of all households experiencing an outbreak during the early exponential

growth phase are in composition N(i) with an index case in risk class Ck(i). For each household

outbreak type i, define xi
0

to be the starting state of such a household outbreak, i.e. the state

with all household members susceptible apart from one individual of risk class Ck(i) which

belongs to whichever is the “first” infectious class in the compartmental structure; in the SEIR

and SEPIR models this is the exposed class. We can define an initial condition close to the

early exponential growth regime of the system by assigning a small amount of probability to

each of these starting states, with the amount of probability assigned to the ith such state

directly proportional to Ii. Let I0 be the desired initial prevalence. If we set this constant of pro-

portionality to be I0hNi so that the probability of being in the ith starting state is

Hxi
0
¼ IiI0hNi

then the prevalence across these starting states will be

X

i

IiI0hNi

hNi
¼ I0;

since I was defined to be a unit eigenvector. Denote by HI
0

this initial profile of newly infected

households. To add households which have already experienced an outbreak to our initial

state, we need to calculate the state distribution of these households. Assuming no repeat infec-

tions, their dynamics are given by Eq 18 and so we can get the distribution of post-outbreak

states by solving this system with initial condition HI
0
= k HI

0
k, the distribution of starting

states of a within-household outbreak, conditioned on being at the start of such an outbreak.

Thus, denoting byHR
0

the initial profile of post-outbreak households, we have that

HR
0
/

Z1

0

expðtQintÞ
HI

0

k HI
0
k
dt:

This indefinite integral is not particularly easy to calculate, but since without reinfections

the state distribution should converge in finite time to a post-outbreak state distribution, we

can approximate the integral by solving Eq (18) forward for some period substantially longer

than the expected duration of a within-household outbreak using an ODE solver. In our code,

we set this period to be one year. This solution is a unit vector ~HR
0
. To initialise our model with

a desired initial immunity level R(0), we estimate the proportion of individuals in a population
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with state distribution ~HR
0
, which we denote ~Rð0Þ, and then set

HR
0
¼
Rð0Þ
~Rð0Þ

~HR
0
:

This gives us an initial profile of post-outbreak households with a chosen starting immunity

level and the distribution across age classes and household compositions which we expect to

arise from our infectious disease dynamics. The remaining households in our initial state distri-

bution will be entirely susceptible. For each household composition there is precisely one such

state, and we require that the initial state distribution has the population’s empirical composition

distribution. Define S(Ni) to be the unique state with all members of a household of composition

Ni susceptible. We can define an initial profile HS
0

of all-susceptible households as follows:

HS
0
ðSðNiÞÞ ¼ pðNiÞ �

X

fx:NðxÞ¼Nig

ðHI
0
ðxÞ þHR

0
ðxÞÞ:

The initial state distribution

H0 ¼ HS
0
þHI

0
þHR

0

has the correct state distribution as well as the chosen initial prevalence and background

immunity.

Given a starting state distribution H0, the state distribution over the time period (t0, tend) is

calculated by solving the nonlinear Equations Eq 14 with initial conditions H0 over this time

period. Using formulae along the lines of Eq 1, we can derive projections of quantities like

expected infectious prevalence or population-level immunity over time, which we can also

stratify according to household composition or risk class.

In Fig 1 we plot the early growth in infections and an exponential curve on the same loga-

rithmically scaled axes to demonstrate that the model with our chosen initial conditions con-

verges to exponential growth within a few days of “in-model” time. The exponential curve is

given by f(t) = (hE(14)i + hP(14)i + hI(14)i)er(t-14), so that it is calibrated with the exponential

growth in cases on day 14 of the simulation. Comparing the two curves demonstrates that sim-

ulations starting from our chosen initial conditions settle into an exponential growth phase

within a few days of model time. In Section 2 of the Supporting Information S1 Appendix we

perform a similar comparison for model simulations initialised with varying levels of back-

ground immunity and show that the early dynamics are close to exponential growth for popu-

lations with a background immunity of up to 10%.

Household composition distributions

Data on age-stratified household compositions in England and Wales gathered during the

2011 census is publicly available from the ONS as datasets CT1088 (households of size six and

under, split across thirteen files organised by geographical location) and CT1089 (households

of size seven or more) [50, 51]. This data lists every household surveyed in the 2011 UK census

with the number of individuals present belonging to each age 10 year age band from age 0 to

100. We merged the first two age classes into a single 0–19 age class and the rest into a 20+ age

class to give us a list of households in terms of this simplified age structure. We extracted a list

of all the household compositions observed according to this two-class age structure, and the

proportion of households in each composition. The dataset includes household compositions

which are large and comparatively rare. These large households introduce a large number of

extra dimensions into our mechanistic model, while their comparative rarity means limited
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realism is lost by removing them from our model population. With this in mind, we use a

truncated version of the empirical household composition distribution with all compositions

of size seven and over removed. Households of size six or less account for 98.2% of the house-

holds in England and Wales and contain 97.8% of their combined population and so this trun-

cation should result in a minimal loss of accuracy.

For our out-of-household isolation (OOHI) analysis, we incorporate a third class of clini-

cally vulnerable individuals into the population so that each household composition specifies

the number of children, less clinically vulnerable adults, and clinically vulnerable adults pres-

ent in the household. To estimate the household composition distribution under this tripartite

division, we combine the CT1088 dataset with estimates, publicly available from the ONS and

listed here in Table 3, of the number of individuals shielding from the 9th to the 16th of July

Fig 1. Convergence of model from initial conditions to exponential growth regime. Our model is simulated from

initial conditions with starting prevalence 10−5 and no background immunity. The exponential curve is callibrated to

the prevalence 15 days from the start of the simulation.

https://doi.org/10.1371/journal.pcbi.1010390.g001

Table 3. Estimated age cohort populations and numbers shielding from ONS data [52, 54], estimated age distribution of shielding population, and proportion of

each age group shielding.

Age class Est. population Est. shielding % of all shielding % of age group shielding

00–20 13282321 100000 4.04 0.75

20–29 7289272 79000 4.04 1.08

30–39 7541596 123000 5.05 1.63

40–49 7130109 183000 8.08 2.57

50–59 7578112 339000 15.15 4.47

60–69 5908575 445000 20.20 7.53

70–74 2779326 298000 13.13 10.72

75+ 4777650 668000 30.30 13.98

https://doi.org/10.1371/journal.pcbi.1010390.t003
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2020 [52]. Under UK guidance, “shielding” is defined to be a voluntary protection measure

targeted towards clinically extremely vulnerable individuals [53]. Under the guidance provided

in June and July 2020 shielding individuals were advised not to leave their home apart from

for daily exercise in open space, with no visitors allowed other than nurses or support or care

workers. This is intended to minimise the exposure of clinically extremely vulnerable individu-

als to infection, with a particular focus on infection outside of their own household. Because of

the relatively low proportion of under-20’s in the shielding data, we assume in our model that

only adults shield, and so our clinically vulnerable class specifically corresponds to clinically

vulnerable adults. Our estimation assumes that each individual of age class Ci in the ten-year

age band structure has an independent probability of belonging to the clinically vulnerable

class equal to the proportion of individuals in the Ci class who are shielding. From the census

household sample, we calculate the proportion of households in each ten-year-age-band-strati-

fied composition. For each composition in this distribution, we use the shielding probabilities

to generate the set of compositions and corresponding probabilities which arise when one or

more members of the household belong to the clinically vulnerable class, while adding a zero

to the end of the original composition corresponding to the empty vulnerable class, and multi-

plying its probability by the probability that no members of the household are clinically vulner-

able. Doing this for each composition in the original distribution gives us a list of household

compositions with ten year age bands plus a clinically vulnerable class, along with a corre-

sponding composition distribution. This list will have repeats, since certain compositions

which are distinct under the census stratification will be identical when certain household

members are moved to the clinically vulnerable class (for instance, a household containing a

single clinically vulnerable 25 year old will be identical to one containing a single clinically vul-

nerable 75 year old under the ten-year-age-bands-plus-clinically-vulnerable stratification). We

therefore add together the probabilities corresponding to each copy of any repeating composi-

tions to give us a distribution of unique compositions. Finally, we merge the first two age clas-

ses into a single 0–19 age class and the adult age classes into a single less clinically vulnerable

20+ age class, to give us a list of compositions and proportions under our children-adults-vul-

nerable stratification. Again, this list of compositions will have repeats, which we remove by

adding together the probabilities corresponding to each copy of the repeating compositions.

Our code, implemented with the MATLAB programming language, for calculating house-

hold composition distributions is publicly available via GitHub website under an open source

Apache 2.0 license [55].

Results

Impact of transmission controls at the within- and between-household

level

Non-pharmaceutical interventions have mainly focused on reducing between-household

transmission through measures such as school and workplace closures and self isolation of

detected cases. In this section we model the combined impact of these more conventional

between-household controls and measures to reduce within-household transmission. Within-

household measures were of particular interest to policy makers in the UK during the emer-

gence of the alpha variant of COVID-19 in early 2021, with an emphasis on communications

campaigns designed to inform individuals about steps they could take to minimise transmis-

sion within their own household [42]. Practical measures suggested as part of such a campaign

included hand hygiene, cleaning surfaces, opening windows to improve ventilation, spending

time in separate rooms, and wearing masks within one’s own home. Mask-wearing and hand

hygiene as measures against within-household transmission of influenza have been the subject
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of randomised control trials prior to the COVID-19 pandemic, although these studies suggest

that these measures have a limited impact on transmission [5, 6, 56]. Here our goal is to model

the population-level impact of a given reduction in within-household transmission, with no

explicit consideration of the exact measures which could bring about such a reduction. The

analysis in this section is therefore intended as an assessment whether control of within-house-

hold transmission is a worthwhile goal for public health policy makers, as opposed to a direct

simulation of any specific within-household control measure.

In this analysis we calibrate the external mixing intensity βext to a doubling time of 3 days

(growth rate r = log(2)/3), corresponding to unconstrained spread of wild type COVID-19,

using Eqs 19 and 20. We assume that the impact of an NPI targeting within-household trans-

mission acts to reduce the parameter βint by a given percentage, and likewise the impact of an

NPI targeting between-household transmission acts to reduce the parameter βext by a given

percentage. In our analysis we vary these percentage reductions independently to assess the

combined impact of within- and between-household interventions. For each combination of

percentage reductions we calculate the early exponential growth rate r and solve the self-con-

sistent equations (Eq 2) to generate a 90 day projection of the epidemic from a starting state

with no background immunity and a low initial prevalence of 0.001%.

In Fig 2 we present the results of this analysis. Overall, interventions targeting between-

household transmission are much more effective than those targeting within-household trans-

mission, with within-household interventions unable to fully control transmission without

very intensive reductions in between-household transmission. This is consistent with theoreti-

cal results on household-structured models derived by Ball et al. [57]. In their study they define

a household-level reproductive ratio R� (although since their study considers more general

Fig 2. a)Growth rate, b) peak percentage prevalence, c) cumulative percentage prevalence, d) percentage of

households with at least one case during the simulation period as a function of percentage reduction in between-

household transmission rates and percentage reduction in within-household transmission rates.

https://doi.org/10.1371/journal.pcbi.1010390.g002
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forms of structure they do not use this terminology), the number of subsequent within-house-

hold outbreak generated by each within-household outbreak. This quantity is given by the for-

mula R� = RGμ, RG is the expected number of subsequent infections outside of their own

household generated by each case, and μ is the expected size of a within-household outbreak.

The household-level reproductive ratio is a threshold parameter, so that an epidemic is con-

trolled when R� < 1. Because μ is bounded below by 1 (each within-household outbreak has at

least one index case), forcing RG below one with controls on between-household mixing is

always a necessary condition for control of transmission. While the model formulation consid-

ered by Ball et al. lacks the risk structure we have introduced here, this argument helps to dem-

onstrate why within-household measures are not themselves sufficient to control transmission

in our analysis.

Comparing Fig 2b) and 2c) reveals that reducing within-household mixing has a bigger

impact on peak prevalence than cumulative prevalence; this suggests that although these mea-

sures may not reduce the total number of cases in a given outbreak, they could play a role in

reducing pressure on health services whose capacities are defined in terms of hospitalisations

at one time rather than over long periods.

As part of this analysis we also calculate the secondary attack ratio by household size. This

quantity can be interpreted as the probability that an individual becomes infected, given at

least one other member of their household becomes infected. This is distinct from the SITP

because it is calculated over the entire duration of a within-household epidemic rather than

over the lifetime of the index case. In our model we estimate the secondary attack ratio for

households of size N at time t as

X

fk:NðkÞ¼Ng

RðkÞ � 1

N
HkðtÞ: ð21Þ

We make two estimates of this quantity. The first uses our simulation results and takes

t = 90, so thatHk(t) is the probability that a household is in the kth epidemiological state at the

end of our simulation. This gives us the expected number of non-index cases per infected

household as a fraction of household size in our simulation. These non-index cases may

include cases which were infected due to repeated imports of infection and are not traceable

back to the first case in their household. For the second estimate, we use HR
0
, the profile of

post-outbreak households in the early eigenphase of the epidemic which we calculated during

the calculation of the initial conditions. Using this vector in the formula tells us the expected

number of non-index cases per infected household as a fraction of household size during a sin-

gle outbreak with no repeated imports of infection in an average household during the early

stages of the epidemic. The first estimate of secondary attack ratio is useful because it can be

compared to empirical data from households without knowing explicitly whether all house-

hold members were infected in the same local outbreak, whereas the second estimate quanti-

fies the infection’s propensity to spread within the household.

In Fig 3 we plot estimates of secondary attack ratio by household size under different levels

of reduction in within- and between-household mixing. Fig 3a) and 3b) respectively compare

the baseline secondary attack ratio in the absence of interventions with those calculated for

25% and 50% reductions in transmission rates on the within- and between-household levels,

as well as on both levels with the same intensity, based on our 90 day simulation output.

Fig 3c) and 3d) respectively compare the baseline secondary attack ratio in the absence of

interventions with those calculated for 25% and 50% reductions in transmission rates on the

within-household level, for a single within-household outbreak with only one import of infec-

tion. Without repeated imports of infection, between-household mixing controls will have no
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impact on a within-household outbreak and so there is no need to consider the impact of

between-household mixing controls in this case. Fig 3a) suggests that a 25% reduction in

within-household mixing will have a minimal impact on the secondary attack ratio, while mea-

sures to control between-household mixing have a small but non-negligible impact. While

Fig 3c) demonstrates that a 25% reduction in within-household transmission can reduce the

secondary attack ratio for a single within-household outbreak, the results in Fig 3a) suggest

that this impact will be counteracted by repeated introductions. Fig 3b) shows a similarly lim-

ited impact from within-household measures in the absence of between-household measures.

Again, comparing Fig 3d) with Fig 3b) suggests that repeated imports of infection substantially

reduce the potential impact of within-household transmission reductions. Given the relatively

high impact of within-household measures over a single within-household outbreak, our

results suggest that within-household measures could be effective in reducing the risk of trans-

mission to particularly vulnerable members of a household in scenarios where imports of

infection into the household are already minimised through effective population-measures.

Lockdown support bubbles

Here we considered the combination of pairs of households into units such as the “support

bubbles” presented in guidelines by England’s Department of Health and Social Care [58].

Under the policy implemented in England in 2020, a support bubble is defined to be “a support

network that links two households”, with households belonging to the same bubble function-

ing as a single household for the purpose of lockdown rules [58]. Only certain households

were elligible to form bubbles, including adults living alone, single parents living with children,

Fig 3. Expected secondary attack ratios by size. The first row gives the estimates from the full population dynamics with repeated

imports of infection for a) a 25% reduction in transmission from each intervention, and b) a 50% reduction in transmission from

each intervention; the second row gives the estimates from a single within-household outbreak without repeated imports of infection

for c) a 25% reduction in transmission from each intervention, and d) a 50% reduction in transmission from each intervention.

https://doi.org/10.1371/journal.pcbi.1010390.g003
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and households where only one adult resident did not need continuous care due to disability.

Support bubbles represent an exemption to population-level lockdown measures, intended to

reduce the challenges these measures pose for members of elligible households. However,

these exemptions have the potential to reduce the overall efficacy of lockdown measures by

increasing the population-level frequency of social contact and thus increasing the capacity for

spread of infection. The possible impact of these measures was a topic of discussion at the

UK’s Scientific Pandemic Influenza Group on Modelling (SPI-M) in April 2020, where it was

argued that members of bubbles would be at greater risk of infection than members of single

households, due to the greater routes of potential transmission into a bubble generated by the

larger number of bubble members [59]. This argument did not take into account the impact of

bubble formation on the total quantity of infection circulating in the population, which will

itself impact each bubble or household member’s probability of bringing infection into their

own bubble or household respectively. Here we use our model to perform a more detailed

analysis of the impact of support bubbles, which explicitly accounts for the non-linearities gen-

erated by this change in both the structure of a bubble member’s local contacts and the total

infection circulating in the wider population.

We consider a scenario in the broad spirit of such support bubbling where any household

consisting of a single adult plus any number of children (possibly zero) combines with a single

other household which can be in any composition. To capture the expected epidemiological

impact of long-term bubbling, we compare projections from the SEPIR model applied to the

2011 UK census population to projections from a bubbled version of that population. Explic-

itly, each household bubble combines the members of a household in composition ðN1
1
; 1Þ or

ðN1
1
; 0Þ with the members of a household in composition ðN2

1
;N2

2
Þ, where class C1 consists of

everyone under 20 and class C2 consists of everyone aged 20 and older. This gives us a bubbled

household composition distribution b, where if each household which is eligible for bubbling

(i.e. contains no more than one adult) bubbles with probability pb, the proportion of post-bub-

bling households in composition (N1, N2) is given by

bðN1 ;N2Þ
¼

ð1 � pbÞpðN1 ;N2Þ
if N2 ¼ 0

ð1 � pbÞpðN1 ;N2Þ
þ pb

X

M1

pðM1 ;0Þ
pðN1 � M1 ;1Þ

if N2 ¼ 1

pðN1 ;N2Þ
þ pb

X

M1

ðpðM1;0Þ
pðN1 � M1 ;N2Þ þ pðM1 ;1Þ

pðN1 � M1 ;N2 � 1ÞÞ otherwise:

8
>>>>><

>>>>>:

To analyse the impact of such a bubbling policy, we define a set of self-consistent equations

for the SEPIR model in the population of households with support bubbles. We use the Euler-

Lotka equations to estimate growth rates in this population under varying levels of adherence

to lockdown measures and uptake of support bubble allowances among eligible households,

and solve the self-consistent equations to make projections of the corresponding infectious

disease dynamics.

In our analysis we vary the uptake of support bubbles among households who are eligible to

join one as well as the percentage reduction in between-household transmission due to NPIs.

Households are deemed eligible to join a support bubble if they contain at most one adult

(again we note that in our model of age structure we take age 20 as the boundary between chil-

dren and adults). For computational purposes, we do not allow households to form households

of size 10 or larger. The transmission rate over within-household contacts, βint is left fixed at

the value obtained by fitting to the SITP, listed in Table 1. This reflects the fact that our pri-

mary interest here is specifically in modelling the potential detrimental impact of support bub-

ble formation on measures to reduce between-household transmission. For each combination
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of uptake and transmission reduction we calculate the early exponential growth rate r and

solve the self-consistent equations to generate a 90 day projection of the epidemic from a start-

ing state with no background immunity and a low initial prevalence of 0.001%.

The results of the long-term social bubble analysis are presented in Fig 4. Overall we predict

that allowing support bubble exemptions will have a limited impact on the infectious disease

dynamics. While high levels of uptake are associated with higher peak and cumulative preva-

lences, the difference in peak prevalence decreases noticeably as we increase the level of reduc-

tion in between-household mixing. In particular, allowing support bubbles does not appear to

affect the threshold level of between-household controls at which spread of pathogen is con-

trolled. The non-monotonicity observed in Fig 2d) arises from the changes in the household

composition distribution that arise from allowing bubbles to form at different uptake rates; ini-

tially at low levels of uptake the increasing average household size dominates, with the popula-

tion concentrated in larger households so that the total proportion of households infected

decreases, while at higher levels of uptake the increase in cumulative prevalence dominates.

Temporary relaxations of NPIs

In contrast to the long-term bubbling considered in the analysis of support bubbles, our model

can also be used to study short-term bubble policies, where a few households join together and

mix intensively over a short period. Whereas we interpreted long-term bubbles as being associ-

ated with exemptions to lockdown measures, short-term bubbles can be interpreted as a fea-

ture of relaxations of lockdown measures, where individuals are temporarily allowed to mix

outside of their own households before returning to lockdown-period behaviour. An example

Fig 4. a)Growth rate, b) peak percentage prevalence, c) cumulative percentage prevalence, d) percentage of

households with at least one case during the simulation period as a function of percentage reduction in between-

household transmission rates and uptake of support bubbles among eligible households.

https://doi.org/10.1371/journal.pcbi.1010390.g004
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of such a policy is given by theMaking a Christmas bubble with friends and family [60] guid-

ance from the UK Cabinet Office [60]. Under the guidelines which were eventually imple-

mented, mixing was allowed between pairs of households on December 25th 2020, with no

other relaxations of or exemptions to the background suite of NPIs which were in place at that

time. Prior to the announcement of these guidelines policies were proposed involving mixing

between more than two households or over more than one day [61], which were rejected once

the extremely high levels of hospitalisation in the UK in December 2020 became apparent.

Here we consider the possible impact of a range of relaxation policies involving different num-

bers of households and different numbers of consecutive or non-consecutive days of mixing

by using our model to simulate the dynamics of infection in a population which moves

between a baseline population of single households and a bubbled population of small groups

of households which mix intensively.

First, note that in the long-term bubbling model, the impact of two households merging

can be summarised as follows, using� to represent bubbling in a natural manner:

ðM1;M2Þ � ðN1;N2Þ ! ðM1 þ N1;M2 þ N2Þ;

so that the bubbled household had epidemiological state

ðSM
1
þ SN

2
;EM

1
þ EN

2
; PM

1
þ PN

2
; IM

1
þ IN

2
;RM

1
þ RN

2
Þ;

where XMi and XNi are respectively the number of class Ci individuals in compartment X origi-

nally belonging to the first and second households in the bubble.

In contrast, to model short-term bubbling, we need to allow households to enter bubbles

and leave them, which means we need to keep track of the number of individuals in a given

risk class and compartment in the bubbled household who originally belonged to each of the

contributing households. We therefore define our bubbled population in terms of a composi-

tion structure which tracks the source household of members of a bubbled household, so that

for the two-household example above,

ðM1;M2Þ � ðN1;N2Þ ! ðM1;M2;N1;N2Þ:

A bubble of two households stratified by two classes will have a four-dimensional composi-

tion, while a bubble of three households stratified by two classes will have a six-dimensional

composition. To prevent our system size from becoming too large in this analysis, we will

ignore age-risk structure and model a single age class consisting of all the individuals in the

population. This means that in our analysis we are unable to trace the impact of these policies

on the burden of disease in specific age classes, although are model does allow for similar anal-

yses with more complex age structures given sufficient computing time.

We can, therefore, represent the short-term bubbling of two households as follows:

N1 � N2 ! ðN1;N2Þ;

and similarly for three households:

N1 � N2 � N3 ! ðN1;N2;N3Þ:

Two-household bubbles will have epidemiological state

ðx1; x2Þ ¼ ðS1; E1; P1; I1;R1; S2;E2; P2; I2;R2Þ;
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and three-household bubbles will have

ðx1; x2; x3Þ ¼ ðS1;E1; P1; I1;R1; S2;E2; P2; I2;R2; S3;E3; P3; I3;R3Þ:

With this structure, we can then dissolve bubbles into their constituent households at the

end of the bubbling period, keeping track of the epidemiological trajectory of their members.

In our study we model five different short-term bubble policies which were discussed in the

weeks leading up to Christmas 2020, including the policy which was eventually implemented

(mixing between a maximum of two households on December 25th only). Each policy consists

of a set of days on which bubbling is allowed, plus the number of households which are allowed

to form a bubble on those days. We assume that when permitted, every household will join a

bubble of the maximum permitted size, so on days when two-household bubbles are allowed

the entire population will consist of two-household bubbles with no singletons, and likewise

on days when three-household bubbles are allowed the entire population will consist of three-

household bubbles with no singletons or two-household bubbles.

The bubbling strategy is implemented by first constructing a bubbled household composi-

tion distribution. For a two-household bubble policy, the bubbled compositions (N1, N2) and

(N2,N1) are identical up to the ordering of the constituent households, and so we can construct

a “triangular” set of bubbles such that households of sizes N1 and N2 will only form a bubble if

N1� N2. The bubbled composition distribution for the two-household-bubble population is

then given by

bðN1 ;N2Þ ¼
p2
N1

if N1 ¼ N2

2pN1
pN2

otherwise;

(

with the factor of 2 in the second formula accounting for the fact that we treat (N1, N2) and

(N2, N1) bubbles as identical. If we enforce the condition that N1� N2� N3, then the bubbled

composition distribution for the three-household-bubble population is given by

bðN1 ;N2;N3Þ ¼

p3
N1

if N1 ¼ N2 ¼ N3

3p2
N1
pN3

if N1 ¼ N2 6¼ N3

3pN1
p2
N2

if N1 6¼ N2 ¼ N3

6pN1
pN2
pN3

otherwise;

8
>>>><

>>>>:

where the factors of 3 and 6 correspond to the number of possible orderings of three house-

holds of two and three distinct sizes respectively. Once a bubbled composition distribution is

defined, we can then define a set of differential equations for the epidemic in this bubbled pop-

ulation exactly as we do for the standard, unbubbled population, with each risk class now cor-

responding to a different constituent household.

To simulate a temporary bubbling on day tb, we first simulate the dynamics of the

unbubbled population from day t0 to day tb with some initial state distribution H0, using Eq 2,

to obtain a final state distribution H(tb). To simulate the formation of bubbles, we need to map

the state distribution H(tb) on the unbubbled population to one on the bubbled population,

which we will denote Hb(tb). For a two-household bubbling policy, this mapping is given by

Hb
x1 ;x2 ;
¼ bðN1 ;N2Þ

Hx1

pN1

Hx2

pN2

:

where we use the notation Ni = N(xi) to denote the composition of a household with state xi.

We can interpret this formula as saying that the proportion of bubbled households in a given
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paired state (x1, x2) is equal to the proportion of bubbled in the corresponding composition

(N1, N2) multiplied by the probability that the constituent households are in states x1 and x2,

given they are of compositions N1 and N2. Using the same reasoning, for a three-household

bubbling policy the mapping is given by

Hb
x1 ;x2 ;x3

¼ bðN1 ;N2 ;N3Þ

Y3

i¼1

Hxi

pNi
:

We can then simulate a bubbling period beginning at time tb and ending at time td (here d
stands for “dissolve”), by solving Eq 2 for the bubbled population with initial condition Hb(tb).
After the bubbling period, full lockdown measures are reimplemented, with mixing between

distinct households forbidden. To simulate the infectious disease dynamics following the bub-

bling period, we need to map the bubbled system state at the end of the bubbling period,

Hb(td) to the unbubbled model space. For the two-household bubble policy, this is done using

the formula

Hx ¼ Hb
x;x þ

1

2

X

y6¼x

Hb
x;y;

and for the three-household bubble policy this is done using the formula

Hx ¼ Hb
x;x;x þ

1

2

X

y6¼x

Hb
x;x;y þ

1

2

X

y6¼x

Hb
x;y;x þ

1

2

X

y6¼x

Hb
y;x;x þ

1

3

X

y6¼x

X

z6¼x

Hb
x;y;z:

Solving the unbubbled system forward in time allows us to simulate the dynamics of the

epidemic following the bubbling period and thus make projections of its long term impact.

In what follows we model two basic interpretations of a short-term bubble policy. Under

the first interpretation, bubbles of two or more households are formed every day for T days,

which each bubble dissolving and its constituent households joining new bubbles at the end of

each day. Under the second, households are allowed to form bubbles of two or more house-

holds for T days, after which the population returns to its previous “unbubbled” composition

structure. The first roughly describes a situation in which individuals and their households

visit a new household each day during the bubbling period, while the second describes a situa-

tion in which a group of households interact closely for an extended period, for instance with

adult children staying at their parents’ homes. From a network perspective, the first interpreta-

tion will allow giant components to form since we are rewiring on a daily basis, while the sec-

ond involves replacing small household-level clusters with larger bubble-level clusters. Both

interpretations offer a partial description of a population’s actual behaviour over the Christmas

period in a non-pandemic year and its behaviour during a bubbling period, both of which are

likely to resemble a mixture of our model interpretations with more complex behaviours. We

also model variations of both interpretations in which the initial bubbling period is followed

by a second one-day period of bubbling, which captures the impact of relaxing isolation mea-

sures on New Year’s Eve following a bubbling period over Christmas. In addition to these four

potential scenarios, we also model the policy which was actually implemented, under which

each household was allowed to meet with a single other household on December 25th, with no

other exceptions to social contact restrictions. The five policies considered are thus as follows:

1. Each household forms a two-way bubble with one other household on December 25th only;

2. Each household forms a two-way bubble with one other household on each of December

25th and December 26th (so two households are bubbled with overall);
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3. Each household forms a triangular bubble with two other households for two days (Decem-

ber 25th and 26th);

4. As in Policy 2, but each household also chooses a third household to bubble with on

December 31st;

5. As in Policy 3, but each household also chooses a third household to bubble with on

December 31st.

In our analysis we assume that every household joins a bubble, and that no bubbling other

than that permitted by the policy takes place.

For each policy we initialised the self-consistent equations using the Euler-Lotka approach

outlined in our methods section with prevalence and immunity both at 1%, consistent with

estimates from the ONS COVID-19 dashboard in early December 2020 [62]. The between-

household transmission parameter βext is calibrated to a growth rate of r = 2%, corresponding

to SPI-M estimates from mid-December [63]. Setting all times relative to the start of 2020, so

that at 12am January 1st t = 0, we solve the self-consistent equations for the unbubbled baseline

population from t = 335 (12am on December 1st) to t = 359 (12am on December 25th). For

each policy, we alternate between bubbled and unbubbled populations from t = 359 onwards

according to the details of the policy, running all simulations up to t = 396 (12am on February

1st 2021). This allows us to observe the impact of each policy over the first few generations of

post-bubbling cases. Because social contacts involving guests from outside the household are

likely to differ from those with members of one specific household, we allow the density expo-

nent d to change between the baseline and bubbled populations. We carry out each policy anal-

yses over a range of values of the two exponents to account for the uncertainty in the nature of

these contacts. We also carry out this analysis for the baseline case where no relaxations are

allowed.

The peak and cumulative prevalences over the December 1st to February 1st simulation

period arising from each policy are plotted in Figs 5 and 6 respectively. In the absence of any

temporary relaxations to NPIs (Figs 5a) and 6a)), we expect to see a peak prevalence of 1–2%

and a cumulative prevalence of around 20% (including the initial 10% starting immunity) over

the period December 1st to February 1st, depending on the level of density-dependence in

transmission in single households. A single day of mixing between pairs of households results

(policy 1, Figs 5b) and 6b)) in lower peak and cumulative prevalences than any of the other

proposed relaxation policies. Although Policies 2 and 3 involve the same total mixing period,

Policy 3 is associated with higher peak (Fig 5b) and 5c)) and cumulative prevalences(Fig 6b)

and 6c)), suggesting that a prolonged period of mixing between multiple households is riskier

than multiple shorter mixing periods. Fig 5e) and 5f), as well as Fig 6e) and 6f), demonstrate a

small amplification in transmission arising from the extra day of mixing on January 31st.

Overall these results suggest that short-term relaxations in mixing restrictions will have a small

but non-negligible impact on the epidemic dynamics, with larger temporary bubbles and lon-

ger mixing periods associated with higher prevalences. The gradients of our plots suggest that

the level of density dependence in single-household transmission has a greater impact on the

long-term transmission dynamics than the level of density dependence in bubbled household

transmission, and so our results should be fairly robust with respect to uncertainty over how

interactions with visitors may differ from interactions with family members.

Out of household isolation

In this section we analyse the impact of out-of-household isolation (OOHI) policies, under

which detected cases are removed from their household until they have recovered from
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infection, with the intention of reducing the risk of infection to other members of the house-

hold. We specifically model the impact of OOHI when applied to the households of individuals

who are identified as particularly vulnerable to infection, either due to age or chronic health

conditions. The intention of such a policy would be to reduce the morbidity and mortality of

infection by reducing the potential for transmission to those most at risk of infection; under

more typical within-household isolation measures, isolation could potentially increase the risk

of transmission to these individuals by increasing the time they spend in contact with infec-

tious members of their own household. However, OOHI policies are inherently costly since

they require governments to provide accommodation for isolating individuals, while also

potentially placing strain on households by removing an individual who may be responsible

for childcare or other aspects of household maintenance. Our goal here is therefore to assess

both how effective an OOHI policy might be in reducing infection among clinically vulnerable

Fig 5. Peak prevalence between December 1st 2020 and February 1st 2021 as a function of density exponents in single

households and in bubbled households under the following relaxation policies: a) no relaxation; b) two-household

bubbles on December 25th; c) two-household bubbles on December 25th and again on December 26th; d) three-

household bubbles from December 25th to December 26th; e) two-household bubbles on December 25th, again on

December 26th, and again on December 31st; f) three-household bubbles from December 25th to December 26th and

two-household bubbles on December 31st.

https://doi.org/10.1371/journal.pcbi.1010390.g005
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individuals, and also the number of individuals who will be required to isolate as part of such a

strategy.

To model OOHI of infectious individuals, we expand upon our SEPIR compartmental

structure to incorporate an isolation or Quarantine compartment Q, giving us a susceptible-

exposed-prodromal-infectious-recovered-isolated (SEPIRQ) structure. Out-of-household iso-

lation acts to temporarily remove a (detected) infectious individual from their household, so

that the number of class Ca individuals in a household is Na − Qa rather than Na. We divide

the process of isolating into two stages. Under the simplest interpretation of the isolation pro-

cess cases are detected at a rate δ, so that the mean time to detection after being infected is 1/δ,

and once detected an individual will isolate with probability pQ. We assume that individuals in

the Exposed, Prodromal, and Recovered compartments are all detected at the same rate, and

that this rate is not class-specific. Because out-of-household isolation has the potential to be

highly disruptive to family life and expensive to implement, we refine this interpretation so

Fig 6. Cumulative prevalence between December 1st 2020 and February 1st 2021 as a function of density exponents in

single households and in bubbled households under the following relaxation policies: a) no relaxation; b) two-

household bubbles on December 25th; c) two-household bubbles on December 25th and again on December 26th; d)

three-household bubbles from December 25th to December 26th; e) two-household bubbles on December 25th, again

on December 26th, and again on December 31st; f) three-household bubbles from December 25th to December 26th

and two-household bubbles on December 31st.

https://doi.org/10.1371/journal.pcbi.1010390.g006
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that only individuals in certain classes are eligible to isolate, depending on the state x of the

household. This allows us to do things like only isolate individuals who share a household with

an individual in a particularly vulnerable class, and to stop adults from isolating if it means

leaving children in their household without a caregiver. The isolation probability is thus

defined to be a class-specific function of the household state paQðxÞ, such that paQðxÞ ¼ pQ if our

policy is to isolate class Ca individuals belonging to state x households and piQðxÞ ¼ 0 other-

wise. Isolated individuals recover and return to their household at rate ρ, so that the mean iso-

lation period is 1/ρ days. With these considerations in mind, the transition rates for the OOHI

model are as follows:

ðSa;Ea; Pa; Ia;Ra;QaÞ ! ðS � 1; Eþ 1; P; I;R;QiÞ at rate

Sa
X

b

bintk
int
a;b
ðtbPb þ IbÞ
ðNb � QbÞ

þ LiðH; tÞ

 !
ð22Þ

ðSa;Ea; Pa; Ia;Ra;QaÞ ! ðS; E � 1; P þ 1; I;R;QiÞ at rate a1E ð23Þ

ðSa;Ea; Pa; Ia;Ra;QaÞ ! ðS; E;P � 1; I þ 1;R;QiÞ at rate a2P ð24Þ

ðSa;Ea; Pa; Ia;Ra;QaÞ ! ðS; E;P; I � 1;Rþ 1;QiÞ at rate gI ð25Þ

ðSa; Ea; Pa; Ia;Ra;QaÞ ! ðS; E � 1; P; I;R;Qi þ 1Þ at rate dpiQðxÞEi ð26Þ

ðSa;Ea; Pa; Ia;Ra;QaÞ ! ðS; E;P � 1; I;R;Qi þ 1Þ at rate dpiQðxÞPi ð27Þ

ðSa;Ea; Pa; Ia;Ra;QaÞ ! ðS; E; P; I � 1;R;Qi þ 1Þ at rate dpiQðxÞIi ð28Þ

ðSa;Ea; Pa; Ia;Ra;QaÞ ! ðS;E; P; I;Rþ 1;Qi � 1Þ at rate rQ: ð29Þ

In our analysis we assume that any OOHI policy is implemented against the background of

continuously applied within-household isolation policies. Under a within-household isolation

policy, individuals isolated within their own home on testing positive for COVID-19. This

reduces the intensity of between-household social contacts for detected infectious individuals.

From the perspective of a susceptible individual, this will manifest as a reduction in the

amount of between-household infection they are exposed to, which in turn manifests on the

population level as a reduction in the epidemic growth rate. In our analysis of OOHI we cali-

brate the model to the estimated growth rate in the UK during August 2020, at which time self

isolation policies were in place. Fitting the between-household transmission parameter βext to

this growth rate will implicitly account for the impact of within-household isolation. While

our model could be adapted to perform a direct simulation of within-household isolation, with

isolated individuals remaining within their own household but contributing nothing to the

between-household force of infection, calibrating such an analysis to a growth rate estimated

while within-household isolation policies were in place would effectively mean modelling the

impact of these policies twice over.

Given uncertainty over how quickly cases can be detected and how likely individuals may

be to isolate, we look at a range of scenarios with detection rates varying between 0.01 (detec-

tion takes on average ten days following infection) and 1 (detection takes on average one day

following infection) and probability of isolation varying between 0 and 1. To estimate the per-

centage of each age group shielding, we used ONS shielding data by age cohort for England
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between July 9th and July 16th 2020 [52], divided by population estimates for England from

mid 2019 to April 2020 [54]. Our between-household mixing rate is fit to a growth rate of neg-

ative 1%, corresponding to estimates from the UK around August 2020 [63], and our simula-

tions are initialised with a prevalence of 1% and population immunity of 0.1%, consistent with

estimates from the same period [62]. Our simulation period covers 100 days, starting from the

introduction of the OOHI policy.

The results of this analysis are presented in Fig 7. In Fig 7a) and 7b), we plot the peak and

cumulative prevalences in the clinically vulnerable population as proportions of their values

when the OOHI policy is not implemented. Our simulations predict that these baseline values

will be 0.009% and 0.244% respectively, reflecting the negative growth rate we have calibrated

these simulations to. Fast detection and wide uptake of OOHI is projected achieve reductions

in peak prevalence of up to 50%, although even with high levels of uptake and intensive enough

surveillance to detect cases within a day of infection, OOHI is not predicted to reduce cumula-

tive prevalence in this group below 70% of its baseline level. This suggests an OOHI policy’s

main benefit will be in reducing acute strain on health systems, while doing little to directly

reduce total morbidity or mortality. In Fig 7c) and 7d) we plot the peak and cumulative pro-

portions of the less vulnerable adult population who are projected to enter OOHI over the

course of the simulation period. The population of the UK aged 20 and over as of 2018 is

approximately 50 million [64], so that a peak on the order of 10 − 5 corresponds to at least 500

people simultaneously in isolation, while a cumulative value on the order of 10−3 corresponds

Fig 7. Peak and b) cumulative prevalence among the clinically vulnerable population as a percentage of the baseline values

when (OOHI) is not implemented, and c) peak and d) cumulative proportion of less clinically vulnerable adults who enter

isolation during the simulation period as a function of detection rate of infectious cases and probability that a detected

individual enters isolation.

https://doi.org/10.1371/journal.pcbi.1010390.g007
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to around 50 thousand people entering isolation over the simulation period. Comparing Fig

7a) and 7c) suggests that increasing detection speeds and isolation probabilities reduces peak

prevalence in the vulnerable class faster than it increases the peak in number of people in isola-

tion, in the sense that the proportion of cases averted (i.e. one minus the peak prevalence as a

proportion of baseline) grows more quickly than the peak proportion of less vulnerable adults

in isolation. Comparison of Fig 7b) and 7d) indicate a similar pattern in cumulative values.

However, it is important to note that the probability that a detected case enters OOHI is

unlikely to be directly controllable by public health authorities, and so these plots should be

interpreted as suggesting a range of potential outcomes within a space of conceivable decision

parameters, rather than the outcome of a public health strategy which can be directly opti-

mised. In particular, high quarantine probabilities may be difficult to achieve in practice since

individuals acting as carers to clinically vulnerable individuals may not be able to isolate due to

those caring responsibilities.

Discussion

In this study we have introduced a new approach to modelling infections in the household

which is able to account for risk-stratified contact structures and response to infection. The

self-consistent equations formulation of our infectious disease dynamics made it amenable to

numerical analysis, unlike simulation-based approaches, allowing us to calibrate the within-

and between-household transmission to household-level and population-level data respec-

tively. The complex population structure of our model allows us to make predictions about the

impact of a range of NPIs, illustrated by the four analyses we have presented. Our comparison

of controls on transmission at the within- and between-household levels suggests that within-

household measures are likely to have a limited impact due to the high proportion of non-

household transmissions which characterise the spread of COVID-19. We also predict that

allowing single-adult households to form support bubbles is not associated with a dramatic

increase in transmission, offering a way to safely mitigate the impact of isolation during lock-

down periods. Our analysis of temporary pauses in lockdown measures suggests that any lift-

ing of measures is associated in an increase in cases, with triangular bubbles lasting two days

resulting in more cases than repeated two-household contact events. Finally, our analysis of

OOHI suggests that while external isolation can substantially reduce prevalence among clini-

cally vulnerable individuals, the rapid spread of infection means that with high rates of detec-

tion we expect to see potentially infeasible numbers of individuals asked to isolate outside of

their own home.

Our policy analyses made use of parallel computing to perform large numbers of simula-

tions over a wide range of parameters. This is particularly important when modelling novel

interventions whose impact is still uncertain. For instance, in our analysis of temporary pauses

in NPIs, we performed simulations over a range of levels of density dependence. While we

inferred the level of density dependence in within-household contacts from observational

data, it is not obvious whether contacts with visitors to the household will exhibit the same

behaviour, and our grid calculation approach allowed us to account for a spectrum of possibili-

ties. In the analysis of OOHI, we explicitly account for uncertainty both in the rapidity of

detection once a case develops, and the proportion of individuals who are able to isolate once

identified. Estimates in this form can support intervention planning by pointing to levels of

outreach or adherence which are necessary to drive infections below a specific threshold.

The modelling framework we have introduced here has several limitations, the main one

being the large population ensemble limit which characterises the self-consistent equations

framework. This large population assumption means our model is best suited to simulating
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populations consisting of lots of statistically similar units, as has been the case throughout this

study, where our population of interest consisted of all of the households in the UK. Our

model will be less effective when the population of interest consists of a small number units, or

units with greater variance in composition, as would be the case if we sought to simulate infec-

tious disease dynamics in a network of connected institutions such as the wards in a hospital,

the schools in an educational authority, or a country’s prison network. While none of these

example populations are households in the idiomatic sense, they all define a population of con-

nected units with distinct levels of within-unit and between-unit mixing, which is the defining

feature of a household-structured epidemic model [57]. A related limitation of our model is

the scaling of system size with household size. Because our system of self-consistent equations

requires one dimension for each possible system state, modelling large household sizes will

come with a substantial computational cost. Similarly, populations with a finer age stratifica-

tion or more complex divisions in terms of behavioural or clinical risk will require a model

with more age classes than we have considered here, which itself increases the number of pos-

sible epidemiological states for a single household and thus the overall system size. We came

up against these limits in our analysis of temporary bubble formation, where we ignored age

stratification so that our model could deal with large bubbles consisting of two or three house-

holds. This potentially reduced the accuracy of our analysis, since during the Christmas period

in the UK we could potentially see significant differences in contact behaviour between adults

and children because school holidays around Christmas typically last for two weeks, as

opposed to the three days of public holidays (December 25th and 26th as well as January 1st)

which occur in this period. Extending the domain of applications of our model to populations

with larger household sizes or finer risk structures will require us to address the computational

limits of our model through further developments to our software implementation.

Another important factor to consider is the role of overdispersal in transmission, which has

been observed as highly important for COVID-19 [65]. While households models naturally

build some overdispersal into their next generation matrices due to stochastic effects within

households [28], it may be possible to extend our model to consider additional heterogeneity

in between-household mixing as considered by Ball et al. [66], although in this case we would

expect significant additional dimensionality to the differential equation system describing the

temporal dynamics.

An inherent requirement of our model is access to an accurate estimate of the household

composition distribution of the population of interest. In the UK this is publicly available from

the Office for National Statistics, although at the time our study was conducted the most recent

estimates were from the 2011 census and will not reflect changes in the UK’s demography

which may have occurred since then, and this may reduce the accuracy of some of our model’s

projections. Calibrating our model requires access to estimates of both the epidemic growth

rate and the SITP, which in turn rely on accurate reporting and surveillance of infection. In

particular, forming an estimate of the SITP requires close surveillance of infections by house-

hold, which in the UK came as part of a large and unprecedented study [30]. This potentially

limits our capacity to calibrate the within-household transmission dynamics to other national

settings, particularly in cases where we expect social structures to differ dramatically from the

UK.

In our policy analyses we have paid limited attention to questions of compliance to disease

control regulations. Our analysis of support bubbles assumed that only eligible households

would form bubbles, and that these bubbles would conform to the basic format laid out in the

policy guidelines (one eligible household bubbling with one other household). Similarly, while

our analysis of short-term bubbling over Christmas 2020 assumed full uptake of all mixing

allowances, it also assumed that no households mixed with more households than they were
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permitted to. These assumptions of perfect compliance to regulations are unlikely to account

for the full range of responses to a given policy announcement. However, while our model

structure inherently requires the number of possible responses to a given policy to be finite,

there is no reason why these analyses could not be extended to include a richer variety of

responses which do not necessarily conform to the letter of the law. As with most extensions to

our model, a wider range of responses to policy has the potential to dramatically increase sys-

tem size, and so a balance needs to be struck between capturing realistic behaviours and retain-

ing a tractable model. We emphasise here that our parameter sweeps are intended to explore a

range of possible responses to a given policy, rather than to illustrate the outputs of a control

problem which can be tuned to a desired outcome. By simulating this range of responses, our

model can provide upper and lower bounds on the potential impact of a policy and point to

specific policies which may be more or less fruitful than others, as we saw in our analysis of

controls within- and between-household transmission.
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