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Abstract

Changes in the frequency content of sounds over time are arguably the most basic form

of information about the behavior of sound-emitting objects. In perceptual studies, such

changes have mostly been investigated separately, as aspects of either pitch or timbre.

Here, we propose a unitary account of “up” and “down” subjective judgments of frequency

change, based on a model combining auditory correlates of acoustic cues in a sound-

specific and listener-specific manner. To do so, we introduce a generalized version of so-

called Shepard tones, allowing symmetric manipulations of spectral information on a fine

scale, usually associated to pitch (spectral fine structure, SFS), and on a coarse scale,

usually associated timbre (spectral envelope, SE). In a series of behavioral experiments,

listeners reported “up” or “down” shifts across pairs of generalized Shepard tones that dif-

fered in SFS, in SE, or in both. We observed the classic properties of Shepard tones for

either SFS or SE shifts: subjective judgements followed the smallest log-frequency

change direction, with cases of ambiguity and circularity. Interestingly, when both SFS

and SE changes were applied concurrently (synergistically or antagonistically), we

observed a trade-off between cues. Listeners were encouraged to report when they per-

ceived “both” directions of change concurrently, but this rarely happened, suggesting a

unitary percept. A computational model could accurately fit the behavioral data by com-

bining different cues reflecting frequency changes after auditory filtering. The model

revealed that cue weighting depended on the nature of the sound. When presented with

harmonic sounds, listeners put more weight on SFS-related cues, whereas inharmonic

sounds led to more weight on SE-related cues. Moreover, these stimulus-based factors

were modulated by inter-individual differences, revealing variability across listeners in

the detailed recipe for “up” and “down” judgments. We argue that frequency changes are

tracked perceptually via the adaptive combination of a diverse set of cues, in a manner

that is in fact similar to the derivation of other basic auditory dimensions such as spatial

location.
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Author summary

As we speak or play music, the sounds we produce change their frequency content over

time. Perceiving such frequency changes is crucial to e.g. differentiating vowels and

understanding prosody in speech, or following melodies in music. Traditionally, such fre-

quency changes have been described as perceptual changes in “pitch” or “timbre”, with

some contradictory experimental findings as to the independence between such dimen-

sions. Here, we study frequency change perception by generalizing a classic auditory stim-

ulus, the so-called Shepard tones, in order to concurrently manipulate acoustic cues to

pitch and timbre in fully symmetric and parametric manner. Our main conclusion is that

listeners use a compound perceptual dimension to achieve the ecological task of tracking

frequency-change across sounds. Interestingly, this dimension can be modeled as an

adaptive combination of acoustic cues, weighted according to task demands and listener-

specific biases. In addition to suggesting a resolution for discrepancies in the pitch litera-

ture, our model reveals basic analogies between the seemingly mysterious concepts of

“pitch” and “timbre” and other perceptual dimensions, such as auditory space, which have

long been known to be derived from cue combination.

Introduction

One of the most fundamental tasks of the auditory system is to track changes across sounds as

they form sequences over time. For instance, in speech, the “ups” and “downs” of prosody

carry information about emotion, about whether a sentence is affirmative or interrogative, or

even about the meaning of words in tonal languages [1]. In music, the “ups” and “downs” of

melodies constitute the major structural factor for most musical idioms around the world [2].

Both prosody and melody are traditionally described as perceptual “pitch” patterns, isomor-

phic to changes in the acoustic periodicity of sounds. However, in spite of centuries of intense

scrutiny, the precise nature of the auditory cues determining pitch in the general case has

remained elusive, with many additional candidates beyond periodicity [3–5]. Moreover, in the

perceptual domain, the independence of pitch from other perceptual attributes such as timbre

has been recently challenged [6–10]. Here, we explore a unifying hypothesis, suggesting that a

salient perceptual dimension on which sounds can be ordered from “low” to “high” is in fact a

compound construct, seamlessly derived by listeners from the combination of distinct auditory

cues, each adaptively weighted in a manner that can be sound-dependent and listener-specific.

In the following experiments and modeling, we investigated two main types of acoustic

cues: spectral fine-structure cues (SFS) and spectral envelope cues (SE). Such a dichotomy is in

part motivated by the standard source-filter model of sound production [11, 12], whereby an

excitatory source generates a signal which is then filtered by resonant bodies. For the voice, the

source would be vocal cords and the filter the vocal tract. For a musical instrument such as the

violin, the source would be strings and the filter the body of the violin. There is an approximate

mapping between source and SFS on the one hand, and filter and SE on the other hand.

Sources constrain SFS, for instance for periodical excitatory motion that produce harmoni-

cally-related frequency components with frequencies at multiples of a fundamental frequency

(f0). In contrast, filters constrain SE, through resonances that shape the global amplitude pro-

file of the frequency spectrum. Our choice of SFS and SE is also motivated by perceptual con-

siderations. Harmonicity in SFS, equivalent to periodicity, has long been associated to pitch,

and may also explain the pitch of inharmonic sounds [13]. SE cues are thought to affect timbre

and source recognition [14, 15]. In particular, the balance of low vs. high energy imposed by
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SE is associated to a timbre dimension termed brightness [16, 17]. However, as we will now

briefly review, there is also a growing amount of evidence that SFS and SE interact for pitch

perception, and that the distinction between pitch and brightness may not be as clear-cut as

initially thought.

An often-quoted definition of pitch was formalized by the American National Standards

Institute (ANSI): “That attribute of auditory sensation in terms of which sounds may be

ordered on a scale extending from low to high.” [18] The full ANSI definition continues by

stating that: “Pitch depends mainly on the frequency content of the sound stimulus, but it also

depends on the sound pressure and the waveform of the stimulus”. A parallel ANSI definition

exists for timbre: “That attribute of auditory sensation which enables a listener to judge that

two nonidentical sounds, similarly presented and having the same loudness and pitch, are

disimilar. NOTE-Timbre depends primarily upon the frequency spectrum, although it also

depends upon the sound pressure and the temporal characteristics of the sound.” [18] It is

noticeable that, by stating that pitch or timbre basically depend on the waveform of a sound,

these definitions could accommodate each and every acoustic feature as a determinant of per-

ception. There is also a clear overlap between the two definitions. Perhaps as a result, reviews

of the pitch and timbre literature have repeatedly pointed to their limited utility [19, 20]. One

of the goals of the present work is to provide a modeling framework based on the theoretically

grounded idea of optimal cue combination [21, 22] to formally quantify the contribution of

acoustic and auditory cues to the perception of frequency changes, whether cast as pitch or

timbre.

The idea that a pitch scale may be constructed from multiple cues is not new and predates

even the ANSI definition cited above. For harmonic sounds, for instance, Bachem [23] intro-

duced the now classic distinction between “pitch chroma”, a circular dimension repeating at

the octave, and “pitch height”, a linear dimension following absolute frequency (see also [13,

24]). Pitch has been further qualified, with notions of “virtual pitch”, “spectral pitch”, “melodic

pitch” introduced for various combinations of SFS and SE cues [25–27]. For inharmonic

sounds, recent results by McPherson and McDermott add yet additional candidate cues to try

and explain pitch judgements [28]. Using a variety of tasks usually understood as involving

pitch, such as pitch discrimination, melodic contour identification, or interval judgments, the

authors concluded that pitch judgements were in fact based on multiple mechanisms operating

concurrently, such as the computation of f0 from SFS cues for harmonic sounds, and the track-

ing of SE cues for inharmonic and harmonic sounds (see also [29]). Previously, frequency-

shift detectors tracking local changes in SFS cues had also been evidenced [30], providing yet

another mechanism contributing to “up” or “down” pitch judgements available for harmonic

and inharmonic sounds alike [31]. Surprisingly, in spite of this history of experimental and

theoretical arguments, there is currently no model implementing the straight-forward idea of

cue combination in a quantitative computational framework.

Another line of evidence further suggesting that pitch judgments may be based on more

than one type of acoustic cue is found in studies where SFS and SE cues were combined in an

antagonistic manner. The experimental findings using such paradigms appear contradictory

so far. Small simultaneous SFS and SE changes can be processed largely independently by

some listeners at least [32, 33] while timbre judgments involving SE are largely unaffected by

changes in SFS [34]. However, it is also the case that SFS and SE cues interfere in discrimina-

tion experiments with adult listeners, such that simultaneous variation in timbral brightness

impairs pitch discrimination, and vice versa [8, 35–38]. Interestingly, there exist recent reports

of 3 and 7 month infants being “immune” to the interaction of SFS and SE [39], suggesting a

role for long-term auditory learning in the interaction [40, 41]. One ecological interpretation

for such a learnt interaction between SFS and SE may be the actual coupling of f0 and SE

PLOS COMPUTATIONAL BIOLOGY A unitary model of auditory frequency change perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010307 January 12, 2023 3 / 30

https://doi.org/10.1371/journal.pcbi.1010307


observed for natural sounds, underlining limitations of the classical source-filter physical

model [42].

Finally, an intriguing synergy between SFS and SE cues has been revealed through the

crossmodal correspondence of auditory pitch with the spatial dimension of height. Empiri-

cally, it has been shown that “high” pitches are spontaneously associated with high spatial ele-

vation [43, 44]. However, while the association is strong in Western musicians and parallels

the way Western musical notation represents pitch, recent work suggests that listeners without

musical training only exhibit such spatial association effects for frequency changes consisting

of coupled SFS and SE shifts, but not for one-dimensional shifts alone [6].

We now turn to the distinction that is conventionally made between pitch and timbre,

and especially timbral brightness. An intuitive definition of pitch, in addition to the “low” to

“high” scale, is that it is “that attribute of sounds of which melodies are made” [26, 45]. How-

ever, pitch may not be the only perceptual dimension with which melodies can be made of. A

number of studies have now revealed strong and unexpected commonalities between the per-

ception of SFS and SE in sequences akin to melodies. These include the recognition of familiar

tunes based on brightness alone [46] or the accurate discrimination of melodic patterns for

both pitch and brightness [31, 47, 48]. These commonalities stand in sharp contrast with the

qualitative differences observed between e.g. pitch and loudness sequences [49, 50]. Further-

more, even though melodies are only conceived in terms of pitch changes for Western tonal

music, musical idioms outside of Western culture do use “melodies” made out of timbral

changes, such as throat singing or jaw’s harp in East Asia, or the musical bow in Africa [51]. In

all of these musical techniques, a fixed SFS is being modulated by changes in SE, incompatible

with the traditional Western musical definition of melody. These observations cast further

doubt on the long-held but perhaps arbitrary distinction made between pitch and brightness

as separate perceptual correlates of sound sequences with dynamically-changing frequency

content.

In the present study, we introduce a generalized version of Shepard tones [52] to further

address the role of SFS and SE cues on judgements of frequency change on a “low” to “high”

scale. Shepard tones were originally designed to tear apart the contributions of chroma and

pitch height cues to pitch perception [24, 52–54]. They consist of octave-spaced pure tone

components, defining chroma, with a fixed bell-shaped spectral envelope, defining height. A

sequence of Shepard tones with increasing chroma is cyclic, as a full octave shift is acoustically

identical to no shift at all. Such sequences give rise to the famous Shepard scale illusion, that is,

a sequence of tones with seemingly continually ascending or descending pitch. Shepard tones

were also found to produce ambiguous frequency shift judgements for half-octave shifts. Typi-

cally, listeners’ responses were split between upward and downward shifts for the same sound

in this so-called tritone paradox [52, 54]. Finally, the pitch percept associated to ambiguous

shifts between Shepard tones can be strongly biased by preceding context [55, 56]. In the origi-

nal Shepard tones, only SFS is manipulated, while SE is kept constant. Interestingly, exactly

analogous findings for all of these observations were recently reported using SE changes

instead of SFS changes. Sounds were designed to have local SE shifts combined with a fixed,

harmonic SFS. This produced a Shepard scale illusion, a tritone paradox, and context effects

for SE cues [48].

The further generalization of Shepard tones we introduce here aims at independently

manipulating SFS and SE cues, in a symmetric manner and with the same cyclic topology,

both for harmonic and inharmonic sounds (Fig 1). We used the trick of even-to-odd harmonic

attenuation [57, 58] to obtain a circular SFS dimension with harmonic sounds. These tones

were coupled with an SE that was quasi-periodic along the frequency axis [48]. Combining

the resulting octave-circular SFS and octave-circular SE dimensions meant that the two
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dimensions were intrinsically comparable with regards to the size of shifts along each dimen-

sion. Furthermore, even though SFS and SE cues overlap in the general case, especially for

lower-rand harmonics, in our stimuli they could be distinguished in terms of spectral granu-

larity because the global spectral envelope removed the lower part of the stimuli. As a result,

the amplitude of the f0 component was negligible (see Fig 1) and the maximum separation

between individual harmonics (i.e., SFS cues) was a perfect fifth interval, whereas SE maxima

were separated by one octave. Finally, by jittering the frequency position of partial tones [28],

stimuli could also be made inharmonic.

The data collection was split into different experiments, each consisting of various stimulus

conditions. The experiments were run as several experimental sessions on different days, with

partial overlap of participants (see Methods for details). Experiment 1 tested whether these

generalized Shepard tones yielded classic Shepard properties. Participants were asked to report

“up” or “down” shifts across pairs of tones. Such subjective changes were described to partici-

pants as either changes in pitch or brightness, to test our core hypothesis that, irrespective of

semantic labels, consistent “up” or “down” judgments could be made irrespective of the cue

manipulated. Experiment 2 tested interference between SFS and SE shifts presented concur-

rently, in a synergistic or antagonistic manner, for harmonic and inharmonic tones.

Fig 1. Stimulus schematic for the generalized Shepard tones used in Exp. 1 and 2. (A) Spectral fine structure (SFS, blue) is illustrated here as a set of

harmonic components at integer multiples of a fundamental frequency f0. SFS could be shifted in 1-semitone (st) steps, while manipulating the

amplitude of odd harmonics at each step to induce perceptual circularity across a 12-st shift. Inharmonic stimuli were created by jittering the individual

frequency components around their nominal values. (B) Spectral envelope (SE, red) had peaks at octave-related frequencies superimposed with a fixed

bell-shaped envelope. SE could also be shifted in st steps and displayed exact acoustic circularity across a 12-st shift. (C) Example stimulus for a given

combination of SFS and SE. Frequency components are constrained by the SE (red line) and follow the harmonic series of the SFS and its even-odd

attenuation (indicated by blue lines). The resulting amplitude of the actual stimulus components is shown by black lines. Note that some components

are lower than their nominal SE amplitude, because of the even/odd attenuation. (D) Schematic depiction of example trial with two-dimensional shift of

6 st in the SFS dimension and 11 st in the SE dimension. After each trial, participants were asked to to judge whether the sound pair moved up, down,

both (up dominant), or both (down dominant). Stimuli for Exp. 3 were generated in a similar manner except that the SFS was not harmonic, but with

fixed distance on a log-frequency scale, allowing for exact acoustic circularity for a shift corresponding to their log-frequency distance.

https://doi.org/10.1371/journal.pcbi.1010307.g001
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Importantly, to test whether two explicit perceptual dimensions were simply competing during

the judgements, participants had the opportunity to report whether they perceived “both”

directions of change concurrently. This rarely happened. Experiment 3 tested whether the

observed effects generalized to an SFS with a different spacing of partial tones. Finally, to pro-

vide a synthetic interpretation of the rich but complex behavioral dataset and quantify the

auditory cues compatible with the observed perceptual data, we used a computational model

combining both SFS-related and SE-related cues. Fitting the model to each listener in each

condition revealed common stimulus-based factors as well as inter-individual effects, charac-

terizing the recipe for “up” vs. “down” judgments in a novel degree of detail. Overall, we sug-

gest that auditory frequency change perception is based on an adaptive combination of a

diverse set of cues.

Results

One-dimensional shifts of harmonic and inharmonic sounds

In Exp. 1, we tested the perception of one-dimensional SFS or SE shifts for generalized Shepard

tones as described in Fig 1. Pairs of sounds to be compared perceptually were presented on

each trial, with shifts of SFS or SE between 1 and 11 semitones (st) introduced across the two

sounds of the pair. Because of the design of the stimuli, a shift of 12 st is equivalent to no shift

at all, so all possible shift values were effectively sampled at a 1 st resolution. In addition, har-

monic and inharmonic SFS were both tested. Inharmonic SFS was obtained by jittering the

nominal frequency values of individual frequency components of the harmonic SFS case of up

to ±50% of the frequency of f0 according to a uniform distribution, while keeping the jitter val-

ues fixed across the two sounds within a trial. Blocks of trials were constructed for each stimu-

lus condition (SFS harmonic, SFS inharmonic, SE harmonic, SE inharmonic) and all shift

values were randomly presented within a block. Listeners were asked to report whether they

heard the sound pair moving “up” or “down”, with the instructions specifying that the changes

could be characterized as either pitch or brightness.

Results are shown in Fig 2. As expected, we obtained a general trend of increasing “down”

responses as a function of shift size in all cases. In most cases, the increase was monotonic,

with the most notable exception being the inharmonic SFS shifts. In the latter condition, we

observed an increase of the proportion of “down” responses up to 6 st, followed by an unex-

pected u-shaped pattern of scores from 6 to 11 st. For SE shifts, there was also a tendency to

Fig 2. Proportion “down” responses for one-dimensional shifts of Exp. 1 for harmonic (A) and inharmonic (B)

Shepard sounds. Colored lines correspond to the fitted GLME model. Black vertical lines indicate 95% confidence

intervals across participants obtained by bootstrapping.

https://doi.org/10.1371/journal.pcbi.1010307.g002
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plateau or even reverse the general trend for extreme shifts smaller than 2 st or larger than 10

st. For these shifts, the increasing width of error bars for SE shifts also indicates less agreement

among participants. In all cases, however, the results displayed a hallmark feature of Shepard

tones: shifts of 6 st yielded ambiguous responses (around 50% “down”, 50% “up”), thus provid-

ing a first indication that our generalization of Shepard tones to SFS and SE shifts, harmonic

or inharmonic, was successful.

The raw data were fitted by a general linear mixed-effects (GLME) model, corresponding to

a logistic regression approach with by-participant and by-item intercepts. The shift size factor

was coded as numerical variable and all categorical variables were effects coded (see Methods

and supplementary Table A in S1 Text for details). The colored lines in Fig 2 correspond to the

fixed-effects predictions of the GLME model. Specifically, the model did not indicate a main

effect of shift type, SFS vs. SE (β = 0.01 [−0.08, 0.1], p = .87) but confirmed a clear effect of shift

size (β = 0.31 [0.30, 0.32], p< .001). Further, the GLME confirmed interactions between har-

monicity and shift type (β = −0.52 [−0.61, −0.43], p< .001), harmonicity and shift size (β =

0.06 [0.04, 0.07], p< .001), as well as harmonicity, type, and size (β = 0.1 [0.08, 0.11], p<
.001). The latter interaction corresponded to the shallower slopes for SE shifts compared to

SFS shifts for harmonic sounds and the reversal of that pattern for inharmonic sounds. This

three-way interaction indicated that harmonicity mediated the strength of the shift percept

for one-dimensional SFS and SE shifts: SFS shifts were more clearly discernible for harmonic

sounds whereas SE shifts became clearer for inharmonic sounds.

Two-dimensional shifts of harmonic and inharmonic sounds

In Exp. 2, we set out to explore the perception of two-dimensional shifts with SFS and SE com-

bined, and sometimes pitted against each other. In this experiment, shifts were concurrently

introduced in both SFS and SE, with independent shift values for SFS and SE. We sampled

three shift values for each type of cue: 1, 6, and 11 st, providing nine different 2D combinations

of shifts for either harmonic SFS or inharmonic SFS. Importantly, on each trial, listeners

were allowed to report whether they perceived both directions of change concurrently. Four

response options were thus provided: “up”, “both (up dominant)”, “both (down dominant)”,

and “down”. If listeners explicitly weighed pitch and brightness judgements to provide their

response, then a large proportion of “both” responses should be observed when SFS and SE

shifts were in opposite directions. Conversely, if they simply used a perceptual “low” to “high”

scale by implicitly combining SFS and SE cues on a unitary perceptual dimension, little or no

“both” responses should be observed. Results showed that “both” responses were not clustered

around the antagonistic 1/11 and 11/1 shifts but rather distributed across conditions. In fact,

“both” responses were only observed for a relatively small fraction of the trials (on average 8

and 14 percent of overall responses for synergistic and antagonistic trials with harmonic

sounds, respectively; and 10 and 19 percent of responses for synergistic and antagonistic trials

with inharmonic sounds; see supplementary Fig A in S1 Text). For comparison with Exp. 1,

responses were thus aggregated as either “up” (“up” together with “both (up dominant)”) or

“down” (“down” together with “both (down dominant)”). The resulting patterns of response

are shown in Fig 3. Visual inspection of this Fig 3 suggests that the effect of SE shifts was

smaller than the effect of SFS shifts for harmonic sounds, but SFS and SE shifts had similar

effects for inharmonic sounds. Interestingly, shifts of 6 st along the SE dimension (shift “SE6”)

appeared to yield a reduced effect of SFS for harmonic sounds and a complete lack of an effect

for inharmonic sounds (Fig 3B). Furthermore, incongruent SFS and SE shifts appeared to

exactly cancel out for inharmonic sounds, with SFS1-SE11 and SFS11-SE1 shifts producing

around 50% “down” responses.

PLOS COMPUTATIONAL BIOLOGY A unitary model of auditory frequency change perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010307 January 12, 2023 7 / 30

https://doi.org/10.1371/journal.pcbi.1010307


A similar GLME model as in Exp. 1 was fitted to the data (see equations in Table B in S1

Text). The model suggested that listeners tended to perceive harmonic sound pairs more fre-

quently as moving “down” compared to inharmonic shifts (β = − 0.39 [−0.49, −0.3], p< .001).

There were strong main effects of SFS (β = 0.25, [0.23, 0.26], p< .001) and SE (β> 0.7, [0.57,

0.83], p< .001), the latter parametrized by the two factors SE1/11 and SE6/11 that used effects

coding to contrast shifts SE1 and SE6 with SE11, respectively. Different types of regressors

were used for SFS and SE variables in order to account for the interactions of SFS and SE fac-

tors with different slopes of SFS for the SE6 level compared to the other SE levels (see Fig 3 and

next paragraph for an alternative model). Importantly, the effects of SFS shifts were markedly

greater for harmonic sounds compared to inharmonic sounds as indicated by a harmonicity-

SFS interaction (β = 0.09 [0.08, 0.11], p< .001). To the contrary, the difference between the

SE1 and SE11 shifts were enhanced for inharmonic sounds as indicated by a harmonicity-SE1/

11 interaction (β = 0.22 [0.07, 0.37], p = .004). Further, the SFS factor interacted with both the

SE1/11 factor (β = 0.06 [0.03, 0.08], p< .001) and the SE6/11 factor (β = −0.14 [−0.16, −0.12],

p< .001), which reflected the drastically reduced effect of SFS for SE6 shifts, that was even

close to zero for inharmonic sounds.

The GLME model above used different predictors for the SFS and SE factors to account for

interactions. To quantitatively compare both factors, we also ran a GLME with numerical pre-

dictors for both variables. This model indicated that SFS shifts indeed yielded larger main

effects (β = 0.22 [0.20, 0.25], p< .001) compared to SE (β = 0.12 [0.10, 0.14], p< .001). At the

same time, SFS shifts also depended positively on harmonicity (β = 0.09 [0.07, 0.12], p< .001),

whereas the harmonicity-SE interaction was weaker and in the opposite direction (β = 0.03

[−0.06, −0.01], p = .005). Thus, SFS had stronger effects compared to SE, but the effect of SFS

was reduced for inharmonic sounds, whereas the effect of SE was only slightly greater for

inharmonic sounds compared to harmonic sounds.

In sum, the two-dimensional shifts of Exp. 2 showed a dominance of SFS cues for harmonic

sounds, but an increase of the contribution of SE cues for inharmonic sounds. This is coherent

with the one-dimensional shifts of Exp. 1, where SFS responses had steeper slopes than SE

responses for harmonic sounds, whereas SE responses had steeper slopes than SFS responses

for inharmonic sounds. Importantly, for inharmonic sounds, we observed a cancellation effect

of incongruent SFS and SE shifts. To confirm that this pattern of responses was not due to the

specific kind of inharmonicity induced by the linear jittering operation together with the odd-

Fig 3. Proportion “down” responses for two-dimensional shifts of Exp. 2 for harmonic (A) and inharmonic (B)

Shepard sounds. Colored lines indicate the fixed effects of the GLME model. Black vertical lines indicate 95%

confidence intervals obtained by bootstrapping.

https://doi.org/10.1371/journal.pcbi.1010307.g003
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even attenuation, we conducted Exp. 3 using a potentially more simple, yet still inharmonic

partial series.

One- and two-dimensional shifts with log-equidistant partials

In Exp. 3, we replaced the linearly-spaced partial series by a partial series, in which all partials

were spaced 4 st apart (i.e., equidistant on a logarithmic frequency scale), such that there were

three partials per octave and the resulting SFS shift was 4-st periodic. This can be viewed as a

compressed version of the octave-spaced original Shepard tones. Such a choice was motivated

by the need to sample accurately enough the SE cues over a reasonable range of audible fre-

quencies. As a consequence, only three different SFS shifts could be tested: 1 st (up), 2 st

(ambiguous), and 3 st (down). These are conceptually equivalent to the three shifts tested in

Exp. 2. The SE cues were kept identical as for Exp. 1 and 2, with an octave spacing between

peaks and hence 12-st circularity. For the SE cues, shifts of 1 st (up), 6 st (ambiguous), 11 st

(down) were used. Exp. 3A paralleled Exp. 1, as we tested one-dimensional shifts with 1, 2, 3 st

shifts for the SFS cues or, separately, 1, 6, 11 st shifts for the SE cues. Exp. 3B paralleled Exp. 2,

as we tested 2D shifts along both the SFS and SE cues concurrently. The methodological details

were otherwise identical between Exp. 1 and Exp. 3A, and between Exp. 2 and Exp 3B.

Fig 4 shows the results for both Exp. 3A and 3B, following the convention of previous fig-

ures. For Exp. 3A, the GLME fit indicated an effect of shift type, SFS or SE (β = − 0.92 [−1.23,

−0.61], p< .001) and shift size in st (β = 1.28 [1.13, 1.42], p< .001). Both effects are qualified

by a strong interaction between shift type and size (β = 0.52 [0.37, 0.66], p< .001), suggesting

a stronger effect of SFS cues compared to SE cues. For Exp. 3B, again we observed a relatively

small fraction of trials for which “both” responses were provided (on average 13 percent of

responses for synergistic trials and 23 percent of responses for antagonistic trials, see Fig A in

S1 Text for details). Using a similar analysis method as for Exp. 2, we again obtained an inter-

action between the SFS and SE factors. Besides effects of SFS and SE (see Table D in S1 Text

for details), there was a robust interaction between the SFS and SE6 factor (β = −1.0 [−1.14,

−0.86], p< .001), corresponding to the lack of effect of SFS shifts for SE6 shifts, but enhanced

differences for SE11 shifts. Overall, Exp. 3 confirmed the interaction between SFS and SE cues

in perceptual judgments and suggested that SE cues were robust in 2D shifts for a broader

class of inharmonic sounds compared to those tested in Exp. 1 and 2.

Fig 4. Proportion “down” responses in Exp. 3 with log-equidistant partials for one-dimensional shifts (A) and

two-dimensional shifts (B). Colored lines indicate the fixed effects of the GLME model. Black vertical lines indicate

95% confidence intervals obtained by bootstrapping.

https://doi.org/10.1371/journal.pcbi.1010307.g004
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Computational modeling

Rationale

Our stimuli were constructed along two acoustic dimensions, SFS and SE, and included har-

monic sounds and two types of inharmonic sounds. The different conditions tested com-

bined shift type (SFS, SE) with harmonicity (harmonic, inharmonic), with the full factorial

set of conditions studied. To provide a synthetic understanding of such a rich dataset, we

now turn to computational modeling. Based on previous results [5], one may broadly differ-

entiate three types of candidate auditory cues (in contrast to the acoustic dimensions used for

the stimulus design) that could underlie the perceptual judgements of listeners. First, listen-

ers could have extracted a single pitch estimate for each sound in a trial, and compared the

estimates across the two sounds of a trial. Such a pitch estimate is broadly assumed to be

based on periodicity extraction, or, equivalently, f0 estimation by matching harmonic tem-

plates to the SFS [5]. Second, listeners may have extracted frequency-shifts between individu-

ally resolved frequency components, that is, frequency components that are represented by

distinct neural populations after peripheral auditory filtering in the cochlea [30, 59]. These

frequency-shifts could be computed across pairs of components over the two sounds in a

trial by a population of frequency-shift detectors and the dominant output from the popula-

tion could then be taken as the direction of perceptual shift. Equivalently, such cues from

resolved frequency components may also be related to so-called spectral tracking [28].

Third, listeners may compare the broad spectral peaks defined by the unresolved frequency

components, that is, frequency components exciting overlapping neural populations after

peripheral auditory filtering. These unresolved harmonics can provide coarse-grained spec-

tral cues such as formants and have been shown to act as an important basis for timbre pro-

cessing [12, 60, 61].

We implemented a relatively simple computational model to estimate these three types of

cues (see Fig 5 and Methods section for details). For a fair comparison, all cues were estimated

after a common front-end simulating peripheral frequency filtering at the level of the cochlea,

to provide an “auditory representation” capturing some features of the neural representation

available to the auditory system. The front-end chosen was a standard Gammatone auditory

filterbank decomposition [62–64]. The first cue was based on the extraction of peaks in the

autocorrelation (AC) function over time at the output of each Gammatone filter, summed

across all filters, implementing a standard model of pitch estimation [5]. For the second and

third cues, we computed the “excitation pattern” produced by each sound. Excitation patterns

are a spectral representation of sound with frequency resolution matched to auditory periph-

eral filtering. They were computed here as the root-mean square of the output of each Gamma-

tone filter over time. To determine the dominant direction of frequency shift in a given trial,

we cross-correlated the excitations patterns for the two sounds of the trial and computed the

center of mass (on the frequency axis) of this function. For the second cue, which was broadly

conceived to capture resolved partials (CCres), the cross-correlation was computed for the

low-frequency part of the excitation patterns. For the third cue, which was conceived to cap-

ture unresolved components (CCunres), the cross-correlation was computed for the high-fre-

quency part of the excitation patterns. The frequency limit was conservatively chosen at ten

times the geometric mean of the range of f0 used in the experiment (905 Hz), corresponding to

the average frequency of the tenth partial component of the test sounds. Other choices of fre-

quency limits yielded qualitatively and quantitatively very similar results, indicating that the

model did not critically rely on this choice.

These three types of auditory cues, AC, CCres, and CCunres, can be approximately mapped

to the SFS and SE acoustic dimensions manipulated in the experiments. The AC cue should be
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impacted by changes along both SFS and SE dimensions. The CCres cue focuses on a region

that is known for having a dominant impact on pitch [5]. Cross-correlation is not a standard

way to estimate pitch, however, so our computation may be best understood in terms of local

frequency-shift detectors based on SFS, rather than as a global pitch estimate. The CCunres

cue is the one most directly related to SE as conceived in timbre models of e.g. brightness

[16]. To check for these a priori mappings, correlations between the three different auditory

cues, and between the cues and behavioral data, will be presented together with the modeling

results.

Finally, because the behavioral data showed that listeners mostly provided a unitary esti-

mate of “up” or “down” shift, we integrated all three cues in an additive decision model [22].

To this aim, the three cues were normalized by their variance and integrated as part of a

weighted sum, such that the model yielded a single “up” or “down” decision on every trial. The

model was then fitted by optimizing the correlation between the model and individual partici-

pants per experimental condition. The optimization procedure was a simple grid search. Fig

5B depicts the resulting parameter space and Fig 5C illustrates the grid search.

Fig 5. (A) Schematic of cue computation and integration, illustrated with a pair of harmonic sounds shifted by 11 and 1 st along the SFS and SE

dimension, respectively. For the AC cue, autocorrelations within each auditory band are computed and subsequently summed across bands. From the

resulting summed autocorrelation function, peaks are extracted from a search range corresponding to 64–128 Hz (gray patch) and subtracted, yielding

an estimate of the periodicity difference of the two sounds; positive differences indicate downward movement. CC cues are computed using the rms-

energy of bands across time, followed by a logarithm (conversion to level-domain) and thresholding below -30 dB peak level. The CCres cue considers

the presumably resolved part of the excitation pattern below 905 Hz (geometric mean of the frequency of the 10th partial component across Exps. 1 and

2); the CCunres cue considers the unresolved part above that frequency limit. For both types of cues, the remaining excitation patterns are cross-

correlated and the centroid (first moment) is computed in a search range (gray patches). Positive centroids indicate downward movement. Cues are

integrated in a weighted sum (positive sum coded as “down”). (B) Possible cue weightings of sum one. (C) Cue weights projected onto x-y plane; the

farther a point’s distance to a specific edge, the less weight the respective cue receives. The corresponding model fit is displayed on z-axis for one human

listener’s results in the inharmonic SFS-EN condition. The dashed line shows the optimal weights for this example.

https://doi.org/10.1371/journal.pcbi.1010307.g005
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Modeling results

Across all experiments, all three auditory cues turned out to be relatively independent from

each other. Computing the inter-cue correlation across all simulated trials of the three experi-

ments indicated no relation between the AC cue with any of the two CC cues (p> .26). A

weak, yet non-negligible linear relation was only observed between CCres and CCunres (r =

.22, p< .0001). The low inter-cue correlation thus validates the a priori hypothesis that AC,

CCres, CCunres cues captured qualitatively different aspects of the experimental stimuli. As

these cues can be approximately mapped to stimulus dimensions, this relative independence

further validates our terminology distinguishing SFS and SE as different spectral granularities.

To illustrate which aspects of the behavioral response patterns were captured by the model,

Fig 6 presents the average response patterns from listeners together with the model average

Fig 6. Model results and human listeners across all experiments. The y-axis shows the proportion of “down” responses. The x-

axis indicate shift size; for two-dimensional shifts, pairs indicate shifts along the SFS and SE dimension, respectively. The rows index

the properties of the fine structure (harmonic, inharmonic (Exps. 1&2) and log-equidistant (Exp. 3). The columns index the shift

type, one-dimensional SFS or SE, and two-dimensional SFS-SE with average data from human listeners and the model plotted in

thick and thin colored lines, respectively. Raw predictions from the AC, CCres, and CCunres cues as indicated in the legend. R2

values for correlation between average model and empirical data (omitted for log-equidistant SFS and SE shifts of Exp. 3 due to

insufficient number of shifts). R2 values for raw cues are provided in Table E in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010307.g006
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across all individually fitted models. The harmonic conditions, for SFS, SE, or two-dimen-

sional SFS-SE shifts, yielded excellent fits with beyond 95% of shared variance between model

and human data. In the inharmonic conditions, we still obtained more than 85% of shared var-

iance for SFS shifts and more than 90% shared variance for SE and SFS-SE shifts. The most

challenging case to interpret with the model appeared to be the inharmonic SFS-SE condition,

with around 75% of shared variance. Furthermore, all three types of cues contributed in vari-

ous combinations across experimental conditions and listeners. This is demonstrated in Fig B

in S1 Text, depicting paired differences of model fit between the full model and reduced model

variants with fewer cues. The chosen model dimensionality thus seems necessary to fully

account for the present data.

Our modeling approach allowed us to investigate which cues enabled such high shared vari-

ance between the behavioral and modeling data, for each experimental condition. The corre-

sponding strength of the correlations between average human data and raw auditory cue

estimates is provided in Table E in S1 Text. Overall, the CCres cue appeared to be most versa-

tile, yielding significant correlations for all of the three shift types, SFS, SE, and SFS-SE. The

CCunres cue only yielded significant correlations for one-dimensional SE shifts. The AC cue

yielded high correlations for SFS and SFS-SE shifts but not for SE. Note that even for inhar-

monic SFS shifts, the AC cue shared 83% of the variance with the average empirical responses,

presumably highlighting the residual periodicity information comprised in shifts of inhar-

monic sounds.

To rule out the possibility that the success of the model to fit the behavioral data arose as a

consequence of overfitting, we fitted the same model to shuffled data obtained by randomizing

the indices of the shift size factor (using the same index randomization for all participants and

weightings) for 1000 distinct index permutations. If our results were merely a consequence of

overfitting through the optimization of cue weights, then the model should still successfully

be fitted to human data for shuffled cue values. Thus, we tested the hypothesis that the model

fitted with permuted shift indices achieved an equal or better fit (i.e., correlation) with the

empirical data compared to our actual model. The advantage of the actual model was highly

statistically significant, with corresponding p-values (i.e., proportion of positive trials in the

permutation test) negligible (p< .001) in all but the log-equidistant conditions, with p = .19

for SFS, p = .14 for SE, and p = .001 for SFS-SE (see Fig C in S1 Text for a visualization of the

corresponding test distributions). These conditions were also those with the least amount of

experimental data available. Hence, our model fitting procedure generally did not yield overfit-

ting, but rather allowed us to capture pertinent aspects of the auditory cues underlying percep-

tual responses.

Predictive power of the model estimated by cross-validation

So far, the model was able to fit satisfactorily all of the experimental data. We further wished

to investigate whether the model also had predictive power. We thus used a cross-validation

approach, training the model on part of the data and testing on unseen data. Because our

model was fitted to each participant and condition, unseen data can be defined as: (i) unseen

stimulus characteristics within a condition, that is, shift sizes; (ii) unseen participants; or (iii)

unseen stimulus conditions (e.g., harmonic vs. inharmonic sounds). Each choice has its own

merit, so we performed cross-validations with all three possibilities.

Fig 7A illustrates choice (i), by depicting R2 values between model and behavioral data for

the full set of n shifts as a function of the number of k shifts available for fitting (averaged

across the
� n
k

�
possible drawings of subsets). The figure shows that the models needed only
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limited information (i.e., number of available shifts for fitting) to achieve relatively high fit

with the behavioral data. Specifically, in almost all conditions model accuracy plateaued after

around half of shifts available for fitting. The harmonic SFS-SE appeared to be an exception to

this and only plateaued at seven out of nine shifts. For harmonic SFS shifts, participants

appeared to be more homogeneous in terms of the model fit (R2 > .5 for all participants). This

was not the case for inharmonic SFS shifts and harmonic/inharmonic SE shifts, where the

model yielded R2 values below 0.5 for a few participants. For two-dimensional SFS-SE shifts,

the fitted models generally closely matched individual response patterns, with only one partici-

pant yielding a poor fit for the harmonic SFS-SE condition. Note that evaluations of the log-

equidistant SFS and SE conditions are of limited value due to the small number of shifts.

Fig 7B illustrates choice (ii), showing the generalization performance when the model was

fitted to one participant and tested on another. For the harmonic-SFS condition, it is visible

that models generalize well across participants (with the one noted exception). This is less the

case for other conditions, suggesting that there were inter-individual differences in cue weight-

ing across listeners. These differences will be systematically described in the next section.

Finally, there is a practical complication with fully evaluating choice (iii), cross-validating

across conditions, because only four participants completed all experiment conditions. We

nevertheless present the cross-validation results for these four listeners as Fig E in S1 Text,

showing tentative generalization from this small sample.

Inter-individual differences in cue weighting

The model computed the same three auditory cues for all listeners, but allowed for inter-indi-

vidual differences in the weighting of these cues when fitting model predictions to behavioral

responses. To qualitatively illustrate the inter-individual differences across listener-fitted

model, Fig 8 shows the optimal weights across participants and experimental conditions, as

well as an estimate of the spread of these estimates obtained by a bootstrapping technique (see

Methods). For harmonic SFS shifts, participants’ behavior was best described by the AC cue

with very little inter-individual differences across participants. This is generally consistent

with the consensus idea that comparing two harmonic complex tones is mediated by a

Fig 7. Generalization across shifts and participants. (A) R2 values of models fitted on a subset of shifts (x-axis) and evaluated on the full set of shifts.

Thin gray lines display individual data from individual participants, the thick blue line the average across participants. For every subset of shifts, all

possible combinations of subsets were used and the average across all combinations is shown. (B) R2 values of models fitted for one participant (x-axis)

and tested on another participant (y-axis).

https://doi.org/10.1371/journal.pcbi.1010307.g007
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periodicity analysis, the core mechanism of most current pitch models. There was one excep-

tion, namely a participant who more strongly relied on CCres cues.

More spread across cues weights was obtained in the other conditions, which could be

explored for the first time with the generalized Shepard tones. For inharmonic SFS shifts, AC

and CCunres were weighted most strongly across the group of listeners, yielding considerable

spread of weightings across participants. For harmonic SE shifts, listeners most strongly

weighed the CCres cue, even though one participant mostly relied on the CCunres cue. For

inharmonic sounds, the weights were generally wide-spread across participants, suggesting

large inter-individual differences. For inharmonic SE shifts, the distribution of optimal weights

was roughly centred in the middle of the triangular plot, which suggests that most participants

Fig 8. Cue weights for all conditions and participants with panels sorted as in Fig 7. Constrained to sum up to one, cue weights live on a two-

dimensional hyperplane with triangular borders. Points in the triangular space correspond to weightings of the three cues AC, CCres, and CCunres

(weights sum up to one). Large symbols correspond to the medians of the optimal weighting for individual listeners as computed from 2000 bootstrap

iterations. Gray symbols highlight spread of bootstrap samples (the darker, the more overlap from different bootstrap iterations; specifically plotting

log10 of the empirical density function of the bootstrap distribution).

https://doi.org/10.1371/journal.pcbi.1010307.g008
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tended to assign roughly equal weights all three types of cues. Correspondingly, the accuracy

of generalization across participants, even generally robust, may vary as depicted in Fig 7B.

We now describe the two-dimensional SFS-SE shifts. These conditions are of special inter-

est, because listeners may have implicitly relied on different weight combinations when faced

with conflicting acoustic cues. This is qualitatively what was observed. In the harmonic SFS-SE

case, two clusters of participants were observed along the AC-CCres continuum: most listeners

predominantly relied on AC, the universal cue for harmonic SFS shift, while two participants

also took into account CCres, the most weighed cue for harmonic SE shifts. A much more

wide-spread clustering of participant was observed for the inharmonic SFS-SE case, although

the CCunres cue was not predominantly used by any of the participants in this condition.

Note that the inharmonic one-dimensional SFS or SE shifts were also the ones with the larger

spread. Finally, for the log-equidistant SFS-SE case, AC and CCunres cues appeared to be

dominant.

Discussion

We introduced a novel auditory stimulus to probe the effect of different acoustic and auditory

cues on perceptual judgments of the “low” to “high” scale, which is commonly associated to

pitch perception. Our stimuli were generalized versions of classic Shepard tones. The original

Shepard tones proved pivotal in trying to disentangle the contribution of two putative cues to

pitch termed chroma and pitch height [52, 65]. Our generalized Shepard tones further allowed

the independent manipulation of two types of acoustic dimensions, SFS and SE, which could

be crossed with properties of harmonicity and inharmonicity. The acoustic dimensions SFS

and SE were chosen based on the physics of natural sounds, with SFS related to source excita-

tion and SE related to filter resonance [12]. The resulting stimulus conditions were tested

across three experiments: Exp. 1 showed that generalized Shepard tones displayed cyclicity

over frequency shifts, the central feature of the original Shepard tones. We further demon-

strated ambiguity for frequency shifts corresponding to a half frequency cycle. Moreover,

because of the inherent symmetry of generalized Shepard tones, in Exps. 2 and 3 we could

investigate in a parametrical manner the synergistic or antagonistic interactions of changes

along the SFS and SE dimensions. A first finding was that, even in the case of conflict between

SFS and SE, cues were implicitly combined for the perceptual reports. A detailed examination

of the interactions between SFS, SE, harmonicity, and two types of inharmonicity demon-

strated that the acoustic dimensions were not equally effective for all types of sounds. To quan-

tify this observation, a computational model was designed, based on three estimated auditory

cues. These auditory cues were chosen based on perceptual models of pitch (AC), frequency-

shift detection (CCres), and timbre perception (CCunres). The model was highly effective at

accounting for the behavioral data. It further specified the implicit weighting of cues in each

experimental condition, revealing effects of sound type and inter-individual differences.

What did participants judge in the behavioral task?

Our experimental design involved presenting two sounds and asking listeners to report

whether they heard a shift “up” or “down”. We explicitly stated in the instructions that the

shift could be described as a change in pitch or in timbre brightness. A first issue is, then, what

did listeners actually judge: pitch, or brightness? We will argue here and in rest of this Discus-

sion that this distinction, while theoretically relevant, is not central to the interpretation of our

experimental data and modeling results.

A large body of literature has now reported interactions between pitch and brightness in

terms of discrimination experiments [8, 35, 38] and interval estimation [66, 67]. In spite of the
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labels provided to listeners in these experiments, it is intrinsically impossible to know whether

listeners judged “pitch” or “brightness” to perform the tasks successfully. Moreover, such a

sharp distinction becomes a moot point in light of the strong interactions observed [19, 20].

A complementary approach consists of relating listeners’ behavior to auditory cues, which

can be mathematically defined irrespective of the label attached to them and hypothetical

underlying perceptual dimension. A long history of models have contributed to clarify and

produce testable hypotheses about pitch (reviewed in [5]). It is precisely in this spirit that we

designed our own computational model, which shares many features with existing ones. One

novelty is that our model explicitly encodes several candidate auditory cues, all contributing to

a single decision process on an equal footing, but with the weight of each cue left free to vary

depending on the stimulus condition and listener. Experimentally, this approach proved suc-

cessful to account for a large behavioral dataset, further suggesting that a combination of cues

was necessary and sufficient to account for the perceptual “up” vs. “down” judgments provided

by listeners.

Did participants access a perceptual correlate of each cue, and combine them at the deci-

sional level, or was there rather a unitary perceptual dimension underlying their response? A

notable feature of our findings concerns the cases where acoustic dimensions, and thus pre-

sumably auditory cues, were put in conflict. In these experiments (Exp. 2 and Exp. 3B), listen-

ers had four response choices: “up”; “both (up dominant)”; “both (down dominant)”, “down”.

Thus, they were encouraged to report when they heard two distinct cues signaling two differ-

ent shift directions. However, “both” responses were only rarely reported, which was not a pri-

ori obvious. For instance, Singh and Hirsh [36] provided labels of pitch and timbre changes to

report judgments of concurrent SFS and SE shifts, and listeners appeared to be able to use

such labels independently. Interestingly, here “both” responses were not dominant even when

responses were split between around 50% up and 50% down reports, suggesting a fundamental

ambiguity in the stimulus similar to the tritone paradox for the original Shepard tones [52, 54–

56]. Unlike the tritone paradox case, here the ambiguity was caused by opposing changes

along acoustic dimensions, and not only by ambiguous cues in either domain. Such an ambi-

guity did not seem to clearly reach metacognitive awareness, as “both” responses were rare

even in ambiguous trials. This finding parallels recent results using single-cue ambiguity with

the original Shepard tones [68]. Moreover, a recent imaging study [65] also used Shepard

tones with conflicting pitch chroma and pitch height shifts, akin to SFS and SE shifts. They

also reported unitary perceptual judgements. In their study, perceptual judgements were over-

whelmingly dominated by pitch chroma. But, as pointed out by the authors, this was likely due

to a lack of parametric flexibility of the original Shepard tones. Our generalized paradigm

extends these results, including cases similar to those of [65]. Consistent with their results, AC

cues dominated harmonic SFS shifts. Yet, other conditions such as inharmonic SE shifts were

strongly dominated by other cues derived from the SE shifts. A promising extension for future

studies, suggested by one Reviewer, would be to manipulate experimental instructions to fur-

ther test whether the unitary perception of frequency changes depending on several cues is

mandatory or, itself, variable across participants and instruction sets. We would predict modu-

lations of the strength of the unitary percept, possibly along the musician/non-musician divide

that was observed in previous investigations of classic Shepard tones [69].

In summary, the present results suggest that changes along the frequency axis, to some

degree independent of their acoustic nature, may be projected onto a “low” to “high” percep-

tual dimension. For clarity, we will now describe our results in terms of frequency change per-

ception, and not pitch or brightness. Note that this terminology is not meant to imply that

listeners did not in fact perform “pitch” judgments. Rather, it is intended to distinguish the

remaining discussion points from this first, basic issue.
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The role of acoustic cues in frequency change perception

Physical objects produce sounds that evolve over time, either because a vibratory source

changes its behavior or because resonant bodies excited by the source change their shape. Such

ecologically-relevant events lead to changes of SFS and SE properties. The present behavioral

results show that both types of changes impact the perception of frequency change, but to a dif-

ferent extent depending on the nature of the sound.

Exp. 1 tested one-dimensional SFS and SE cues for harmonic and inharmonic series of fre-

quency components. Harmonicity was found to mediate the relative strength of the perceived

shift. For harmonic sounds, changes over the SFS dimension yielded steeper slopes as a func-

tion of shift size compared to changes over the SE dimension. For inharmonic sounds, the

reverse was true with changes along the SE dimension producing steeper slopes. Exp. 2 tested

two-dimensional changes on both the SFS and SE dimensions. Here again, harmonicity medi-

ated the results, in a manner consistent with Exp. 1. The SE dimension had a much smaller

effects on shift perception for harmonic sounds compared to inharmonic sounds. Exp. 3,

using a different type of sounds, replicated the dominant effects of SE changes for inharmonic

sounds. In summary, these findings suggest that the perception of frequency changes was

dominated by SFS cues for harmonic sounds, but not necessarily for inharmonic sounds.

Why would different acoustic cues be used for frequency-change tracking depending on

the harmonicity of the sounds? Speculatively, it can be remarked that harmonicity plays an

important role in auditory scene analysis [70–72]. In particular, harmonicity favors the bind-

ing of frequency components within and across sounds [29, 70]. Local frequency changes in

SFS may then be more informative for harmonic sounds, whereas coarser SE cues may take

over for inharmonic changes. In the present study, one- and two-dimensional shifts were pre-

sented separately as part of different (sub-)experiments. It could be part of future work to

explore whether interleaving these shift types can affect and potentially align cue weighting

across conditions. However, a recent study tested pitch discrimination with interference of

envelope variation and did not observe a mediating role of harmonicity throughout all experi-

mental conditions [29]. Instead, they only found a mediating role for very large intervals (9 st)

or in the case when there was no overlap between the frequency components of the two

sounds, but not for natural speech or musical instrument sounds. It could be the case that nat-

ural sounds, potentially having weaker spectral modulations compared to what was induced

by our SE dimension, are somewhat less prone to the observed interference effects. Future

work should attempt to reconcile these apparently divergent findings on the role of harmoni-

city in acoustic cue weighting.

The role of auditory cues in frequency change perception

To bridge the gap between the acoustic description of stimuli and the behavioral judgments by

listeners, we used a computational model estimating a variety of auditory cues available to

auditory processing. Mostly, this involved simulating the effects of peripheral filtering on fre-

quency encoding [62], and extracting three types of cues inspired by models of pitch percep-

tion (AC, [5]), frequency-shift detection (CCres, [30]), or timbre perception (CCunres).

The choice of cues was somewhat arbitrary. It was nevertheless partially validated by two

experimental observations. First, the model achieved a high accuracy in fitting the behavioral

data, with more than 90% of the variance explained in most cases. We further observed robust

generalization across unseen shift conditions. The three cues selected were thus sufficient to

explain frequency change perception with generalized Shepard tones. The three cues were also

only weakly correlated with each other, showing that they were not redundant. The only weak

but significant correlation that was observed was between CCres and CCunres cues. These
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cues shared the same computational principle, cross-correlation between successive excitation

patterns, but operated on different part of the frequency scale. CCres was focused on resolved

harmonic while CCunres was focused on unresolved harmonics. The distinction between

resolved and unresolved harmonics may not, in fact, be clear cut [73]. Thus, we are using the

CCres and CCunres cues a a proxy for processes that capture distinct aspects of the excitation

pattern, without necessarily being completely independent. Finally, all cues contributed in var-

ious combinations across experimental conditions and listeners, suggesting they were all nec-

essary for our dataset. Future models may well, however, settle on a different set of cues within

the cue-combination framework.

The auditory cues estimated could be mapped to some extent to the acoustic SFS and SE

dimensions. For harmonic sounds, the AC cues provided a reliable estimation of sound peri-

odicity and hence captured the specific pattern of frequency components for harmonic SFS.

This may explain why AC dominated perceptual judgments for harmonic SFS shifts. Given the

duality of spectral and temporal fine-structure information, we suspect that the AC cue could

also be implemented based on SFS information alone [74], but not with the common Gamma-

tone front end we chose to use for all cues estimated. For the CCres cue, because of the cross-

correlation operation, we argue that this auditory cue is reflecting local shifts in the SFS rather

than global pitch estimates, but this remains speculative. We acknowledge that the information

derived from resolved harmonics is dominant for pitch perception as well [4, 74, 75]. The

CCunres cue, finally, is most clearly linked to SE. Moreover, the distinction between resolved

and unresolved harmonics will critically depend on the filter width chosen for the model

front-end. Here, we selected the default Gammatone filterbank settings [63], but “functional”

filter bandwidth could be investigated in the future as another potential individual difference

across normal-hearing but also hearing-impaired listeners.

A natural question concerns the extent to which our results would generalize to more natu-

ral type of sounds. We designed the generalized Shepard tones with the aim of having the same

topology for two distinct acoustic dimensions. This choice was thus not motivated primarily

by a wish to have stimuli “representative” of our natural listening habitat, but rather, to have

precisely controlled sounds to put a computational model to the test. However, unlike the clas-

sic Shepard tones, our stimuli included a harmonic spectral fine structure together with for-

mant-like spectral envelopes. These sounds are in fact quite similar to the vocal sounds we

encounter every day. Moreover, our inharmonic conditions also arguably resemble some natu-

ral sounds such as bell sounds. Finally, we are optimistic that our model will be successful for

natural sounds, as they represent by far the easiest case to be modeled: the pitch of harmonic

sounds containing resolved components will be captured by a version of our model that

weights almost exclusively the AC cue. Indeed, this is what we observed for the harmonic SFS

condition. As is often the case with pitch, artificial lab-designed sounds are useful to distin-

guish competing models that would all predict correctly the percept of harmonic complex

sounds.

Inter-individual differences in frequency change perception

Another novel finding revealed by the multi-cue model concerns inter-individual differences.

To simulate a perceptual decision, our model assigned weights to each auditory cue before

combining them through simple summation (normalized by each cue’s variance). Weights

were individually fitted to each listener. Results showed that weights indeed varied across lis-

teners, especially for inharmonic sounds and for cases with conflicting SFS and SE cues. The

differences observed were not due to model overfitting, but appear to represent true inter-
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individual differences in the weighting of biologically-plausible auditory cues when faced with

a task of frequency change perception.

Intriguingly, there are already several lines of evidence demonstrating large interindividual

differences in pitch perception. To start with, the perception of the tritone paradox with Shep-

ard tones famously shows differences in bias across listeners (which f0 is perceived as higher).

These inter-individual differences have been claimed to reflect the auditory experience of each

listener, and in particular their linguistic background [76] although this has been contested

[77, 78]. Experiments with simultaneous changes in SE and SFS often emphasize a large inter-

individual variability in the results, even when independence between dimensions or labels

were observed [33, 36]. In an experimental setting closer to our own, several studies have

introduced conflicts between what has been termed “low-pitch” or “global pitch” on the one

hand, and “spectral pitch” on the other hand [25, 79, 80]. In these studies, frequency compo-

nents were changed across successive tones so that the missing fundamental changed in one

direction whereas the frequency of each component changed in the opposite direction. In our

terminology, this would approximately correspond to a conflict between SFS and SE cues. For

our model, this would be a conflict between AC and CCres cues. Substantial interindividual

differences were found in such tasks [80], with listeners described as holistic (AC cues domi-

nant) or analytic (CCres cues dominant). These differences were again ascribed to auditory

experience, in this case to musicianship [80, 81]). In our results, pronounced individual differ-

ences between listeners favoring different weightings of AC and CCres cues were observed in

particular for the inharmonic two-dimensional SFS and SE shifts. This could suggest that the

holistic and analytic distinction demonstrated by previous studies might be even more perti-

nent for the case of inharmonic sounds.

Pitch as an adaptive combinations of sensory cues

Based on the experimental data and modeling results, we argue that frequency changes are

tracked thanks to a perceptual dimension derived from the combination of different auditory

cues. At least parts of the acoustic cue manipulations that were investigated would convention-

ally be described as changes in pitch. Thus, as we observed that all judgements involving gener-

alized Shepard tones mapped to a single perceptual “low” to “high” dimension, then this

dimension may perhaps be described as a generalization of pitch. A nuance may be introduced

between such a dimension and musical pitch, which for Western music has the added con-

straints of being able to support interval perception, melodic patterns discrimination, and be

robust to frequency transposition, none of which were tested here. But, as reviewed in the

Introduction, the distinction is not so clear in all musical idioms, and timbre has been shown

to share the ability to convey musical melodies [46]. In summary, a broader and more specula-

tive claim of our findings is that pitch is a perceptual dimension useful to track frequency

changes, which may be seamlessly constructed from a variety of acoustic cues as relevant to

each sound class and listener.

Such a claim is clearly somewhat unorthodox with respect to the long and respected tra-

dition of investigations about pitch. However, multi-stage pitch models have already been

proposed to account of temporal integration properties [82]. Moreover, it can be pointed

out that a multi-cue model would put pitch on par with another fundamental dimension of

auditory perception, namely spatial location. The perception of subjective spatial location

tracks the physical spatial position of objects in the world. However, spatial position has no

direct correlate in the sensory receptor for hearing, the cochlea, which is tonotopically orga-

nized in terms of frequency channels rather than space. As a consequence, location needs to

be perceptually constructed from a combination of binaural and monaural cues that are
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very different in nature from each other. Binaural cues compare the sensory information

between the two ears, looking for discrepancies introduced by differences in acoustic paths

from the object to the ears, whereas monaural cues are based on a location-based spectral fil-

tering of the acoustic signal. Within binaural cues, interaural differences in timing (ITDs)

and in level (ILDs) are processed in separate parts of the auditory pathways. Presented mon-

aurally, the level differences corresponding to ecological ILDs are clearly heard as differ-

ences in loudness. However, ILD and ITDs are seamlessly combined into the perception of

spatial location. These general features of auditory spatial location perception are qualita-

tively equivalent to our claim of a “unitary” pitch perception mechanism based on multiple

cues.

The parallel between our results and the perception of spatial location can even be made

more specific. In the implicit combination of binaural cues to derive location, the weighing of

ITDs and ILDs is stimulus-specific: to localize low-frequency noise bands, ITD will be weighed

more than ILDs, while the converse is true for high-frequency noise bands [83]. Thus, cue

weighting depends on the stimulus. Conflict between ITD and ILD cues has also been investi-

gated, and it has been observed that they can be precisely counterbalanced so that an ITD

pointing e.g. to the left combined with an ILD pointing to the right results in a sound perceived

in the middle [83]. Thus, they contribute to a unitary dimension. Finally, for broadband noise,

there are distinct inter-individual differences in ITD and ILD weighting [84]. Similar effects of

cue integration have been found for the lateralization of sounds with incongruent ITDs of sig-

nal temporal fine structure and temporal envelope [85], two different acoustic cues which are

processed independently in the early stages of the auditory system, including pronounced

inter-individual differences [86]. Monaural cues are also known to be strongly idiosyncratic,

to the point that monaural cues from someone else’s ear are heard as timbre changes, but

become transparent cues to location for one’s own ears. Moreover, it appears that they can be

learnt through experience [87]. Thus, auditory cues to spatial location are derived and com-

bined in a listener-specific manner.

Conclusion

The present behavioral data and computational results suggest that, just as is the case for spa-

tial location, a unitary perceptual dimension of “pitch” is derived from a set of various acoustic

cues in a sound-specific and listener-specific manner. There are no direct correlates of the

physical properties of sound-producing objects on the cochlea, but there are many indirect

correlates related to the frequency content of sounds. A perceptual dimension may then be

constructed from several cues, with a stimulus-specific weighting of cues and additional inter-

individual differences in the weighting. It might be tempting to think that pitch is a gift from

above so that we can enjoy Bach chorales, or that it neatly maps to a single acoustic cue, but

this is probably not how evolution works. Instead, we speculate that a compound perceptual

dimension tracking frequency-changes has adaptive value for hearing in complex and ever-

changing environments.

Methods

Ethics statement

The research reported in this manuscript was carried out according to the principles expressed

in the Declaration of Helsinki and was approved by the ethics board of the University of

Oldenburg (Drs. 09/2017). Formal consent (written) was obtained from the participants.
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Participants

Participants were recruited via ads at the online job board of the University of Oldenburg and

received monetary compensation for their time. All experiments tested participants of self-

reported normal hearing. In Exp. 1, thirteen participants were tested, but one participant failed

to meet the screening test (see Procedure) and was not considered in the analysis; the remain-

ing twelve participants had a median age of 25 years (range: 20–56 years). Considering musical

training of participants (which we did not specifically attempt to balance), there were two par-

ticipants without any musical training; the ten participants with musical training were amateur

musicians with a median of 11 years of training on their main instrument (range: 5–19 years)

and a median of 54 points (range: 27–73) on the Goldsmiths-Musical Sophistication Index

(Gold-MSI) musical training subscale [88].

In Exp. 2, twelve participants were tested and all passed the screening test. Participants had

a median age of 24.5 years (range: 21–30 years). There were three participants without any

musical training; the remaining participants were amateur musicians with a median of 10

years of training on their main instrument (range: 6–20 years) and a median of 54 points

(range: 30–82) on the Gold-MSI musical training subscale.

In Exp. 3, twelve participants were tested (all passed the screening). Participants had a

median age of 25 years (range: 19–29 years). There were four participants without any musical

training; the remaining participants were amateur musicians with a median of 10 years of

training on their main instrument (range: 3–15 years) and a median of 43 points (range: 30–

62) on the Gold-MSI musical training subscale.

Exps. 1–3 were run with around two months separation between experimental sessions.

From the twelve participants per experiment, four participants completed all three experi-

ments, two participants completed two out of three experiments, and six participants com-

pleted only one experiment.

Stimuli

The experiment presented artificially synthesized tone complexes that were created using

additive synthesis. Tone complexes were generated with fundamental frequency f0 randomly

drawn between 64 and 128 Hz and partials covered the range up to 16 kHz. In the harmonic

condition, partial tones were at integer ratios fk = f0 � k (i.e., equidistant on a linear scale). In

the inharmonic condition, partial tone frequencies were jittered such that the frequency of the

harmonic partials were shifted randomly up or down by up to 50% of the frequency of f0 (i.e.,

jittering preserved the rank order of partials). Formally speaking, fk ¼ f0 kþ Xk �
1

2

� �
, where

for all k, Xk is a uniformly distributed random variable with values between zero and one, see

[28]. The same instantiation of Xk was used for any pair of sounds within trials of the inhar-

monic condition.

To create an SFS scale that was circular with regards to pitch chroma, the amplitudes of odd

harmonics were attenuated as a function of the scale position in the octave, see Fig 1. At scale

position 0, odd harmonics were attenuated by 22 dB and raised by 2 dB for every semitone (st)

step. This attenuation is smaller than the value of 3.5 dB in [58], but in combination with SE

manipulation appeared to yield favourable results. Hence, after 11 st steps, odd and even har-

monics were of equal amplitude.

The SFS manipulation was combined with an SE manipulation that has been shown to

yield circular brightness perception [48]. A global spectral envelope was defined as Gaussian

distribution as a function of log-frequency with a mean three octaves above f0 and a standard

deviation of one octave. This global envelope was multiplied with a more fine-grained spec-

trally periodic envelope consisting of superpositions of octave-shifted Gaussians with a more
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narrow standard deviation of 0.15 (and 0.2 in Exp. 3 to account for the log-equidistant par-

tials). The resulting spectral envelope hence was the product of superimposing a global and a

local spectral envelope. Fig 1B shows an illustration. Sounds were synthesized with a duration

of 125 ms including a 5 ms fade-in and fade-out using cosine ramps. Inter-trial sequences

were used to minimize carry-over effects [48, 56]. These consisted of three sounds with a dura-

tion of 125 ms (including 5 ms raised cosine fades), separated by 125ms inter-stimulus-inter-

vals and sounds had random spectra with 30 partial tones of random initial phase and random

frequencies drawn uniformly from a linear scale between 50 Hz and 10 kHz. These tone com-

plexes were synthesized with the same global spectral envelope that was used for the target

tones in the subsequent trial.

In Exp. 1, every trial presented a pair of sounds, which was generated through unidimen-

sional shifts of either SFS or SE. For the target attribute, the starting position on the circular

SFS or SE scales was chosen at random integer scale positions from 0–11 st. The attribute that

was kept fixed was held constant at shift position 0. In Exp. 2, stimuli consisted of two-dimen-

sional shifts, that is, both SFS and SE were shifted simultaneously. Here, the starting positions

of both the SFS and SE attributes were chosen at random.

Stimuli in Exp. 3A and B used equidistant partial tones on a logarithmic scale with a dis-

tance of four semitones, that is, three partials per octave. In Exp. 3A, unidimensional shifts

were presented, similar to Exp. 1. In Exp. 3B, bidimensional shifts were presented, similar to

Exp. 2. Sound examples can be found under https://uol.de/en/music-perception/sound-

examples/generalized-shepard-tones-1/conflicting-spectral-cues

Apparatus

Listeners were seated individually in a sound-proof lab and provided responses on a computer

keyboard. Sounds were synthesized in MATLAB (https://www.mathworks.com) and were pre-

sented with an RME FIREFACE audio interface at an audio sampling frequency of 44.1 kHz

and 24 bit resolution. Stimuli were presented diotically over Sennheiser I 200 headphones at

65 dBA sound pressure level, as calibrated by a Norsonic Nor140 sound-level meter with a

G.R.A.S. IEC 60711 artificial ear to which the headphones were coupled.

Procedure and design

All experiments started with a screening task [48], comprising 40 SE trials with 2 st and 3 st

shifts. The screening task was used to ensure that participants understood the task. Participants

who did not achieve scores of more than 80% correct responses did not take part in the main

experiment (which turned out to be the case only for one participant of Exp. 1).

The experimental instructions (originally formulated in German) explained that the task

was to judge whether the second sound was perceived as “higher or brighter (that is, going
upwards) or lower or darker (that is, going downwards)” in comparison to the first sound. For

the two-dimensional shifts of Exps. 2 and 3B, instructions noted that it is possible that both

directions can be heard at once, in which case participants were asked to indicate the dominant

direction by selecting one of the four response alternatives: “down”, “both (down dominant)”,

“both (up dominant)”, and “up”.

In Exp. 1, only one-dimensional shifts were presented. The experiment contained the fac-

tors of shift size (1–11 st), shift type (SFS, SE), and harmonicity (harmonic, inharmonic).

There were 24 trials per combination of shift size and shift type x harmonicity condition with

randomized scale positions of sound 1. Trials were split half across two sessions on separate

days. Overall, this yielded 24x11x2x2 = 1056 trials per participant. Trials were presented in

four blocks, with each block corresponding to one of the four shift type x harmonicity
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conditions. The presentation order of blocks was randomized and the presentation of blocks

was separated by short breaks of around 5 minutes. Levels of the shift-size factor were pre-

sented in fully randomized order.

Experiment 2 contained the factors SFS shift size (1, 6, 11 st), SE shift size (1, 6, 11 st), and

harmonicity (harmonic, inharmonic). There were 36 trials per shift type with randomized

scale positions of sound 1. Overall, this yielded 36x3x3x2 = 648 trials in total. The harmonicity

factor was presented blockwise with short breaks separating the blocks and the data were col-

lected in one session. Participants could take breaks between trials, if requested.

In Exp. 3A, participants completed the unidimensional shifts, with shifts of the target attri-

butes (SFS, SE) presented blockwise. The experiment contained the factors shift type (SFS, SE)

and shift size (1,2, 3 for SFS; 1, 6, 11 for SE). There were 24 trials per shift size with randomized

scale positions of sound 1, overall yielding 24x2x3 = 144 trials. The shift type factor was pre-

sented blockwise with order of presentation randomized across participants. After a short

break, participants went on to complete Exp. 3B, which contained the two factors SFS shift size

(1, 2, 3 st) and SE shift size (1, 6, 11 st). As in Exp. 2, there were 36 trials per shift size with ran-

domized scale positions of sound 1, overall yielding 36x3x3 = 324 trials, which were presented

in fully randomized order.

Data analysis

Data were analysed in MATLAB. In Exps. 2 and 3B, which comprised two-dimensional shifts,

“both (up dominant)” responses were collapsed with “up” responses and “both (down domi-

nant)” with “down” responses. This approach is justified by the generally low number of both

responses, as visible in supplementary Fig A in S1 Text.

Trial-level down responses were analyzed using generalized linear mixed-effect (GLME)

models as implemented in the fitglme class, using a logit link function and a binomial dis-

tribution of the response variable. The following options were used as part of the fitglme
class: ‘Distribution’, ‘binomial’, ‘FitMethod’, ‘REMPL’, ‘Chec-
kHessian’, 1, ‘DummyVarCoding’, ‘effects’. Models comprised by-partici-

pant intercepts. By-item random intercepts (encoding the randomly chosen position of sound

1 along the circular SFS scale) were included for all but Exp. 3A. In Exp. 1, the shift factor was

numerically coded without normalizing predictors. In Exp. 2, the SFS shift factor was coded

numerically (without normalization) whereas for the SE factor, effects coding was used (corre-

sponding to Fig 3). In Exp. 3A, both shift factors were numerically coded (using factor levels 1,

2, and 3). In Exp. 3B, factors were coded analogously to Exp. 2 (see Fig 4B), that is, the SFS

factor was coded numerically and for the SE factor effects coding was used. For all other cate-

gorical predictors effects coding was used. Model formulas and full results are provided in sup-

plementary Tables A-D in S1 Text. The fitted statistical models are plotted in all results figures

as solid lines. Square brackets in the text indicate 95% confidence (i.e., compatibility) intervals.

All experimental data and analyses together with the modeling code can be accessed here:

https://github.com/Music-Perception-and-Processing/frequency_change.

Computation of acoustical cues

The two signals presented on every trial were processed by a 128-channel Gammatone filter-

bank spanning 20 to 16000 Hz. For the autocorrelation (AC) cue, a standard pitch estimator

was used (de Cheveigné, 2005). Specifically, the AC functions were computed for every band

of signals 1 and 2 and summed across bands. The maximal values of the resulting summed AC

functions were used as f0 estimates for signals 1 and 2, see Fig 5. The f0 search range was con-

strained between 64 and 128 Hz, which is the f0 range used in Exps. 1 and 2. Formally, the AC
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cue hence can be written as

AC ¼ f̂ 0ðS1Þ � f̂ 0ðS2Þ

with f̂ 0ðSÞ denoting the f0 estimate of signal S.

The cross-correlation (CC) cues extracted shifts between the excitation patterns of signals 1

and 2. The CCres and CCunres cues were computed identically, but considered the presumed

resolved and unresolved portions of the excitation pattern, respectively, with the cutoff point

chosen at the geometric mean of the 10th harmonic [89] of sounds in Exps. 1–2 (905 Hz).

Note that other implementations of the cutoff frequency, chosen as the exact frequency of the

tenth partial of the sound with lower f0 on every trial or even chosen randomly in the range

between 640 and 1280 Hz yielded qualitatively and quantitatively very similar results.

The root-mean-square sound levels were computed for every of the 128 channels of the fil-

terbank, and the overall profile was peak-normalized at 0 dB across channels and thresholded

at -30 dB (i.e., levels below -30 dB were set to -30 dB). The cross-correlation function between

the two resulting excitation patters of signals 1 and 2 was computed. Subsequently, the first

moment of the CC function was computed in the heuristically chosen range of -5 to +5 ERBs,

corresponding to a centroid of the CC function in ERB-lag units.

Formally, the CC cue can thus be written as

CC ¼
P5

k¼� 5
k � fccðk; S1; S2Þ

P5

k¼� 5
fccðk; S1; S2Þ

with fcc(., S1, S2) denoting the cross-correlation function of the excitation patterns of sounds S1

and S2 on a single trial.

We did not use the maximal value of the CC function (which would have been analogous

to how the AC function was evaluated), because for the present stimuli with a fixed global

spectral envelope in every trial, the maximal value turned out to constantly occur at a lag of

zero, calling for a more sensitive measure. Instead, we used the CC centroid as a continuous

estimate of the strength of downward vs. upward frequency movement with negative CC

centroids indicating dominant downward movement and positive CC centroids indicating

upward movement.

Cue weighting

Similar to classic maximum likelihood approaches of multisensory integration [22], our model

integrated the sum of individual estimates corrected by their variance. To capture the poten-

tially stimulus- and participant-dependent weighting of AC, CCres and CCunres cues [80],

three weighting parameters α1/2/3 allowed to assess which type of cues would best correspond

with participants’ behavior. Let s2
:

denote the variance of the estimators specific to the stimuli

computed individually for every of the three experiments. Then the three cues were integrated

using the weighting factors α1 + α2 + α3 = 1 with the following response criterion (“down”

response, if valid):

a1

AC
s2
AC

þ a2

CCres

s2
CCres

þ a3

CCunr

s2
CCunr

> 0

For every participant and experimental block, we computed the optimal combination of

weights, yielding the largest Pearson correlation between individual response pattern (propor-

tion “down” responses) and corresponding model responses by using a grid-search with 2%

resolution (0� α1/2/3� 1 such that α1 + α2 + α3 = 1), yielding 1326 different parameter triples.
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Because the non-negative weights live on a hyperplane, they can be represented as part of a tri-

angle in two dimensions (Fig 5B and 5C).

The stability of the derived weights was assessed using bootstrapping with 2000 iterations.

In every iteration, the response of individual participants was perturbed by only computing

response patterns from a random subset of trials from the respective experiment (same num-

ber of trials as in the original experiment but drawn with replacement). The procedure for

selecting weights described above was subsequently conducted for every bootstrap iteration

(each containing a different perturbation of participant’s responses). Fig 8 presents the median

of the derived weights (large symbols) across all iterations in addition to all 2000 derived

weights plotted with transparent symbols. That is, the less transparent a region in the figure is,

the more often weights from different bootstrap iterations overlap in that region.

To measure how well the fitted model also accounted for the global pattern of responses

(data averaged across participants), we averaged the models fitted to individual human partici-

pants. The resulting response patterns is shown in Fig 7 with R2 values provided in the figure.

For Exp. 3a, there are only three data points, thus correlation coefficients were not considered

reliable and omitted in the figure.
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