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Abstract

Since next-generation sequencing (NGS) has become widely available, large gene panels

containing up to several hundred genes can be sequenced cost-efficiently. However, the

interpretation of the often large numbers of sequence variants detected when using NGS is

laborious, prone to errors and is often difficult to compare across laboratories. To overcome

this challenge, the American College of Medical Genetics and Genomics and the Associa-

tion for Molecular Pathology (ACMG/AMP) have introduced standards and guidelines for

the interpretation of sequencing variants. Additionally, disease-specific refinements have

been developed that include accurate thresholds for many criteria, enabling highly auto-

mated processing. This is of particular interest for common but heterogeneous disorders

such as hearing impairment. With more than 200 genes associated with hearing disorders,

the manual inspection of possible causative variants is particularly difficult and time-

consuming.

To this end, we developed the open-source bioinformatics tool GenOtoScope, which

automates the analysis of all ACMG/AMP criteria that can be assessed without further indi-

vidual patient information or human curator investigation, including the refined loss of func-

tion criterion (“PVS1”). Two types of interfaces are provided: (i) a command line application

to classify sequence variants in batches for a set of patients and (ii) a user-friendly website

to classify single variants.

We compared the performance of our tool with two other variant classification tools using

two hearing loss data sets, which were manually annotated either by the ClinGen Hearing

Loss Gene Curation Expert Panel or the diagnostics unit of our human genetics department.

GenOtoScope achieved the best average accuracy and precision for both data sets. Com-

pared to the second-best tool, GenOtoScope improved the accuracy metric by 25.75% and

4.57% and precision metric by 52.11% and 12.13% on the two data sets, respectively. The

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009785 September 21, 2022 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Melidis DP, Landgraf C, Schmidt G,
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web interface is accessible via: http://genotoscope.mh-hannover.de:5000 and the com-

mand line interface via: https://github.com/damianosmel/GenOtoScope.

Author summary

New high-throughput sequencing technologies can produce massive amounts of informa-

tion and are used by laboratories to explain the often complex genetic etiology of heredi-

tary diseases. To use these sequencing technologies effectively, software tools have been

developed that can aid researchers interpreting genetic data by semi-automatically classi-

fying the biologic (and, thus, potentially medical) impact of the detected variants (i.e.

alterations of the patient’s genome compared to the human reference genome). Variant

classification itself is a very complex process: various information has to be taken into

account and carefully judged, allowing room for interpretation. Over the last decade, the

quality of genetic analysis evaluation and the consistency between different laboratories

have improved substantially. This is in particular a result of increasing standardization,

which extends to gene- or disease-specific considerations. Hereby, a largely uniform vari-

ant interpretation is possible even for common but heterogeneous disorders.

To design a reliable tool that can accommodate these precise specifications, we chose

hearing loss as a model disease because it is the most common sensory disorder, often

hereditary and has a high impact on patients every-day lifes. The currently available

genetic variant classification tools are either not designed specifically for the interpretation

of variants detected in subjects with hearing loss or they do not allow researchers to use

them for batch classification of all variants detected, e.g. in a study group. To address this

drawback, we developed GenOtoScope, an open-source tool that automates the patho-

genicity classification of variants potentially associated with congenital hearing loss. By

adjusting specific parameters, the algorithm could also be easily adapted to other medical

conditions. GenOtoScope can be applied for the automatic classification of all variants

detected in a set of individuals.

This is a PLOS Computational Biology Software paper.

Introduction

Due to the establishment of modern high-throughput next generation sequencing (NGS) tech-

nologies, an ever-increasing amount of sequencing data can be generated. Nevertheless, a

whole exome sequencing (WES) file contains approximately 60,000 variants per individual.

Consequently, laboratories have to overcome the hurdle of processing this vast amount of data

to link the genotype to the phenotype [1]. Notably, the manual classification of variants, by

expert curators, is not only time-consuming, but even more, prone to inconsistent functional

interpretation and pathogenicity classification of a variant between distinct laboratories [2].

To address this challenge, the American College of Medical Genetics and the Association

for Molecular Pathology (ACMG/AMP) have published a set of evidence-based criteria to clas-

sify patient variants in five classes of pathogenicity, “benign” (class 1), “likely benign” (class 2),

“variants of uncertain significance” (“VUS”) (class 3), “likely pathogenic” (class 4), and “patho-

genic” (class 5) [3]. According to these guidelines, various information about a variant of
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interest and its associated phenotype (e.g., population data, computational data, functional

data, segregation data) can be assorted into 28 well-defined categories that function as evi-

dence criteria for a variant to be pathogenic or benign. The acronym of each criterion is a com-

posite of P (pathogenic) or B (benign) and the respective graded strength level, A (stand-

alone), VS (very strong), S (strong), M (moderate), P (supporting), followed by a numerical

identifier denoting different types of information. The graded combination of evidence criteria

results in the five-tier classification system mentioned above. An overview of the evidence-

based criteria is depicted in Fig 1 and the classification scheme is shown in S1 Fig.

To specialize for a diverse set of phenotypes with distinct penetrance, allelic and genetic het-

erogeneity, ACMG has updated its classification criteria for specific hereditary diseases, for

example hereditary (breast/ovarian) cancer [4] or cardiomyopathy [5], through the ClinGen

Variant Curation Expert Panels (VCEP). Even more than the general ACMG recommenda-

tions, these disease-specific criteria are predestined for a computerized approach due to their

precise thresholds.

Hearing loss (HL) is the most common sensory disorder with a high impact on the quality

of social and work life of the patient. A genetic etiology can be linked to approximately 50% of

the affected individuals [6]. Besides various forms of nonsyndromic hearing loss (NSHL)

Fig 1. Overview of ACMG/AMP evidence-based criteria. Green marks show implemented criteria. Grey font shows not implemented criteria.

Striked-through shows removed or not applicable criterion for hearing loss. Thresholds shown for BA1 and BS1 are specific for HL.

https://doi.org/10.1371/journal.pcbi.1009785.g001

PLOS COMPUTATIONAL BIOLOGY GenOtoScope: ACMG classification for congenital hearing loss

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009785 September 21, 2022 3 / 24

https://doi.org/10.1371/journal.pcbi.1009785.g001
https://doi.org/10.1371/journal.pcbi.1009785


affecting only the function of the ear, HL can also be a symptom of a superordinate disorder

involving other organ systems (syndromic hearing loss). Thus, HL is very heterogeneous with

well over 100 genes known to be associated with monogenetic NSHL and more than 400 dis-

tinctive syndromes including HL as one of their characteristic symptoms as well [6]. Because

of this tremendous versatility combined with the high overall frequency of occurrence, we

selected HL as a model disease for the development of our software tool. Therefore, the algo-

rithms presented in this work are by default set to HL-specific thresholds, but can be easily

modified to suit other medical conditions.

There are orthogonal approaches to perform the challenging classification of HL variants.

The first approach is to use machine learning models that predict the pathogenicity of variants

with respect to hearing loss phenotype such as DVPred [7]. However, such approaches do not

output the triggered ACMG evidence-based criteria supporting the classification result, thus

the classification results cannot be easily interpreted by the human variant curator. An alterna-

tive is to gather and organize all known and classified variants for HL into an open-access data-

base. Gene4HL [8] is a database where the human curator can import, export and find a HL

variant of interest. Nevertheless, the database approach has limited validity in the variant

assessment process, assuming that the human curator aims to assess the pathogenicity of a var-

iant that is not already catalogued in the database. The last approach is to automate ACMG/

AMP guidelines specified for HL. In this work, we focus on such an approach. The main rea-

sons are that such a bioinformatics tool will annotate and classify all variants of WES experi-

ment with respect to HL phenotype and output the triggered ACMG evidence-based criteria

supporting each pathogenicity classification. Consequently, this tool provides to the human

curator, pathogenicity classification for a variant not yet classified and reports the triggered

ACMG/AMP criteria allowing for an interpretable classification.

[9] work has introduced disease-specific evidence-based ACMG/AMP criteria, to facilitate

the challenging classification of variants for HL. Noteworthy, 2 criteria were marked as not

applicable (PP2 and BP1) for HL and 2 criteria (PP5 and BP6) have been sorted out as gener-

ally not applicable. Application of the remaining 24 adjusted criteria has been shown to achieve

better classification performance compared to the standard evidence-based criteria for known

HL-related variants [10]. In the following, we will refer to ClinGen Hearing Loss Gene Cura-

tion Expert Panel commitee as VCEP-HL.

A recently published bioinformatics tool, VIP-HL [11], automates 13 out of the 24 evi-

dence-based criteria specified for HL. However, VIP-HL is an online tool that accepts only a

single variant per time, thus hindering the automatic and time-efficient interpretation of all

variants of WES files for a set of investigated patients, for a heterogeneous condition as HL. To

address this limitation of VIP-HL, we present GenOtoScope, a bioinformatics tool, which

computes the pathogenicity class and pathogenicity probability for each variant of the input

genomic variant file (VCF), based on [9] and [12]. To this end, we designed and implemented

algorithms to automate all the evidence-based criteria that need no further individual patient

information or human curator investigation. This has resulted in 12 implemented criteria, out

of the 24 criteria in total, namely PVS1 (all strengths), PS1, PM1, PM2 (PM2 supporting),

PM4, PM5 (PM5 strong), PP3, BA1, BS1 (BS1 supporting), BP3, BP4 and BP7. We provide

GenOtoScope as an open-source project, accessible as command line application to classify

the WES patient files and as an online tool to classify a single genomic variant of interest.

We benchmarked the performance of GenOtoScope compared to two established classi-

fication tools, InterVar [13] and VIP-HL, in two HL data sets. These data sets consist of manu-

ally curated HL variants. GenOtoScope outperformed the other two classification

algorithms, both, in terms of accuracy and precision. Finally, we investigated the reasons for
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this superior performance of GenOtoScopeby calculating the difference between the activa-

tion frequencies of a tool over the manual curation, for each evidence-based criterion.

In summary, our contributions are:

• introduce GenOtoScope in two forms, a command line application for bioinformatics

experts to classify WES VCF files of a set of patients and a web-based application for non-

bioinformatics experts to classify single variants.

• compare GenOtoScope classification performance to InterVar and VIP-HL for two man-

ually annotated HL data sets.

• make GenOtoScope an open-source bioinformatics tool, therefore enabling the research

community to extend the tool for other diseases.

Materials and methods

Automating the examination of ACMG evidence-based criteria

GenOtoScope implements 12 out of 24 ACMG evidence-based criteria specified for hearing

loss [9]. More specifically these criteria are the PVS1 (all strengths), PS1, PM1, PM2 (PM2 sup-

porting), PM4, PM5 (PM5 strong), PP3, BA1, BS1 (BS1 supporting), BP3, BP4 and BP7. Based

on class category the implemented criteria are sorted in seven pathogenic and five benign cri-

teria. With respect to the data types needed for ACMG criteria, we categorized our imple-

mented criteria into three population data criteria, eight computational and predictive data

criteria and one functional data criterion. The comparison of GenOtoScope with VIP-HL

and InterVar is summarized in Table 1.

The unimplemented criteria by GenOtoScope are 12. These criteria are: PS2, PS3, PS4,

PM3, PM6, PP1, PP4, BS2, BS3, BS4, BP2 and BP5. The main reasons not to implement these

criteria are: (i) the lack of established processing algorithm (ii) the lack of data and (ii) further

Table 1. Overview of ACMG classification tools benchmarked against GenOtoScope.

Tool Implemented

Criteria

Phenotype-

specific

Open Code

Implementation

Open

Annotation

Data Sets

Command-line

Application

(variant sets)

Web Application

(single variant)

Evaluation Data Sets

InterVar 18/28

Benign: 8/12

Pathogenic: 10/

16

No Yes No Yes Yes • De novo variants in

neurodevelopmental

disorders (9,305)�

• Benign & pathogenic

ClinVar (49,167)�

• Pathogenic HGMD (616)�

• All CLINVITAE (11,696)�

VIP-HL 13/24

Benign: 6/10

Pathogenic: 7/

14

Yes No Yes No Yes • Pilot VCEP-HL (50)��

• All deafness-related

• ClinVar (4,948)�

GenOtoScope 12/24

Benign: 5/10

Pathogenic: 7/

14

Yes Yes Yes Yes Yes • All VCEP-HL (158)��

• Manually classified by

diagnostics unit of MHH

(118)��

� Classification not based on ACMG/AMP.

�� Classification based on ACMG/AMP guidelines specified for HL, by manual curators. (): Number of applicable variants.

https://doi.org/10.1371/journal.pcbi.1009785.t001
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patient information. That is, for the criteria needing functional data, PS3 and BS3, there are no

established algorithms that could automatically extract the result of a functional study publica-

tion for a given human variant. Concerning the lack of data, the examination of the PS4 crite-

rion could not be automated, because there is no database to contain the prevalence of affected

and control individuals for all possible variant types. Equally, there is no database with the

respective information to automate BS2 and BP2 criteria. Last, the need for genomic data of

the patient’s family disables the examination of the segregation data criteria: PS2, PM3, PM6,

PP1, PP4, BS4 and BP5.

The number of missing implemented criteria is competitive with the other classifications

tools. VIP-HL implements only one extra criterion, BS2. The main reason not to also implement

BS2 is that VIP-HL uses particular thresholds, which are not specified by ACMG HL original

work, and thus it may not reflected all penetrance and inheritance modes of all HL-related genes.

InterVar implements 18 out of the 28 ACMG original criteria [3]. As explained in the intro-

duction, disease-specific ACMG criteria may vary from the original 24 criteria. Therefore the

PP2, PP5, BP1 and BP6 criteria automated by InterVar are not applicable for HL. The remain-

ing two criteria automated by InterVar and not by GenOtoScope are PS4 and BS2. To auto-

mate these criteria, InterVar uses the ANNOVAR annotation tool [14]. However, this tool

implements PS4 using a general threshold on a phenotype-based GWAS catalog, consequently

the called enriched pathogenic variants may not include all HL-relevant variants. Similarly, to

automate BS2 criterion, InterVar uses the zygotic information of a healthy individual in the

1000 Genomes project [15] based on the inheritance mode of the variant. Nevertheless, specific

thresholds of healthy individuals should be used for HL, which are not published by [9]. As a

consequence, there may exist false negative cases; InterVar should activate PS4 or BS2 for a

given HL variant but it does not. Finally, the remaining criteria need manual curation or addi-

tional information not publicly available (e.g. segregation or phenotypic data), therefore they

are not implemented by any of the three classification tools.

In our thorough evaluation, shown in the results section, we demonstrate that regarding the

12 ACMG criteria processed by all three tools, GenOtoScope achieved the best averaged

accuracy and precision scores for both tested data sets. This is due to the activation frequency

of these criteria being much closer to human curation in GenOtoScope than in VIP-HL and

InterVar. Notably, VIP-HL and Intervar triggered the commonly implemented 12 criteria

much less frequently. To sum up, our choice to implement these 12 criteria, which are refined

for HL, can lead to standardized classification results for all HL-relevant genes.

Besides, our implementation of the criteria presents two more advantages: In contrast to

the usage of the ANNOVAR annotation tool, licensed for commercial use, we constructed all

annotation files needed to examine the ACMG criteria, using freely accessible databases. Thus,

we are able to offer GenOtoScope with an open-source software license. Therefore, any

interested researcher could update the corresponding code section to produce adjusted anno-

tations to her needs. Equally, the researcher can update the code to change the steps used to

examine a given criterion. The second advantage is that GenOtoScope (like VIP-HL) out-

puts comments for each examined criterion, whereas InterVar does not. This extra informa-

tion can facilitate the variant curator to justify the activation of a criterion and thus increases

the explainability of the automated classification.

GenOtoScope workflow

In the following, the methodology to implement the ACMG evidence-based criteria for con-

genital hearing loss is explained in five key steps. The conceptual workflow of the web and

command line interface (CLI) of GenOtoScope is depicted in Fig 2.
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In the first step, the user inputs a variant file (.vcf). Depending on the used interface, the

input vcf file can contain either a single variant or a larger set of variants of a patient (e.g. full

set of WES variants per patient).

Next, functional annotation of the VCF follows, using the VeP annotation tool [16] through

the megSAP bioinformatics application (https://github.com/imgag/megSAP). The resulting

intermediate variant file (.GSvar) is organized as a standard matrix file (tabular file), where

each row is a variant and a column contains variant annotation. These columns contain the

basic variant information (for example chromosome position of variant and affected gene

name), the transcript and the protein HGVS signature and the unique functional annotation

for the variant (e.g. minor allele frequency in gnomAD subpopulations [17], the OMIM vari-

ant observed clinical description [18] and the REVEL pathogenicity score for the variant [19]).

The third step uses the core sub-algorithms of GenOtoScope to automatically analyze the

listed variants according to ACMG criteria. These sub-algorithms access programmatically

four databases: the human clinical variants database ClinVar [20], the human exomes database

gnomAD [17], the protein knowledge database UniProt [21] and the clinical genome database

[22]. Extracted annotations are organized based on the Ensembl features [23] for a variant-

affected transcript. Beyond the mere result of the evaluation of a criterion (activation or non-

activation), the tool stores a descriptive comment on the reason of triggering or not of the

respective criterion, to be used as an explanation for the user.

In the following step, the tool combines the activated evidence-based criteria to classify the

variant into five pathogenicity categories (“benign”, “likely benign”, “VUS”, “probably patho-

genic” and “pathogenic”) according to ACMG guidelines. If none of the criteria is activated,

the tool classifies the variant as “VUS”. Subsequently, in the same fourth step, GenOtoScope
computes the pathogenicity posterior probability based on [12]. This is intended to allow a bet-

ter discrimination of “VUS” and additional re-classification of “VUS” into benign or patho-

genic variants.

In the fifth and final step, GenOtoScope extends the intermediate annotation tabular file

with the criteria evaluation results and comments, along with the predicted ACMG class and

the computed pathogenicity probability. Finally, the tool saves this file as the produced classifi-

cation output.

GenOtoScope requires specific annotation files to automate the ACMG criteria based on

the previous workflow. These annotations files are: clinical-significant exons, HL-relevant

Fig 2. Conceptual workflow of GenOtoScope.

https://doi.org/10.1371/journal.pcbi.1009785.g002
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transcripts, critical regions for proteins, critical regions for proteins without benign variants

and protein repeat regions without domain intersection. We constructed these annotations

files, using publicly available data sets.

GenOtoScope interfaces

Web interface. The web application is targeted for free online usage. Advanced bioinfor-

matics skills are not required. A screenshot of the home page of the GenOtoScope website is

shown in Fig 3. Users can upload a single variant file (.vcf) in the home page (Fig 3A). The

website will annotate and convert the VCF to GSvar file through the megSAP application. A

variant classification page (.html), Fig 3B, will be generated to show the basic annotation of the

variant, its ACMG classification and the computed pathogenicity posterior probability.

Command line interface. The command line interface (CLI) is tailored to bioinformatics

personnel. The first command of this mode, genotoscope_annotate.py, accepts as

input a folder of VCF files or a single VCF file. It annotates the input VCF files and converts

them into GSvar files. The second command, genotoscope_classify.py, accepts as

input a folder of GSvar files or a single GSvar file, the output of the previous command. Then,

it automatically examines the ACMG evidence-based criteria to classify and computes the

pathogenicity posterior probability for each variant in an input GSvar file. The output is an

extended GSvar file, containing information on the examination of the ACMG evidence-based

criteria, the ACMG pathogenicity class and the pathogenicity posterior probability. Examples

of these two commands are shown in Fig 4.

Automating examination of ACMG evidence-based criteria

In the following subsections, we describe our implementation of the aforementioned 12

ACMG criteria: PVS1 is automated based on [24]. Information from ClinVar database is used

for the implementation of PS1 and PM5 (including PM5 Strong). Automation of PM1 exam-

ines critical regions provided by [9] and an annotation file containing critical regions without

benign mutations, created by a utility script of GenOtoScope. Customized annotation files

are also used for (non) repetitive region dependent criteria PM4 and BP3, whereas automation

Fig 3. Web interface of GenOtoScope. (A) The home page of the GenOtoScope website. (B) The resulted variant classification page, for an example

variant (RS id: 1064797096), which includes its classification based on HL-specified ACMG guidelines.

https://doi.org/10.1371/journal.pcbi.1009785.g003
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of PP3, BP4 and BP7 employs established prediction algorithms. Population frequency data

are taken from gnomAD database, for the implementation of PM2 (PM2 Supporting), BA1

and BS1 (BS1 Supporting). See S3 Appendix, for the software implementation note of

GenOtoScope.

Refined PVS1. PVS1 criterion is assessed for start-loss, nonsense (stop gained), stop-loss,

frameshift, in-frame, splice acceptor and donor variants according to [24].

First, the occurrence of nonsense-mediated decay (NMD) is predicted by a subroutine for

each affected transcript using the HGVS signature of the variant to create the observed coding

sequence per exon. Altered region is defined as variant-affected coding region. The algorithm

locates the 5’-closest stop codon and follows the scheme of [25] to assess the impact of this pre-

mature termination codon (PTC) on NMD. The algorithm predicts that the observed coding

sequence will escape the NMD, if PTC appears either within the 50 last bases of the penultimate

exon, or at most 200 bases downstream from the start codon, or alternatively the transcript

contains no introns. Otherwise, NMD is classified to occur. Fig 5 illustrates this subprocess.

If NMD is predicted to occur, the algorithm intersects the stored variant-affected coding

region to phenotype-relevant transcripts to decide the PVS1 outcome. If NMD is not predicted

to occur, it intersects the variant-affected coding region with protein domain regions. If the

result of the intersection is not the empty set, it examines if the affected region overlaps a criti-

cal domain for protein function, to decide the PVS1 outcome. If the affected region is not

within a known domain, the algorithm examines the overlap of the affected region with the

clinically significant exons and the phenotype-relevant transcripts. If such overlap is con-

firmed, GenOtoScope subprocess investigates whether the PTC results in the removal of

more than 10% of the reference protein product.

For start-loss variants, the algorithm first checks if any other transcript contains an alterna-

tive start codon. If not, it extracts all potential in-frame start codons which are no further than

200 bases downstream of the lost start codon. Next, it queries the ClinVar database for patho-

genic entries with at least one review star between the lost start codon and the detected in-

frame start codon. If there is such a ClinVar entry, PVS1 (Moderate) is triggered, otherwise

PVS1 (Supporting) is triggered.

See S2 Appendix, sections 1.1.1–1.1.3, for the detailed methodology on the PVS1 annota-

tion files (critical regions for protein function, clinically significant exons, phenotype-relevant

transcripts). See S2 Appendix, section 1.2.1 for the results on the PVS1 annotation files.

PS1 and PM5 (PM5 Strong). The workflow of assessing the PS1 and PM5 criteria is

shown in Fig 6.

First, genomic positions of the affected codon are computed based on exonic variant loca-

tion and directionality of the respective gene. Then, all missense variants at corresponding

genomic positions are extracted from ClinVar and filtered by strand to match the

Fig 4. Command line examples for the two commands of GenOtoScope. (A) Annotate all variants presented in VCF files, in input folder, using

megSAP application and save results in GSvar files. (B) Classify all variants presented in GSvar files based on ACMG guidelines specified for HL.

https://doi.org/10.1371/journal.pcbi.1009785.g004
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directionality of the affected gene. Additionally, ClinVar entries can be filtered by a minimum

number of review status. This threshold number is user-defined, with default value the mini-

mum of one quality star.

The filtered variants and resulting amino acids are used for further assessment of PS1 and

PM5 criteria: PS1 is triggered if any filtered-in variant from ClinVar that is rated as pathogenic

Fig 5. Conceptual flowchart to assess NMD for the refined PVS1 rule.

https://doi.org/10.1371/journal.pcbi.1009785.g005
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results in the same amino acid change as the observed variant. PM5 is triggered if the filtered-

in ClinVar entries do not contain the observed amino acid change, but at least one pathogenic

variant affecting the same codon. If the entries include two or more such variants, PM5 is

applied as strong evidence (PM5 Strong) according to [9].

Fig 6. Conceptual flowchart for examining PS1 and PM5 (PM5 Strong).

https://doi.org/10.1371/journal.pcbi.1009785.g006

PLOS COMPUTATIONAL BIOLOGY GenOtoScope: ACMG classification for congenital hearing loss

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009785 September 21, 2022 11 / 24

https://doi.org/10.1371/journal.pcbi.1009785.g006
https://doi.org/10.1371/journal.pcbi.1009785


PM1. For automation of PM1 a custom-made annotation file is used. It comprises all criti-

cal protein regions without benign ClinVar entries. It also includes the specific domains and

motifs of the hearing loss related proteins, defined by [9]. See S1 Appendix, section 1.1, for the

detailed implementation of PM1 criterion. In addition, see S2 Appendix, section 1.1.4, for a

detailed description of the annotation files used for PM1 implementation.

PM4. The algorithm for this criterion is applied to all in-frame (deletions/duplications)

and stop-loss variants that do not trigger PVS1 in any strength level. Considering PTC assessed

in PVS1 subroutine, length of observed proteins is calculated and compared to the reference

protein length. If the variant does not affect a known repetitive region, derived from the Uni-

Prot genome annotation, and the resulted protein has a length difference higher than > 10%,

PM4 is triggered.

BP3. The algorithm for this criterion is applied to all in-frame (deletions/duplications)

and nonsense (stop gained) variants. We created an annotation file containing the protein

repeat regions not intersecting a protein domain, using the UniProt genome track annotation

resource. BM3 is triggered if the variant-affected coding region overlaps a repetitive region

without known function.

PP3, BP4 and BP7. GenOtoScope incorporates in silico tools for conservation (PhyloP

[26]), splicing (MaxEntScan [27], dbscSNV [28]) and missense-prediction (REVEL [19],

CADD [29]). See S1 Appendix, section 1.2, for details on the aggregation of scores and

thresholds.

For missense variants, activation of PP3 requires positive pathogenicity prediction

(REVEL/CADD) and high conservation (PhyloP) scores. In contrast, BP4 is triggered if con-

servation and predicted probability of pathogenicity are low and moreover, the variant is also

estimated not to affect splicing (MaxEntScan/dbscSNV).

Variants with no immediate impact on amino acid sequence (exclusion: canonical splice

site variants) are similarly screened for potential effects on splicing. If splicing is predicted to

be affected and the nucleotide is highly conserved, PP3 is activated. Conversely, if a potential

splice variant is predicted to have no splicing effect and conservation is low, BP7 is triggered

for synonymous variants and BP4 for other variant types respectively.

PM2 (PM2 Supporting) BA1 and BS1 (BS1 Supporting). Assessment of population data

criteria uses user-adjustable minor allele frequency (MAF) thresholds, which by default are the

ones defined by [9]. Each gene can be assigned a preferred mode of inheritance, which can be

customized by providing an input file. Default settings comprise the inheritance modes of 164

hearing loss gene-disease pairs defined by the VCEP-HL [30]. Also, we included the preferred

inheritance patterns for additional genes specified by the HG department of MHH.

For each variant, allele frequencies (AF) of gnomAD subpopulations are retrieved. Known

pathogenic variants with high AF are excluded from further assessment of BA1 and BS1

according to [9]. AF of each subpopulation and the median AF of all subpopulations are evalu-

ated with respect to the appropriate inheritance mode threshold. PM2 (PM2 Supporting), BA1

and BS1 (BS1 Supporting) are triggered, if any subpopulation’s AF or the median AF matches

the respective inheritance mode threshold.

Regarding different inheritance patterns, the algorithm by default uses distinct thresholds

for autosomal dominant and autosomal recessive inheritance mode as specified by [9]. For the

X-linked mode of inheritance, autosomal dominant thresholds are adopted. If no mode of

inheritance is provided, it is assumed to be unknown. In these cases, the algorithm selects the

strictest threshold between autosomal dominant and recessive for each criterion. For mito-

chondrial genes, the same procedure is used as for unknown mode of inheritance, with an

additional warning, since the application of ACMG criteria is validated only for Mendelian

disorders.
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Hearing-loss specific ACMG classification. Having assessed all applicable criteria for a

given genomic variant, GenOtoScope combines the activated criteria to compute the respec-

tive ACMG class using the five-tier terminology system (“benign”, “likely benign”, “VUS”,

“likely pathogenic” and “pathogenic”) defined by [3].

Moreover, GenOtoScope incorporates the extended recommendations of VCEP-HL for

the following criteria combinations: (i) Variants triggering PVS1 and PM2 (Supporting) will

be classified as “likely pathogenic” for genes associated with autosomal recessive inheritance.

(ii) Variants activating BS1 without triggering any pathogenic criterion will be classified as

“likely benign”.

Computation of pathogenicity probability. After having classified all exome variants of

a patient, a number of variants are classified as “VUS”, due to insufficient or conflicting trig-

gered evidence criteria. To help the human curators to discriminate the pathogenicity of the

“VUS” cases in a quantitative manner, GenOtoScope calculates the pathogenicity probabil-

ity for each variant following [12]. The calculation of the pathogenicity probability is calculated

automatically for all input variants.

Please see the S1 Appendix, section 1.3, for the parameters values used by GenOtoScope.

Results and discussion

Variant classification

Data sets. GenOtoScope variant classification was compared to similar tools: (1) Inter-

Var, a tool for variant classification tested across a spectrum of phenotypes [13]; (2) VIP-HL,

the recently published tool for hearing loss [11]. We benchmarked the accuracy and precision

of variant classification on two data sets.

The first data set is the publicly available set of manually annotated variants by ClinGen

VCEP-HL [10], hereafter referred to as VCEP-HL data set. This data set contains manual

annotation for 158 variants associated with HL. These variants are contained in 9 HL-relevant

genes (USH2A, COCH, GJB2, KCNQ4, MYO7A, MYO6, TECTA,SLC26A4 and CDH23). The

second data set is the private set of manually annotated variants by the HG department of

MHH, hereafter referred to as MHH data set. The MHH data set contains 118 variants, con-

tained in 36 HL-relevant genes. More specifically, the included genes are: COL11A1, USH2A,

NLRP3, OTOF, ALMS1,PAX3, ILDR1, WFS1, COL11A2, COL9A1, MYO6, SLC26A4, CHD7,

GRHL2, TMC1, WHRN, TNC, MYO3A, PCDH15, CDH23, OTOG, MYO7A, TECTA, COL2A1,

MYO1A, P2RX2, GJB2, GJB6, ACTG1, MYH14, KCNE1, TMPRSS3, MYH9, SOX10, POU3F4
and PRPS1.

Performance metrics. To assess the prediction performance, we combined “benign” and

“likely benign” classes to “Benign”, “pathogenic” and “likely pathogenic” classes to “Patho-

genic”. Thus, we created a three-class prediction task, containing the “Benign”, “Pathogenic”

and “VUS” as the three possible broader classes.

Following the evaluation of the classification tool TAPES [31], we evaluated the accuracy

and precision of each software tool, calculating the area under the curve (AUC) of the Receiver

Operating Characteristics (ROC) curve and of the precision-recall curve, accordingly.

GenOtoScope’s pathogenicity probability refines the classification of “VUS”. We

acknowledge that not all evidence-based criteria for HL can be automated, due to the need of

further patient’s genomic information and the need for manual curation of certain criteria.

Therefore, GenOtoScope currently implements 12 out of the 24 ACMG criteria for HL.

Thus, GenOtoScope, which uses the standard classification scheme (S1 Fig), might misclas-

sify a variant as “VUS” even if it belongs in the broader classes of “Benign” or “Pathogenic”.
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To investigate GenOtoScope’s classification potential, we provide a refined classification

of variants, classified as “VUS”, by original GenOtoScope, based on calculated pathogenicity

probability and not the mere classification scheme, following the idea from TAPES classifica-

tion tool [31]. We will refer to this refined version of GenOtoScope, as

GenOtoScope_prob.

Based on [12], the range of values of the pathogenicity probability would be lowered, if a

subset of the original ACMG criteria were automatized. Thus, the range of values of the patho-

genicity probability calculated for a variant, using the automated criteria by GenOtoScope,

will be reduced, compared to the classification provided, by a manual curator, who has evalu-

ated all possible ACMG criteria.

To this end, GenOtoScope_prob reclassifies the “VUS” variants, classified by GenOto-
Scope, by their calculated pathogenicity probability in the following Alg. 1:

Algorithm 1 GenOtoScope_prob
function REFINE_VARIANTS_OF_UNCERTAIN_SIGNIFICANCE
(predicted_classgenotoscope, pathogenicity_posteriorgenotoscope)
if predicted_classgenotoscope = “VUS” then
if predicted_posteriorgenotoscope � 0.49988 then
refined_class  “Pathogenic”

else if predicted_posteriorgenotoscope � 0.05072 then
refined_class  “Benign”

else
refined_class  “VUS”

end if
else ▷ Do not refine “Benign” or “Pathogenic”

classifications
refined_class  predicted_classgenotoscope

end if
return refined_class

end function
For an immediate comparison with the probability threshold if all criteria were imple-

mented, see S1 Fig.

We have chosen these threshold values, based on relaxing the lowest combination of the

triggered criteria needed to predict either one of the broader classes of “Pathogenic” or

“Benign” based on [3] and [9]. Consequently, the selection of these thresholds is not dependent

on a given test data set, but on the currently implemented ACMG criteria for HL.

Then we have transformed this relaxed combination of criteria to pathogenicity probability

based on the pathogenicity probability equation provided in S1 Appendix, section 1.3.

That is, for the “Pathogenic” broader class, the combination of the criteria, with the least

pathogenicity strength, resulting in “likely pathogenic” class, is “one pathogenic moderate cri-

terion and at least four pathogenic supporting criteria” ([3] and [9]). However, based on avail-

able open data and further patient genetic data, we have implemented seven out of the

fourteen ACMG criteria favoring the “Pathogenic” broader class. Therefore, we lowered the

combination to “one Moderate and one Supporting criterion” which translates to the probabil-

ity of 0.49988. Hence, GenOtoScope_prob will refine the “VUS” class, by the original

GenOtoScope, to “Pathogenic” for a variant with pathogenicity probability equal to at least

0.49988.

Similarly, for the “Benign” broader class, the combination of criteria with the lowest

strength is “at least two benign supporting criteria” to result in the “likely benign” class. Gen-
OtoScope implements five out of the total ten applicable criteria for the “Benign” broader

class. Therefore, we reduced the requirements of this combination to be “one benign support-

ing criterion”, which translates to the pathogenicity probability of 0.05072. Consequently,
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GenOtoScope_prob will reclassify a variant classified as “VUS”, by GenOtoScope, to the

“Benign” broader class if the variant’s probability is lower or equal to 0.05072.

Investigation of performance discrepancies. We sought out to investigate the reasons

for the discrepancy in prediction performance between the classification tools. To do so, we

extended the troubleshooting plots of [32], by calculating the log ratio of the activation fre-

quency of an evidence-based criterion by a classification tool and the manual curation, as:

re;ck ¼ log10

a
e;c
k

a
e;c
manual

� �

; ð1Þ

where a
e;c
k is the activation frequency of e, any of the implemented ACMG rules, by a tool k ¼

fInterVar;VIP-HL;GenOtoScopeg for a broader class c = {pathogenic, VUS, benign}.

We computed all log ratios for each evidence criterion, e, by each classification tool for the

three grouped classes, c. Finally, we used heatmap plots to depict these log ratios.

VCEP-HL data set

The ROC and precision-recall curves are shown in Figs 7 and 8, respectively. We observed that

GenOtoScope and GenOtoScope pathogenicity probability achieved the best AUC scores for

all three classes. In Precision-recall curves, VIP-HL achieved slightly higher AUC compared to

GenOtoScope for the benign class. However, for the other two classes again GenOtoScope and

GenOtoScope pathogenicity probability achieved the best AUC scores. Besides, we calculated

the performance scores, AUC of ROC and the average precision of the precision-recall curves

Fig 7. ROC curves and AUC scores of all classification tools for VCEP-HL data set. (A) Prediction of “Benign” broader class versus “Pathogenic”

broader class and “VUS” class (B) Prediction of “Pathogenic” broader class versus “Benign” broader class and “VUS” class (C) Prediction “VUS” class

versus “Benign” broader class and “Pathogenic” broader class.

https://doi.org/10.1371/journal.pcbi.1009785.g007
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for all classification tools. Micro-averaged scores, over the three broader classes (“Benign”,

“VUS”, “Pathogenic”), are shown in Table 1. Based on this table, the two versions of GenOto-

Scope classification achieved the best results for both AUC of ROC and the average precision.

Additionally, we calculated the performance scores, AUC of ROC and the average precision

of the precision-recall curves for all classification tools. We show the micro-averaged scores,

over the three broader classes (“Benign”, “VUS”, “Pathogenic”) in Table 2. Based on this table,

the two versions of GenOtoScope classification achieved the best results for both AUC of

ROC and the average precision.

To explain the difference in prediction performance, we calculated the heatmaps of the log

ratio of activation frequency between a classification tool and the manual curation (1). The

results are shown in Fig 9.

We observed the following patterns for each grouped class. First, for the “Pathogenic”

broader class, VIP-HL activated eight implemented pathogenic rules (PVS1 (Strong), PVS1

Fig 8. Precision-recall curves and AUC scores of all classification tools for VCEP-HL data set. (A) Prediction of “Benign” broader class versus

“Pathogenic” broader class and “VUS” class (B) Prediction of “Pathogenic” broader class versus “Benign” broader class and “VUS” class (C) Prediction

of “VUS” class versus “Benign” broader class and “Pathogenic” broader class.

https://doi.org/10.1371/journal.pcbi.1009785.g008

Table 2. Micro-averaged performance scores for all classification tools, over the three broader classes in the VCEP-HL data set. Best values of a performance score,

across all classification tools, are shown in bold.

Performance scores Classification Tools

GenOtoScope GenOtoScope_prob VIP-HL InterVar

ROC AUC 0.79114 0.85759 0.68196 0.65823

Average Precision 0.61342 0.71960 0.47307 0.44817

https://doi.org/10.1371/journal.pcbi.1009785.t002
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(Moderate), PM1, PM5, PVS1 and PM2) from 32 times less (PVS1 (Strong)) to 79 times less

(PM2) than the manual curation. Nevertheless, GenOtoScope activated five out of these

eight rules with the same frequency as the manual curation (PVS1, PM2, PP3, PM2 (Support-

ing) and PM5). It activated the remaining three rules (PVS1 (Moderate), PM1 and PVS1

(Strong)) approximately twice as much as the manual curation.

For the “VUS” class, we observed that VIP-HL activated eight implemented rules (BP4,

BA1, PVS1, BS1, PM2 (Supporting), PP3 and PM2) from 25 times less (BP4) to 50 times less

(PM2) than the manual curation. In contrast, GenOtoScope activated three out of the eight

rules (PM2, PP3, PM2 (Supporting)) with the same frequency as the manual curation and it

activated the remaining five rules (BS1 (Supporting), BS1, BA1, BP4, PVS1) approximately one

to two times more frequently than the manual curation.

For the “Benign” broader class, VIP-HL activated six implemented rules (PP3, BS1 (Sup-

porting), BP7, BP4, BS1 and BA1) from 32 times less (BA1, BS1, BP4, BP7, BS1 (Supporting))

to 40 times less (PP3) than the manual curation. GenOtoScope activated four of these rules

(BS1, BP7, BA1, BP4) with approximately the same frequency as the manual curation. The

other two rules (PP3 and BS1 (Supporting)) were activated by GenOtoScope, one time more

frequently than the manual annotation.

To examine the reasons for the lower precision of GenOtoScope for the “Benign” broader

class compared to VIP-HL, despite GenOtoScope’s comparable activation frequency of cri-

teria with manual curation, we examined GenOtoScope misclassifications in this class. That is,

we examined the variants belonging in the “VUS” class and misclassified in the “Benign”

broader class by GenOtoScope. These misclassified variants are seven, a significant amount

for the calculation of precision score, due to the total of 44 variants in the “Benign” broader

class. The main reason for the misclassification was that manual annotation used criteria not

implemented by GenOtoScope to classify these variants as “VUS”. More specifically, the

manual curation used criteria which need manual investigation or not available patient’s fam-

ily genomic data (for example PP1, PP4 or PM3), to classify five out of these seven variants as

Fig 9. Activation frequency ratios for VCEP-HL data set. Log ratios calculated for each of the three classes classified by the VCEP-HL: (A) “Benign”

broader class, (B) “VUS” class and (C) “Pathogenic” broader class.

https://doi.org/10.1371/journal.pcbi.1009785.g009
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“VUS”. The last two variants were misclassified by GenOtoScope pathogenicity probability

as their calculated probability was lower than the set threshold for refining a “VUS” as a variant

in the “Benign” broader class. VIP-HL could classify correctly three out of these seven variants.

Notably, for two out of the three correctly classified variants, the criteria used by VIP-HL, did

not correspond to the criteria that should have been activated based on [9].

MHH data set

The ROC curve and AUC scores are shown in Figs 10 and 11, respectively. In ROC curves,

GenOtoScope or GenOtoScope_prob scored the highest performance values, compared

to VIP-HL and InterVar, for all three classes. In the Precision-Recall curves, GenOtoScope
outperformed all other classification tools, in terms of AUC score, for benign classification.

GenOtoScope and GenOtoScope_prob outperformed all classification tools, in AUC

score for pathogenic and “VUS” classes.

We calculated the micro-average AUC of ROC curves and average precision of Precision-

Recall curves, across the three broader classes for each classification tool. We show the results

in Table 3. As in the previous data set, the two versions of the GenOtoScope classification

achieved the best scores for both performance metrics.

To explain the discrepancy in performance scores, we plotted the heatmaps of log ratio of

the activation frequency of a given tool compared to the activation frequency of the manual

curation in Fig 12.

Fig 10. ROC curves and AUC scores of all classification tools for MHH data set. (A) Prediction of “Benign” broader class versus “Pathogenic”

broader class and “VUS” class (B) Prediction of “Pathogenic” broader class versus “Benign” broader class and “VUS” class (C) Prediction of “VUS” class

versus “Benign” broader class and “Pathogenic” broader class.

https://doi.org/10.1371/journal.pcbi.1009785.g010
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For the “Pathogenic” broader class, VIP-HL activated five evidence-based rules (PVS1

(Strong), PP3, PM2, PS1 and PVS1) from eight times less (PVS1 (Strong)) to 16 times less

(PVS1). In contrast, for the same class, GenOtoScope activated three out of these eight rules

with the same frequency (PVS1, PS1 and PM2) as the manual curation. The remaining two

rules were activated approximately one time more (PP3) and twice more often (PVS1 (Strong))

as the manual curation, respectively.

VIP-HL activated eight implemented rules (BP7, BP4, BS1 (Supporting), BS1, PM2 (Sup-

porting), PP3, PM5 and PM2) from 20 times less (BP4 and BP7) to 40 times less (PM2) than

the manual curation for the “VUS” class. GenOtoScope activated two of these eight rules

(PM5 and PP3) with equal frequency to the manual curation. GenOtoScope activated the

remaining six rules (PM2, PM2 (Supporting), BS1, BP4, BS1 (Supporting) and BP7) with

approximately one time more (BP7), up to one time less (PM2) as the manual curation.

For the “Benign” broader class, VIP-HL activated six rules (PP3, BS1 (Supporting), BP7,

BS1, BA1 and BP4) from 12 times less (PP3) to 25 times less (BP4) than the manual curation.

Fig 11. Precision-recall curves and AUC scores of all classification tools for the MHH data set. (A) Prediction of “Benign” broader class versus

“Pathogenic” broader class and “VUS” class (B) Prediction of “Pathogenic” broader class versus “Benign” broader class and “VUS” class (C) Prediction

of “VUS” class versus “Benign” broader class and “Pathogenic” broader class.

https://doi.org/10.1371/journal.pcbi.1009785.g011

Table 3. Micro-averaged performance scores for all classification tools, over the three broader classes in the MHH data set. Best values of a performance score, across

all classification tools, are shown in bold.

Performance scores Classification Tools

GenOtoScope GenOtoScope_prob VIP-HL InterVar

ROC AUC 0.88701 0.90395 0.86441 0.77966

Average Precision 0.73212 0.76864 0.68544 0.53085

https://doi.org/10.1371/journal.pcbi.1009785.t003
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Contrary to VIP-HL pattern, GenOtoScope activated two out of these six rules (BA1 and

BS1) with the same frequency as the manual classification and the remaining four rules (BP4,

BS1 (Supporting), BP7 and PP3) with approximately two times more (PP3) up to one time less

(BP4) as the manual curation.

Based on the observed motives on the activation frequency of each tool compared to the

manual curation, we conclude that VIP-HL activated the aforementioned evidence-based rules

less frequently than the manual curation. However, GenOtoScope was able to trigger the

selected rules with similar or at most twice higher frequency compared to the manual curation.

Consequently, we justify the best performance achieved in ROC and Precision-Recall scores

by GenOtoScope for all three broader classes compared to the other two classification tools.

Conclusion

In this work, we present GenOtoScope, an automated classification tool for variants associ-

ated with congenital HL. Currently, our tool offers the classification through the automation

of 12 out of 24 evidence-based criteria specified for HL [9].

We have shown that GenOtoScope outperformed other variant classification tools in

terms of AUC score of ROC curve and of Precision-recall curve for all three broader classes

(“Benign”, “VUS” and “Pathogenic”). To explain the difference in performance between the

tools, we calculated the ratio of the activation frequency of triggered criteria by each tool and

the manual curation. By comparing the ratios for each ACMG criterion, we observed that

GenOtoScope achieved the most similar activation frequency to the manual curation, com-

pared to VIP-HL and InterVar.

Besides, the scope of this work is to provide an easily accessible tool to use for the classifica-

tion of variants for HL phenotype. Therefore, we developed two versions of the tool for two

different scenarios. A CLI version to be used by experienced bioinformatics personnel aiming

to classify a set of patients WES VCF files and a web interface to be used by other life scientists,

with no bioinformatics expertise, to classify a single variant of interest. We hope that this tool

Fig 12. Activation frequency ratios for MHH data set. Log ratios calculated for each of the three classes classified by the MHH manual curators: (A)

“Benign” broader class, (B) “VUS” class and (C) “Pathogenic” broader class.

https://doi.org/10.1371/journal.pcbi.1009785.g012
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will be applied in research settings of molecular genetics to provide a time-efficient and stan-

dardized classification of HL variants.

For future extension of GenOtoScope we aim to implement the most frequently activated

evidence-based criteria by manual curation to predict the two complementary broader classes.

For the “Benign” broader class, the not implemented criteria with highest activation frequency,

by the manual curation, were BS2, BP2, BP3, BP5 and BS3 (Supporting). For the “Pathogenic”

broader class, the most frequently activated criteria, by the manual curation, were PM3, aggre-

gated for all strengths, PP1, aggregated for all strengths, PS3 and PS4. To implement these cri-

teria which heavily need manual curation, we aim to use databases for genotype to the

phenotype such as DisGeNET [33] or to use prediction algorithms to link a mutation of inter-

est to its respective functional study publications, for example AVADA [34]. Last, methods

should be implemented to automatically examine the segregation criteria, whenever genomic

data of the patient’s family are available. Also, to facilitate even more the personnel with no

bioinformatics experience to use the web interface, we would allow the user to input a single

variant information, without the need of creating a VCF file on the GenOtoScope website.

Last, by making GenOtoScope an open source project, we aim to facilitate researchers to

expand its range of usage to other phenotypes compatible with ACMG-based analysis—for

example cardiomyopathy [5] or monogenic diabetes (https://clinicalgenome.org/site/assets/

files/7039/clingen_diabetes_acmg_specifications_v1.pdf) – by adjusting specific thresholds,

providing customized annotation files and adapting the source code if needed.

Disclaimer

The classification produced by GenOtoScope is intended for an efficient pathogenicity pre-

diction of WES files, thus for research use only. It is not intended for diagnostic or clinical pur-

poses. The classification provided by GenOtoScope does not replace a physician’s medical

judgment and usage is entirely at your own risk. The providers of this resource shall in no

event be liable for any direct, indirect, incidental, consequential, or exemplary damages.

Supporting information

S1 Appendix. Detailed description for PM1, PP3, BP4, BP7 criteria implementation and

the pathogenicity probability computation.

(PDF)

S2 Appendix. Constructing annotations for ACMG criteria: Methods & Results.

(PDF)

S3 Appendix. Software implementation note.

(PDF)

S1 Fig. ACMG/AMP classification scheme based on evidence-based criteria. The table con-

tains 2 columns. The right column contains sufficient conditions of triggered criteria that

result to the left column, pathogenicity class. Sufficient combination of criteria specified for

HL are marked with (HL). Pathogenicity probability and its relaxed version are shown for the

criteria combinations with the lowest strength that can result to “likely benign” or “likely path-

ogenic” class.

(TIF)

S2 Fig. Conceptual workflow to call critical regions of proteins for assessment of PVS1

rule.

(TIF)
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S3 Fig. Conceptual workflow to call clinical significant exons for PVS1 rule.

(TIF)
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Schöner-Heinisch, Sandra von Hardenberg, Anke Lesinski-Schiedat, Bernd Auber.

References
1. Linder JE, Bastarache L, Hughey JJ, Peterson JF. The Role of Electronic Health Records in Advancing

Genomic Medicine. Annual Review of Genomics and Human Genetics. 2021; 22. https://doi.org/10.

1146/annurev-genom-121120-125204 PMID: 34038146

2. Berrios C, Hurley EA, Willig L, Thiffault I, Saunders C, Pastinen T, et al. Challenges in genetic testing:

clinician variant interpretation processes and the impact on clinical care. Genetics in Medicine. 2021; p.

1–11. PMID: 34257423

3. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the inter-

pretation of sequence variants: a joint consensus recommendation of the American College of Medical

Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine. 2015; 17

(5):405–423. https://doi.org/10.1038/gim.2015.30 PMID: 25741868

4. Lee K, Seifert BA, Shimelis H, Ghosh R, Crowley SB, Carter NJ, et al. Clinical validity assessment of

genes frequently tested on hereditary breast and ovarian cancer susceptibility sequencing panels.

Genetics in Medicine. 2019; 21(7):1497–1506. https://doi.org/10.1038/s41436-018-0361-5 PMID:

30504931

5. Kelly MA, Caleshu C, Morales A, Buchan J, Wolf Z, Harrison SM, et al. Adaptation and validation of the

ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recom-

mendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genetics in Medicine. 2018; 20

(3):351–359. https://doi.org/10.1038/gim.2017.218 PMID: 29300372

PLOS COMPUTATIONAL BIOLOGY GenOtoScope: ACMG classification for congenital hearing loss

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009785 September 21, 2022 22 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009785.s006
https://doi.org/10.1146/annurev-genom-121120-125204
https://doi.org/10.1146/annurev-genom-121120-125204
http://www.ncbi.nlm.nih.gov/pubmed/34038146
http://www.ncbi.nlm.nih.gov/pubmed/34257423
https://doi.org/10.1038/gim.2015.30
http://www.ncbi.nlm.nih.gov/pubmed/25741868
https://doi.org/10.1038/s41436-018-0361-5
http://www.ncbi.nlm.nih.gov/pubmed/30504931
https://doi.org/10.1038/gim.2017.218
http://www.ncbi.nlm.nih.gov/pubmed/29300372
https://doi.org/10.1371/journal.pcbi.1009785


6. Shearer AE, Hildebrand MS, Smith RJ. Hereditary hearing loss and deafness overview. GeneReviews.

2017. PMID: 20301607

7. Bu F, Zhong M, Chen Q, Wang Y, Zhao X, Zhang Q, et al. DVPred: a disease-specific prediction tool for

variant pathogenicity classification for hearing loss. Human Genetics. 2022; 141(3):401–411. https://

doi.org/10.1007/s00439-022-02440-1 PMID: 35182233

8. Huang S, Zhao G, Wu J, Li K, Wang Q, Fu Y, et al. Gene4HL: An Integrated Genetic Database for Hear-

ing Loss. Frontiers in genetics. 2021; p. 2009. https://doi.org/10.3389/fgene.2021.773009 PMID:

34733322

9. Oza AM, DiStefano MT, Hemphill SE, Cushman BJ, Grant AR, Siegert RK, et al. Expert specification of

the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Human mutation. 2018;

39(11):1593–1613. https://doi.org/10.1002/humu.23630 PMID: 30311386

10. Patel M, DiStefano M, Oza A, Hughes M, Wilcox E, Hemphill S, et al. Disease-specific ACMG/AMP

guidelines improve sequence variant interpretation for hearing loss. Genetics in Medicine. 2021;.

https://doi.org/10.1038/s41436-021-01254-2 PMID: 34230634

11. Peng J, Xiang J, Jin X, Meng J, Song N, Chen L, et al. VIP-HL: Semi-automated ACMG/AMP variant

interpretation platform for genetic hearing loss. Authorea Preprints. 2020;.

12. Tavtigian SV, Greenblatt MS, Harrison SM, Nussbaum RL, Prabhu SA, Boucher KM, et al. Modeling

the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genetics in

Medicine. 2018; 20(9):1054–1060. https://doi.org/10.1038/gim.2017.210 PMID: 29300386

13. Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines.

The American Journal of Human Genetics. 2017; 100(2):267–280. https://doi.org/10.1016/j.ajhg.2017.

01.004 PMID: 28132688

14. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-through-

put sequencing data. Nucleic acids research. 2010; 38(16):e164–e164. https://doi.org/10.1093/nar/

gkq603 PMID: 20601685

15. Clarke L, Fairley S, Zheng-Bradley X, Streeter I, Perry E, Lowy E, et al. The international Genome sam-

ple resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Proj-

ect data. Nucleic acids research. 2017; 45(D1):D854–D859. https://doi.org/10.1093/nar/gkw829 PMID:

27638885

16. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The ensembl variant effect predic-

tor. Genome biology. 2016; 17(1):1–14. https://doi.org/10.1186/s13059-016-0974-4 PMID: 27268795

17. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint
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