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Abstract

Electrodermal activities (EDA) are any electrical phxenomena observed on the skin. Skin

conductance (SC), a measure of EDA, shows fluctuations due to autonomic nervous system

(ANS) activation induced sweat secretion. Since it can capture psychophysiological informa-

tion, there is a significant rise in the research work for tracking mental and physiological

health with EDA. However, the current state-of-the-art lacks a physiologically motivated

approach for real-time inference of ANS activation from EDA. Therefore, firstly, we propose

a comprehensive model for the SC dynamics. The proposed model is a 3D state-space

representation of the direct secretion of sweat via pore opening and diffusion followed by

corresponding evaporation and reabsorption. As the input to the model, we consider a

sparse signal representing the ANS activation that causes the sweat glands to produce

sweat. Secondly, we derive a scalable fixed-interval smoother-based sparse recovery

approach utilizing the proposed comprehensive model to infer the ANS activation enabling

edge computation. We incorporate a generalized-cross-validation to tune the sparsity level.

Finally, we propose an Expectation-Maximization based deconvolution approach for learn-

ing the model parameters during the ANS activation inference. For evaluation, we utilize a

dataset with 26 participants, and the results show that our comprehensive state-space

model can successfully describe the SC variations with high scalability, showing the feasibil-

ity of real-time applications. Results validate that our physiology-motivated state-space

model can comprehensively explain the EDA and outperforms all previous approaches. Our

findings introduce a whole new perspective and have a broader impact on the standard

practices of EDA analysis.
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Author summary

The current state-of-the-art lacks physiology-motivated models for electrodermal activi-

ties (EDA) that have the power to comprehensively describe the variations in skin conduc-

tance (SC)–a measure of EDA. In this study, we propose a physiology-motivated state-

space model to address previous challenges. On the other hand, there is also an absence of

a scalable autonomic nervous system (ANS) activation inference method that simulta-

neously solve for the physiological system parameters. Furthermore, we develop a scalable

ANS activation inference approach based on the proposed model with a goal for real-time

edge computation. We utilize a dataset with 26 participants to validate the new model and

the scalable method. Results demonstrate that our physiology-motivated state-space

model can comprehensively explain the EDA. Our findings introduce a whole new per-

spective and have a broader impact on standard practices of EDA analysis.

Introduction

The term “electrodermal activity” (EDA) refers to any electrical phenomenon on human skin

[1]. EDA was discovered in the late 19th century and, since then, it has been widely used in

psychophysiology as the EDA fluctuations have high correlations with the autonomic nervous

system (ANS) activation. One of the most popular measures of EDA is the continuous exoso-

matic recording of skin conductance (SC). Due to emotional stimuli, there is a change in the

psychophysiological and metabolic state of the body in order to deal with the emotional stimuli

(e.g. flight or fight response). ANS may excite sweat glands based on the psychophysiological

and metabolic change in the state, and the corresponding salty sweat secretions increase SC.

Examination of SC measurements enables us to investigate ANS activation related to emo-

tional arousal [2].

There are a few vital signals in the human body similar to EDA that have the potential to be

measured continuously and unobtrusively using very simple instrumentation. The unobtru-

sive nature of the measuring techniques has led to a new era of wearable technology for contin-

uous health monitoring. Such signals include cardiac signals (e.g. electrocardiogram (ECG)

and photoplethysmogram (PPG)), skin temperature (SKT), EDA, muscle activity (e.g. electro-

myogram (EMG)) etc. [3, 4]. Among them, PPG and SKT have been widely integrated into

consumer wearable technologies, along with reliable techniques for decoding useful informa-

tion. In the past few decades, extensive research has been conducted, mainly on PPG signal

analysis for wearable implementation, with the goal of continuous health monitoring. The

next candidate with the greatest potential for revolutionizing wearable health monitoring is

EDA [5]. However, the amount of research performed on EDA signals is relatively limited

compared to cardiac signals. Although researchers have published many studies to systemati-

cally model EDA in the last two decades, there are still many fundamental characteristics of

EDA being discovered today. For example, in 2020, Subramaniam et al. [6] have shown that

the point process characterizes EDA in normal healthy participants. Therefore, further studies

are required to identify the more accurate system dynamics of EDA so that critical information

related to health monitoring can be obtained.

Appropriate EDA analysis has applications in a wide range of fields such as mental disor-

ders, pain, cognitive stress tracking, wakefulness, etc. As different physiological signals, includ-

ing EDA, contain information about human emotional arousal, they have potential

applications in the field of mental health. For example, preventing death from mental disorders

with regular tracking could be one potential application, as Walker et al. [7] reported that a
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large portion of deaths worldwide are attributable to mental health-related disorders. A meta-

analysis shows that mental disorders are a major risk factor for suicide [8]. Suicide is one of

the leading causes of death in the United States in the year 2017 [9] and the cost related to sui-

cide alone in the United States were more than $90 billion in 2013 [10]. Studies have recom-

mended [10] community-based immediate psychiatric services, including telepsychiatric

support for reducing suicide-related costs which require continuous monitoring. Augmenting

EDA with other physiological signals for time-to-time monitoring of critical patterns of emo-

tional regulation could potentially help preventing psychiatric disorders [11].

Another possible potential application is in treating diabetic neuropathy. Diabetic neuropa-

thy refers to small nerve damage caused by prolonged exposure to high levels of blood glucose

concentration [12]. As a result, small nerves along with the sudomotor nerves in the legs, feet,

and hands that are responsible for transmitting ANS activation are prone to neuropathy [12].

As confirmed by numerous studies in [13–15], damages in small nerves, including the sudo-

motor nerves may lead to abnormal EDA variations. Furthermore, it is well known in clinical

diagnostics that the development of anomalies in sweat secretions may be attributed to forms

of disorders, such as hypohidrosis and anhidrosis [16]. Moreover, such disorders may indicate

diseases like diabetes mellitus [16]. Clinical investigations of abnormalities in the SC record-

ings can be pivotal for the early detection of such diseases.

Because of its wide range of applicability, accurate modeling of system-theoretic under-

standing is a prerequisite. In 1997, Lim et al. [17] proposed a heuristic sigmoid-exponential

model to represent the rise and decay characteristics of the SCR shape. Instead of a general

approach, they had to consider four different configurations of the proposed model for four

different cases. Later in 2005, Alexander et al. [18] proposed a second-order differential equa-

tion for defining the SC fluctuations, the solution of which is a bi-exponential function repre-

senting the rise and decay of the SCR shape. They assumed that SC is single-phasic and, more

specifically, that all fluctuations can be defined with the second-order differential equation.

However, eventually researchers have realized the bi-phasic nature of EDA fluctuations, mean-

ing there are two different components in EDA that vary in two different rates [19–24]. Bach

et al. [25] have used a low-pass filter to separate slow varying component and then investigated

the fast varying component as the output of a finite linear time-invariant (LTI) filter. Benedek

et al. [19, 26] have suggested bi-exponential functions, namely Bateman functions, to describe

the slow varying components with large decay time and the fast varying component with

smaller decay times. However, this model cannot explain both components together. In a simi-

lar time, Bach et al. [20] reported that bi-exponential functions provided better fit than other

candidates while modeling the fast varying component after removing the slow varying com-

ponent with low-pass filter. Nevertheless, the FIR filter-based separation of the slow and fast

varying components has limitations as pointed out in our previous work [24].

In our previous studies [23, 24, 27–29], we have developed deconvolution approaches in

which we investigated previously known mathematical models for EDA dynamics. In these

studies, we have utilized the SC modeling approach in [21], where the authors have modeled

the slow varying component of EDA with a linear combination of a few arbitrary cubic spline

basis functions. Although such a model can provide a good fit to the data, it lacks a reasonable

physiological justification, and the corresponding coefficients of the obtained cubic-spline

functions obtained do not have an interpretation. Furthermore, the cubic-spline basis function

based model may overfit to the data and provide a solution that is not physiologically plausible.

In addition, the lack of a complete state-space model makes it difficult to design scalable fixed-

interval smoother (FIS) based inference approaches for recovery of ANS activation. Although

similar approaches have been developed for calcium oscillation deconvolution and EEG sleep

spindle detection [30], it is difficult to develop such an approach for EDA with the models
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currently available. During our development of deconvolution approaches, we realized that

there is a need for a potential improvement in the current mathematical models for describing

EDA dynamics as well as the current deconvolution practices to obtain a systematic and reli-

able approach with the feasibility of real-time application.

Therefore, in this study, we propose a unified and comprehensive state-space model to

describe both the slow and fast varying components of EDA. We first start with a more general

and physiologically interpretable nonlinear model and then derive a simpler linear state-space

one. Additionally, our proposed model enables us to derive an FIS based novel scalable sparse

deconvolution approach which was not previously possible because of the absence of a com-

prehensive state-space model for the potential of real-time inference. For obtaining our novel

approach, we extended the scalable sparse deconvolution approach for calcium and EEG sleep

spindle deconvolution proposed by Kazemipour et al. [30], which was developed for a subset

of state-space equations considering the input matrix as an identity matrix. We generalized

this for the state-space models with any input matrix and apply it for our proposed SC model.

Moreover, for estimating the state-space model parameters, we utilize the previously known

physiological priors similar to [24]. Furthermore, we employ generalized-cross-validation for

balancing between the sparsity level of the ANS activation and the model fit for systematic

reduction of the measurement noise. We compare the performance of our approach with pre-

vious deconvolution approaches. Furthermore, we show the scalability of our approach, illus-

trating the feasibility of devising real-time edge computation with our approach.

Materials and methods

Dataset description

In this study, we analyze the SC recordings where participants experience multiple auditory

stimuli (loud sounds) during the experiment [31]. The experiment was designed to investigate

event-related SC responses (SCRs) [32]. Each participants received multiple auditory stimuli.

Each auditory stimulus is a single white noise burst of 1s length with a 10 ms ramp and 85 dB

power. The participants were instructed to press a foot pedal upon hearing a stimulus. The

dataset contains recordings from thirteen female and thirteen male participants. The partci-

pants are all healthy and unmedicated with age 24.4+/-4.9 years. For each of the 26 partici-

pants, the datasets include three channels of SC recordings from three different locations. We

use the SC recordings from the thenar/hypothenar of the nondominant hand for all datasets in

this study. The details regarding the experiment are provided in [32]. We pre-process all

recordings with an approach similar to [28] and resample the SC recordings to 4 Hz for our

analysis.

Proposed physiological model

We propose our model based on the poral valve model by Edelberg [33]. For the sake of discus-

sion, let’s assume the sweat ducts are initially empty and in response to the received impulsive

ANS activation, secretions from the sweat glands start to fill the sweat ducts. As the amount of

sweat in the ducts increases, there is an increase in the hydraulic pressure inside. The pressure

build-up gives rise to the increasing diffusion into the stratum corneum and the deeper stra-

tum corneum area. This results in a slight rise in the SC level. If the pressure exceeds a certain

threshold, the pores of the sweat ducts open for sweat secretion. This way, a fraction of the

sweat is secreted directly by the pore opening. The secreted sweat and the connected sweat

content in the ducts both contributes to the conductance. Therefore, there is a sharp rise in the

SC level. Here, direct secretion refer to the secretion of sweat via the pore to the surface of the

skin. On the other hand, sweat secretion via diffusion refers to hydration of stratum corneum
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when sweat slowly travels via the sweat duct wall. As the direct secretion and the diffusion

reduces the hydraulic pressure and the pressure goes below a certain threshold, the pore col-

lapse separates the sweat contents in the ducts and prevents them from contributing to the

conductance. Consequently, a faster decay in SC level is observed. We define it as the faster re-

absorption resulting in the faster decay time in SC. The remaining secreted fraction of the

sweat in the stratum corneum is diffused into the deeper dermis and cleared away from the

periductal area by a slow re-absorption process. Along with re-absorption, a fraction in the

reduction of SC is because of the evaporation from the surface. These steps will lead to SC level

to decay slowly. A visual illustration of the steps for the poral valve model is provided in

Fig 1A. Fig 1B shows a cross section of the skin illustrating regions involved in different steps

of SCR generation. With these speculations, we propose the following nonlinear state-space

model:

_x1ðtÞ ¼ �
1

tr
x1ðtÞ þ uðtÞ; ðsweat productionÞ ð1Þ

_x2ðtÞ ¼
Zpðx1ðtÞÞ

tr
x1ðtÞ �

1

tp
x2ðtÞ; ðpore opening and collapseÞ ð2Þ

_x3ðtÞ ¼
Zdðx1ðtÞÞ

tr
x1ðtÞ �

1

td
x3ðtÞ ðslow re-absorptionÞ ð3Þ

where x1(t), x2(t), and x3(t) respectively denote the states corresponding to the amount of

sweat in the sweat ducts, in the ducts but electrically conducted to the surface due to the pore

opening (contributing to the SC level), and diffused in the stratum corneum according to the

hypothesis in the poral valve model proposed by Edelberg [33]. The states x2(t) and x3(t) are

contributing to the rise in the SC level. τp denotes the faster decay time due to fast re-absorp-

tion (related to the pore collapse). τd represents the slow decay time related to the elimination

from stratum corneum partially by re-absorption, diffusion in the deeper stratum corneum,

and evaporation. We assume clearance rate from the sweat duct is equal to the sweat secretion

rate to the surface and the adjacent skin tissue are. τr denotes the rise time of SC, (effectively

the clearance time of the sweat from the ducts). One should note that the state-space model

does not assume the duct is initially empty. Here, Eq 1 denotes the mechanism of ANS activa-

tion to the Compartment I for sweat production and corresponding sweat transportation

towards Compartment II and III in Fig 1C. Eq 2 denotes the increase in the sweat content in

Compartment II and corresponding fast re-absorption process in the model in Fig 1C. The

location and the direction of the direct sweat secretion via pore opening (SCR generation step

3 in green arrow) and the corresponding fast re-absorption (SCR generation step 4 in red

arrow) are denoted in Fig 1B and 1C. Similarly, Eq 3 denotes the increase in the sweat content

in Compartment III and corresponding slow elimination process in the model in Fig 1C. The

location and the direction of the sweat secretion via diffusion (SCR generation step 2 in purple

arrow) and the corresponding fast re-absorption (SCR generation step 5 in magenta arrow)

are denoted in Fig 1B and 1C.

The system input u(t) represents the ANS activation. To keep the definition simple, we

assume that the ANS activation occurs during the integer multiple of the sampling period. Let Ts
be the sampling period. Researchers reported that a single neural impulse from ANS is responsi-

ble for a single SC response [21, 22, 34–36]. Moreover, the sparsity constraint on u has been

proven to be an appropriate prior in our previously developed algorithms [23, 24, 27–29, 37].

With the sparsity assumption, we represent the ANS activation as uðtÞ ¼
PK

k¼1
ukdðt � kTsÞ
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where uk is the amplitude of the impulse during the ANS activation at time kTs. uk is zero if

there is no impulse in the stimuli. Moreover, ηp(x1(t)) and ηd(x1(t)) are two functions that

determine the fraction of sweat that is secreted by direct pore opening and diffusion, respec-

tively. We assume ηp(x1(t)) and ηp(x1(t)) denote the nonlinearity in the pore opening opera-

tion. The nonlinearity of the pore opening is similar to the switching operation (on/off) and

analogous to how a neuron works, i.e., in integrate-and-fire manner as pointed out in [6].

Therefore, we propose to model these nonlinearities with sigmoid functions similar to the arti-

ficial neurons as follows:

Zpðx1ðtÞÞ ¼ Sðax1ðtÞ þ bÞ;

Zdðx1ðtÞÞ ¼ 1 � Sðax1ðtÞ þ bÞ

where S(x) = (1 + e−x)−1 represents the sigmoid function. Although we assume it as an inte-

grate-and-fire operation, there is a difference, i.e., even if the pores do not open, the sweat

secretion will still be carried out by the diffusion process via duct wall with relatively slower.

Here, the nonlinear function ηd(x1(t)) represents the the fraction of sweat secreted via diffusion

for a given duct pressure represented by x1(t). Similarly, ηp(x1(t)) represents the change in the

fraction of sweat secreted via pore opening for a given duct pressure represented by x1(t). We

assume thatthe amount of absorbed sweat in the stratum corneum and epidermis that contrib-

ute to the SC level due to diffusion process is denoted by x3(t). The sweat content in the ducts

and electrically conducted to the surface due to the pore opening is denoted by x2(t) contribute

Fig 1. An overview of the physiology and corresponding proposed model. (A) A step by step illustration of the poral valve model proposed by

Edelberg [33]. (B) An illustration of the cross section of the skin segment and corresponding different regions contributing to the SCR generation

process based on poral valve model. (C) A three compartment pharmacokinetic realization of the poral valve model. The arrows with different colors in

panel B and C correspond to the secretion and clearance of sweat contents in different steps denoted by the associated step numbers as represented in

panel A.

https://doi.org/10.1371/journal.pcbi.1010275.g001
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to the SC level. Therefore, the observation equation denoting resultant SC is as follows,

yðtÞ ¼ x2ðtÞ þ x3ðtÞ þ nðtÞ

where y(t) and ν(t) represent overall SC measurement and the noise signal, respectively. Equiv-

alent to previous approaches, the phasic and the tonic components can be written as follows,

yPðtÞ ¼ x2ðtÞ

and yTðtÞ ¼ x3ðtÞ

where yP(t) and yT(t) represents the phasic and the tonic components, respectively.

Apparently, the proposed model is highly nonlinear and it is very difficult to derive a practi-

cal deconvolution approach that runs in edge devices with this model. For the simplification,

we assume that the fraction of sweat secretion that happens via pore opening is always con-

stant. Therefore, the simplified linear version of the model is obtained by the assumption that

ηp and ηd is constant w.r.t x1(t) (α = 0) s.t. ηd = 1 − ηp = η. Here, η is a constant and it repre-

sents the fraction of sweat that is secreted by diffusion process, i.e., η 2 [0, 1]. This simplifica-

tion makes the model linear and more suitable for scalable edge computation. Now, the

simplified model can be thought of as a three compartment pharmacokinetic model as shown

in Fig 1C. To represent it in vector matrix form we define xðtÞ ¼ x1ðtÞ x2ðtÞ x3ðtÞ �
>

�
,

Ac ¼

�
1

tr
0 0

þ
Zp

tr
�

1

tp
0

þ
Zd
tr

0 �
1

td

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

, Bc ¼

1

0

0

2

6
4

3

7
5, Cc ¼ 0 1 1 �½ . Therefore, the continuous state-

space model in matrix form is as follows:

_xðtÞ ¼ AcxðtÞ þ BcuðtÞ;

yðtÞ ¼ CcxðtÞ þ nðtÞ:

Discretization. Let yk be the observed SC at time instance kTs. We can write,

yk ¼ CcyðkTsÞ þ nk ð4Þ

where νk 8 k represent the noise and are modelled as independent and identically distributed

(i.i.d) zero mean Gaussian random variable, i.e., nk � N ð0; s2
n
Þ. We derive the discrete equiva-

lent of the system, assuming that the input and the states are constant over Ts. The discrete ver-

sion of the neural stimuli can be written as a vector u = [u1 u2 � � � uK]> that represents

the entire neural stimuli over the duration of SC data. Let A ¼ eAcTs , B ¼
R Ts

0
eAcðTs � rÞBcdr, and

C = Cc to write the discrete state-space form as:

xk ¼ Axk� 1 þ Buk; yk ¼ Cxk þ nk: ð5Þ

where xk 2 R
3
, yk 2 R, uk, νk denote the state vector, the observation, ANS activation, and the

measurement error in discrete domain. The corresponding discretized phasic and tonic com-

ponents can be written as follows,

yP;k ¼ CPxk
and yT;k ¼ CTxk
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where Cp ¼ 0 1 0 �½ and CT ¼ 0 0 1 �½ . Here, yP,k and yT,k represents the discretized

version of the phasic and the tonic components, respectively.

Physiological priors and constraints

The proposed model has many unknown parameters, and the number of measurements is rel-

atively small. Therefore, the problem has many degrees of freedom. It is customary to enforce

appropriate physiologically motivated priors on the model parameters. Otherwise, in the worst

cases scenarios, the solution may not stay within the physiological boundaries and may lead to

over-fitting [38]. Therefore, we incorporated physiologically motivated priors on the system

model similar to [24, 39]. We assume that the individual model parameters are Gaussian dis-

tributed with some mean and variance similar to [24]. We use this information as a prior in

the estimation step.

Further, we also consider equality and inequality constraints on the system parameters.

First of all, we constraint all the physiological parameters are non-negative. We select a lower

bound for τr of 0.2 seconds based on the result distribution obtained in our previous study

[24]. Furthermore, we set τp> β1τr and τd> β2τp similar to our previous work [23, 24, 28].

However, the values of β1 and β2 are unknown for the proposed model. Therefore, we select

the values of β1 and β2 by manually by investigating the results by trials and errors such that the

multiple correlation coefficients for all participants are R2 > 0.98. First, we try to run the algo-

rithm (described in the next section) without any constraint on τr, τp, τd and η. However, most

of the case algorithm converges in a solution where the model fit is very poor and has a very

small multiple correlation coefficient. And in most cases, η was convergent to 0 or 1. This is an

indication of having a model with a very high degree of freedom. Therefore, we first decided to

fix η = 0.5 assuming that 50% contributions of each type of secretion (i.e., via pore opening and

via diffusion) reduce the complexity. Second, we decide to set as τp> 2τr as this constraint can

be inferred from the previous distribution of the rise time and the decay time of the phasic

component [24]. The reader should note that the estimated phasic decay time is at least 3 to 4

times the estimated rise time in [24]. Therefore, β1 = 2 should be a fairly conservative choice.

Finally, we decide to find the constraint for τd. As among all the time constants, τd is the slowest

one, we consider the constraint with τd> β2τp for different β2� 1 and run the algorithm and

try to see which value provide better goodness of fit for all 26 participants in terms of R2. We

start with β2 = 1 and increment it by 1. We stop once all the participants (except Male Partici-

pant 12 as there is no fluctuation) show above 0.98 of R2. One should note that other configura-

tions might also work. For example, if someone decides to start with a value of η other than 0.5,

they might have to follow a similar procedure to find the new constraints. This suggests that

there is a scope of further future investigation of the current method.

Estimation

We wish to estimate the parameter vector θ ¼ y1 y2 y3 y4 y5 �
>
¼ tr tp td Zp Zd �

>
��

and unknown ANS activation uk given the SC measurement yk 8 k 2 {0, 1, � � �, K − 1}. One

straighforward way is to solve the following optimization problem,

min
xk; 8k; yj; 8J

l
XK� 1

k¼0

jjxk � Axk� 1jj1 þ
XK� 1

k¼0

jjyk � Cxkjj
2

2

2s2
n

þ
Xj¼J� 1

j¼0

rj
ðyj �

�y jÞ
2

2s2
yj

:

ð6Þ
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where (xk − Axk−1) = Buk. If we consider the first term in Eq 6, i.e., the l1-norm of (xk − Axk−1)

as the negative log-likelihood, taking the exponential of the negative of the gives us the Laplace

distribution of Buk = (xk − A xk−1) with parameter lI. The second term in Eq 6 represents the

least squares error between the observation yk and the prediction Cxk with a Gaussian observa-

tion error assumption. The final term represents the negative loglikelihood of the Gaussian pri-

ors on the system parameters with ρj, �y j, and syj represents the regularization parameters, the

mean, and variance for the Gaussian priors, respectively 8j 2 {0, 1, 2, � � �, J − 1}. In this case,

J = 3. Therefore, Eq 6 can be considered as the maximum a posterior (MAP) estimator as

pointed out in [30]. In general, the problem formulation in Eq 6 is solved for uk by taking the

derivative of Eq 6 with respect uk and setting it zero. This is particularly done using iteratively

re-weighted least square (IRLS) approach. The sparse recovery with the direct analytical solu-

tion of the state-space model requires a matrix inversion of a K × Kmatrix as shown in our pre-

vious works [23, 24, 27]. This step works as the bottle neck of the approach. In this study, we

solve the very same problem with iterative re-weighted lease squares approach implemented

using FIS. The states xk, the ANS activation uk and the matrices describing system dynamics A
and B can be estimated in an expectation-maximization (EM) approach.

Given the probabilistic model that generates a set of observed data Y = {yk}8k 2 {0, 1, � � �,

K − 1} and a vector of unknown parameters θ, we can write, p(Y, θ) = p(Y|θ)p(θ). The following

maximum log-likelihood estimation problem can be solved in order to estimate the θ:

max
y

log pðY; yÞ

Now lets introduce a set of hidden unknown states X = {xk, uk} 8 k having a joint probability

distribution p(Y, X; θ). We can re-write the maximum likelihood estimation as the following

marginal likelihood function of p(Y, X; θ):

max
y

log pðY; yÞ ¼ max
y

log
Z

X
pðY;X; yÞdX: ð7Þ

We defined the joint log-likelihood function for Y, X, and θ as follows:

log pðY;X; yÞ ¼ logðpðYjX; θÞpðXjθÞpðθÞÞ

¼ log pðYjX; θÞ þ log pðXjθÞ þ logðθÞ

¼
XK� 1

k¼0

logðpnkðyk � CxkÞÞ þ
XK� 1

k¼0

logðpBukðxk � Axk� 1ÞÞ

þ logðpðyÞÞ:

ð8Þ

where the pnk and pBuk denotes the probability density functions corresponding to νk = yk − Cxk
and Buk = xk − Axk−1, respectively. Here, only the term pBukðxk � Axk� 1Þ depends on θ.

The original problem can be defined as the following expectation maximization (EM)

approach,

max
y

log pðY; yÞ ¼ max
y

EX�qðXÞflog pðY;X; yÞg: ð9Þ

As it is expressed in Eq 9, the unknowns can be estimated by iteratively maximizing the

expectation of the joint log-likelihood in Eq 8 as shown in S1 Appendix.

E-step (sparse recovery). Let’s assume that we know the current estimate of model

parameters θ(i−1) from the (i − 1)th iteration of EM. We calculate the corresponding state

matrices A(i−1) and B(i−1). At ith iteration of EM, given the sequence of observations yk 2 Y and
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given probability distribution q(X) = p(X|Y, θ(i−1)), we wish to estimate the expectation of xðiÞk
and uðiÞk . We choose the probability distribution for uk such that it enforces sparsity. Kazemi-

pour et al. [30] proposed to use Laplace distributed with parameter for sparsity of the innova-

tion terms in the state transition equations. In this study, we consider a broader family of

distributions, namely, generalized Gaussian distribution for uk so that distribution parameters

can be selected to obtain a range of distributions such as Gaussian and Laplace distribution. In

contrast to [30] where the input matrix is considered as an identity one, we assume that uðiÞk
denote the scalar (or column vector) ANS activation and B(i−1) works as a direction vector (or

matrix) of innovation in the state transition equation. We consider uðiÞk is generalized Gaussian

distributed, i.e.,

pðuðiÞk jg
ðiÞ; pÞ ¼

pgðiÞ

4gðiÞð1=pÞ
expð�

gðiÞ

2
juðiÞk j

p
Þ;

where γ(i) and p defines the shape of the generalized Gaussian distribution. p(uk|γ(i), p) can also

be written in terms of xk with multi-variate generalized Gaussian distribution as follows.

pðuðiÞk jgðiÞ; pÞ ¼ pðBu
ðiÞ
k jl

ðiÞ
; pÞ ¼ expð�

l
ðiÞ

2
jjBði� 1ÞuðiÞk jj

p
pÞ

¼ expð�
l
ðiÞ

2
jjxðiÞk � A

ði� 1ÞxðiÞk� 1jj
p
pÞ;

where λ(i) represents the new parameter related to the new random variable to obtain the

equivalent pdf (l
ðiÞ
jjBði� 1Þjj

p
p ¼ g

ðiÞ). The sparsity constraint is imposed on uðiÞk for 0< p< 2.

However, the closed form equations for FIS do not exist for generalized Gaussian distribution

where p 6¼ 2, although they are the prerequisite for scalable edge computation of the sparse

recovery. Therefore, we approximate the generalized Gaussian distribution with iterative re-

weighted Gaussian distributions for the closed form derivation of the forward filter and back-

ward smoother equations. For example, if p = 1, the generalized Gaussian distribution becomes

Laplace distribution as shown in [30]. Therefore, we approximate the Laplace distribution of

uðiÞk with iterative re-weighted Gaussian distributions, i.e., if at rth re-weighting step the state

estimation is xði;rÞk , the Laplace pdf can be approximated with Gaussian pdf as follows:

pxk ¼
l
ði;rÞ

2
exp �

l
ði;rÞ

2
jjxði;rÞk � A

ði� 1Þxði;rÞk� 1jj1

 !

/
l
ði;rÞ

2
exp �

1

2
ðxði;rÞk � A

ði� 1Þxði;rÞk� 1Þ
>
ðQði;r� 1Þ

k Þ
� 1
ðxði;rÞk � A

ði� 1Þxði;rÞk� 1Þ

� �

;

where λ(i, r) is the regularization at rth re-weighting step. Qði;rÞk is the co-variance matrix at rth

re-weighting step at kth time point and we define it defined as follows:

Qði;rÞk ¼ ðl
ði;rÞ
Þ
� 1
ðEfðxði;rÞk � Aði� 1Þxði;rÞk� 1Þðx

ði;rÞ
k � Aði� 1Þxði;rÞk� 1Þ

>
g þ �2IÞ

1

2

¼ ðl
ði;rÞ
Þ
� 1
ððBði� 1Þðuði;rÞk Þ

2Bði� 1Þ>Þ þ �2IÞ
1

2:

Here, � is a value close to zero for the matrix perturbation to achieve numerical stability.

We select � = 10−5 for the numerical stability. Unlike the conventional IRLS approach where

the covariance of the Gaussian approximation is taken to be diagonal, here the current
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definition takes the square root of the entire matrix. The perturbations enable us to obtain fea-

sible inverse during FIS prediction and update equations as Bði� 1Þðuði;rÞk Þ
2
ðBði� 1ÞÞ

>
is always sin-

gular. The generalized approximation is performed by implementing ℓp-norm with Gaussian

distribution approximation of generalized Gaussian family as follows where 0< p< 2,

Qði;rÞk ¼ ðl
ði;rÞ
Þ
� 1
ððBði� 1Þðuði;rÞk Þ

2
ðBði� 1ÞÞ

>
Þ þ �2IÞ

2 � p
2 ð10Þ

Similar to the previous case with square root, here the power
2� p

2
has been taken on the

whole matrix. With this approximation, we perform Kalman filtering and backward smooth-

ing to obtain the expectation of the state variables Efxði;rÞk g’s and corresponding covariance

matrices. Constraining the corresponding innovation in the state equation to be along the

direction of the vector B, the expected uk is given as follows at rth re-weighting step:

uði;rÞk ¼ arg min
u�uth

1

2
jjEfxði;rÞkþ1g � Aði� 1ÞEfxði;rÞk g � Bði� 1Þujj2

2
; ð11Þ

where uth is the selected minimum amplitude for ANS activation. Here, we select uth = 0.03

μS/s for the initialization step and uth = 0.25 μS/s during the main step. Here, a relatively con-

servative value of uth has been selected in the initialization step to avoid excessive pruning

before having good initialization of a other parameters. The selection has been done manually

by trial and error such that the results for all participants that reduces the number of detected

spikes while keeping the multiple correlation coefficient R2 > 0.95. During this process, the

number of detected detected spikes that visually does not correspond to any SCR is minimized.

The evaluation of the obtained spikes has been evaluated by visual inspection (verified by two

different viewers) similar to apporach in [6]. The criteria of selecting uth is chosen to obtain a

reasonable goodness-of-fit define by R2 while avoiding any over-fitting. The use of threshold

uth enables us to obtain a constrained solution of uk without implementing actual constrained

Kalman filtering and backward smoothing. As uði;rÞk is scalar in the above optimization formu-

lation, the solution can be written directly as follows:

uði;rÞk ¼ maxðuth; ðB
ði� 1Þ>Bði� 1ÞÞ

� 1
ðBði� 1ÞÞ

>
ðxði;rÞkþ1 � Aði� 1Þxði;rÞk ÞÞ; ð12Þ

This allows us to project the error vector along the direction of B(i−1) vector based on least

square error with a minimum threshold. This is an approximation to make sure that the solu-

tion is consistent with the assumptions of the state-space model. In this study, we select p = 0.5

for lp-norm similar to our previous studies in [23, 24, 27–29].

Adjust sparsity level by choosing γ. In the initialization phase, we choose a scheme for

selecting λ similar to IRLS algorithm FOCUSS+ algorithm in [40]. At rth re-weighting iteration

of E-step, the heuristic estimation of λ works as follows:

gði;rÞ ¼ 1 �
XK� 1

k¼0

jjyk � Cxði;r� 1Þ

k jj
2

2
=
XK� 1

k¼0

jjykjj
2

2

 !

gmax; g > 0 ð13Þ

Then, we set l
ði;rÞ
n ¼ gði;rÞn =jjBði� 1Þjj

p
p. Similarly, in the main EM phase, we use generalized-

cross-validation (GCV) technique similar to the GCV-FOCUSS+ technique [41]. We modified

the GCV technique to obtain scalability. To achieve this, we segment our observations with a

window size of Mgcv samples and apply GCV to obtain a λ for each window. For nth segment,

the discretized vector form solution can be provided as, ~yn ¼ Fn~xn;0 þ Dn~un; where ~yn, xn+1,

~un represents the observation vector, the first state and the ANS activation in the nth segment,

respectively. Fn and Dn are the matrices for the complete discretized vector solution for nth
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block and can be defined as, Fn ¼ ½ Fn;0 Fn;1 � � � Fn;ðMgcv� 1Þ �
>

Mgcv�3
and Dθ ¼

½Dn;0 Dn;1 � � � Dn;ðMgcv� 1Þ �
>

Mgcv�Mgcv
; where Fn,k = CAk and

Dn;k ¼ C
Ak� 1B Ak� 2B � � � B 0 � � � 0

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Mgcv� k

" #

.Mgcv = 100 worked well for our study.

For nth segment, we obtain λn using the following optimization formulation based on singu-

lar value decomposition (SVD) for GCV proposed in [41]:

min
ln

GnðgnÞ ¼

Mgcv

PMgcv
n0¼1 ŷ2

n;n0
gn

k2
n;n0 þ gn

 !2" #

PMgcv
n0¼1

gn
k2
n;n0 þ gn

 !2" #

s:t: 0 � gn � 1� 10� 4

ð14Þ

where ŷ ¼ U>ŷn;t ¼ ½ ŷn;1 ŷn;2 � � � ŷn;Mgcv �
>

with ŷn;t ¼ ~yn � Fn~xn, and DnP~u
1
2 ¼ USV>

with P~u ¼ diagðj~un;n0 j
2� p
Þ and S = diag{κj}; U and V are unitary matrices and κi’s are

the singular values of DnP
1
2
~u . We estimate γn8n and take the median. Finally, we set

l
ði;rÞ
n ¼ gði;rÞn =jjBði� 1Þjj

p
p.

Usually, the re-weighting in E-step converges within a very small number of iterations. We

perform the re-weighting in E-step for r = 0, 1, 2, � � �, 5. After finishing all the re-weighting

iterations in the E-step, we obtain the following estimations: xðiÞk ; u
ðiÞ
k ; P

ðiÞ
kjk; and PðiÞkjk� 18k. Here,

PðiÞkjk and PðiÞkjk� 1 represents the estimates of EfxðiÞk x
ðiÞ
k
>

g and EfxðiÞk x
ðiÞ
k� 1

>

g, respectively. Here, we

drop r to represent the final E-step estimations.

M-step (physiological parameter estimation). The M-step at ith iteration can be defined

as the following simplified constrained optimization problem utilizing Eq 6 and EM deriva-

tion,

min
yj ; 8j

EflðiÞ
XK� 1

k¼0

jjxðiÞk � Ax
ðiÞ
k� 1jj

p
p þ
XK� 1

k¼0

jjyk � CxðiÞk jj
2

2

2s2
n

þ
Xj¼J

j¼0

rj
ðyj �

�y jÞ
2

2s2
yj

g;

s:t: Rθ � s; Reθ ¼ se;

ð15Þ

where R ¼

� 1 0 0 0 0;

0 � 1 0 0 0

0 0 � 1 0 0

b1 � 1 0 0 0

0 b2 � 1 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

, s ¼

s1
s2
s3
0

0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

, Re ¼
0 0 0 1 0

0 0 0 0 1

" #

, and

se ¼
1 � Z

Z

" #

determines the constraints on θ. The equality constraints ensures the sum of ηp

and ηd are equal to 1. To incorporate estimated uðiÞk from the E-step, we re-write the Eq 15. The
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modified optimization formulation is as follows,

min
yj; 8j

Ef
gðiÞ

2

XK� 1

k¼0

juðiÞk j
p
þ
XK� 1

k¼0

jjyk � CðAxðiÞk� 1 þ BuðiÞk Þjj
2

2

2s2
n

þ
Xj¼J

j¼0

rj
ðyj �

�y jÞ
2

2s2
yj

g

s:t: Rθ � s; Reθ ¼ se

ð16Þ

After some algebraic manipulation and assumption that xðiÞk� 1 and uðiÞk are statistically inde-

pendent 8k, we obtain the following optimization formulation by removing the constant terms

with respect to θ.

min
yj; 8j

1

2
jjyjj2 þ

1

2
TrðAð

XK� 1

k¼0

ðxðiÞk� 1ðx
ðiÞ
k� 1Þ

>
þ PðiÞk� 1ÞÞA

>Þ

� TrðAð
XK� 1

k¼0

y>k Cx
ðiÞ
k ÞÞ � TrðBð

XK� 1

k¼0

y>k Cu
ðiÞ
k ÞÞ

þ TrðB
XK� 1

k¼0

ððuðiÞk Þ
2
ÞB>Þ þ TrðAxðiÞk� 1ðu

ðiÞ
k� 1Þ

>B>ÞÞ

þ s2
v

Xj¼J

j¼0

rj
ðyj �

�y jÞ
2

2s2
yj

s:t: Rθ � s; Reθ ¼ se

ð17Þ

The overall approach can be divided into two phases. In the first phase, we perform initiali-

zation with a fixed uði;0Þk ¼ ua 8k at each iteration and with heuristic refinement of λ(i, r). A

detailed description of heuristic refinement is provided in S2 Appendix. uα = 1 worked well for

our study. In the main EM-phase, we update uði;0Þk ¼ uði� 1;5Þ

k , i.e. with the values obtained in the

previous re-weighting iteration. In E-steps of both phases, we perform a heuristic refinement

of uk. After finishing all re-weighting iterations in the E-step, we obtain the following estima-

tions: xðiÞk ; u
ðiÞ
k ; P

ðiÞ
kjk; and PðiÞkjk� 18k. The expected values are plugged into the M-step optimiza-

tion formulation in 17. The constrained optimization problem in 17 is solved using the

interior-point method. The overall algorithm for the initialization and the main EM-phase is

provided in Algorithm 1.

Selection of noise variance σν and it’s relation with λ
The presence of noise may lead to inaccurate estimates of ANS activations. The regularization

parameter λ related to sparsity dictates the level sparsity of uk, choice of higher value of λ leads

to more sparse solution and vice versa. On the other hand, if the of guess of the observation

noise variance is higher, the estimation deconvolution tend to fit more to the state equation

itself without having much innovation term (i.e. smaller Buk) than the current observation.

For regular FIS, there is a always a trade-off between process noise and the observation noise.

If the observation noise is high then the process noise usually tend be very low during the esti-

mation. In case of IRLS-based FIS for sparse recovery, the process noise is represented with

the innovation term, i.e. the ANS activation uk. Therefore, if the observation noise variance σ2

is selected to be smaller, the innovation uk will have more zeros 8k. In other words, higher

value of observation noise variance σ2 leads to a more sparse estimation of uk. Therefore,
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although we have incorporated a GCV based approach for selecting λ that tunes the sparsity

level of uk, the noise filtration also depends on the selected observation noise variance, s2
n
. For

the experimental study, we have selected s2
n
¼ 1� 10� 8. This value is working well along with

the GCV for balancing between discarding the noise and capturing the process. We have kept

the value of s2
n

same for the simulated study. Our results show that it is capturing more spikes

than the ground truth for heavy noise level. As pointed out in [30], increasing the noise vari-

ance s2
n

will lead to a much smoother estimate with a lower number of spikes. For most of the

cases, GCV could discard most of the spikes related to noise. Because, the corresponding

selected s2
n

are within the reasonable range for GCV to obtain a balance. Therefore, for GCV

to balance the noise spike, a reasonable choice of s2
n

is required. However, for some cases it is

challenging to find such a reasonable value for GCV. Higher values of s2
n

may result in some of

the SCRs undetected. Therefore, we select a relatively small value of s2
n

such that none of the

SCRs remain undetected. As most of the detected noise spikes are relatively smaller than the

spikes related to the SCRs, application tailored post-processing (e.g. hard/soft thresholding)

can remove most of the noise spikes.

Algorithm 1: bayesianEDA
Input: yk 8k
Output: uk 8k and θ
1 Initialization Phase: Initialize ~θ0 � Uðbl; buÞ.
2 for i = 1, 2, 3, � � �, 30 do
3 Set uði;0Þk ¼ ua 8k
4 E-Step:
5 With θ ¼ ~θði� 1Þ, calculate A(i−1) and B(i−1)

6 Iterative re-weighting:
7 for r = 1, 2, 3, � � �, 10 do
8 Estimate λ(i,r) using 13.
9 Perform heuristic refinement of uði;r� 1Þ

k .

10 Set Qði;r� 1Þ

k ¼ ðl
ði;rÞ
Þ
� 1
ððBði� 1Þðuði;r� 1Þ

k Þ
2
ðBði� 1ÞÞ

>
Þ þ �2IÞ

2� p
2 .

11 Estimate xði;rÞk ; Pði;rÞkjk and Pði;rÞkjk� 1 using FIS.

12 Set uði;rÞk ¼ maxðuth; ðB
ði� 1Þ>Bði� 1ÞÞ

� 1Bði� 1Þ>ðxði;rÞk � Ax
ði;rÞ
k� 1ÞÞ.

13 end
14 M-Step: Set xðiÞk ¼ xði;rÞk ; uðiÞk ¼ u

ði;rÞ
k ; PðiÞkjk ¼ Pði;rÞkjk and PðiÞkjk� 1 ¼ Pkjk� 1

ði;rÞ and solve
the optimization problem in Eq 17 to obtain θ(i).
15 end
16 Main EM Phase: while until convergence do
17 Set i = i + 1
18 Set uk ¼ u

ði� 1;rÞ
k 8k

19 E-Step:
20 With θ ¼ ~θði� 1Þ, calculate A(i−1) and B(i−1).
21 Iterative re-weighting:
22 for r = 1, 2, 3, � � �, 10 do
23 Estimate λ(i, r) using the modified GCV technique.
24 Perform heuristic refinement of uði;r� 1Þ

k .

25 Set Qði;r� 1Þ

k ¼ ðl
ði;rÞ
Þ
� 1
ððBði� 1Þðuði;r� 1Þ

k Þ
2
ðBði� 1ÞÞ

>
Þ þ �2IÞ

2� p
2 .

26 Estimate xði;rÞk ; Pði;rÞkjk and Pði;rÞkjk� 1 using FIS.

27 Set uði;rÞk ¼ maxðuth; ðB
ði� 1Þ>Bði� 1ÞÞ

� 1Bði� 1Þ>ðxði;rÞk � Ax
ði;rÞ
k� 1ÞÞ.

28 end
29 M-Step: Set xðiÞk ¼ xði;rÞk ; uðiÞk ¼ u

ði;rÞ
k ; PðiÞkjk ¼ Pði;rÞkjk and PðiÞkjk� 1 ¼ Pði;rÞkjk� 1 and solve the

optimization problem in Eq 17 to obtain obtain ~θðiÞ.
30 end
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Consideration of non-convexity. The complete data log-likelihood that is optimized by

the EM approach might suffer from non-convexity and there is a potential risk that the solu-

tion may end up in different locations for different initial values. To test that, we run our EM

approach for multiple random initializations of the physiological system parameters. Based on

the simulated and the experimental datasets we have analyzed, we have observed that the solu-

tion for a given SC signal always converges to one location no matter what initial value has

been selected. Therefore, we decided to only run our approach for one random initialization of

the physiological system parameters in this study, unlike our previous approaches where we

have used multiple random initializations and selected the solution that satisfies the selection

criteria [23, 24, 28].

Results

We use the proposed approach to deconvolve the SC measurements from 26 participants. The

deconvolution approach provides the estimates of the underlying ANS activation u(t), rise

time (τr), faster decay time (τp), and slow decay time (τd). We have considered the signal seg-

ment from 150 to 350 seconds for the analysis on the experimental data. Figures from the

deconvolution results for one female and one male participant are provided in Fig 2. The fig-

ures from the deconvolution results for all 13 female and 13 male participants are provided in

S1–S4 Figs. These figures depict the successful estimation of the sparse ANS activation due to

auditory stimulation.

The estimated rise time (τr), fast decay time τp, slow decay time τd, number of pulses (||u||0),

and multiple correlation coefficient (R2) are provided in Table 1. Fig 3 shows the histogram of

the estimated state-space model parameters from all 26 participants. The estimated means of

the parameters among the 26 participants are μr = 2.0040, μp = 5.4545, and μd = 81.8175 sec-

onds for rise times, fast decay time, and slow decay times, respectively. Corresponding stan-

dard deviations are σr = 0.8675, σp = 1.9258, and σd = 28.8874 seconds, respectively. The

calculated multiple correlation coefficients (R2) are greater than 0.98 for all participants except

for Male Participant 12 (R2 for Male Participant 12 is 0.8352). This suggests that the proposed

model can successfully explain the variations in SC recording.

*****************SC Measurements
Reconstructed SC
Tonic SC

Phasic SC
ANS Activation
Auditory Stimulation 
Timing

Top Sub-Panel Bottom Sub-Panel

Fig 2. Estimated decomposition of the experimental SC signals for female participant 1 and male participant 1. In each of the panels, i) the top sub-panel

shows the experimental SC signal (red stars), the reconstructed SC signal (black curve), the estimated tonic component (green curve), and the timings of the

auditory stimulations (gray vertical lines); ii) the bottom sub-panel shows the estimated phasic component (blue curve), estimated ANS activation timings and

amplitudes (black vertical lines) and the timings of the auditory stimuli (gray vertical lines).

https://doi.org/10.1371/journal.pcbi.1010275.g002
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For further evaluating the performance of the proposed algorithm on experimental data, we

utilize it’s ability of separating a high-arousal condition (with larger ANS activation ampli-

tudes) from a low-arousal condition (with smaller ANS activation amplitudes), inspired by the

work commonly done in the PsPM framework [42]. We utilize the estimated ANS activation

u(t) in distinguishing between SCRs that are related to and not related to loud sound events.

We label all the impulses in estimated u that have been detected within 5 seconds after a loud

sound event as the positive class and other impulses as the negative class. We consider the

amplitudes of the impulses as the classification scores within the subjects for obtaining the

receiver operating characteristic (ROC) curves [43, 44]. The estimated area under the ROC

curves (AUC) for all participants ranges from 0.6600 to 1 with a median of 0.9380 and a mean

of 0.8960. We individually normalized the estimated u for all participant and combined all u in

one vector to obtain an overall ROC. The estimated overall AUC is 0.8196. We compare our

proposed bayesianEDA approach with LedaLab-CDA [19], LedaLab-DDA [26], cvxEDA [21],

sparsEDA [34], PsPM-MP [45], PsPM-DCM [20], and our spline based approach [24]. The

ROC curves are for each of the approaches shown in Fig 4A. The corresponding overall AUC’s

are shown in Fig 4B. We further count the number of auditory stimulations for which no SCRs

Table 1. The estimated model parameters and the squares of the multiple correlation coefficients (R2) for the fits of the experimental SC data.

Female Participant ID τr τp τd ||u||0 R2

1 12 2.4575 6.4373 96.5591 25 0.9980

2 15 2.6889 6.9542 104.3135 24 0.9936

3 7 1.9565 5.3131 79.6968 28 0.9961

4 18 2.2324 5.9467 89.2004 25 0.9944

5 21 2.2948 6.0929 91.394 24 0.9893

6 25 2.3572 6.2167 93.2508 39 0.9990

7 1 1.3424 3.9588 59.3823 6 0.9986

8 2 0.7779 2.9288 43.9323 1 0.9883

9 5 1.2355 3.7123 55.6841 16 1

10 6 1.3411 3.9759 59.6391 11 0.9997

11 14 1.2101 3.6983 55.4741 9 0.9991

12 16 3.4221 8.6496 129.7442 41 0.9871

13 19 1.5775 4.4758 67.1366 25 0.9928

Male Participant ID τr τp τd ||u||0 R 2

1 11 1.7215 4.7976 71.9641 8 0.9991

2 26 1.6574 4.6498 69.7463 13 0.9991

3 8 2.0524 5.5199 82.7989 24 0.9987

4 10 1.9070 5.2164 78.2453 40 0.9836

5 20 4.5170 11.0786 166.1788 59 0.9909

6 23 1.5451 4.4054 66.0803 27 0.9998

7 3 3.4100 8.6018 129.0276 58 0.9986

8 4 0.8936 3.1084 46.6253 8 0.9993

9 9 1.3561 4.0062 60.0935 20 0.9963

10 13 3.1618 8.066 120.9899 75 0.9954

11 17 1.6731 4.6962 70.4425 30 0.9976

12 22 1.7625 4.8939 73.4078 16 0.8352

13 24 1.5518 4.4164 66.2467 29 0.9992

Here τr, τp and τd, ||u||0, and R2 denote the rise time, fast decay time, slow decay time, ANS activation, and multiple correlation coefficients, respectively.

https://doi.org/10.1371/journal.pcbi.1010275.t001
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were detected, we name them as number of undetected auditory stimulation. The number of

undetected auditory stimulation for each approaches is shown in Fig 4C.

To further investigate the efficacy of our approach, we use the reconstructed signal from

our experimental study and add Gaussian noise to simulate data for all 26 participants similar

to the previous works in [23, 24, 28, 46, 47]. We consider the results from the experimental

study as the ground truths to compare with the estimation from the simulated study. The pro-

posed approach successfully estimates the ANS activation along with the physiological model

parameters. All the multiple correlation coefficients (R2) are greater than 0.98 for simulated

data with 25 dB noise level is 0.9872. Estimated system parameters (t̂r , t̂p and t̂d), estimation

errors, and the multiple correlation coefficients (R2) for the results for all the simulated data

with 25 dB SNR are provided in Table 2. Further, we also perform the same analysis for 35 dB

SNR noise level. The deconvolution result figures related to both 25 dB and 35 dB SNR noise

level are also provided in Figs 5 and 6 for two participants for each case. All the other simula-

tion results with Gaussian noise are provided in S5–S12 Figs. Furthermore, we performed sim-

ilar deconvolution study with pink noise with 25 dB SNR for the signal which show similar

results as for the case of Gaussian noise showing the robustness to the model mismatch. The

corresponding figures are provided in S13–S16 Figs.

We add noise with different noise power to investigate how the proposed approach per-

forms in terms of estimating the unknowns and the reconstructed signal. We add Gaussian

noise with different energy levels to the reconstructed SC signals from the experimental study

Fig 3. Histograms of estimated SCR shape parameters using our approach. In top sub-panel in the red and green bar plots correspond to the histogram

plots of the estimated rise time τr and decay time τd, respectively. Red, green and blue vertical lines correspond to the locations of the means μr, μp and μd of

the corresponding histograms, respectively.

https://doi.org/10.1371/journal.pcbi.1010275.g003
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Fig 4. Event related SCR detection performance comparison. (A) The overall ROC curve related to the

discrimination power between event-related vs non-event-related SCRs combining all the normalized u from each of

the individual participants. (B) Corresponding AUC of the ROC curves. (C) Total number of the undetected auditory

stimulation impulses within 26 participants.

https://doi.org/10.1371/journal.pcbi.1010275.g004
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Table 2. The estimated model parameters, estimation errors, and the squares of the multiple correlation coefficients (R2) for the fits of the simulated SC data.

Female Participant ID τr τp τd jtr � t̂ r j

tr
� 100%

jtp � t̂p j

tp
� 100%

jtd � t̂d j

td
� 100% R2 run time

1 12 2.4604 6.4389 96.5830 0.1210 0.0247 0.0247 0.99794 31.6575

2 15 2.6990 6.9523 104.2847 0.3778 0.0276 0.0276 0.99755 317

3 7 1.9586 5.3138 79.7069 0.1071 0.0126 0.0126 0.99755 29.5756

4 18 2.2347 5.9467 89.2011 0.1044 0.0008 0.0008 0.99688 30.5766

5 21 2.3006 6.0931 91.3963 0.2512 0.0025 0.0025 0.99363 28.2613

6 25 2.3588 6.2170 93.2545 0.0693 0.0040 0.0040 0.99789 30.4497

7 1 1.3436 3.9595 59.3931 0.0900 0.0182 0.0182 0.99970 26.1312

8 2 0.7779 2.9288 43.9316 0.0018 0.0016 0.0016 0.99830 21.3974

9 5 1.2366 3.7137 55.7056 0.0907 0.0388 0.0388 0.99888 21.5944

10 6 1.3411 3.9762 59.6431 0.0036 0.0067 0.0067 0.99985 24.9445

11 14 1.2102 3.6981 55.4716 0.0079 0.0045 0.0044 0.99976 28.5442

12 16 3.4366 8.6424 129.6358 0.4253 0.0836 0.0836 0.98704 34.1906

13 19 1.5792 4.4764 67.1456 0.1075 0.0133 0.0133 0.99814 26.3280

Male Participant ID τr τp τd jtr � t̂ r j

tr
� 100%

jtp � t̂p j

tp
� 100%

jtd � t̂d j

td
� 100% R2 run time

1 11 1.7232 4.7982 71.9732 0.0995 0.0126 0.0126 0.99906 25.9000

2 26 1.6579 4.6494 69.7406 0.0312 0.0082 0.0082 0.99911 29.7408

3 8 2.0574 5.5219 82.8286 0.2476 0.0358 0.0358 0.99864 30.1971

4 10 1.9103 5.2170 78.2550 0.1727 0.0125 0.0125 0.98358 28.9428

5 20 4.5459 11.0648 165.9723 0.6384 0.1242 0.1242 0.99098 32.0364

6 23 1.5452 4.4053 66.0799 0.0042 0.0006 0.0006 0.99983 29.6168

7 3 3.4207 8.5952 128.9286 0.3125 0.0767 0.0767 0.99864 32.2376

8 4 0.8937 3.1084 46.6255 0.0026 0.0004 0.0004 0.99938 23.1102

9 9 1.3568 4.0064 60.0960 0.0571 0.0042 0.0042 0.99632 26.4126

10 13 3.1736 8.0676 121.0135 0.3727 0.0195 0.0195 0.99549 31.7452

11 17 1.6754 4.6976 70.4639 0.1386 0.0304 0.0304 0.99762 26.2041

12 22 1.7660 4.8959 73.4382 0.1990 0.0414 0.0414 0.83526 24.6898

13 24 1.5524 4.4157 66.2352 0.0409 0.0174 0.0174 0.99922 28.8487

Here t̂r , t̂p and t̂d denote the estimated rise time, fast decay time, and slow decay time for the simulated SC data. The SC signal is simulated with 25 dB Gaussian noise.

https://doi.org/10.1371/journal.pcbi.1010275.t002

Fig 5. Deconvolution results from the simulated SC signals with 25 dB SNR for one female participant and one male participant. In each of the panels, i)

the top sub-panel shows the ground truth for SC signal (red stars), the reconstructed SC signal (black solid curve), the estimated tonic component (green solid

curve), and ground truth for the ANS activation (gray vertical lines); ii) the bottom sub-panel shows the estimated phasic component (blue solid curve),

estimated ANS activation timings and amplitudes (black vertical lines) and the ground truth ANS activation (gray vertical lines).

https://doi.org/10.1371/journal.pcbi.1010275.g005
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for the 26 participants and perform deconvolution to estimate unknowns with the proposed

approach. We calculate the average estimation errors of the unknowns for all participants at

different noise levels. Figs 7 and 8 show how the average estimation error changes as the noise

level increases. Similarly, Fig 9 shows how the reconstruction errors change at different noise

levels.

To empirically investigate the time complexity of the approach, we utilize the experimental

data with different durations and perform deconvolution using our approach. We measure the

run-time for each of the deconvolution. Fig 10 shows the distributions of the run-times in dif-

ferent signal lengths. According to the Fig 10, the medians of the run-times increase linearly

with the increase in the signal length showing the scalability of the approach. For the signal

with 200 second length, the mean run-time for M-step (parameter estimation step) is 0.38 sec-

onds with a standard deviation of 0.15 seconds.

Discussion

Inference of ANS activation from SC recordings is challenging given that the parameters of the

underlying physiological system are unknown. The derived EM approach maximizes the

Fig 6. Deconvolution results from the simulated SC signals with 35 dB SNR for one female participant and one male participant. In each of the panels, i)

the top sub-panel shows the ground truth for SC signal (red stars), the reconstructed SC signal (black solid curve), the estimated tonic component (green solid

curve), and ground truth for the ANS activation (gray vertical lines); ii) the bottom sub-panel shows the estimated phasic component (blue solid curve),

estimated ANS activation timings and amplitudes (black vertical lines) and the ground truth ANS activation (gray vertical lines).

https://doi.org/10.1371/journal.pcbi.1010275.g006

Fig 7. Noise levels vs. estimation accuracy of the model parameters. Red squares, green pentagram, and blue triangles connected

with solid lines denote the average percentage errors for the estimated rise times, fast decay times, and slow decay time from

simulated data with SNR levels. The SNR is provided with respect to the phasic component.

https://doi.org/10.1371/journal.pcbi.1010275.g007
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complete data log-likelihood. The complete data log-likelihood has many degrees of freedom,

i.e., the constraints on variables to be optimized are lower than the number of variables. In

other words, there exist many solutions for the unknowns that can closely approximate the

sampled signal. The use of a comprehensive state-space model and the elimination of cubic

spline functions-based model reduces the number of unknown variables in optimization. For

example, the number of cubic spline functions needed to model the slow varying component

of 200 seconds is 39, as pointed out in our previous work [24]. On the other hand, the pro-

posed comprehensive model requires only one parameter instead of multiple cubic spline

function parameters to model the slow-varying component. Furthermore, we consider proba-

bilistic sparsity priors motivated by physiology on ANS activation along with Gaussian priors

Fig 8. Average amplitude error of estimated ANS activation in different noise levels. Black diamonds with the dashed lines

denotes the average amplitude error of the neural stimuli from estimated data with different noise levels. We have defined the

average amplitude error as jk~uk1 � kuk1j=kuk0, where ~u and u represent the estimated and the ground truth neural stimuli,

respectively. The data is simulated using the obtained results from the all experimental data in [31]. The SNR is given with respect to

the phasic component.

https://doi.org/10.1371/journal.pcbi.1010275.g008

Fig 9. Root mean square error (RMSE) of the reconstruction for SC signal and corresponding components with respect to the

ground truth. Green, blue and red dashed lines denote the RMSE for the reconstructed tonic component, phasic component and

overall SC data in different noise levels. The data is simulated using the obtained results from the all experimental data in [31]. As

noise is added to the phasic component prior to addition of tonic component, the SNR is given with respect to the phasic

component.

https://doi.org/10.1371/journal.pcbi.1010275.g009

PLOS COMPUTATIONAL BIOLOGY Physiological characterization of electrodermal activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010275 July 28, 2022 21 / 28

https://doi.org/10.1371/journal.pcbi.1010275.g008
https://doi.org/10.1371/journal.pcbi.1010275.g009
https://doi.org/10.1371/journal.pcbi.1010275


on the physiological system parameters. Last but not least, we also enforce inequality and

equality constraints on the state-space model parameters by trial and error. The constraints

τp> 2τr, τd> 15τp, and η = 0.5 worked best for us for the dataset we have analyzed. [24]. [24].

Fig 2 shows that the estimations of the initial states as well as the states for about 20–30 sec-

onds can be erroneous. After 20–30 seconds, the state estimate visually seems reasonable. This

erroneous estimation occurs because the Kalman filter in the FIS needs a few samples to begin

to follow the signal. Therefore, the estimations during the initial few samples can be erroneous.

Due to this erroneous estimation of the initial state, the R2 estimate for male participant 12

became very low compared to other participants. One straightforward way to deal with this is

to consider 20–30 seconds of measured signal padded in the beginning. After performing

deconvolution in the padded signal, results corresponding to the initial 20–30 seconds can be

removed.

For the comparative study with previous approaches, we assumed the timing of the auditory

stimulation as the ground truth. It should be noted that the shape of the ROC curve is dictated

by the three factors: 1) how many of the auditory stimuli are translated as SCRs by the neural

pathway and corresponding physiology, 2) spontaneous SCRs, and 3) an algorithm’s ability to

accurately model any SCRs along with the corresponding accurate estimation of ANS activa-

tions. If an auditory stimulation does not produce an SCR, all different algorithms will be

penalized the same way in the ROC metric if that specific SCR is not detected (contributing as

the false negative). Similarly, if there is a spontaneous SCR, all different algorithms will be

penalized the same way in the ROC metric if detected (contributing as the false positive). As

the first two cases are staying the same for all the algorithms, the relative change in the area in

the AUC of the ROC curve will mean that this change is coming from the algorithm itself only.

In this way we can benchmark our approach with previous algorithms. A better ROC will

Fig 10. Run-time vs signal length. Figure shows boxplots of the run-times of the proposed approach with different

signal lengths. The black dots with blue circle in the middle of each boxplot denote median. The bottom and top of

each blue box are the 25th and 75th percentiles of the sample, respectively. The red markers denote the outliers.

https://doi.org/10.1371/journal.pcbi.1010275.g010
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mean algorithms ability to reduce the false negatives and false positives. Fig 4A shows that our

bayesianEDA has the best ROC curve than all the previous approaches, including our previ-

ously proposed spline-based approach [24]. Fig 4B shows that our bayesianEDA has the maxi-

mum AUC value of the corresponding ROC curves. The next best ones are our spline-based

approach (AUC = 0.8003) and sparsEDA (AUC = 0.7783). The ROC curves and AUC values

are generated based only on the classification ability between the event-related and non-event

related SCRs among the ones that are only detected by each method. However, there is a possi-

bility that an algorithm have over-sparsified the solution and missed many smaller but event-

related SCRs. Therefore, we further calculate for how many of auditory stimulations no SCR

was detected. Fig 4C shows that among all algorithms, our BayesianEDA approach has 24

undetected ANS activation, which is close to the correct number of undetected responses,

which is 23. Detailed discussion is provided in S3 Appendix.

Readers should note that, unlike all the methods we considered for the comparison, PsPM

[20, 45] was specifically developed to incorporate knowledge of external stimulation, and the

dataset used comes from an experiment with defined stimulation. PsPM can utilize this defined

stimulation information. All other approaches including ours perform “blind” deconvolution

regardless of any external stimulation. This is more applicable in the envisioned application

area, such as real-time deconvolution with wearables. It can also be thought of as a drawback

when there is knowledge of stimulation, such as in most laboratory tasks. Therefore, here we

used the spontaneous fluctuation (SF) suite for PsPM for our comparison, which also does not

take the information of external stimulus as input. In the future, inspired by the PsPM frame-

work, we plan to extend our proposed algorithm bayesianEDA to take the stimulus information

as input in a probabilistic manner by changing the probability distribution of u(t) at the time

when external stimulation information exists for a more contex-aware deconvolution.

The computational complexity of the deconvolution approach is OðKÞ as shown in [30].

Furthermore, our empirical investigation also shows that the run-time scales linearly with the

number of samples, as shown in Fig 10. This shows the feasibility of implementing such

approaches in low-power wearable medical devices for edge computation. This scalable imple-

mentation has been possible with the proposed comprehensive state-space model. The time

complexity of the M-step of this approach is also of OðKÞ in terms of the number of samples.

After E-step the calculation of the summations such as
PK� 1

k¼0
ðxðiÞk� 1ðx

ðiÞ
k� 1Þ

>
þ PðiÞk� 1Þ,

PK� 1

k¼0
y>k Cx

ðiÞ
k etc. in Eq 17 has OðKÞ time complexity. Further optimization can be performed

by obtaining the parameters of the physiological system for a smaller segment and performing

the E-step for the longer segments. During a day of recording, parameters can be updated a

few times by running the EM, and these parameters can be used to estimate the ANS activation

using only E-step. A real-time implementation can be done with only running the Kalman fil-

ter in an iterative manner in the FIS after estimating the system parameters for a shorter seg-

ment. As Kalman filters are very cheap in terms of computation power, the proposed approach

opens up the possibility of performing ANS activity inference on the edge device rather than

running it in the cloud, facilitating low network traffic and user privacy.

In this study, we have proposed a novel physiological model inspired by the physiological

understanding of sweat secretion that can better explain the variation in SC with fewer

unknowns. Using our proposed model, we have developed a highly scalable deconvolution

algorithm, which will enable efficient implementation in wearable devices. To achieve conver-

gence, obtain a good fit of the model, and avoid overfitting, several parameters and constraint

have been chosen on a trial-and-error basis because of the absence of in-depth physiological

knowledge. There is room for improvement to come up with a more systematic way to address
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this limitation. Future studies can benefit from more motivation from physiology-motivated

parameters and constraint selections.

ANS activities obtained from the single channel SC recording can be used to track the cog-

nitive arousal state of an individual [2, 48, 49]. One of the future goals is to extend this

approach for multi-channel SC recording and the nonlinearity of the model for a more robust

inference in the presence of noise,leading to more reliable inference of individual arousal level

similar to our previous study in [28]. For further accurate estimate of emotional arousal, we

intend to utilize the inferred ANS activity from SC recordings with our approach and combine

with other physiological signals similar to [50–56]. The proposed new model as well as the scal-

able ANS inference approach have enabled us to design a scalable control architecture to regu-

late the arousal level similar to the proposed framework in [57–60]. Finally, since some studies

have reported inconsistencies in the poral valve model by Edlberg et al. [33] while investigating

both SC and skin potential response [61], we plan to continue our investigation of the mecha-

nism of sweat secretion to achieve improvements in the model and its understanding.
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