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Laboratory of Virology, University of Pécs, Pécs, Hungary, 3 Institute of Biology, Faculty of Sciences,
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Abstract

Comparing SARS-CoV-2 infection-induced gene expression signatures to drug treatment-

induced gene expression signatures is a promising bioinformatic tool to repurpose existing

drugs against SARS-CoV-2. The general hypothesis of signature-based drug repurposing is

that drugs with inverse similarity to a disease signature can reverse disease phenotype and

thus be effective against it. However, in the case of viral infection diseases, like SARS-CoV-

2, infected cells also activate adaptive, antiviral pathways, so that the relationship between

effective drug and disease signature can be more ambiguous. To address this question, we

analysed gene expression data from in vitro SARS-CoV-2 infected cell lines, and gene

expression signatures of drugs showing anti-SARS-CoV-2 activity. Our extensive functional

genomic analysis showed that both infection and treatment with in vitro effective drugs leads

to activation of antiviral pathways like NFkB and JAK-STAT. Based on the similarity—and

not inverse similarity—between drug and infection-induced gene expression signatures, we

were able to predict the in vitro antiviral activity of drugs. We also identified SREBF1/2, key

regulators of lipid metabolising enzymes, as the most activated transcription factors by sev-

eral in vitro effective antiviral drugs. Using a fluorescently labeled cholesterol sensor, we

showed that these drugs decrease the cholesterol levels of plasma-membrane. Supple-

menting drug-treated cells with cholesterol reversed the in vitro antiviral effect, suggesting

the depleting plasma-membrane cholesterol plays a key role in virus inhibitory mechanism.

Our results can help to more effectively repurpose approved drugs against SARS-CoV-2,

and also highlights key mechanisms behind their antiviral effect.
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Author summary

Targeting the infected host cells is an effective strategy in infectious diseases, like COVID-

19. Better understanding the virus and drug induced cellular mechanisms can help to

identify new compounds with potential antiviral activity. We used computational meth-

ods to analyse gene expression data from in vitro SARS-CoV-2 infected cell lines, and

gene expression signatures of drugs showing anti-SARS-CoV-2 activity. With the help of

machine learning methods, we were able to predict in vitro effective antiviral drugs from

gene expression based features. We found that effective drugs activate antiviral pathways

like JAK-STAT and NFkB, and also the SREBF transcription factors, key regulators of

cholesterol synthesis. Using microscopic measurements we validated that several antiviral

drugs influence the cholesterol content of the plasma membrane. Finally, we showed that

cholesterol rescue inhibited the in vitro antiviral effect of amiodarone, demonstrating the

importance of drug induced cholesterol changes in the antiviral drug effect.

1. Introduction

The newly emerged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), caus-

ing the coronavirus disease 2019 (COVID-19), has led to more than 420,000,000 reported

infections and 5,500,000 reported deaths worldwide [1] until February 2022. Identification of

new therapeutic compounds against SARS-CoV-2 / COVID-19 is an urgent need until effec-

tive vaccination is worldwide available and given the emergence of SARS-CoV-2 strains show-

ing immune evasion [2]. The main therapeutic strategies include A) inhibiting key viral

enzymes (like remdesivir [3]); B) modulating the infected cells to decrease viral replication

[4,5] and C) modulating the over-activation of the immune system to treat late complications

like “cytokine storm” [6–8]. Repurposing already approved drugs for these indications is espe-

cially important as it allows a shorter time of approval for anti-SARS-CoV-2 treatment.

Comparing gene expression signatures of drugs and diseases have been previously shown

to be an effective strategy to repurpose drugs for new therapeutic indications [9]. The general

principle of these studies is that a drug inducing an opposite gene expression signature to a dis-

ease signature can reverse the disease-related gene expression changes, thus the disease pheno-

type. This “signature reversal” principle has also been used to predict effective drugs against

SARS-CoV-2 infection [10–12]. However, these predictions lack, in most cases, mechanistic

insight and experimental validation. Moreover, as infected cells activate adaptive antiviral

pathways (like interferon pathway), inhibiting these pathways does not necessarily decrease

viral replication.

In this study, we analyzed transcriptomics data from in vitro SARS-CoV-2 infected cell

lines (section 2.1) and from cell lines treated with drugs showing anti-SARS-CoV-2 activity

(effective drugs, section 2.2). Functional genomic analysis revealed shared transcription factor

and pathway activity changes (eg. increased activity NFkB and JAK-STAT pathways) in the

infected and effective drug-treated cell lines. Similarity between infection signature and drug-

induced signature was predictive for in vitro effective drugs, contradictory to the classical “sig-

nature reversal” principle (section 2.3). Machine learning-based prediction of effective drugs

identified SREBF1 and SREBF2 transcription factors, key regulators of lipid metabolism, as

important factors of antiviral drug effect. Using a fluorescently labeled cholesterol sensor, we

showed the decreased level of plasma-membrane cholesterol in cells treated with effective

drugs, like chlorpromazine, confirming the effect of these drugs on cholesterol metabolism

(section 2.4). We also identified amiodarone, a drug decreasing plasma-membrane cholesterol
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content, thus a potential in vitro effective drug. Using an in vitro SARS-CoV-2 infection assay,

we demonstrated that the antiviral effect of amiodarone can be reversed by cholesterol supple-

ment, underlying the relevance of decreased plasma-membrane cholesterol in the antiviral

drug effect (section 2.5).

2. Results

2.1 Analysis of host pathway and transcription factor activities reveals

adaptive response of SARS-CoV-2 infected cells

We analysed gene expression data from two recent studies (GSE147507 [13] and GSE148729

[14]), where lung epithelial cancer cell lines (Calu-3 and A549) were infected with SARS-CoV-

2. To identify infection-induced pathway and transcription factor (TF) changes, we used the

PROGENy [15,16] and DoRothEA [17,18] tools, respectively (more details in Methods).

PROGENy analysis showed increased activity of NFkB and TNFa pathways in both ana-

lysed cell lines, while the activity of JAK-STAT pathway increased more pronounced in

infected Calu-3 cell lines (Fig 1A). DoRothEA analysis (Fig 1B) revealed strong activation of

STAT, IRF and NFkB transcription factors, while cell growth-related transcription factors

(E2Fs, Myc) showed decreased activity. Also SREBF1/2, key transcriptional regulators of cho-

lesterol synthesis, showed decreased activity. STATs, IRFs and NFkB pathways / TFs play a key

role in antiviral innate immunity [19]. Decreased activity of E2Fs and Myc [20] and decreased

synthesis of cholesterol [21] are also part of the physiological antiviral / interferon response.

To further analyse which upstream signalling pathways regulate the inferred TF activity

changes, we used CARNIVAL [22], a signaling network contextualisation tool, which connects

transcription factor activities to perturbations in signaling networks via integer linear pro-

gramming (more details in Methods). We performed CARNIVAL analysis using inferred tran-

scription factor activities from a SARS-CoV-2 infected cell line (GSE147507, Calu-3), and used

RIG-I like receptors (DDX58 and IFIH1), key receptors for foreign RNA sensing [23], as main

perturbation target. CARNIVAL results showed (Fig 1C), that activation of RIG-I like recep-

tors by the dsRNA of SARS-CoV-2 can directly lead to the observed transcription factor activ-

ity changes, including activation of NFkB, IRFs and STATs and inhibition of SREBF2 and

E2F4. Key identified intermediate nodes AKT1 and MAPK1 were already connected to coro-

navirus infection [5,24] and other viral infections [25,26], also suggesting that the observed TF

changes are initiated by the RIG-I like receptors, thus corresponding to the antiviral response

of the host cell.

In summary, our functional analysis of the gene expression changes in SARS-CoV-2

infected cell lines suggests that a large part of the induced pathway / transcription factor activ-

ity changes are adaptive, i.e. part of the physiological antiviral response.

2.2 Analysis of in vitro anti-SARS-CoV-2 drug-induced pathway and

transcription factor activities reveals similar changes to virus infection

To compare infection and drug-induced signatures, we used a large compendium of drug-

induced gene expression signatures from the LINCS-L1000 project [27]. LINCS-L1000 con-

tains drug-induced gene expression signatures from different cell lines, concentrations and

time points. We calculated consensus gene signatures for each drug using our previous

approach ([28], Methods), ending up with gene expression signatures for 4671 drugs. To select

drugs effectively inhibiting SARS-CoV-2 replication in vitro, we used a curated database cre-

ated by ChEMBL (http://chembl.blogspot.com/2020/05/chembl27-sars-cov-2-release.html).

This dataset contains 133 drugs previously showing effective inhibition of viral replication in 8
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studies [4,29–35]. We found an intersection of 47 drugs between LINCS-L1000 (available gene

expression signatures) and ChEMBL dataset (in vitro effective drugs). To characterize drug-

induced pathway and transcription activity changes, we analysed consensus drug-induced sig-

natures using PROGENy and DoRothEA.

PROGENy analysis showed strong activation of NFkB and TNFa pathways by several

drugs, including niclosamide, perhexiline and digoxin (Fig 2A). Several drugs also strongly

activated the JAK-STAT pathway (RTK inhibitors osimertinib and regorafenib). In case of TF

analysis, we found similar patterns (Fig 2B) to the infection-induced signatures: increased

activity of NFkB and STAT transcription factors and decreased activity of Myc/E2Fs transcrip-

tion factors. Interestingly, SREBF1/2 showed strongly increased activity for a large cluster of

drugs, but (similar to the infection signatures) decreased in another cluster. To further analyse

the TF activity changes in the different clusters of drugs, we calculated average TF activities for

these clusters and plotted these values against the average TF activities of the 3 SARS-CoV-2

infection signatures (Fig 2C). One cluster (Fig 2C, upper left panel), showed high correlation

(Spearman’s rho = 0.64, p = 8.55e-35) across all TFs. Two other clusters (Fig 2C, upper middle

Fig 1. Functional genomic analysis of SARS-CoV-2 infected cell lines. (A) Inferred pathway and (B) TF activities of

SARS-CoV-2 infected samples from lung epithelial cell lines (Calu-3 and A549). Activities were calculated from

differential expression signatures (infected—control) using PROGENy and DoRothEA tools for pathway and TF

activities, respectively. Only TFs with high absolute level of activity changes (absolute normalized enrichment

score> 4) are shown. (C) Causal signalling network in SARS-CoV-2 infected Calu-3 cells (GSE147507) identified by

CARNIVAL. RIG-I like receptors (DDX58 and IFIH1) as perturbation targets and DoRothEA inferred TF activities

were used as the input of the CARNIVAL pipeline. Color code represents inferred activity of protein nodes (blue:

inhibited, red: activated).

https://doi.org/10.1371/journal.pcbi.1010021.g001

PLOS COMPUTATIONAL BIOLOGY SARS-CoV-2 computational drug repurposing - role of cholesterol

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010021 April 11, 2022 4 / 20

https://doi.org/10.1371/journal.pcbi.1010021.g001
https://doi.org/10.1371/journal.pcbi.1010021


and upper right panels) showed lower, but still significant correlation with infection TF activity

signature (Spearman’s rho = 0.14 and 0.18, p = 0.0122 and 0.00174, respectively), with promi-

nent increase of STATs and decrease of E2F4 transcription factor activity. For the remaining

two large clusters, we found either negligible (Fig 2C, lower right panel) or high (Fig 2C, lower

left panel) correlation with infection-induced TF activities (Spearman rho = 0.04 and 0.58,

p = 0.484 and 3.14e-27, respectively), but we found high drug-induced activity of SREBF1/2

transcription factors in these clusters, opposite to the inhibition of these TFs by SARS-CoV-2

infection.

Fig 2. Functional genomic analysis of effective drugs treated cell lines. (A) Inferred pathway and (B) TF activities of

anti-SARS-CoV-2 drug-treated cell lines. Activities were calculated from LINCS-L1000 consensus drug-induced

signatures, using PROGENy and DoRothEA tools for pathway and TF activities, respectively. Drug clusters in (B) are

color coded. Only selected transcription factors (corresponding to Fig 1B) are shown. (C) Relationship between

average TF activities induced by drug treatment and SARS-CoV-2 infection for 5 different drug clusters (colors of

clusters correspond to panel B). TFs with the highest/lowest average activities are text labeled. (D) Density plot of

similarities between SARS-CoV-2- and drug-induced signatures for all LINCS-L1000 drugs and known anti-

SARS-CoV-2 drugs (ChEMBL drugs).

https://doi.org/10.1371/journal.pcbi.1010021.g002
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As we found that, for several drug clusters, drug-induced TF activities showed positive cor-

relation with SARS-CoV-2-induced TF activities, we were interested in the general similarity

of drug and infection-induced gene expression signatures. To achieve this we calculated the

signature similarity (Spearman’s correlation coefficient, which has been previously shown to

be an effective metric to analyse signature similarity for the LINCS-L1000 data [27,28])

between all the 4,671 drug-induced signatures from our LINCS-L1000 dataset and the infec-

tion signatures. We found that effective anti-SARS-CoV-2 drugs (ChEMBL dataset) have

higher similarity to infection signatures, than ineffective drugs / drugs with unknown efficacy

(Fig 2E, Mann-Whitney U test p-value =<1e-200).

In summary, we found that known in vitro effective anti-SARS-CoV-2 drugs induce similar

pathway and TF activity patterns, and appropriately similar gene expression signatures to

virus infection signatures. We also identified two large clusters of drugs inducing strong acti-

vation of SREBF1/2 transcription factors, key regulators of cholesterol / lipid metabolism.

2.3 Prediction of drugs with in vitro anti-SARS-CoV-2 activity

After identifying some general patterns in the gene expression signatures of in vitro effective

anti-SARS-CoV-2 drugs, we investigated how well we can predict drug effectiveness using

gene expression signatures.

As a first strategy, we simply used the previously calculated drug—infection signature simi-

larity to predict effective drugs. Using these similarity values (predicted score) and the known

in vitro effective drugs (ChEMBL dataset, true positive values) we performed ROC analysis

(Fig 3A). We found that similarity to infection signatures is predictive for effective drugs, i.e.

drugs with high similarity to infection signature are more frequently effective (ROC AUCs:

0.75, 0.74 and 0.64 for GSE147507 A549, GSE147507 Calu-3 and GSE148729 Calu-3, respec-

tively). To test the specificity of this signature similarity-based approach for SARS-CoV-2

infection signature, we included several other virus infection-induced gene expression signa-

tures for SARS-CoV (GSE33267 [36], GSE148729), MERS (GSE45042 [37], GSE56677 [38]),

respiratory syncytial virus (RSV, GSE147507), influenza (GSE28166 [39], GSE37571) and

human parainfluenza (HPIV, GSE147507) infected Calu-3 and/or A549 cell lines. Similarity to

these infection signatures showed lower predictive performance for anti-SARS-CoV-2 drugs

(ROC AUC values <0.7 except one SARS and RSV signature with ROC AUCs 0.70 and 0.71,

respectively, Fig 3B), suggesting the relative SARS-CoV-2 specificity of the similarity-based

methods.

Following this unsupervised prediction strategy, we also performed supervised, machine

learning-based predictions. We used the drug-induced TF activities as features, and effective

drugs from the ChEMBL dataset as positive examples, with Random Forest Classification as

prediction algorithm. We set up a random subsampling based cross-validation scheme and

evaluated the performance using ROC analysis (Methods). Our results showed a slightly

improved performance compared to the unsupervised, similarity-based approach (mean ROC

AUCs: 0.72 and 0.68, 0.66, 0.57, respectively for the machine learning and similarity-based

methods, paired t-test p-values between machine learning and similarity-based methods:

3.02e-07, 2.76e-15, 4.89e-15 for GSE147507 A549, Calu-3 and GSE148729 Calu-3 signatures

respectively, Fig 3C). To gain some more mechanistic insight from the prediction of machine

learning models, we analysed feature importances (Gini importance, Fig 3D) of the Random

Forest Regression models and found that SREBF1 and SREBF2 activity were the two most

important features, followed by TFAP2A, HNF4A and TP63 transcription factors.

In summary, our two different prediction approaches showed reasonable performance

(comparable to studies based on network medicine and chemical similarity [40,41]), to predict
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drugs with in vitro anti-SARS-CoV-2 activity, and also highlighted the importance of previ-

ously discussed SREBF1/2 transcription factors. Drug—SARS-CoV-2 signature similarities,

and predicted probabilities of anti-SARS-CoV-2 activity is available in S1 Table.

2.4 Anti-SARS-CoV-2 drugs are increasing SREBF activity by depleting

plasma membrane cholesterol

While in most cases we found similarity between the activity of SARS-CoV-2 infection and in
vitro effective drug-induced transcription factor activities, in case of SREBF1/2 we found

opposite changes: SARS-CoV-2 infection inhibited SREBF1/2, while a large cluster of effective

drugs lead to increased activity of SREBFs. SREBFs are activated through the decreased choles-

terol content of plasma membrane and endoplasmic reticulum, and activated SREBFs induce

the expression of cholesterol, and other lipid synthesizing enzymes [42]. From this point of

view, decreased SREBF activity during viral infection can lead to decreased cholesterol synthe-

sis, which can inhibit the viral replication and/or viral entry [21], thus can be considered as an

adaptive response of the host cell (Fig 4A). Interestingly, we observed a strongly increased

SREBF activity in large clusters of effective drugs. To resolve this discordance, we hypothesized

that these in vitro effective drugs directly decrease plasma membrane cholesterol (Fig 4A). In

this case, drug-induced decrease of plasma membrane cholesterol can contribute to the

Fig 3. Evaluation of similarity-based and machine learning-based models in predicting in vitro effective drugs. (A,

B) ROC analysis of similarity-based predictions of effective drugs against SARS-CoV-2. Drug—SARS-CoV-2 (A) or

drug—other virus (B) infection signature similarity was used as prediction score, while known in vitro effective drugs

(ChEMBL dataset) were used as true positives. (FPR: false positive rate, TPR: true positive rate) (C) Comparison of

predictive performance (ROCAUCs) of similarity-based method (similarity to SARS-CoV-2 infection signature, x-

axis) and random forest-based (RF-based, x-axis) prediction. Results of 100 random subsampling cross-validations. In

case of similarity-based methods, ROC AUC curves were only calculated for the corresponding cross-validation sets.

Boxplots represent the median (central line), first and third quartile (box), minimum and maximum non-outlier values

(whiskers) and outliers (diamonds). (D) Feature importances (Gini importance) of the Random Forest model. Top and

bottom 10 features (TFs) are shown according to importance.

https://doi.org/10.1371/journal.pcbi.1010021.g003

PLOS COMPUTATIONAL BIOLOGY SARS-CoV-2 computational drug repurposing - role of cholesterol

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010021 April 11, 2022 7 / 20

https://doi.org/10.1371/journal.pcbi.1010021.g003
https://doi.org/10.1371/journal.pcbi.1010021


antiviral effect, while decreased cholesterol levels can activate SREBFs, thus explaining the

observed increased activity of these TFs in our bioinformatic analysis.

To confirm this hypothesis, we performed high-throughput, automatic confocal micros-

copy imaging using a fluorescently labeled cholesterol sensor domain, D4H-mVenus [43,44].

Fig 4. Cholesterol depleting effect of SREBF activating drugs. (A) Schematic figure of the hypothesis that antiviral

drugs block virus entry into cells by cholesterol depletion from plasma membrane, and are leading to a compensatory

increased SREBF1/2 activity. Effects induced by viral infection are marked with black arrows (left side), while orange

arrows represent drug-induced changes (right side) The figure was created with BioRender.com. (B) Schematic

representation of the used fluorescent constructs. (C) Histogram of SREBF1 activation (left panel) and histogram of

predicted probabilities of in vitro antiviral activity of LINCS-L1000 drugs (right panel, according to the Random Forest

model). Drugs selected for in vitro experiments are text labeled. (D) Representative confocal microscopy images of

D4H-mVenus transfected HEK293A cells treated with DMSO, MβCD, chlorpromazine or amiodarone. White arrows

mark plasma membrane, while red arrows show intracellular localised cholesterol sensors. (E) Time-dependent change

of log2(PM/IC) ratio of average cholesterol sensor intensity in HEK293A cells treated with DMSO, MβCD,

chlorpromazine, amiodarone, loperamide or rosuvastatin. Red line marks drug treatment. �: significant (p<0.001)

interaction between drug treatment and elapsed time in linear model.

https://doi.org/10.1371/journal.pcbi.1010021.g004
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HEK293A cells were co-transfected with D4H-mVenus and cytoplasmic Cerulean as cytosolic

marker (Fig 4B), and treated with dimethyl sulfoxide (DMSO, negative control), MβCD

(methyl β-cyclodextrin, plasma membrane cholesterol depleting compound, as positive con-

trol) and 3 drugs from our computational drug repurposing pipeline, loperamide, amiodarone

and chlorpromazine (all drugs were used in 10 μM final concentration). All these three drugs

increased the activity of SREBF transcription factors (Fig 4C, left panel). Loperamide and

chlorpromazine have been previously shown to be in vitro effective against SARS-CoV-2

(ChEMBL dataset), while amiodarone was one of the top predicted drugs of the Random For-

est model (Fig 4C, right panel, ranked 36/4671 drugs, S1 Table). We also treated HEK293A

cells with rosuvastatin, an inhibitor of cholesterol synthesis. Rosuvastatin also alters cellular

cholesterol metabolism, however, it does not influence plasma membrane cholesterol directly,

but inhibits HMG-CoA reductase, the rate limiting enzyme of de novo cholesterol synthesis.

Rosuvastatin was not predicted as an effective anti-SARS-CoV-2 drug by the Random Forest

model (Fig 4C left panel, ranked 1821/4671 drugs).

Cells were treated with the different drugs and serial confocal microscopy images were

recorded for 4.5 hours. In untreated, or DMSO treated cells, we observed a predominantly

plasma membrane localisation of the fluorescent protein labeled cholesterol sensor (Fig 4D,

top left panel). Treatment with MβCD led to decreased plasma membrane cholesterol levels,

while cholesterol accumulated in intracellular vesicles (Fig 4D, top right panel). We observed

similar phenotypic changes in case of amiodarone and chlorpromazine (Fig 4D, bottom pan-

els), while the localisation of cholesterol sensor in loperamide and rosuvastatin treated cells

was more similar to control condition (S1 Fig).

For a more systematic and unbiased analysis of the changes in the localisation of cholesterol

sensors, we performed quantitative image analysis (S2 Fig). For each cell in each image, we cal-

culated the ratio of average plasma membrane (PM) and average intracellular (IC) D4H-mVe-

nus fluorescence (PM/IC ratio). To segment cells in confocal microscopy images, we used

Cellpose library ([45], Methods). Plotting the PM/IC ratio as a function of elapsed time after

drug treatment (Fig 4E) revealed that PM/IC ratio did not decrease in loperamide and rosuvas-

tatin treated samples, while MβCD, chlorpromazine and amiodarone treatment induced sig-

nificant decrease of the ratio (linear model coefficients values for interaction between drug

treatment and time: -0.002, -0.00086, -0.00017, -0.000032 and 0.000083 for MβCD, chlorprom-

azine, amiodarone, loperamide, rosuvastatin respectively, p values: <1e-200,<1e-200, 2.71e-

09, 0.25 and 0.0047), confirming the plasma membrane cholesterol depleting effect of chlor-

promazine and amiodarone, two SREBF activating drugs.

In summary, our high-throughput image acquisition and analysis pipeline confirmed that

chlorpromazine and amiodarone decreased plasma membrane cholesterol content, which

explains the increased activity of SREBF transcription factors in case of gene expression

readout.

2.5 Supplementing cholesterol reverses anti-SARS-CoV-2 activity of

amiodarone

As our experiments revealed that the selected drugs with in vitro anti-SARS-CoV-2 activity

decreased the cholesterol content of plasma membrane, we were interested in whether

decreased plasma membrane cholesterol levels could play a causal role in the antiviral effect,

according to our assumptions (Fig 4A). To test this hypothesis, we performed in vitro SARS-

CoV-2 viral infection assay with cholesterol rescue in Vero-E6 cells.

At first we tested whether the investigated drugs show anti-SARS-CoV-2 activity in our pre-

viously described experimental system [46]. Briefly, Vero-E6 cells were co-treated with
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SARS-CoV-2 and the selected drugs (6 μM amiodarone, 12 μM chlorpromazine or 50 μM

loperamide, effective drug concentrations were selected based on preliminary experiments) for

30 minutes, then washed and incubated with the drugs for 48 hours. Infection efficacy was

evaluated by microscopic examination of infection-induced cytopathic effect (CPE, more

details in Methods). Untreated, SARS-CoV-2 infected cells showed strong cytopathy (Fig 5A,

top left panel), while amiodarone, chlorpromazine and loperamide markedly reduced the

infection-induced cytopathy, confirming the antiviral effect of these drugs (Fig 5A). The used

compounds did not lead to cellular toxicity in the used concentrations (S3 Fig).

To test the effect of plasma membrane cholesterol depletion on SARS-CoV-2 infectivity, we

performed cholesterol rescue experiments (Fig 5B). Vero-E6 cells were treated with drugs

overnight, then the media was replaced with cholesterol (80 μM) containing media. After 1

hour of cholesterol treatment, the cells were infected for 30 min with SARS-CoV-2. Infection

efficacy was evaluated 48 hours after infection by droplet digital PCR based viral RNA

Fig 5. Cholesterol replenishment inhibits antiviral effect of amiodarone. (A) Predicted drugs inhibit SARS-CoV-2

replication in infected Vero-E6 cells. Vero-E6 cells were infected with SARS-CoV-2 (top left) and co-treated either

with amiodarone (top right), chlorpromazine (bottom left) or loperamide (bottom right). Antiviral effect (reduced

cytopathy) was evaluated by microscopic imaging (10x objective) 48 hours after infection. (B) Schematic figure of

cholesterol rescue experiments. The figure was created with BioRender.com. (C) Effect of cholesterol rescue on

antiviral drug effect. Vero-E6 cells were pretreated with drugs (x-axis), cholesterol was replenished (color code) and

cells were infected with SARS-CoV-2. Antiviral effect of drugs was evaluated 48 hours after infection by droplet digital

PCR (viral copies, y-axis). �, #: significant (p<0.05) effect of drug treatment and drug treatment-cholesterol interaction

in linear model, respectively.

https://doi.org/10.1371/journal.pcbi.1010021.g005
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quantification (Fig 5C). Chlorpromazine and loperamide did not have antiviral effect in the

pretreatment setting (linear model p values: 0.62 and 0.18, respectively), while amiodarone

decreased viral particle number significantly (linear model p-value: 1.47e-05). Cholesterol

replenishment significantly increased viral particle number in amiodarone treated Vero-E6

cells (amiodarone: cholesterol interaction term p-value: 0.026), confirming the causal role of

drug-induced cholesterol depletion in the antiviral effect of amiodarone.

Our in vitro SARS-CoV-2 infection assay confirmed the antiviral effects of chlorpromazine,

loperamide and amiodarone, and cholesterol rescue experiments suggest that plasma mem-

brane cholesterol depletion plays an important role in the antiviral effect of amiodarone.

3. Discussion

In this study, we analysed the gene expression signatures of in vitro SARS-CoV-2 infected cells

and effective anti-SARS-CoV-2 drugs. Using functional genomic computational tools, we

showed that both virus infection and drug treatment leads to similar changes of pathway and

transcription factor activities, like activation of antiviral NFkB and JAK-STAT pathways. Sig-

nature similarity between infection and drug-induced signature was predictive for drugs with

in vitro anti-SARS-CoV-2 activity, contrary to the classical “signature reversal” hypothesis.

Using machine learning models we effectively predicted anti-SARS-CoV-2 drugs, and pre-

dicted amiodarone as an in vitro antiviral compound. More detailed functional genomic analy-

sis of TF activities revealed that SREBF1/2 TFs are strongly activated by large clusters of

effective drugs. Using a high-throughput confocal microscopy setup and quantitative image

analysis we showed that two of the three investigated effective drugs influence cellular distribu-

tion of cholesterol, leading to decreased plasma membrane cholesterol content. Viral infection

assay confirmed the already described in vitro antiviral activity of loperamide and chlorproma-

zine, and also the predicted antiviral activity of amiodarone. Cholesterol supplement reversed

the antiviral effect of amiodarone, suggesting the causal role of decreased membrane choles-

terol in the antiviral effect.

Gene expression-based computational drug repurposing is a promising field to find new

disease indications of existing drugs [47]. Despite its simplicity, it has been used successfully to

identify repurposable drugs for different diseases from cancer [48,49] through inflammatory

[50] to metabolic [51] diseases. While most of the related works rely on the “signature reversal”

hypothesis, in case of infection diseases, like COVID-19, it is less clear whether signature rever-

sal (inhibiting the virus-hijacked signalisation) or signature similarity (promoting the antiviral

response of infected host cells) can be more effective. While early studies at the beginning of

the COVID-19 pandemic applied mostly the original signature reversal hypothesis, more

recent works [52,53] also assumed that drugs with similarity to the SARS-CoV-2-induced gene

expression signature can be effective. In our work, we performed a more unbiased analysis of

signature-based drug repurposing against SARS-CoV-2. We compared the gene expression

signatures of known effective drugs against SARS-CoV-2 infection signatures, and found that

signature similarity, and not dissimilarity, is predictive for antiviral effect. These results suggest

that increasing the antiviral response of host cells can be a more effective strategy than inhibit-

ing viral infection-induced pathways. Whether this is specific for SARS-CoV-2, known for

evading several antiviral systems of the host cell [54], or a general mechanism for (viral) infec-

tions, needs further analysis with large scale in vitro drug screenings against other viruses. Nev-

ertheless, using our “signature similarity” principle instead of—or together with—the

“signature reversal” hypothesis can accelerate computational drug repurposing against existing

and emerging infectious diseases, complemented by network-based repurposing strategies

[40,55].
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While signature (dis)similarity-based computational drug repurposing has promising pre-

dictive performance, it gives no real mechanistic insight. To overcome this problem, we per-

formed extensive functional genomic analysis of SARS-CoV-2 and drug-induced gene

expression signatures. We found that both viral infection and effective drugs stimulate known

antiviral pathways like NFkB and JAK-STAT. We observed lower induction of these pathways

in virus-infected A549 cells, compared to Calu-3 cell lines, probably based on the lower expres-

sion of virus receptor ACE2 in A549 cells. The activation of antiviral pathways in virus-

infected and effective drug-treated cells also supports the “signature similarity” principle.

Beside the activation of antiviral TFs and pathways, we also observed inhibition of

(inferred) SREBF1/2 transcription factors in SARS-CoV-2 infected samples, while an activa-

tion of these TFs in a large cluster of antiviral drug-treated cells. SREBF1/2 regulate the expres-

sion of key members of cholesterol synthesis. Cholesterol depletion of plasma membrane can

reduce SARS-CoV-2 infection [56,57], and decreasing SREBFs activity (and cholesterol syn-

thesis) can be also part of the physiological, interferon-induced antiviral response of the host

cell [21,58,59]. Recently, inhibitors of the SREBFs—DNA interaction were found to exert anti-

viral effects [60] and CRISPR based knock-out of the SREBF pathway members also led to

SARS-CoV-2 resistant phenotype [61], suggesting that inhibition of SREBFs could be benefi-

cial in case of SARS-CoV-2 infection. In contrast, we found increased activity of SREBFs in

case of several effective drug-induced gene expression signatures. Previous works also showed

the increased expression of lipid metabolic enzymes [12] in antiviral drug-treated cells, and a

recent large scale CRISPR screen [62] also found that increased cholesterol synthesis can

reduce SARS-CoV-2 infection. However, these two later conclusions were based on the analy-

sis of gene expression changes of the cholesterol synthetic pathway. Gene expression changes

are in several cases not the cause, but the (compensatory) consequence of perturbed cell states

[63,64]. Based on this, we hypothesized that increased SREBF1/2 activity (based on transcrip-

tional readout) can be a compensatory consequence of decreased plasma membrane choles-

terol levels in case of several antiviral drugs. Using a fluorescent cholesterol sensor, we found

that amiodarone and chlorpromazine, two effective in vitro antiviral drugs, indeed decreases

the cholesterol content of plasma membranes, which can explain the (compensatory) increased

SREBF1/2 activity. In an in vitro SARS-CoV-2 infection assay, coupled with cholesterol rescue,

we also showed that cholesterol replenishment reduced the antiviral activity of amiodarone,

thus confirmed the causal role of plasma membrane cholesterol decrease in the antiviral effect

of amiodarone. While our computational analysis also predicted that PM cholesterol depletion

plays a role in the antiviral effect of chlorpromazine and loperamide, we were not able to verify

these predictions experimentally. Noteworthy, these two drugs had antiviral effect in case of

co-treatment with virus infection, but not in the case of the pre-treatment setup used in choles-

terol rescue experiments (probably due to pharmacokinetic factors). It is thus hard to draw

conclusions about the role of cholesterol in the antiviral effect of these drugs.

While we showed that PM cholesterol depletion can be an important factor in the in vitro
antiviral effect of drugs, whether this can be translated to in vivo is still an open question. A

recent large scale study [65] showed that several in vitro repurposable drugs exert their antivi-

ral effect via altering the membrane composition of drug-treated cells, and this antiviral effect

has low translation potential based on concerns regarding drug concentration and adverse

effects. While the authors of this study concluded that phospholipidosis is the main drug-

induced membrane component change, our results argue that altered cholesterol content can

also be a causal factor in the antiviral effect of drugs. Whether altered lipid composition of cel-

lular membranes is only a factor confounding drug repurposing studies, or this effect can be

exploited towards effective therapy, needs further studies.

PLOS COMPUTATIONAL BIOLOGY SARS-CoV-2 computational drug repurposing - role of cholesterol

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010021 April 11, 2022 12 / 20

https://doi.org/10.1371/journal.pcbi.1010021


In summary, our study showed that in vitro SARS-CoV-2 infection and effective antiviral

drugs lead to similar pathway and transcription activity changes. We found that gene expres-

sion signature similarity, and not the dissimilarity, predicts in vitro effective antiviral com-

pounds, which can accelerate computational drug repurposing against infectious diseases, and

we made the results of our predictions available for the research community (S1 Table). We

also identified that plasma membrane cholesterol depletion plays an important role in the

mechanism of action of several antiviral drugs, and that cholesterol replenishment inhibits the

in vitro antiviral effect of amiodarone, thus our results also give mechanistic insight about the

antiviral effect of repurposable drugs.

4. Methods

Virus infection-induced gene expression signatures

Microarray gene expression profiles of different virus-infected cell lines were downloaded

from Gene Expression Omnibus (GEO) with accession numbers GSE28166 (H5N1),

GSE37571 (Influenza), GSE33267 (SARS-CoV-1), GSE56677 and GSE45042 (MERS-CoV).

Preprocessing and differential expression (DE) analysis was performed by using R package

limma [66].

Total RNA-Seq profiles of SARS-CoV-2 and other virus-infected human cell lines were

downloaded from GEO with accession numbers GSE147507 (SARS-CoV-2, RSV, IAV, HPIV)

and GSE148729 (SARS-CoV-1 and 2). Differential expression (DE) analysis was performed

using R library DESeq2 [67].

In all gene expression datasets, we used (virus-infected—control) contrasts for differential

expression calculation, where the control condition was mock infection. Where gene expres-

sion data after multiple time points were available, we used 24 h post-infection data. Shared

genes across all datasets were selected and further analyzed.

Drug treatment-induced signatures

We used Level 5 gene expression profiles from the LINCS-L1000 dataset [27]. We calculated

consensus expression signatures for each drug (across different cell lines, concentrations and

time points) using the MODZ method [27,28]. We matched LINCS-L1000 drugs with

ChEMBL effective drug dataset (http://chembl.blogspot.com/2020/05/chembl27-sars-cov-

2-release.html) using drug names and simplified molecular-input line-entry system (SMILES).

Only measured (landmark) genes were used in the further analysis.

Functional genomic analysis

From previously calculated SARS-CoV-2 infection and effective drug-induced signatures, we

inferred pathway activities using PROGENy (R package progeny [15,16]) and transcription fac-

tor activities using DoRothEA (R package dorothea [18]).

PROGENy was applied to infer activities of 14 different pathways from expression and

weight of their footprint gene sets. Z-scores of pathway activities were calculated using 10000

permutations of genes as background distribution. DoRothEA was applied to infer transcrip-

tion factor activities using the viper algorithm [68]. DoRothEA is a collected, curated resource

of signed TF-target interactions. Interactions are assigned a confidence level ranging from A

(highest) to E (lowest) based on the number of supporting evidence. In this study interactions

assigned A, B, C confidence levels were used. In transcription factor activity heatmaps (Figs 1B

and 2B), only selected transcription factors (absolute normalised enrichment score > 4 in

SARS-CoV–2 infection signatures) are shown.
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We used the CARNIVAL tool [22] to contextualize our transcriptomics-based results into a

mechanistic causal network. Briefly, CARNIVAL takes as input a prior knowledge network

and a set of constraints and infers the most likely causal interactions by solving an integer lin-

ear programming problem. We assembled a curated prior knowledge signaling network from

OmniPath resources [69]. As constraints, we selected the RIG-I like receptors (DDX58 and

IFIH1) as upstream signaling perturbation and the top 25 most deregulated TFs (according to

DoRothEA and viper results) upon SARS-CoV-2 infection as their downstream target. In addi-

tion, we used PROGENy pathway activity scores to weight the prior knowledge network and

assist CARNIVAL in the discovery of optimal networks connecting the upstream perturbation

(RIG-I like receptors) to the downstream targets (TFs).

Signature similarity and machine learning-based prediction

We calculated similarities using Spearman’s correlation between each virus infection-induced

and each drug treatment-induced signature after selecting shared genes.

TF activity scores from drug-treated cells were used to predict effective drugs against

SARS-CoV-2 using Random Forest Classifier from scikit-learn Python library [70]. The model

was trained using 300 trees, with default parameters otherwise and with 100 different training

sets. Training sets consisted of a 50% random sampling of effective drugs and non-effective

drugs as well. The average importance of features (TFs) was computed (sum of feature impor-

tances, divided by the number of models). Predicted probabilities of antiviral activity were also

computed in each prediction and the mean of them was calculated for each drug (probabilities

were summed for each drug and divided by the number of occurrences in validation sets).

We performed ROC analysis using scikit-learn Python library to evaluate similarity-based

and machine learning-based predictions. Effective drugs against SARS-CoV-2 curated by

ChEMBL and overlapping with drugs of the LINCS-L1000 dataset were used as the positive

class. The negative class consisted of the part of drugs from the LINCS-L1000 dataset not con-

sidered as effective by ChEMBL. To compare machine learning-based and similarity-based

methods ROC curves were computed for each different validation set (100) and signature simi-

larity scores of the corresponding drugs were considered.

Fluorescent cholesterol sensor experiments

The cellular cholesterol sensor used in this study was the D4H domain [43,44] fluorescently

labeled with monomer Venus (mVenus) on its N-terminus. To create the construct coding

this sensor, we used a plasmid coding the bioluminescent version of the sensor (described in

[71]), a kind gift from Tamas Balla (NICHD, NIH, Bethesda, USA). The D4H domain-coding

sequence from this plasmid was subcloned into the pEYFP-C1 plasmid containing mVenus in

place of EYFP, using BglII and BamHI restriction enzymes. Cytosolic Cerulean was expressed

from a pEYFP-N1 plasmid where EYFP had been replaced with Cerulean.

For fluorescent imaging, HEK293A cells (ATCC, USA) were maintained in Dulbecco’s

Modified Eagle Medium (DMEM—Lonza, Switzerland) complemented with 10% fetal bovine

serum (Biosera, France) and Penicillin/Streptomycin (100 U/ml and 100 μg/ml, respectively—

Lonza, Switzerland). Cells were seeded on poly-L-lysine pretreated (0.001%, 1h) 24-well imag-

ing plates (Eppendorf, Germany) at a density of 1e05 cells/well. On the next day, cells were co-

transfected with plasmids coding cytoplasmic Cerulean and D4H-mVenus (0.25 μg/well each)

using Lipofectamine 2000 (0.75 μl/well, Invitrogen, USA).

Image acquisition started 24h post-transfection, after the medium had been changed to

300 μl/well HEPES-buffered DMEM without phenol-red (Gibco, USA). Images were acquired

automatically using the ImageXpress Micro Confocal High-Content Imaging System
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(Molecular Devices, USA), with a 40x Plan Fluor objective. CFP-2432C and fluorescein iso-

thiocyanate (FITC) filter sets were used for Cerulean and D4H-mVenus images, respectively,

both with an exposure time of 300 ms. After acquiring control images (30 min), cells were

treated with either DMSO (as control) or with the drugs indicated on Fig 4E in a volume of

100 μl/well (270 min). Measurements were performed at 30˚C. Three independent measure-

ments were made, with duplicate wells for each condition and 5 images/well taken for each

time point.

All chemicals used for treatment were purchased from Sigma-Aldrich Merck (Germany).

Amiodarone HCl, chlorpromazine HCl, loperamid HCl and rosuvastatin calcium were dis-

solved in DMSO, stored at -20˚C as 10 mM stock solutions and diluted in cell medium

promptly before cell treatment to a final concentration of 10 μM. MβCD was stored as powder

at 4˚C and freshly dissolved in cell medium before treatment to a final concentration of 10

mM.

Image analysis pipeline

Images were segmented with Cellpose Python library [45], which is a generalist, deep learning-

based segmentation method. To select high-quality images the cytoplasm marker channel was

used with Laplace filtering. We used high-quality images (filtered according to an appropriate

upper threshold of standard deviation of Laplace value in each experiment) as input of the

Cellpose model, with parameter channel set to greyscale and cell diameter greater than 200

pixels.

After identifying cell boundaries, we applied binary erosion (scipy Python library [72]) with

default structure and 10 iterations to determine cytoplasm boundary, or binary dilation with

default structure and 5 iterations to determine PM outer boundary. The boundary of PM was

determined by subtracting the cytoplasm boundary from the outer boundary. We calculated

the log2 ratio of the mean PM and mean intracellular D4H fluorescence intensities for each

cell in the D4H channel to examine the changes of plasma membrane cholesterol distribution.

For statistical analysis, we used log2(PM/IC) ~ Time + Time: Drug + Exp linear model, where

Time corresponds to elapsed time after drug treatment, Drug factor represents the used drug,

using DMSO as reference level. Exp factor represents the (n = 3) individual experiments.

Viral infection and cholesterol rescue experiments

Amiodarone HCl (Sigma-Aldrich, Merck KGaA, Germany) was dissolved in DMSO (Sigma-

Aldrich, Merck KGaA, Germany) and kept at -20˚C. Chlorpromazine (in house synthesized

based on [73]) and loperamide HCl (Sigma-Aldrich, Merck KGaA, Germany) were freshly dis-

solved in water and filtered prior to the treatment. 10 mM stock solutions were made from the

drugs. Vero-E6 cells were seeded in a 96-well plate on the day before the experiments. On the

next day the cells were treated with 100 μl of 50 μM remdesivir or loperamide or 12 μM chlor-

promazine or 6 μM amiodarone solution overnight. 1 hour prior to the infection the cell cul-

ture media containing the different drugs was replaced with media containing 80 μM

cholesterol (Sigma-Aldrich, Merck KGaA, Germany). After the 1-hour-long cholesterol treat-

ment the cells were infected with SARS-CoV-2 (GISAID accession ID: EPI_ISL_483637) at

MOI:0.01 in a BSL-4 laboratory. Cells were incubated with the virus for 30 minutes then the

media was replaced with fresh cell culture media. During the investigation (except cell seeding)

DMEM (Lonza Group Ltd, Switzerland) supplemented with 1% Penicillin- Streptomycin

(Lonza Group Ltd, Switzerland) and 2% heat-inactivated fetal bovine serum (Gibco, Thermo

Fisher Scientific Inc., MA, USA) were used. 48 hours post infection (hpi) the cells were

inspected under microscope and RNA was extracted from the supernatant (Zybio EXM 3000
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Nucleic Acid Isolation System, Nucleic Acid Extraction Kit B200-32). Viral copy number was

determined using droplet-digital PCR technology (Bio-Rad Laboratories Inc., CA, USA).

SARS-CoV-2 RdRp gene specific primers and probe were utilized (Forward: GTGARATGGT

CATGTGTGGCGG, reverse: CARATGTTAAASACACTATTAGCATA and the probe was:

FAM-CAGGTGGAACCTCATCAGGAGATGC-BBQ). For statistical analysis, measured viral

copy numbers were log2 transformed, and we used a log2(CV) ~ Drug � Cholesterol + Exp,

where Drug factor represents the used drug (untreated as reference level), Cholesterol factor

represents cholesterol replenishment treatment (no treatment as reference level). Exp factor

corresponds to the (n = 4) individual experiments.
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S3 Fig. Absence of marked toxic effects of used drugs in the tested concentrations.

(TIFF)

S1 Table. Drug signature similarities (Spearman’s rho) to SARS-CoV-2 infection signa-

tures (GSE147507 A549 SARS-CoV-2, GSE147507 Calu3 SARS-CoV-2 and GSE148729
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