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Abstract

Bayesian methods are routinely used to combine experimental data with detailed mathemat-

ical models to obtain insights into physical phenomena. However, the computational cost of

Bayesian computation with detailed models has been a notorious problem. Moreover, while

high-throughput data presents opportunities to calibrate sophisticated models, comparing

large amounts of data with model simulations quickly becomes computationally prohibitive.

Inspired by the method of Stochastic Gradient Descent, we propose a minibatch approach

to approximate Bayesian computation. Through a case study of a high-throughput imaging

scratch assay experiment, we show that reliable inference can be performed at a fraction of

the computational cost of a traditional Bayesian inference scheme. By applying a detailed

mathematical model of single cell motility, proliferation and death to a data set of 118 gene

knockdowns, we characterise functional subgroups of gene knockdowns, each displaying

its own typical combination of local cell density-dependent and -independent motility and

proliferation patterns. By comparing these patterns to experimental measurements of cell

counts and wound closure, we find that density-dependent interactions play a crucial role in

the process of wound healing.

Author summary

During wound healing, cells work together to close a wound to restore tissue integrity.

Thousands of different genes play a role in wound healing, and scratch assay experiments

are routinely used to investigate the role of these genes by analysing how a wound closes

when each of these is not expressed, i.e. knocked down. So far, the impact of knocking

down genes on wound healing has been determined by comparing the size of the wound

before and after a given time period, but these measurements do not elucidate the fine-

scale mechanisms that determine how cells behave in the presence of their neighbours. By

combining a detailed mathematical model with experimental imaging of wound healing,

we identify how cells respond to and work together with their neighbours during wound

healing. Applying this method to a large number of gene knockdowns, we identify three

well-defined functional subgroups of knockdowns, each displaying its own typical behav-

iours of movement and proliferation to close the wound. These observations explain the
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role of each of the knockdowns on wound healing and further our understanding of cell-

cell interactions in wound healing.

1 Introduction

High-throughput methods entail the acquisition and processing of vast amounts of experimen-

tal data with ever increasing detail. This wealth of data creates unique opportunities to derive

insights about real-world phenomena. However, the quantitative metrics used for analysis of

high-throughput data sets often do not exploit the full spatial and temporal information in the

data. For example, in scratch assay experiments routinely used in cell biology studies, typically

only cell count and wound area are used to interpret outcomes [1, 2]. Such straight-forward

summary statistics can identify biologically relevant differences between different experimen-

tal conditions, but they are not generally suited to identify complex spatial and temporal phe-

nomena that arise from e.g. interactions between individual cells. Further, while the ever

increasing availability of detailed experimental data has the potential to inform, calibrate and

refine complicated mathematical models that incorporate such cell-cell interactions, the

computational cost of this process quickly becomes a bottleneck when the amount of data to

be analysed is increased. In this work, we seek to develop a method to combine mathematical

modelling and high-throughput data to extract detailed, real-world insights from a large data

set with a fraction of the computational cost of existing methods.

Mathematical modelling and experimental data are routinely combined using Bayesian

inference, and of late there has been intense interest in both the opportunities offered by high-

throughput data and models (see for instance the editorial overview by Hasenauer and Banga

[3]) as well as the required protocols for combining mathematical modeling and high-through-

put data successfully [4]. Given a mathematical model and observed data, Bayesian methods

express the information gained from data in probability distributions for the parameters that

constitute the model. Such posterior distributions provide information as to which model

parameters reproduce observed data well while also expressing the associated uncertainty in

these values given the data. One of the challenges in performing Bayesian analysis of complex

mathematical models is that the likelihood function of simulated data given a parameter value

is typically intractable, so that simulation-based approaches to likelihood estimation are

required. This means that large amounts of computationally costly simulations are required to

compare model outputs with experimental observations, which is complicated further when

the parameter set of the model is high-dimensional, as the cost of accurate likelihood estima-

tion scales poorly with the dimension of the parameter space [5, 6]. The computational cost of

likelihood-free Bayesian inference methods has prompted a huge volume of research into

improving the computational efficiency of Bayesian methods [7], such as multifidelity methods

[8], optimal perturbation kernels [9, 10], and delayed acceptance [11] to name but a few.

The central challenge for likelihood-free Bayesian inference with high-throughput data is

that in practice one might need to repeatedly simulate a new instance of the model for each of

the observed data points in order to accurately estimate the likelihood. This may be necessary,

for instance, when the data consist of time series with highly variable initial conditions: a rea-

sonable comparison between simulated and observed data can then only be made when each

observed and simulated data point share the same initial condition. When the number of data

points is large, such as with high-throughput data, the resulting computational cost becomes

prohibitive, as the simulation cost grows linearly with the amount of data, in addition to grow-

ing exponentially with the dimension of the parameter space. Even when other state-of-the-art
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approaches are used, the fundamental bottleneck of repeated simulation remains. Inspired by

the method of stochastic gradient descent (SGD) [12–14] in machine learning, we propose a

minibatch approach to tackle this issue: for each comparison between simulated and observed

data, we use a stochastically sampled subset (minibatch) of the data. A similar minibatch

method has been employed very recently by Stapor et al. [15] to successfully calibrate ordinary

differential equation (ODE) models with a significant improvement in computational perfor-

mance, and by Seita et al. [16] within the context of MCMC, likewise with a significant compu-

tational speed-up. We demonstrate that choosing a large enough minibatch ensures that the

relevant signatures in the observed data can be accurately estimated, while avoiding unneces-

sary comparisons that slow down inference. We apply our minibatch approach to perform

Approximate Bayesian computation (ABC) with a well-established stochastic individual-based

model (IBM) of density-dependent cell migration, proliferation, and death [17, 18] on the

high-throughput data set from Williams et al.’s scratch assay screen [19]. The pipeline is illus-

trated in Fig 1 scratch assays involve growing a cell monolayer to confluence and then mechan-

ically removing (scratching away) a portion of the cell population to leave an “in vitro wound”.

Typically, a small region around the scratched area is imaged to provide information on the

dynamics of wound closure [20]. Such assays are a simple, fast, and inexpensive method to

investigate collective cell invasion under varying environmental or genetic conditions.

In the screen of Williams et al. [19], human dermal lymphatic endothelial cells (HDLECs)

were used, both in a control setting and after knockdown of some 500 genes using RNA inter-

ference.Williams et al. [19] identified the effect of different gene knockdowns on wound heal-

ing by comparing the extent of wound closure after a period of 24 hours. While these metrics

Fig 1. Schematic representation of the process of combining mechanistic modelling and scratch assay data. A:

each observation in the data set consists of an initial condition at t = 0h and a final condition at t = 24h. B: the field of

view of the initial condition is cropped and cell locations are extracted. C: the field of view of the final condition is

cropped and cell locations are extracted, as for the initial condition. A mechanistic mathematical model is used to

simulate cell locations at t = 24h using a sampled parameter from box D. E: by simulating many times with different

parameter values we can compare which parameters generate simulated data that is mathematically similar to

observations.

https://doi.org/10.1371/journal.pcbi.1010191.g001
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are informative of general, large-scale, features of collective cell invasion, they do not intrinsi-

cally reflect the mechanisms that allow the different knockdowns to display different wound

healing behaviours. In this study, we use computational Bayesian inference with an interpret-

able, mechanistic model to obtain detailed descriptions of cell-cell interactions. By calculating

the posterior parameter distribution of the model for each gene knockdown, we characterise

the functional behaviour of each perturbation according to the cell-cell interaction and cell-

intrinsic mechanisms of the model. By analysing the extent of similarity between different

gene knockdowns, we identify three major functional subgroups, which differ mainly accord-

ing to their intrinsic and density-dependent movement rates. To our knowledge, this is the

first time a mechanistic model has been used to interpret and classify high-throughput data to

elucidate functional subgroups.

The structure of this work is as follows. In Section 2, we describe the high-throughput data,

the IBM and the proposed minibatch Bayesian inference scheme. In Section 3, we characterise

the performance of the method using different batch sizes and apply it to characterise func-

tional mechanistic differences between different genetic perturbations. We conclude in Section

4 with a discussion of our results. All code and data to reproduce the study are publicly avail-

able at https://github.com/simonmape/minibatch-ABC and our Zenodo repository: DOI 10.

5281/zenodo.5898532.

2 Methods and model

In this section, we detail the experimental data that will be used in this work (Section 2.1), out-

line the computational model (Section 2.2), and the Bayesian method used to combine model

and data (Section 2.3).

2.1 Data from a gene knockdown screen

We used a previously published high-throughput siRNA screen of wound healing in HDLECs

[19] where more than 500 gene knockdowns were identified as significant for altering wound

healing [19]. During the wound healing experiment, images of the wound were captured at

t = 0h, 24h after the scratch was made. Images of cells were acquired at 4x objective, which

allowed the entire experimental well to be captured in two images that were stitched together,

resulting in 512 × 1392-pixel images, where each pixel corresponds to 2.97μm [19].

We used DeepScratch [21] to analyse image data from various gene knockdowns. Deep-

Scratch is a neural network with U-NET architecture. It detects cell centres from raw cell

images stained with markers of the nucleus or membrane, and in addition it uses the locations

of detected cells to segment the wound as the area that is void of cells. Following image analysis

using DeepScratch, we computed various features including the distance of each of the cells to

the wound edge and cell density. As the image data lack a cytoplasmic stain, we approximated

cell area by generating a Voronoi tessellation where a polygon is defined for each cell centre.

Cell locations are then given in a rectangular grid with dimensions 512 × 1392 pixels. Only

assays where both an initial (t = 0h) and final condition (t = 24h) are present in the data set are

included, and we also only include assays where both wound edges are contained in the initial

condition. For each image, a wound mask was computed to isolate the extent of the wound

and exclude dead and extruded cells. We describe the filtering process in detail in Supplemen-

tary Information S1 Text Section S1. To exclude noise from measurements at the location

where images are stitched together, and to obtain data where we only consider movement per-

pendicular to the wound edge, we further reduce the field of view to a 512 × 180-pixel subset

of the image, 10 pixels left of where the images where stitched together. Applying both filters

to the data set yields 118 candidate gene knockdowns for investigation.
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2.2 An individual-based mechanistic model of density-dependent cell

movement, proliferation, and death

In this work, we use a well-established stochastic, lattice-free IBM developed by Binny et al.
[18] to model density-dependent cell migration, proliferation, and death. This model has pre-

viously been shown by Browning et al. [17] to accurately represent collective cell migration in

a wound healing assay experiment. Density-dependent behaviour in the model is incorporated

through cell-to-cell interactions, so that behaviour depends on local crowding [17]. Following

[18], we let xn = (xn, yn) be the location of cell n, where n = 1, . . ., N(t) and N(t) is the popula-

tion size at time t. Interactions between cells are governed by a measure of crowding, where

each cell senses the cells in its close proximity. Mathematically, the crowding function at loca-

tion x is given by

BðxÞ ¼
XNðtÞ

i¼1

gbwðkx � xnk
2Þ; ð1Þ

where the function w is an exponential kernel that quantifies the impact of local crowding

upon cell behaviours. This specific choice of w(r) = exp(−r2/2σ2) has been found to give rise to

outputs that match experimental data well, but other choices for w can also be made [18]. To

simplify computations, we assume that w(r) = 0 whenever r� 3σ. The parameter γb> 0 in

Eq (1) describes the magnitude of the crowding effect, and σ governs the length scale over

which agents can interact with other agents. Browning et al. [17] suggest that a suitable choice

for the interaction parameter σ is σ = φ/2, where φ is the cell diameter. In this work, we will

estimate the cell diameter, φ, from experimental data by using the measured cell areas in the

images acquired at t = 0h and t = 24h. In Supplementary Information S1 Text Section S5, we

report this estimation procedure in detail.

The crowding function, B, governs the direction in which agents prefer to move and prolif-

erate: agents prefer to move and proliferate along the steepest descent of B. The direction of

steepest descent is also called the bias vector. For the n-th agent, we define the bias vector as

Bn ¼ � rBðxnÞ: ð2Þ

When a cell attempts to move in the model, the direction of movement, ϕ, is sampled from

the von Mises distribution as

� � von MisesðargðBnÞ; kBnkÞ: ð3Þ

The rationale for this is that E½�� ¼ argðBnÞ, meaning that the direction of movement and

proliferation is on average in the direction of the bias vector, and � � Uð0; 2pÞ in the limit as

kBnk! 0, meaning that cells in isolation exhibit unbiased movement.

Cell movement, proliferation, and death occur according to a Poisson process, which we

simulate using the Gillespie algorithm [22]. Each cell’s movement and proliferation rates

depend on the extent of local crowding, whereas we let the death rate be constant and indepen-

dent of crowding. In the Supplementary Information S1 Text we explore the effect of including

a density-dependent death term in the model. We compute Bayes factors for both models

using the resulting posteriors [23–25] to find that the data contains stronger evidence in favour

of density-independent death. The movement rate for the n-th cell is denoted by Mn, and the

proliferation rate for the n-th cell is denoted by Pn. Each individual rate consists of a base,

intrinsic rate, which is then modulated by the cell’s interactions with its neighbours. The
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movement and proliferation rates for cell n are given by

Mn ¼ max 0;m � gm
XNðtÞ

i¼1;i6¼n

exp �
kxn � xik2

2s2

� �( )

; ð4Þ

Pn ¼ max 0; p � gp
XNðtÞ

i¼1;i6¼n

exp �
kxn � xik2

2s2

� �( )

; ð5Þ

and the death rate is a constant d> 0. The parameters γm and γp modulate the strength of a

cell’s response to crowding. For example, when γm< 0, local crowding increases motility,

when γm = 0 motility is independent of local density, and when γm> 0 motility decreases with

local crowding.

When a movement event occurs for any given cell, that cell moves one cell diameter, φ, in

the direction prescribed by the distribution of the angle ϕ. When a proliferation event occurs

instead, the cell places a daughter cell one cell diameter away in the direction of ϕ. We assume

periodic boundary conditions to model the fact that the field of view is a small subset of a

much larger tissue. In our implementation, we choose the domain to match the field of view of

the cropped high-throughput imaging data. Hence, we simulate on a domain of size 180 × 512

pixels.

2.3 Bayesian statistics: Connecting models and data

In this work, we are interested in how observed collective behaviours within the scratch assays

might be described in terms of the mechanistic properties of individual cells. That is, given

observed data of wound closure in the scratch assay, we wish to understand which parameters

θ = (m, p, d, γm, γp, γb) might make such observations probable. The goal of Bayesian parame-

ter estimation is to update prior beliefs about the model parameters of the IBM from Section

2.2 with real-world data. Prior beliefs are encoded in a prior distribution π(θ), which defines a

probability density function for parameters θ. Given a parameter vector θ, the model defines a

density function for the observations, which, when normalised, is called the likelihood,

PðDobs j θÞ. Bayes’ rule allows one to combine the likelihood with the prior distribution to give

the posterior distribution:

Pðθ jDobsÞ / PðDobs j θÞpðθÞ: ð6Þ

By using Bayes’ rule, the prior is updated with data, which in this work consists of the

repeated measurements of cell centre locations at t = 0h and t = 24h. In this work, we choose

independent uniform priors for each of the parameters, and we let the prior ranges be informed

by the findings of Browning et al. [17] so that m � Uð0; 10Þh� 1, p; d � Uð0; 0:05Þh� 1,

gb � Uð� 2:5; 2:5Þh� 1, gp � Uð0; 0:05Þh� 1, and gb � Uð0; 50Þmm. We note that we estimate the

cell area directly using DeepScratch, rather than assigning a prior distribution and performing

Bayesian inference, as has been the standard approach in previous works, such as Browning

et al. [17]. To understand the reliability of our results, in the Supplementary Information S1

Text we investigated the sensitivity of the posterior distributions to the input cell area parameter

and find that for values of the cell area within three standard deviations of the median cell esti-

mate, relative differences between the resulting posterior means are within 10% of the parame-

ter value found using the estimated cell size, suggesting that the model predictions are robust.

At the same time, we observe that a large variation exists in the measured cell areas in the high-

throughput screen, such that it becomes unwise to assign a single value for cell area to all the
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knockdowns in the screen. Further, we note that assigning a single value for the cell area param-

eter leads to unreliable predictions.

2.3.1 Approximate Bayesian computation. In practice, the likelihood for complex sto-

chastic models is mathematically intractable and typically only accessible through simulation.

Approximate Bayesian computation is a popular likelihood-free tool to estimate the left-hand

side in Eq (6) [24, 26]. It approximates the likelihood, PðDobs j θÞ, using repeated simulation of

the model, accepting simulated parameters θ only if the resulting model output, DsimðθÞ, is

closer than some threshold, �, to the data, Dobs:

PABCðθ jDobsÞ / PðdðDobs;DsimÞ < ε j θÞpðθÞ; ð7Þ

where d is some distance function that quantifies the difference between the data, Dobs, and

model output, Dsim. In many applications of ABC, the data are high-dimensional, meaning

that, from a computational point of view, it is necessary to summarise the data in lower-

dimensional summary statistics so that the distance dðDobs;DsimÞ in Eq (7) can be efficiently

computed. In Section 2.3.3, we describe our choice of summary statistic for this problem.

We use a version of sequential Monte Carlo sampling (ABC-SMC) [24, 26] as our

implementation of ABC. In brief, ABC-SMC propagates a sample from the prior distribution,

π(θ), through a sequence of intermediate distributions to approximate the target

distribution, PðθjDobsÞ. The intermediate distributions are a sequence of ABC approximations

Pt for t 2 {1, . . ., T}. We use a sequential importance sampling approach to ABC-SMC [24, 27,

28], where each Monte Carlo sample fθðtÞi ;w
ðtÞ
i g built at generation t is used to construct an

importance distribution at generation t + 1. We define Ngen as the total number of parameters

that are drawn from the importance distribution at each generation, and Nacc as the total num-

ber of parameters that are accepted. Given a Monte Carlo sample at generation t, the sample at

generation t + 1 is obtained by using a perturbation kernel K(�|t) to propose Ngen perturbed

parameters from the Monte Carlo sample at generation t, from which the Nacc proposed

parameters with smallest distance to the real-world data are accepted into the Monte Carlo

sample for generation t + 1. In this work, we use the Normal perturbation kernel proposed by

Filippi et al. [9] and let Ngen = 2 � 104 and Nacc = 500, meaning that each generation has an

acceptance rate of 2.5%. The final sample, fθðTÞi ;wðTÞi g, forms the output of the ABC-SMC

algorithm. All implementation details are outlined in Supplementary Information S1 Text Sec-

tion S2.

2.3.2 Minibatch-ABC-SMC. In some problems, one model simulation can be compared

with arbitrarily many observations, using the distance function d. This is particularly the case

when the model is deterministic and one realisation of the model suffices to capture the rele-

vant behaviour of the model. When the model is stochastic, however, a single model realisation

will likely not provide sufficient information on the distribution of model outputs to sensibly

compare to observed data. An additional, and significant, problem occurs with time series data

because the initial conditions across different experiments can be vastly different. This means

that for each comparison with a different datapoint, a new model simulation with a specific

initial condition is needed to ensure that the comparison between the summary statistics of the

simulated and observed data is fair and informative. For high-throughput data, the implica-

tions of these additional computational costs are significant. As an illustration of this point,

the data set in this work consists of many hundreds of observations with different initial

wound location, initial cell densities and initial topology. Fig 2 illustrates the extent to which

two wells aimed at studying the same genetic profile can differ. To apply Bayesian inference

approaches to combine models to such data requires individual simulations, which mirror the

initial conditions of each experiment separately.
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When observed data, Dobs ¼ fyiobsg
Nobs
i¼1

, can only be compared to model simulations that

share the same initial condition, the simulated data will equally consist of Nobs datapoints,

such that Dsim ¼ fyisimg
Nobs
i¼1

, and yisim shares its initial condition with yiobs. A scalar measure of

the discrepancy between the observed and simulated data is then obtained by taking the mean

of distances between the observed data points and their corresponding model simulations:

dðDsim;DobsÞ ¼
1

Nobs

XNobs

i¼1

dðyisim; y
i
obsÞ: ð8Þ

When the size of observed data, Nobs, is large, i.e.Nobs� 1, and the model needs to be simu-

lated separately for each data point, ABC-SMC approaches fail to scale well with the number

of observations: simulation time—which is normally a bottleneck—increases linearly with the

number of observations.

Drawing inspiration from minibatch methods in SGD in machine learning [12–14], we

propose a minibatch approach to computing the distance in Eq (8): rather than using all Nobs

observations to compute the distance whenever a parameter θ is proposed in ABC-SMC, we

suggest computing the distance between observed and simulated data based on randomly cho-

sen batches from the data. This is done by choosing a batch size, Nbs, such that Nbs� Nobs, that

controls the number of datapoints considered in each comparison between model simulations

and data. Formally, this amounts to drawing Nbs random numbers ij independently with

replacement, from {1, . . ., Nobs}, obtaining the corresponding data point yijobs and simulating a

model output, yijsim, that shares the same initial condition. Then, the discrepancy between

model and data can be approximated by

dðDsim;DobsÞ �
1

Nbs

XNbs

j¼1

dðyijsim; y
ij
obsÞ: ð9Þ

This approach immediately reduces simulation time by a factor Nobs/Nbs. The minibatch

approach is simple to implement within the importance sampling part of the ABC-SMC

framework described in Section 2.3.1. At each generation, t, an importance distribution is

given (for t = 1 this is the prior distribution). Then, Ngen parameters are sampled according to

this distribution. For each parameter a minibatch of size Nbs is sampled from the data and for

each observation within that minibatch a corresponding model simulation is generated given

the parameter and observed initial condition. Mathematically, if yxobsð0Þ is the initial condition

corresponding to observed data point yxobs, the model simulates a corresponding output

ysim � f ð�jθn; y
x

obsð0ÞÞ. The discrepancy between simulated and observed data is computed for

each parameter using Eq (9). The algorithm is summarized in Algorithm 1.

Fig 2. Two initial conditions from the assays conducted on wild-type cells. Note the variation in both the location of the wound as well as the size of

the initial wound, highlighting the need to carry out separate simulations, one for each initial condition.

https://doi.org/10.1371/journal.pcbi.1010191.g002
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Algorithm 1: Minibatch-importance sampling

Input: Data, Dobs ¼ fyiobsg
Nobs
i¼1

; number of parameters to sample, Ngen; number
of parameters to accept, Nacc; batch size, Nbs; prior distribu-
tion, π(θ); importance distribution, q̂ðθÞ; model, f(•|θ); dis-
tance function, d.

Output: Nacc weighted samples fθn;wng
Nacc
n¼1
.

1 for i = 0, . . ., Ngen do
2 Increment i  i + 1;
3 Generate parameter vector θi according to given importance distri-

bution q̂ðθÞ;
4 for k = 1, . . ., Nbs do
5 Draw data index ξ uniformly at random from {1, . . ., Nobs};
6 Simulate ysim � f ð� j θn; y

x

obsð0ÞÞ;
7 end
8 Calculate �i using Eq (9).
9 end

10 From fθi;wig
Ngen
n¼1, select the Nacc parameters with lowest value of �i;

11 Set wi = π(θi)/q(θi) for all accepted parameters θi.
At this point, we remark that an alternative to using minibatch ABC-SMC might be to a pri-

ori select a subset of the data (e.g., using stratified sampling) and use ABC-SMC on this subset.

While reducing the amount of data to be processed would certainly reduce the computational

burden of ABC-SMC, this approach also vastly reduces the amount of available information.

Moreover, subsampling a priori from the data might introduce bias into the problem, as it is

up to the practitioner to define a sensible subset of the data. In Supplementary Information S1

Text Section S4.5, we carefully examine the quality of the posteriors generated by subsampling

from the data in comparison to those generated using minibatch ABC-SMC. We find that a
priori selected subsets give rise to more variability in the estimated posterior mean, and higher

posterior variance across all parameters, minibatch ABC-SMC with minibatches of the same

size. We conclude that our approach is to be preferred over simply reducing the amount of

available information by subsampling the data.

Our method contains the minibatch size, Nbs, and the number of generations, T, as tunable

hyperparameters. In machine learning applications, it has been noted that inference with

smaller batch sizes when optimizing an objective function leads to less overfitting to the data,

as the algorithm is better able to observe the full range of parameter values that yield results

that resemble the full distribution of the data, rather than the parameters that only produce

summary statistics that are close to the average observed in the data set [13, 14]. At the same

time, using a very small batch size might not provide a good estimate of the model distribution,

meaning that careful consideration of the batch size is necessary. This will be the focus of Sec-

tion 3.1. For the number of generations, we choose T = 4. This hyperparameter choice comes

from performing test runs of minibatch ABC-SMC with various batch sizes and numbers of

generations and computing the Kullback-Leibler (KL) divergence [29] between the successive

posteriors as a measure of change of the distribution from one generation to another, as is

done by Filippi et al. [9]. As a general stopping criterion, we suggest to choose the smallest

T so that the KL divergences for the subsequent generations converge to a fixed value. In this

specific problem, given the model and the data, this amounts to T = 4, indicating that the dis-

tributions do not change significantly after this generation. In other problems, a different

number of generations will typically be needed. For details on how the KL divergence between

successive generations was calculated, we refer the reader to Supplementary Information S1

Text Section S2.3.

We note that the random sampling of minibatches ensures that with very high probability

every datapoint in the dataset will be used in each generation. Since for each of the Ngen
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parameters in each generation there are Nbs datapoints sampled uniformly at random, the

probability that one generation of minibatch ABC-SMC fails to contain a given datapoint, say

i? 2 {1, . . ., Nobs}, can be computed. Denoting this event Ei? , a simple computation shows that

this probability can be bounded by

PðEi?Þ ¼ 1 �
1

Nobs

� �Ngen�Nbs

� e� ðNgen�NbsÞ=Nobs ; ð10Þ

since (1 + x/n)n< ex for any integer n. For Ngen = 2 � 104,

PðEi?Þ � exp �
2 � Nbs

Nobs
� 104

� �

; ð11Þ

meaning that the event that in one generation not all datapoints are used is essentially negligble.

All simulations were carried out using a development branch of the parallel open source

ABC-SMC software Pakman [30]. Each ABC-SMC experiment was performed on a high per-

formance compute (HPC) cluster using five 48-core Cascade Lake (Intel Xeon Platinum 8268

CPU @ 2.90GHz) nodes.

2.3.3 Summary statistics. To compute the distance d between observed and simulated

data, we employ the summary statistics proposed by Browning et al. [17], with the aim to cap-

ture three key features: population size increase, spatial structure and density profile [17]. To

capture population size increase, we use the population size, N(t), at t = 24h. To capture spatial

structure, we use the pair correlation function, P(r, t), which describes the density of pairs of

agents separated by a distance r at time t, relative to the expected density of pairs if the popula-

tion were uniformly distributed [17]. For our discrete data, the pair correlation function

describes the relative number of pairs separated by distances in the range (j − 1)Δr< r< jΔr.
Following [17], we compute

Pðj; tÞ ¼
LH

NðtÞ2pDrð2jþ DrÞ

XNðtÞ

n¼1

XNðtÞ

i¼1;i6¼n

Iððj � 1ÞDr <kxi � xnk< jDrÞ: ð12Þ

In Eq (12), L and H are length and height, respectively, of the field of view. Following the

recommendation in [17], we choose Δr = 5μm, and calculate the pair correlation function up

to a distance of 100μm. To capture the density profile, we compute the density across cross-

sections of the wound by dividing the field of view into 64 different bins in the direction paral-

lel to the scratch and computing the cell density in each bin. Using 64 bins results in a bin

width of approximately 24μm, or, one cell diameter. Assigning a centroid for each cell, and

using this centroid to define the location of cell i as yi, this results in a one-dimensional density

ρ(j, t) at time t, where

rðj; tÞ ¼
XNðtÞ

i¼0

IðjDy � yi < ðjþ 1ÞDjÞ: ð13Þ

These three distance functions allow us to define the distance between an observed data

point yiobs and a simulated data point yisim as

dðyisim; y
i
obsÞ ¼

½Nsimð24Þ � Nobsð24Þ�
2

Nobsð24Þ
2

þ

P20

j¼1
½Psimðj; 24Þ � Pobsðj; 24Þ�

2

P20

j¼1
Pobsðj; 24Þ

2

þ

P64

j¼1
½rsimðj; 24Þ � robsðj; 24Þ�

2

P64

j¼1
robsðj; 24Þ

2
:

ð14Þ
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3 Results

In this section, we demonstrate that minibatch ABC-SMC is accurate and efficient at obtaining

posterior distributions over model parameters given the high-throughput data, and that it can

be used to shed light on the mechanistic impact of a wide range of genetic perturbations. In

Subsection 3.1, we explore how the choice of hyperparameters in the algorithm, as well as the

quantity of available information, affects the reliability of the inference process so that we can

confidently apply the minibatch ABC-SMC algorithm to data from the high-throughput

screen. In Subsection 3.2, we show how the IBM can be used in tandem with minibatch

ACB-SMC to detect functional differences between different gene knockdowns. In Subsection

3.3, we use minibatch ABC-SMC on the data from 118 gene knockdowns to locate each genetic

perturbation in the five dimensional parameter space of the IBM, according to its estimated

posterior mean. Analysing the spatial structure of the locations of each gene knockdown in

this space allows us to distinguish a range of functionally different subgroups within the data

that represent genetic perturbations with functionally similar behaviours. Given the biological

interpretation of the different model parameters, this allows us to reach conclusions about the

primary drivers of wound closure in the different genetic perturbations. Importantly, our anal-

ysis shows the importance of density-dependent effects on observed changes in cell count

number during the experiment.

3.1 Small batch sizes provide reliable inference

The introduction of minibatches in ABC-SMC comes with the task of selecting the batch size

as an algorithm hyperparameter. A good choice for the batch size, Nbs, needs to balance

computational complexity on the one hand and the generation of a reliable estimate of the

discrepancy between model and data on the other hand. To understand the capacity of the

minibatch ABC-SMC algorithm to distinguish different model parameter values from data

in the context of the IBM, we generate two synthetic datasets, each corresponding to a

different parameter regime. Parameter regime I corresponds to a high movement rate with

a positive impact of density on movement and a low proliferation rate, such that m = 1.5h−1,

p − d = 0.01h−1, γm = −1h−1, γp = 0.01h−1 and γb = 20μm. Parameter regime II corresponds to a

low movement rate with contact inhibition for movement and a high proliferation rate,

such that m = 0.5h−1, p − d = 0.025h−1, γm = 1.5h−1, γp = 0.01h−1 and γb = 20μm. For each

parameter regime, an in silico data set is created by simulating one model output at t = 24h for

every initial condition corresponding to Mock. That is, each of the two in silico datasets con-

tains 117 data points, each corresponding to one initial datum from the high-throughput

experiment. Then, we perform minibatch-ABC-SMC on the synthetic datasets, varying the

batch size, such that Nbs = 1, 5, 10, 50, 117. For each batch size, we repeat the inference process

five times.

3.1.1 Variability of the posterior distributions. In Supplementary Information S1 Text

Section S4, we report the posterior means of the resulting posterior distributions, and their

variance, at each batch size, as well as representative plots of the posterior distributions. At any

value of the batch size, minibatch ABC-SMC correctly identifies the features of each parameter

regime. For instance, for the dataset for parameter regime I, the estimated intrinsic motility

rate, m, is consistently estimated as higher than that of the dataset for parameter regime II.

Conversely, the net intrinsic proliferation rate, p − d, is correctly estimated as higher in param-

eter regime II than in parameter regime I. For the density-dependent interaction term, γm, the

minibatch ABC-SMC implementation discerned at any batch size that the effect of crowding

on motility is positive in regime I, and negative in regime II. Increasing the batch size

improved the quality of the posterior distributions, although the improvements diminish
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rapidly as the batch size, Nbs, is increased. There is a critical value—in Fig E in S1 Text this is

typically around Nbs = 10—after which increasing the batch size, Nbs, does not futher reduce

the variability of the estimated posterior means. Similarly, after this critical value, the capacity

of minibatch ABC-SMC to identify the true posterior mean does not improve, even when the

batch size is increased to the full data size. Similarly, the standard deviation of the posterior

distributions diminishes rapidly when the batch size is increased initially, but then stays rela-

tively constant across larger batch sizes. In both parameter regimes, this is the case for Nbs =

10. Taken together, analysis of the posterior means and posterior standard deviations suggests

that a minibatch implementation of ABC-SMC provides a robust approximation of the poste-

rior distribution at a fraction of the computational cost. In the synthetic data set, the computa-

tional speedup of using a batch size of 10 samples compared to the full data set amounts to a

factor 117/10 = 11.7.

3.1.2 Reliability of minibatch ABC-SMC using experimental data. Finally, to compare

performance on real-life data from the scratch assay, we perform inference on the Mock type

data set in S1 Text Section S4, where we vary the batch size from 1 to 117 and find no meaning-

ful differences between the different batch sizes in terms of their ability to identify the posterior

means consistently. With growing batch size, just as with synthetic data, the variance of the

posterior distribution decreases and shows a similar behaviour to the synthetic control data

around a batch size of Nbs = 10. We conclude that choosing a minibatch size of Nbs = 10 allows

for minibatch ABC-SMC to reliably identify the posterior mean.

While some genetic perturbations have a large number of observations and the choice of

Nbs = 10 offers a good balance between computational complexity, robust inference of the pos-

terior mean and low variance of the posterior distribution, some perturbations have very few

observations in the high-throughput screen used in this work. As such we address the suitabil-

ity of ABC-SMC in identifying mechanistically relevant differences between the different gene

knockdowns by selecting 40 datapoints from each of the Mock and CDH5 knockdown experi-

ments at random and without replacement, and dividing them into 20 pairs of two observa-

tions for each of the datasets. We perform ABC-SMC on each of the resulting miniature data
sets and record their posterior distributions. We find that while the spread of the posteriors is

indeed larger for each of the experimental conditions than in the case when more datasets are

included, the posterior means can still identify meaningful differences between the two differ-

ent genetic perturbations. This suggests that as few as just two observations can be used to con-

fidently estimate model parameters.

Finally, we assess how well our IBM predicts experimentally observed wound healing

behaviour when parametrised according to the posteriors generated using minibatch

ABC-SMC. We sample 1000 parameters from the posterior distribution obtained using mini-

batch ABC-SMC with Nbs = 10 on the full Mock dataset and select one Mock initial condition

uniformly at random. For this condition, we perform forward model simulations, one with

each sampled parameter, and record the summary statistics defined in Section 2.3.3, which are

the density profile, pair correlation function, and number of alive cells at t = 24h. From these

forward simulations, we compute the mean and standard deviation for the density profile and

pair correlation function. In Fig 3, we display the experimental data for density profile and

pair correlation together with a range of one standard interval from the posterior mean. We

also show a histogram of simulated cell counts at t = 24h, compared to the experimentally

observed cell count at t = 24h. The posterior predictive ranges for the density profile and pair

correlation are excellent fits to the data, and the simulated cell count histogram is centered

around the experimentally observed cell count.
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3.2 Detecting differences between different experimental conditions

Our data set contains three genetic perturbations with a large number of observations. These

are: Mock, CDC42 knockdown and CDH5 knockdown. For each of the observations, we apply

the minibatch ABC-SMC algorithm using the implementation details from Section 2.3. We

use the findings from Section 3.1 to choose a batch size Nbs = 10 for all experiments. We

note that the total number of observations for Mock, CDC42 and CDH5 knockdowns are

117, 52 and 31, respectively, meaning that in the inference process for these experiments using

Nbs = 10, minibatch ABC-SMC yields a speedup of roughly 12×, 5×, 3×, respectively.

Fig 4 reveals a striking difference between the three genetic profiles in terms of their intrin-

sic movement, intrinsic net proliferation and motility parameters. In Supplementary Informa-

tion S1 Text Section S7, we calculate confidence intervals for the posterior means of each

parameter and find that the confidence intervals are disjoint for intrinsic motility rate, m, net

intrinsic proliferation rate, p − d, and density-dependent motility rate, γm, while only CDH5

has a confidence interval disjoint from CDC42 and Mock, respectively, in the density-depen-

dent parameters γp and γb. Of these genetic profiles, Mock knockdown is shown to have behav-

iour best described by strong contact-mediated motility, while motility is much less impacted

by local cell density in the CDH5 knockdown case, and this effect is much smaller still in the

CDC42 knockdown case. Further, Mock knockdown has the highest intrinsic net proliferation

rate, whereas the CDH5 and CDC42 knockdowns are inferred to have lower net proliferation

rates. In fact, the posterior distributions for the CDH5 and CDC42 knockdowns have support

on negative values of p − d, which is consistent with the fact that some of the CDH5 and

CDC42 knockdown assays show a decrease in the number of cells over the course of the exper-

iment. In line with previous inference performed on this mechanistic model of density-depen-

dent cell movement and proliferation, the parameters controlling density-dependent

proliferation, γp, and the strength of density-dependent interactions, γb, are not conclusively

identified from the data [17].

Fig 3. Posterior predictive check for the model. Left: experimentally observed density profile for a single datapoint sampled at random from the Mock

dataset (red points) displayed against the posterior range of one standard deviation away from the posterior mean (blue shaded region). The gray line is

the smoothed density profile generated using a Gaussian kernel. Middle: experimental pair correlation function (red line) displayed against the

posterior range away of one standard deviation away from the posterior mean (blue shaded region). Right: experimentally observed cell count at t = 24h
(red vertical line) compared to the histogram of model simulations of cell count (blue). All summary statistics have an excellent fit to the experimental

data.

https://doi.org/10.1371/journal.pcbi.1010191.g003
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Our findings are in agreement with previous experiments. For example, loss of CDC42

expression is associated with defective adhesion, wound healing, polarity establishment, and

migration (see, for instance, the review by Mendelez et al. [31]), which is consistent with our

finding that the CDC42 knockdown has less strong density-dependent migration than Mock:

a loss of polarity establishment and adhesion is consistent with less directed movement into

the wound and away from areas of high local tissue density. Likewise, CDH5 plays “a[n]

important role in endothelial cell biology through control of the cohesion and organization of

the intercellular junctions” [32], which is again consistent with a loss of local density-depen-

dent mechanisms.

In addition to comparing between the different knockdowns in terms of their cellular

migratory dynamics, the large amount of observations per knockdown in a high-throughput

screen also enables inquiry into the factors that might create variation within any given genetic

perturbation. For instance, the data for Mock and CDH5 knockdown contain very large varia-

tions in initial wound size, meaning that an important question that can be explored is the

functional effect of initial wound size on migratory dynamics. It is known from the literature

that changing the initial density of cells in a scratch assay has far-reaching consequences for

the resulting dynamics [17]. In the same way, Jin et al. found that the initial geometry in exper-

imental models of wound closing plays an important role in the wound closing dynamics [33],

raising the possibility that the size of the wound could also have a strong effect on the wound-

closure dynamics. To address this question, we measured the initial wound size for both the

Mock and CDH5 knockdown datasets. (The CDC42 knockdown experiments had a much

smaller variation in initial wound size, making it impossible to differentiate meaningfully

between experiments based on initial wound size.) We find that initial wound sizes in the

Mock dataset range between� 1.79mm2 and� 3.06mm2, and between� 1.89mm2 and

� 2.7mm2 in the CDH5 knockdown dataset. We choose to divide the Mock data set into three

different wound size categories: small (< 2.43mm2), medium (2.43mm2 − 2.70mm2), and large

(> 2.70mm2). Similarly, we divide the CDH5 data set in two categories: small (< 2.25mm2)

and large (> 2.25mm2). For each of the data subsets—large, medium, and small Mock; large

and small CDH5 knockdown, respectively—we perform minibatch ABC-SMC with a batch

size Nbs = 10 to identify the migratory dynamics within these conditions.

Fig 5 shows the marginal posterior distributions for model parameters for both the Mock

and CDH5 knockdown datasets. To understand the large variance seen in Fig 5 for the intrin-

sic motility parameter, m, in the small wound category, we further analysed the wound closure

data and observed that the smallest wounds at time t = 0h in the Mock case were fully closed

Fig 4. Posterior distributions for three genetic perturbations with large numbers of observations. Blue: Mock condition, orange: CDH5

knockdown, green: CDC42 knockdown.

https://doi.org/10.1371/journal.pcbi.1010191.g004
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by t = 24h. Further, when this is the case, the intrinsic motility parameter becomes practically

unidentifiable: by simulating new model outputs using the IBM, we found that for any fixed

value of the net intrinsic proliferation rate, p − d, and density-dependent movement parame-

ter, γm, higher intrinsic movement rates did not influence the density or pair correlation sum-

mary statistics detailed in Section 2.3.3. Therefore, the higher variance of the posterior

distribution in the small wound size category for the Mock data set is likely attributable to

parameter non-identifiability given the available data, rather than to biologically significant

mechanistic signatures in the data. We quantify the (dissimilarity) between the resulting mar-

ginal posterior distributions by computing confidence intervals for the posterior means in

Supplementary Information S1 Text Section S7. We find that none of the confidence intervals,

except for that of intrinsic motility rate, m, in Mock are disjoint from those of the other initial

wound size categories. This implies that migratory dynamics for the different initial wound

sizes are very similar.

3.3 High-throughput identification of mechanistic effects of gene

knockdowns

Having established that minibatch ABC-SMC can accurately identify different mechanistic cell

behaviours, we employ ABC-SMC on a large number of gene knockdowns in the high-

throughput screen in order to assess and identify the range of different behaviours observed in

the set of knockdown experiments. For each gene knockdown, a posterior distribution is

obtained and each genetic perturbation is identified with a point in five-dimensional parame-

ter space, given by the value of its posterior mean. We reiterate that there is a large variability

in the number of available data points for each knockdown. Here, we consider all gene

Fig 5. Posterior distributions for model parameters when inference is carried out on subsets of the data based on wound size. Top row: Mock

experiments, three different wound size categories are identified—small (blue,< 2.43mm2), middle (orange, 2.43mm2 − 2.70mm2), and large (green,

> 2.70mm2). Bottom row: CDH5 knockdown, two different wound size categories are identified—small (black,< 2.25mm2) and large (red,

> 2.25mm2).

https://doi.org/10.1371/journal.pcbi.1010191.g005
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knockdowns for which more than 2 data points exist in the data set, and for all gene knock-

downs we choose Nbs = 2 accordingly.

3.3.1 Clustering analysis reveals functional subgroups. The set of posterior means for

the different gene knockdowns is a set of points in five-dimensional parameter space, and it

can be studied to reveal patterns of cell behaviours across the different gene knockdown exper-

iments. One popular method of understanding the spatial structure of data, when it cannot be

readily visualised due to the dimension of the data space, is K-means clustering. The idea

behind K-means clustering is to divide a set of points in Euclidean space into K clusters such

that the sum of the pairwise distances within each cluster is minimised. With other words, it is

an unsupervised method to assign labels to the datapoints such that points with the same label

are close to each other given some defined distance function. Mathematically, given K clusters,

the classification problem is to subdivide the data into K distinct clusters, S ¼ fS1; . . . ; SKg,
where the clusters are found by solving the optimization problem

S ¼ arg min
Xk

i¼1

1

2jSij

X

x;y2Si

kx � yk2; ð15Þ

where |Si| denotes the number of points in cluster i, and k•k denotes the Euclidian distance.

The number of clusters, K, is a hyperparameter that needs to be carefully chosen. Increasing

the number of clusters will always decrease the total sum of pairwise distances, however it also

leads to a loss of interpretability of the cluster labels and potentially overfits the data. A com-

mon practice in data science is to use the elbow method [34], which was first employed by

Thorndike [35]. The elbow method amounts to choosing K as the elbow of the curve of the

minimum of the objective function in Eq (15) as K is varied. The interpretation of picking the

elbow of the curve, in clustering, corresponds to choosing K such that adding futher clusters

does not provide a significantly better fit to the data. We perform K-means clustering for

K = 1, . . ., 10, and find that the marginal improvement of the sum of pairwise distances rapidly

decreases after K = 3 (see Supplementary Information S1 Text Section S6). Therefore, we per-

form clustering with three clusters. To further analyse robustness, we assess the difference

between clusters when we set K = 2, 4, 5 to find that the addition of extra clusters yields further

sub-clustering within the clusters found at K = 2. From this we conclude that K = 3 is an good

choice to balance mechanistic insight with more detailed spatial information.

The pairwise marginal distributions of the posterior means for the different gene knock-

downs is shown in Fig 6, where the colour key is defined by the cluster labels. The separation

between the clusters is best seen in the pairwise martinal posterior distribution of the intrinsic

motility parameter, m, and the density-dependent motility parameter, γm. The marginal poste-

rior distributions of the two parameters show that the cluster labels correspond to changes in

the sign of the density-dependent motility parameter, γm, and the magnitude of the intrinsic

motility parameter, m. Interpreting this separation mechanistically allows us to identify three

functionally distinct clusters in the data. We identify Cluster I as knockdowns with low intrin-

sic motility, and the motility is enhanced by high local cell density (negative values for γm). In

Cluster II, knockdowns have low intrinsic motility, and the motility is inhibited by high local

cell density (positive values for γm). In Cluster III, knockdowns have high intrinsic motility,

and the motility is enhanced by high local cell density (positive values for γm).

Furthermore, the pairwise plot of the intrinsic net proliferation parameter, p − d, and the

density-dependent motility parameter, γp, shows that for knockdowns with a value of p − d
close to zero, there is a wide range of possible values for the density-dependent proliferation

parameter, γp, whereas the variability of γp diminishes for p − d further away from zero. As

such, the mechanistic interpretation of this finding is that high intrinsic proliferation rates are
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associated with lower density-dependent inhibition of proliferation. Fig 6 also suggests that

there is a coupling between a higher increased intrinsic motility, m, and the bias parameter, γb:
knockdowns in Cluster III also show the highest values of γb. This coupling is much less pro-

nounced when the intrinsic net proliferation rate is compared to the density-dependent

Fig 6. Pairwise distributions of the posterior means for each of the knockdown experiments in the high-throughput screen. Diagonal plots show

the distribution of the posterior means of each of the parameters, while off-diagonal plots show the pairwise distributions of the different knockdown

posterior means. The colour key denotes the different clusters found using K-means clustering with K = 3. Star denotes Mock, diamond CDC42

knockdown and plus CDH5 knockdown.

https://doi.org/10.1371/journal.pcbi.1010191.g006
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crowding term, γb. In summary, analysis of the posterior means suggests that high intrinsic

motility, but not high intrinsic net proliferation, are associated with a stronger sensing of local

cell density gradients through the bias parameter, γb. Finally, the pairwise plots show that most

of the functional differences between the knockdowns can be described in terms of the intrin-

sic motility rate, m, the net proliferation rate, p − d, and the density-dependent motility rate,

γm. In the remainder of this section, we explore the impact of these parameters on the wound

healing outcomes by analysing the observed cell count and wound area changes.

Fig 7 illustrates how the clusters can help tease apart the different mechanisms at play in

wound healing for each of the gene knockouts. For each of the clusters, we select the knockouts

with greatest dissimilarity with the other clusters. These are EPHA7, USP18 and ITPR1 for

Clusters I, II, and III, respectively. While the EPHA7 and USP18 knockdowns have similar

degrees of wound closure, the posterior means for the EPHA7 knockdown suggest that incom-

plete wound closure is mainly due to net cell death during the experiment, which is consistent

with previous studies [36]. The high value for γm for USP18 knockdown suggests that cells are

unable to move into the wound area due to defects in cell adhesion. This indicates that USP18

might be required for cell adhesion turnover through deubiquitination. Moreover, ITPR1 is

known to regulate apoptosis and our results confirm its dual role on cell motility and prolifera-

tion [37].

In summary, Bayesian inference with a large screen of gene knockdowns can be used to

characterise the functional role of the genes under investigation given a sufficiently detailed

mathematical model. Given such a characterisation (in our work, this is the division into func-

tional clusters), experimentally testable hypotheses can be generated to further refine and

explore our understanding of the genes under consideration.

3.3.2 Density-dependent patterns of proliferation reproduce experimental patterns of

cell count changes. Changes in cell counts are a simple summary statistic to extract from

scratch assay data [17, 20, 21] and provide an indication of the average net proliferation rate in

a large population of cells, such as the cell monolayer used for scratch assays. However, com-

puting an average net proliferation rate does not reflect more complex mechanisms, such as

contact inhibition, that may influence the change in cell numbers throughout the experiment.

Fig 7. Identifying functional subgroups among perturbations. A: Three-dimensional scatter plot of the posterior

means for the intrinsic motility parameter,m, intrinsic net proliferation parameter, p − d, and density-dependent

motility parameter, γm, for each of the samples in the high-throughput screen. Star denotes Mock, diamond denotes

CDC42 knockdown and plus denotes CDH5 knockdown. B, top to bottom: wound mask for one final condition of the

USP18, EPHA7, and ITPR1 knockdowns, respectively.

https://doi.org/10.1371/journal.pcbi.1010191.g007
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In this section, we turn to the question of how density-dependent effects are observed in the

high-throughput measurements in cell count changes for each of the knockdowns. Let c0, c24

denote the cell counts at t = 0h, 24h for a given knockdown. The fold change in cell count, C, is

given by C ¼ c24=c0. By the definition of the IBM, cell count changes occur as a function of the

proliferation parameters p, d, and γp. In fact, Eq (4) relates the local proliferation rate to the

intrinsic and density-dependent proliferation rates and hence relates the expected number of

cells to the values of the different model parameters. In the case where density-dependent

effects are ignored, i.e. γp = 0, one would expect that the expected value of the cell fold change,

C, is given by C ¼ expð24ðp � dÞÞ, since p − d is the net proliferation rate measured in h−1.

Fig 8 shows that this curve fails to describe the observed fold change in cell numbers across the

screen, indicating that density-dependent effects affect fold changes in observed cell counts. In

this work, density-dependent effects affect the proliferation rate through the sum in Eq (4).

This sum depends on the cell locations at each simulation step, meaning that it cannot be

determined from the available data. However, by assuming local cell density is constant across

the assay, and by approximating local cell density as the average of the local cell densities at

t = 0h and t = 24h, this difficulty can be overcome. Letting F be the area of the field of view,

and w0, w24 the wound area at t = 0h, t = 24h, respectively, one can approximate the sum in

Eq (4) by an integral such that

gp

XNðtÞ

i¼1;i6¼n

exp �
kxn � xik2

2s2

� �

� 2rgp
ffiffiffi
p
p c0

F � w0

þ
c24

F � w24

� �

: ð16Þ

Under this approximation, a coarse-grained estimate for the fold change in cell numbers

over the 24-hour experiment is given by

C � exp 24 p � d � 2rgp
ffiffiffi
p
p c0

F � w0

þ
c24

F � w24

� �� �� �

: ð17Þ

For each sample in the high-throughput screen, we compute the value of C through Eq (17)

and fit an exponential curve through the obtained fold estimates. In Fig 8 we show that the

Fig 8. Observed cell fold change as a function of intrinsic net proliferation rate, p − d. When density-dependent

effects are ignored (blue) line, the estimate of cell fold change as a function of net intrinsic proliferation overestimates

cell fold change. When density-dependent effects are considered, model predictions accurately capture cell fold

change.

https://doi.org/10.1371/journal.pcbi.1010191.g008

PLOS COMPUTATIONAL BIOLOGY Efficient Bayesian inference for mechanistic modelling with high-throughput data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010191 June 21, 2022 19 / 25

https://doi.org/10.1371/journal.pcbi.1010191.g008
https://doi.org/10.1371/journal.pcbi.1010191


density-corrected cell fold estimate predicts the observed cell fold change as a function of the

intrinsic motility parameter well. We conclude that density-dependent effects contribute to

the observed cell fold change by modulating with the intrinsic net proliferation rate and that

the IBM can shed light on the nature of density-dependent effects for each of the knockdowns.

3.3.3 Finding mechanistic contributions to wound closure. While the fold change in cell

counts is associated with the proliferation parameters, the fold change in wound size depends

delicately and nonlinearly on all model parameters. We define the wound area fold change, W,

as w24/w0. Note that W ¼ 1 means that the wounds at t = 0h, 24h are equally large, and W ¼ 0

means the wound is fully closed. In this section we wish to understand the different roles of

the various mechanistic terms in the model and explain the range of observed wound closure

rates. In Fig 9, the observed wound area fold change is plotted against the observed cell fold

change. While wound closure is not completely independent of increases in cell numbers, the

data suggest that the dependence of wound closure on cell number increases is not as strong as

might be expected if wound closure is thought to be primarily driven by proliferation: values

of wound area fold change of approximately 0.75 are observed across knockdowns with 50%

cell death all the way to 25% increases in cell counts, i.e. for net positive and net negative cell

number changes, there can be similar amounts of wound closure. To investigate which mecha-

nistic features of the model are key in wound closure, Fig 10 shows the observed wound area

Fig 9. Observed wound area fold change as a function of cell fold change. Across the range of cell fold changes,

starkly different rates of wound closure are observed.

https://doi.org/10.1371/journal.pcbi.1010191.g009

Fig 10. Observed wound area fold change plotted against the different model parameters. The colour key denotes the different clusters found using

K-means clustering with K = 3. Star denotes Mock, diamond denotes CDC42 knockdown and plus denotes CDH5 knockdown.

https://doi.org/10.1371/journal.pcbi.1010191.g010
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fold change, plotted against the different model parameters. Surprisingly, high intrinsic motil-

ity rates do not necessarily correlate with enhanced wound closure: the datapoints with labels

corresponding to high intrinsic motility and density-enhanced motility all have much higher

intrinsic motility posterior means than Mock, but their wound closure rates are not, in general,

higher than Mock. At any given value of the intrinsic motility, m, a wide range of different

wound closure extents are observed. In contrast, a stronger coupling is observed between the

extent of wound closure and the density-dependent terms: when motility is strongly enhanced

by local crowding, i.e. large, negative values of γm, very low values of wound area fold change

are observed, whereas the wound area fold change is generally high when γm is high. Likewise,

when γp is increased, wound area fold changes increase as well. These findings suggest that,

rather than the intrinsic rates of movement and proliferation, it is the density-dependent inter-

actions between cells that determine the degree to which wound healing is accomplished.

While Fig 10 provides information as to how the different model parameters influence

wound closure, it is to be expected that there is an interplay between the intrinsic rates and

their density-dependent counterparts. To investigate how different model parameters combine

to give rise to wound closure, we investigate the dependence of wound closure on pairs of

parameters. In Fig 11, wound area fold change is plotted as a function of the parameter pairs

(m, p − d), (p − d, γp), (m, γm).

Fig 11 suggests that high intrinsic motility rates can counteract low intrinsic proliferation

rates to close the wound rapidly, but not vice versa. Moreover, the density-dependent mecha-

nistic parameters have a profound impact upon wound area fold change. Between intrinsic

motility, m, and density-dependent motility, γm, density-dependent interactions clearly play a

crucial role. At the same time, across the range of values for the intrinsic net proliferation rate,

p − d, the extent of density-dependent proliferation, γp, influences wound healing by increas-

ing the extent of wound closure at similar levels of p − d.

4 Discussion and outlook

The aim of this work was to develop and showcase a method to address the task of performing

Bayesian inference on a large dataset, where the likelihood is obtained through simulation of a

detailed mathematical model and the nature of the data requires repeated simulation. In

Fig 11. Observed wound area fold change plotted as a function of combinations of posterior means. Each three-dimensional plot shows the

multivariate dependence of wound area fold change as a function of various parameters. The colour key denotes the different clusters found using K-

means clustering with K = 3. Star denotes Mock, diamond denotes CDC42 knockdown and plus denotes CDH5 knockdown.

https://doi.org/10.1371/journal.pcbi.1010191.g011
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essence, our method entails estimating the likelihood by repeatedly drawing subsamples from

the data and estimating the likelihood function through this sampling scheme. The framework

was developed in the context of a high-throughput scratch assay experiment, using a mathe-

matical model with density-dependent interactions to describe the behaviours of the individ-

ual cells in the experiment, but the ethos of the approach is sufficiently general so as to apply to

other large datasets and other computationally costly likelihood estimation methodologies.

The motivation for developing this framework stems from the fact that traditional high-

throughput experiments often use simple summary statistics to understand and explain

observed differences in the experiment. While these can lead to valuable information, a

detailed mathematical model can provide further insights that are not captured by simple sum-

mary statistics. For example, this work focused on extracting detailed density-dependent inter-

actions between cells from only considering spatial statistics in very sparse data. In this

context, the identification of detailed density-dependent interactions allowed us to identify

subgroups of genetic perturbations that have functionally different mechanistic behaviours.

These differences help to explain and understand the different degrees of cell count changes

and wound closure rates, which are summary statistics that are routinely collected from high-

throughput experiments. Our findings identify different mechanistic behaviours that are con-

sistent some with previous experimental measurements of wound healing after gene knock-

downs. At the same time, the scale on which we are able to perform simulations, opens up the

possibility of characterising in an automated way the functional role played by a large amount

of gene knockdowns in the future. By using different, possibly more detailed mathematical

models that are better tailored to a specific application, we conjecture that efficient Bayesian

inference on a high-throughput experiment can be used to uncover previously undiscovered

mechanisms—in the context of cell migration, or other applications.

We would like to highlight the importance of using a mathematical model that can faith-

fully identify and isolate mechanistic effects in the presence of observation noise or other fac-

tors. For instance, we noted in the process of carrying out the work that unless careful

consideration was given to incorporating measured cell sizes in the assay, the model was

unable to confidently identify cell-cell interactions, as the model components involved in esti-

mating local cell density depend heavily on an accurate representation of cell size. Hence, by

carefully extracting these detailed statistics, we can isolate the effect of cell-cell interactions and

avoid the confounding factor that cell-cell interactions naturally occur over different spatial

scales as a result of possibly different cell sizes. By probing how further mechanistic behaviours

of the gene knockdowns affect these summary statistics, we conclude that density-dependent

effects play a crucial role in wound healing.

There are a number of ways in which our method can be further improved going forward.

Firstly, in this work we have used a simple method to choose the batch size, which amounts to

analysing the systematic error and variability of the estimated parameter posterior distribu-

tions when different batch sizes are used, and choosing a value of the batch size where the vari-

ability plateaus while not incurring systematic errors in estimating model parameters. We

remark that this amounts to a grid search through the batch size hyperparameter. Performing

a grid search through algorithm hyperparameters prior to using the method on experimental

data is a common approach in computational science to choose hyperparameters. In this case,

the method yields additionally a rigorous uncertainty quantification of model predictions. The

potential shortcoming of performing the hyperparameter grid search is that the computational

cost of the grid search using different batch sizes might undo the computational gains from

performing minibatch ABC-SMC. However, in many applications there may exist a need to

perform ABC-SBC a great number of times. For example, in this work, there are 118 datasets,

each of requires one ABC-SMC run. If, in each such ABC-SMC run, the computational time is
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substantially reduced (and we note that the speed-up reported for e.g. the Mock dataset was a

factor 11), the computational savings can still greatly exceed the extra cost of the hyperpara-

meter grid search. At present, our method offers a computational improvement in such a set-

ting. In future work, a different, perhaps more computationally efficient, method for choosing

the minibatch size might be proposed, which would greatly extend and improve the applicabil-

ity of our work.

More generally, the capacity of any ABC implementation to infer parameter values from

data will depend on the specific computational model and the data available (for instance,

through its spatial and temporal resolution, or its signal to noise ratio). For this work, data

availability for several of the gene knockdowns was limited, and our work demonstrated that

increasing the number of data points for these knockdowns would provide less variable esti-

mates of model parameters, without incurring extra computational cost (by choosing a small

batch size, the computational cost of the likelihood estimation does not increase, while the

total variance does decrease). At the same time, a different choice of summary statistics might

aid in the identification of some of the model parameters for which the posterior density is

uninformative. The ability to do so will depend again on data availability, as well as a further

understanding of the specific computational model (practical non-identifiability was also

observed by Browning et al. [17] for the same parameters even though temporal resolution of

the data was finer). These points nonwithstanding, uncertainty quantification demonstrated

that even with modest amounts of data, minibatch ABC-SMC can reliably identify functional

differences between different gene knockdowns. This opens the way to using ABC-SMC in

understanding and interpreting the outcomes of high-throughput experiments as well as using

ABC-SMC in such contexts to generate hypotheses regarding potential biological mechanisms

that can be experimentally tested.
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plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLOS ONE.

2020; 15(7):1–14. https://doi.org/10.1371/journal.pone.0232565

PLOS COMPUTATIONAL BIOLOGY Efficient Bayesian inference for mechanistic modelling with high-throughput data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010191 June 21, 2022 23 / 25

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010191.s001
https://doi.org/10.1371/journal.pone.0232565
https://doi.org/10.1371/journal.pcbi.1010191


2. Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ. A high-throughput cell migration assay using

scratch wound healing, a comparison of image-based readout methods. BMC Biotechnology. 2004;

4(1472-6750):21. https://doi.org/10.1186/1472-6750-4-21 PMID: 15357872

3. Hasenauer J, Banga JR. Editorial overview: ‘Mathematical modelling of high-throughput and high-con-

tent data’. Current Opinion in Systems Biology. 2022; 29:100405. https://doi.org/10.1016/j.coisb.2021.

100405
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5. Järvenpää M, Gutmann MU, Pleska A, Vehtari A, Marttinen P. Efficient acquisition rules for Model-

Based Approximate Bayesian computation. Bayesian Analysis. 2019; 14(2):595—622.

6. Barber S, Voss J, Webster M. The rate of convergence for approximate Bayesian computation. Elec-

tronic Journal of Statistics. 2015; 9(1):80—105. https://doi.org/10.1214/15-EJS988

7. Sisson SA, Fan Y, Beaumont MA. Handbook of Approximate Bayesian Computation ( 1st ed.). Sisson

SA, editor. Chapman and Hall/CRC; 2018.

8. Prescott TP, Baker RE. Multifidelity Approximate Bayesian computation. SIAM/ASA Journal on Uncer-

tainty Quantification. 2020; 8(1):114–138. https://doi.org/10.1137/18M1229742

9. Filippi S, Barnes CP, Cornebise J, Stumpf MPH. On optimality of kernels for approximate Bayesian

computation using sequential Monte Carlo. Statistical Applications in Genetics and Molecular Biology.

2013; 12(1):87–107. https://doi.org/10.1515/sagmb-2012-0069 PMID: 23502346

10. Forrow A, Baker RE. Measuring the accuracy of likelihood-free inference; 2021. Available from: https://

arxiv.org/abs/2112.08096.

11. Everitt RG, Rowińska PA. Delayed Acceptance ABC-SMC. Journal of Computational and Graphical

Statistics. 2021; 30(1):55–66. https://doi.org/10.1080/10618600.2020.1775617

12. Netrapalli P. Stochastic Gradient Descent and Its Variants in Machine Learning. Journal of the Indian

Institute of Science. 2019; 99(2):201–213. https://doi.org/10.1007/s41745-019-0098-4

13. Bottou L. Large-Scale Machine Learning with Stochastic Gradient Descent. Proc of COMPSTAT.

2010;.

14. Masters D, Luschi C. Revisiting Small Batch Training for Deep Neural Networks. CoRR. 2018;abs/

1804.07612.

15. Stapor P, Schmiester L, Wierling C, Merkt S, Pathirana D, Lange BMH, et al. Mini-batch optimization

enables training of ODE models on large-scale datasets. Nature Communications. 2022; 13:34. https://

doi.org/10.1038/s41467-021-27374-6 PMID: 35013141

16. Seita D, Pan X, Chen H, Canny J An Efficient Minibatch Acceptance Test for Metropolis-Hastings 2018

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence.

17. Browning AP, Jin W, Plank MJ, Simpson MJ. Identifying density-dependent interactions in collective

cell behaviour. Journal of The Royal Society Interface. 2020; 17(165):20200143. https://doi.org/10.

1098/rsif.2020.0143 PMID: 32343933

18. Binny R, James A, Plank M. Collective Cell Behaviour with Neighbour-Dependent Proliferation, Death

and Directional Bias. Bulletin of Mathematical Biology. 2016; 78. https://doi.org/10.1007/s11538-016-

0222-9 PMID: 27761698

19. Williams SP, Gould CM, Nowell CJ, Karnezis T, Achen MG, Simpson KJ, et al. Systematic high-content

genome-wide RNAi screens of endothelial cell migration and morphology. Scientific Data. 2017; 4(1).

https://doi.org/10.1038/sdata.2017.9 PMID: 28248931

20. Simpson MJ, Baker RE, Vittadello ST, Maclaren OJ. Practical parameter identifiability for spatio-tempo-

ral models of cell invasion. Journal of The Royal Society Interface. 2020; 17(164):20200055. https://doi.

org/10.1098/rsif.2020.0055 PMID: 32126193

21. Javer A, Rittscher J, Sailem H. DeepScratch: Single-Cell Based Topological Metrics of Scratch Wound

Assay. Computational and Structural Biotechnology Journal. 2020; 18. https://doi.org/10.1016/j.csbj.

2020.08.018 PMID: 33005312

22. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chem-

istry. 1977; 81(25):2340–2361. https://doi.org/10.1021/j100540a008

23. Didelot X, Everitt RG, Johansen AM, Lawson DJ. Likelihood-free estimation of model evidence. Bayes-

ian Analysis. 2011; 6(1):49—76. https://doi.org/10.1214/11-BA602

24. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for

parameter inference and model selection in dynamical systems. J Roy Soc Interface. 2009; 6(31):187–

202. https://doi.org/10.1098/rsif.2008.0172 PMID: 19205079

25. Kass RE, Raftery AE. Bayes Factors. Journal of the American Statistical Association. 1995; 90(430):

773–795. https://doi.org/10.1080/01621459.1995.10476572

PLOS COMPUTATIONAL BIOLOGY Efficient Bayesian inference for mechanistic modelling with high-throughput data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010191 June 21, 2022 24 / 25

https://doi.org/10.1186/1472-6750-4-21
http://www.ncbi.nlm.nih.gov/pubmed/15357872
https://doi.org/10.1016/j.coisb.2021.100405
https://doi.org/10.1016/j.coisb.2021.100405
https://doi.org/10.1093/bib/bbab387
https://doi.org/10.1214/15-EJS988
https://doi.org/10.1137/18M1229742
https://doi.org/10.1515/sagmb-2012-0069
http://www.ncbi.nlm.nih.gov/pubmed/23502346
https://arxiv.org/abs/2112.08096
https://arxiv.org/abs/2112.08096
https://doi.org/10.1080/10618600.2020.1775617
https://doi.org/10.1007/s41745-019-0098-4
https://doi.org/10.1038/s41467-021-27374-6
https://doi.org/10.1038/s41467-021-27374-6
http://www.ncbi.nlm.nih.gov/pubmed/35013141
https://doi.org/10.1098/rsif.2020.0143
https://doi.org/10.1098/rsif.2020.0143
http://www.ncbi.nlm.nih.gov/pubmed/32343933
https://doi.org/10.1007/s11538-016-0222-9
https://doi.org/10.1007/s11538-016-0222-9
http://www.ncbi.nlm.nih.gov/pubmed/27761698
https://doi.org/10.1038/sdata.2017.9
http://www.ncbi.nlm.nih.gov/pubmed/28248931
https://doi.org/10.1098/rsif.2020.0055
https://doi.org/10.1098/rsif.2020.0055
http://www.ncbi.nlm.nih.gov/pubmed/32126193
https://doi.org/10.1016/j.csbj.2020.08.018
https://doi.org/10.1016/j.csbj.2020.08.018
http://www.ncbi.nlm.nih.gov/pubmed/33005312
https://doi.org/10.1021/j100540a008
https://doi.org/10.1214/11-BA602
https://doi.org/10.1098/rsif.2008.0172
http://www.ncbi.nlm.nih.gov/pubmed/19205079
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1371/journal.pcbi.1010191


26. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. Approximate Bayesian Com-

putation. PLoS Comp Biol. 2013; 9(1):1–10. https://doi.org/10.1371/journal.pcbi.1002803 PMID:

23341757

27. Del Moral P, Doucet A, Jasra A. Sequential Monte Carlo samplers. Journal of the Royal Statistical Soci-

ety: Series B (Statistical Methodology). 2006; 68(3):411–436. https://doi.org/10.1111/j.1467-9868.

2006.00553.x

28. Sisson SA, Fan Y, Tanaka MM. Sequential Monte Carlo without likelihoods. Proceedings of the National

Academy of Sciences. 2007; 104(6):1760–1765. https://doi.org/10.1073/pnas.0607208104 PMID:

17264216

29. Kullback S, Leibler RA. On information and sufficiency. The Annals of Mathematical Statistics. 1951;

22(1):79—86. https://doi.org/10.1214/aoms/1177729694

30. Pak T, Baker R, Pitt-Francis J. Pakman: a modular, efficient and portable tool for approximate Bayesian

inference The Journal of Open Source Software 2020 Mar; 5(47):1716. https://doi.org/10.21105/joss.

01716

31. Melendez J, Grogg M, Zheng Y. Signaling Role of Cdc42 in Regulating Mammalian Physiology. Journal

of Biological Chemistry. 2011; 286(4):2375–2381. https://doi.org/10.1074/jbc.R110.200329 PMID:

21115489

32. Shimoyama Y, Tsujimoto G, Kitajima M, Natori M. Identification of three human type-II classic cadherins

and frequent heterophilic interactions between different subclasses of type-II classic cadherins. 2000;

349:159–167.

33. Jin W, Lo KY, Chou S, McCue SW, Simpson MJ. The role of initial geometry in experimental models of

wound closing. Chemical Engineering Science. 2018; 179:221–226. https://doi.org/10.1016/j.ces.2018.

01.004

34. Nainggolan R, Perangin-angin R, Simarmata E, Tarigan AF. Improving the performance of the K-

means cluster using the sum of squared error (SSE) optimized by using the Elbow method. Journal of

Physics: Conference Series 2019 Nov 1 (Vol. 1361, No. 1, p. 012015). IOP Publishing.

35. Thorndike RL. Who belongs in the family? Psychometrika. 1953; 18(4):267–276. https://doi.org/10.

1007/BF02289263

36. Xiang C, Y L, Y W, J W, S M, X M, et al. Effect of EphA7 Silencing on Proliferation, Invasion and Apopto-

sis in Human Laryngeal Cancer Cell Lines Hep-2 and AMC-HN-8. Cell Physiol Biochem. 2015; 36:435–

445. https://doi.org/10.1159/000430110 PMID: 25968442

37. Vicencio JM, Ortiz C, Criollo A, Jones AWE, Kepp O, Galluzzi L, et al. The inositol 1,4,5-trisphosphate

receptor regulates autophagy through its interaction with Beclin 1. Cell Death & Differentiation. 2009;

16(1476-5403):1006–1017. https://doi.org/10.1038/cdd.2009.34 PMID: 19325567

PLOS COMPUTATIONAL BIOLOGY Efficient Bayesian inference for mechanistic modelling with high-throughput data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010191 June 21, 2022 25 / 25

https://doi.org/10.1371/journal.pcbi.1002803
http://www.ncbi.nlm.nih.gov/pubmed/23341757
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1073/pnas.0607208104
http://www.ncbi.nlm.nih.gov/pubmed/17264216
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.21105/joss.01716
https://doi.org/10.21105/joss.01716
https://doi.org/10.1074/jbc.R110.200329
http://www.ncbi.nlm.nih.gov/pubmed/21115489
https://doi.org/10.1016/j.ces.2018.01.004
https://doi.org/10.1016/j.ces.2018.01.004
https://doi.org/10.1007/BF02289263
https://doi.org/10.1007/BF02289263
https://doi.org/10.1159/000430110
http://www.ncbi.nlm.nih.gov/pubmed/25968442
https://doi.org/10.1038/cdd.2009.34
http://www.ncbi.nlm.nih.gov/pubmed/19325567
https://doi.org/10.1371/journal.pcbi.1010191

