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Abstract

Task-optimized convolutional neural networks (CNNs) show striking similarities to the ventral

visual stream. However, human-imperceptible image perturbations can cause a CNN to

make incorrect predictions. Here we provide insight into this brittleness by investigating the

representations of models that are either robust or not robust to image perturbations. Theory

suggests that the robustness of a system to these perturbations could be related to the

power law exponent of the eigenspectrum of its set of neural responses, where power law

exponents closer to and larger than one would indicate a system that is less susceptible to

input perturbations. We show that neural responses in mouse and macaque primary visual

cortex (V1) obey the predictions of this theory, where their eigenspectra have power law

exponents of at least one. We also find that the eigenspectra of model representations decay

slowly relative to those observed in neurophysiology and that robust models have eigenspec-

tra that decay slightly faster and have higher power law exponents than those of non-robust

models. The slow decay of the eigenspectra suggests that substantial variance in the model

responses is related to the encoding of fine stimulus features. We therefore investigated the

spatial frequency tuning of artificial neurons and found that a large proportion of them pre-

ferred high spatial frequencies and that robust models had preferred spatial frequency distri-

butions more aligned with the measured spatial frequency distribution of macaque V1 cells.

Furthermore, robust models were quantitatively better models of V1 than non-robust models.

Our results are consistent with other findings that there is a misalignment between human

and machine perception. They also suggest that it may be useful to penalize slow-decaying

eigenspectra or to bias models to extract features of lower spatial frequencies during task-

optimization in order to improve robustness and V1 neural response predictivity.
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Author summary

Convolutional neural networks (CNNs) are the most quantitatively accurate models of

multiple visual areas. In contrast to humans, however, their image classification behaviour

can be modified drastically by human-imperceptible image perturbations. To provide

insight as to why CNNs are so brittle, we investigated the image features extracted by

models that are robust or not robust to these image perturbations. We found that non-

robust CNNs had a preference for high spatial frequency image features, unlike primary

visual cortex (V1) cells. Models that were more robust to image perturbations had a pref-

erence for image features more aligned with those extracted by V1 and also improved pre-

dictions of neural responses in V1. This suggests that the dependence on high-frequency

image features for image classification may be related to the image perturbations affecting

models but not humans. Our work is consistent with other findings that CNNs may be

relying on image features not aligned with those used by humans for image classification

and suggests possible optimization targets to improve the robustness of and the V1 corre-

spondence of CNNs.

Introduction

Our visual system has the seemingly effortless ability to extract relevant features from the envi-

ronment to support behaviour. Computational models known as convolutional neural net-

works (CNNs) incorporate principles of the neurobiology of the visual system and have

allowed us to mimic some capabilities of our visual system [1]. These models have had

immense success in artificial intelligence and can be trained to perform at or above human

capabilities on many tasks in the visual domain such as object categorization and semantic seg-

mentation [2–6]. These capabilities have led to many comparisons between the internal repre-

sentations of CNNs and those of the human and non-human primate ventral visual stream,

showing that task-optimized CNNs are also quantitatively accurate models of visual processing

[7–14].

Although these models show remarkable similarities to the primate ventral visual stream,

they diverge significantly from humans in their classification behaviour on images that have

been modified by human-imperceptible, non-random image perturbations. In particular,

these adversarial perturbations can cause the model to completely mis-classify the image even

though it could correctly classify the unperturbed image, resulting in poor adversarial robust-
ness [15]. This is clearly an issue in safety-critical applications (e.g., self-driving cars), so the

machine learning community has been developing techniques to train these models to be

more robust to adversarial perturbations [16–21]. Robust optimization techniques have been

shown to be able to defend against very strong adversarial attacks, although there still exist per-

turbations that can fool models trained with these techniques.

The striking misalignment between machine and human image classification on adversa-

rially perturbed images suggests that humans are using image features for the task that are dif-

ferent from those used by models explicitly optimized to perform the task [22–25]. This leads

to the following question: what are some properties of the internal representations that differ

between primate and machine vision and that result in such brittleness?

Motivated to understand the dimensionality of the population code, Stringer et al. [26]

developed a theory connecting the eigenspectrum of a system’s neural responses to the sys-

tem’s vulnerability to small stimulus perturbations. In mouse primary visual cortex (V1),

Stringer et al. [26] showed that the eigenspectrum of the neural responses to natural scenes

PLOS COMPUTATIONAL BIOLOGY Increasing neural network robustness improves match to macaque V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009739 January 7, 2022 2 / 25

Institute for Human Centered Artificial Intelligence.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009739


decays according to a power law with exponent α� 1. Their theory predicted this power-law-

like behaviour and states that if α< 1 for neural responses to natural scenes, then the neural

code is “pathological” in the sense that small perturbations in the stimulus could result in

unbounded changes in the neural responses. Too much variation in the responses with respect

to the stimulus would allow minute stimulus changes to drastically affect the neural responses.

As the existence of adversarial examples in CNNs is, by definition, vulnerability of CNNs to

small input perturbations, we investigated the eigenspectra of the representations of models

that are either robust or not robust to these perturbations.

The eigenspectrum can also provide insight into the image features extracted by a system.

Lower principal components are associated with neural response variance related to coarser

stimulus features and higher principal components are associated with variance related to

finer stimulus features (see Extended Data Fig 6 in Stringer et al. [26]). Thus, if one system’s

eigenspectrum decays slower (i.e., has a smaller power law exponent) than that of another sys-

tem, it means that a larger amount of neural response variance is dedicated to the encoding of

fine stimulus features in the first system than that of the second system. We therefore hypothe-

sized that model responses with eigenspectra of small power law exponents have many artifi-

cial neurons tuned to image features of high spatial frequencies.

To test the hypothesis that many artificial neurons are tuned to high spatial frequencies, we

investigated the preferred spatial frequency tuning distributions of these models and compared

these distributions to that of cells in the foveal area of macaque V1. This resulted in three main

contributions. Firstly, we found that models with higher adversarial robustness have internal

representations whose eigenspectra decay slightly faster than those of their non-robust coun-

terparts and is consistent with the theory of Stringer et al. [26]. Secondly, by performing in-sil-

ico electrophysiology experiments, we found that non-robust models had a large proportion of

neurons tuned to high spatial frequencies. Moreover, the similarity between a model’s pre-

ferred spatial frequency distribution and that of cells in the foveal area of macaque V1 was

higher for robust models than that of non-robust models. Robust models, however, still had

many artificial neurons preferring high spatial frequencies (though less than that of non-robust

models). Finally, we found that robust models are better models of V1 than non-robust models

in terms of their neural response predictivity.

Altogether, although CNNs are some of the best models of the ventral visual stream in

terms of neural response predictions, there are still many differences between human and

machine perception that need to be improved upon to gain a deeper understanding of our

visual system. The results suggest that one way in which our visual system is robust to minute

image perturbations is by ignoring (i.e., not encoding) high spatial frequency information in

the inputs. They also suggest that explicitly reducing the dimensionality of internal representa-

tions (e.g., by penalizing the eigenspectrum so that it decays faster) and reducing the preferred

spatial frequency of artificial neurons during task-optimization may improve a model’s adver-

sarial robustness and that this may also lead to better models of V1.

Results

We performed in-silico electrophysiology experiments and linearly mapped model neurons to

macaque V1 neurons. A schematic of the analyses performed in this work is provided in Fig 1.

Model layer activations were recorded in response to a set of natural images and a set of Gabor

patches in order to obtain the model layer’s eigenspectrum and preferred spatial frequency dis-

tribution (Fig 1A and 1B). Using a previously collected set of macaque V1 neural responses

[13], we linearly mapped model neurons to V1 neurons (Fig 1C).
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Eigenspectrum of macaque V1 neural responses also follows a power law

with exponent at least one

It was observed by Stringer et al. [26] that the eigenspectrum of mouse V1 neural responses to

natural scenes decays according to a power law with exponent close to one. If the power-law-

like behaviour of the eigenspectrum is a strong biological constraint, then we would expect

that it would generalize across species (e.g., macaques).

We therefore computed the eigenspectrum using cross-validated principal components

analysis (cvPCA, [26]) of a previously collected set of macaque V1 neural responses to natural

scenes [13]. As shown in Fig 2, we found that the eigenspectrum of macaque V1 neural

responses follows a power law with exponent close to one, as in mouse V1 [26]. As shown in

S5 Fig, the power-law-like behaviour of the eigenspectrum can also be observed in subsets of

the macaque neural dataset, where only a fraction of the stimuli was used. We note, however,

Fig 1. A schematic of the model analyses. A. Images from the stimulus set of Cadena et al. [13] were used to extract model responses for neural

response prediction. In addition, a random set of natural images from the ImageNet database [27] was used to obtain a model’s responses at each layer,

from which the eigenspectrum and the power law exponent were computed. B. In-silico electrophysiology experiments were performed by presenting

models with a set of Gabor patches that varied in spatial frequency, orientation and phase. A spatial frequency tuning curve was then computed using a

single artificial neuron’s responses and its preferred spatial frequency is the frequency at which the tuning curve reaches its maximum value. By

performing this analysis for each convolutional filter, we computed the distribution of preferred spatial frequencies for a model layer. C. A model layer’s

responses were linearly mapped (denoted as L) to macaque V1 neural responses using partial least squares regression and the linear map’s performance

was defined to be the noise-corrected Pearson’s correlation between the model predictions and the observed neural responses.

https://doi.org/10.1371/journal.pcbi.1009739.g001

PLOS COMPUTATIONAL BIOLOGY Increasing neural network robustness improves match to macaque V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009739 January 7, 2022 4 / 25

https://doi.org/10.1371/journal.pcbi.1009739.g001
https://doi.org/10.1371/journal.pcbi.1009739


that the convergence of the power law exponent to one may not be complete in this dataset

due to the limited number of neurons (166 neurons in total, as compared to the approximately

10 000 neurons in the mouse V1 neural response dataset). Recordings with more neurons in

macaque V1 are needed to further verify this power-law-like phenomenon. Nonetheless, our

observations suggest that the power-law-like behaviour of the neural response eigenspectrum

does indeed generalize across species.

Eigenspectra of robust models decay slightly faster than those of non-

robust models, but slower relative to those observed in neurophysiology

The theory of Stringer et al. [26] predicts that if the eigenspectrum of a system’s neural

responses to natural scenes decays with power law exponent less than one (i.e., α< 1), then

the system will be affected by small perturbations to the inputs, suggesting that this phenome-

non is related to the existence of adversarial examples, where human-imperceptible perturba-

tions to an image can cause a model to mis-classify the image even though the unperturbed

image could be classified correctly [15, 26]. This implies that the internal representations of

non-robust CNNs are greatly affected by “small” image perturbations. Motivated by this

Fig 2. Eigenspectra of macaque and mouse V1 neural responses to natural scenes. Using a previously collected set

of macaque V1 neural responses to natural scenes, we computed its eigenspectrum using cross-validated principal

components analysis (cvPCA) and found that it obeyed a power law and had a power law exponent close to one,

similar to the observation in mouse V1 [26]. Shaded regions denote the standard deviation of the variance explained by

each principal component across the 20 runs of cvPCA. The inset indicates the mean and standard deviation of the

power law exponent, α, of each eigenspectrum across the 20 runs of cvPCA. Note that the standard deviation is not

symmetrical (about the mean) due to the log-scale of the vertical axis.

https://doi.org/10.1371/journal.pcbi.1009739.g002
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theory, we asked whether or not the power law exponents of the eigenspectra of the representa-

tions of robust models were higher and closer to one than those of non-robust models.

Here and in the subsequent two sections, we focus on two model architectures—ResNet-50

and ResNet-18 [6]. Both of these task-optimized architectures have been shown to achieve

good neural predictivity [11], good task performance [6] and are architectures that have been

previously trained with and without robustness penalties. The robust ResNet-50 model was

adversarially trained to be robust to perturbations, δ, of ℓ2-norm at most three (i.e., kδk2� 3)

and the robust ResNet-18 model was adversarially trained to be robust to perturbations of

ℓ1-norm at most 0.5/255 (i.e., kδk1 � 0.5/255) [18, 28]. For a particular layer in each model,

Fig 3. The internal representations of robust models is slightly lower dimensional than those of non-robust models. The eigenspectrum of the

robust model decays slightly faster than that of the non-robust model. The eigenspectrum of the artificial neural responses in each layer of a model to a

random subset of 2816 ImageNet validation set images was computed using principal components analysis and the power law exponent was computed

by obtaining the slope of the line of best fit to the variances within the principal component range of 10 and 999. Changing the range of variances used

to compute the power law exponents to those between 1 and 1000 does not alter the relationship between the power law exponents of the robust models

and those of the non-robust models (S6 Fig). A. Left: We plot the eigenspectrum for the most “V1-like” layer (as determined by neural predictivity) of a

robust and a non-robust ResNet-50. Light lines are the lines of best fit to the eigenspectrum (in dark colour) in log-log space between principal

component dimensions 10 and 999. The inset indicates the estimated power law exponent of the eigenspectrum. Right: Power law exponents of model

layers for ResNet-50. Shaded regions (too small to be easily visible) indicate standard deviation across random ImageNet validation set subsets. B. As in

A, but for ResNet-18.

https://doi.org/10.1371/journal.pcbi.1009739.g003
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we computed the eigenspectrum of the artificial neural responses to random sets of approxi-

mately 3000 natural images from the ImageNet validation set images [27]. As shown on the

left of Fig 3A and 3B, we found that the eigenspectrum of a particular layer of the robust

model has a larger power law exponent than that of its non-robust counterpart. In fact, across

model layers, we found that the power law exponents of the robust models were higher than

those of their non-robust counterparts, as shown on the right of Fig 3A and 3B. This relation-

ship between the power law exponents of robust and non-robust models was consistent also

for different image resolutions (S7 Fig). These findings are consistent with the theory of

Stringer et al. [26], as the models with higher power law exponents are slightly more robust to

small image perturbations. We note, however, that the power law exponents of robust models

are much less than one and still mismatch with that of V1, consistent with the fact that there

still exist image perturbations that can fool these robust models.

Preferred spatial frequency distributions of robust models are more similar

to V1 than those of non-robust models

As described above, we observed that the eigenspectra of the internal representations of two

robust models decayed slightly faster than those of their non-robust counterparts. Since the

eigenspectra for the robust models decay slightly faster than those of the non-robust model,

the representations learned by the robust models are lower-dimensional than those learned by

the non-robust models. One possible reason for the lower-dimensionality is that “fine stimulus

features” may not be contributing to the artificial neural response variance for the large princi-

pal component dimensions of robust models as much as they do for the non-robust models.

We therefore hypothesized that non-robust models extract image features that are of higher

spatial frequencies than those extracted by robust models. This would mean that its “V1-like”

layer (defined as the model layer that has the highest V1 neural response predictivity) consists

of a large proportion of artificial neurons tuned to mid to high spatial frequencies. We tested

this hypothesis by performing in-silico electrophysiology experiments to estimate the spatial

frequency tuning of artificial neurons in each model. We first generated fixed-size Gabor

patches of ten orientations, ten spatial frequencies and ten phases, of which a few examples are

shown in Fig 4A. The Gabor patches were then presented to the models and artificial neural

responses were obtained from the most “V1-like” model layer. Using these responses, we com-

puted spatial frequency tuning curves, of which a few examples are shown in Fig 4B. The pre-

ferred spatial frequency of an artificial neuron was then defined to be the spatial frequency at

which the tuning curve achieves its maximum value.

To gain more intuition into the image features that are extracted by artificial neurons that

prefer various spatial frequencies, we generated stimuli that maximally excite channels of the

most “V1-like” model layer. We show spatial frequency tuning curves of example artificial

neurons and their associated optimal stimuli in Fig 4B. As can be seen, the optimal stimulus

for artificial neurons that respond maximally to high spatial frequencies contain high fre-

quency image features. On the opposite end of the spectrum, the optimal stimulus for artificial

neurons that respond maximally to low spatial frequencies contain relatively low spatial fre-

quency content.

We constructed the preferred spatial frequency distribution of a model by aggregating the

preferred spatial frequencies across the artificial neurons and found that robust models had

distributions more similar to that of cells in the foveal area of macaque V1 than those of non-

robust models. From the distributions shown in Fig 4C, we observed that both robust and

non-robust models have many artificial neurons that are tuned to the highest spatial frequency

bin (we assumed the field of view of these models was 6.4 degrees of visual angle, as in the
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Fig 4. Assessing the spatial frequency tuning of models. We performed in-silico electrophysiology experiments to extract

spatial frequency tuning curves of representative artificial neurons from the most “V1-like” layer of a model, as determined by

neural predictivity. The field of view of these models was assumed to be 6.4˚ per image. A. A few example Gabor patch stimuli

of different orientations, phases and frequencies, that were used in the in-silico electrophysiology experiments. cpd: cycles per

degree. B. A few example spatial frequency tuning curves are plotted, each corresponding to an artificial neuron (i.e.,

convolutional filter). The images are the stimuli that optimally excite the corresponding channel in the output of the most

“V1-like” ResNet-50 model layer. C. Preferred spatial frequency distributions for robust and non-robust models from one in-

silico experiment. We can see that the distributions of the robust models are more similar to that of macaque V1 cells than the

distributions of non-robust models. Top: Robust and non-robust ResNet-50. Bottom: Robust and non-robust ResNet-18.

https://doi.org/10.1371/journal.pcbi.1009739.g004
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work of Cadena et al. [13]; 56 cycles per image� 56 cycles / 6.4 degrees = 8.75 cycles per

degree). Comparing these distributions with that of cells in the foveal area of macaque V1 (cf.

Fig 6 in De Valois et al. [29]), we note that there are a relatively small number of cells in

macaque V1 that are tuned to high spatial frequencies (coloured in gray in Fig 4C), suggesting

that this is one way (of many) in which current task-optimized CNN models of the ventral

visual stream deviate from the neurophysiology.

Although both robust and non-robust models have preferred spatial frequency distribu-

tions that are quite unlike that of macaque V1 foveal cells, the distributions of robust models

were more similar to that of macaque V1 than the distributions of non-robust models (Fig

4C). To quantify this similarity, we used a metric based on the maximum absolute difference

between the two cumulative distributions (see Methods), where smaller scores indicate that

the two distributions are dissimilar and larger scores indicate that the two distributions are

similar. For the ResNet-50 architecture, the non-robust model had a score of 0.763 ± 0.033,

whereas the robust model had a score of 0.817 ± 0.032. For the ResNet-18 architecture, the

non-robust model had a score of 0.771 ± 0.039, whereas the robust model had a score of

0.790 ± 0.036. The error in all cases denotes the standard deviation across 1000 in-silico

electrophysiology experiments.

Robust models better predict macaque V1 neural responses than non-

robust models

We observed that the power law exponent and the preferred spatial frequency distribution of

robust models are closer to those of macaque V1, suggesting that robust models better predict

V1 neural responses than non-robust models, which we found to be the case. For each model,

we assumed its field of view was 6.4 degrees of visual angle, as in prior work [13]. For each

model layer, we performed a partial least squares regression to find a linear mapping between

the model features and the macaque V1 neural responses, consistent with the procedure

described in prior work [8, 11, 30, 31]. The goodness-of-fit of the linear mapping was defined

as the correlation between the predicted and the observed neural responses, noise-corrected by

the Spearman-Brown corrected cross-trial correlation (i.e., internal consistency) of each neu-

ron. As expected, the feature space provided by the model layers between the shallow and mid-

dle portions of the models best corresponded to macaque V1 neural responses, consistent with

prior work [13, 14]. Furthermore, as shown in Fig 5, we found that robust models (adversa-

rially trained with a particular perturbation type and size) provided feature spaces that better

correspond to macaque V1 neural responses than those of non-robust models (p< 0.01 for

both architectures). Improved correspondence to macaque V1 neural responses held not only

for one particular perturbation size used for adversarial training, but also for a wide range of

perturbation sizes (S3 Fig).

Adversarial robustness is correlated to V1 predictivity and is not correlated

to power law exponent

We observed that two instances of the CNN class of models (ResNet-18 and ResNet-50) that

were adversarially trained better corresponded to macaque V1 neural responses than their

non-robust counterparts. In addition, the robust models had larger power law exponents

across model layers. We next asked whether these observations extended across a wider range

of CNN architectures. We therefore performed a large-scale benchmarking of 40 models to

ascertain whether or not there was a relationship between a model’s robustness, defined by its

accuracy on adversarially perturbed images from the ImageNet validation set [27], and its V1

neural response predictivity. Each model’s maximum neural predictivity is presented in S1
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Table and the predictivity across each model layer is shown in S4 Fig. We also compared each

model’s robustness with its power law exponent, which was obtained from the model layer that

had the highest macaque V1 neural predictivity, determined by partial least squares regression.

Across the set of 40 models, we observed that a model’s adversarial accuracy was strongly

correlated to its V1 neural response predictivity (R = 0.772, p< 0.001; Fig 6A). This correlation

was robust to the linear regression procedure used (S1 Fig left shows the relationship when

ridge regression was used instead). This corroborates prior work of Dapello et al. [30], who

had similar observations using a slightly different set of models and a different macaque V1

neural response dataset.

When comparing adversarial accuracy to power law exponent across models, we found a

weak relationship between these two quantities (R = 0.362, p = 0.022; Fig 6B). This relation-

ship, however, was not robust to the linear regression procedure used, as shown in S1 Fig

Fig 5. Robust models better predict macaque V1 neural responses than non-robust models. The noise-corrected predictivity for a neuron was

defined to be the correlation between the predicted and observed responses, corrected by the neuron’s reliability. A. Left: For most neurons

(represented by each dot), robust ResNet-50 has higher neural predictivity than non-robust ResNet-50. The black line denotes the identity line. Right:

Median neural predictivity across neurons of a robust and non-robust ResNet-50 across model layers. Shaded region indicates the standard deviation of

the median neural predictivity across 20 train-test image splits. B. As in A, but for robust and non-robust ResNet-18. For both ResNet-50 and ResNet-

18, the neural predictivities for the robust models are significantly better than those of the non-robust models (p< 0.01 for both architectures).

Statistical significance was determined by bootstrap resampling of the neurons (with replacement) 10 000 times.

https://doi.org/10.1371/journal.pcbi.1009739.g005
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(right). Although there was not a strong linear relationship across models, we found that when

comparing a robust model with its non-robust counterpart (i.e., where both models have the

same architecture, but one is “robustified” using robustness penalties), the robust model gener-

ally had a higher power law exponent. This is shown by the purple lines pointing to the upper

right in S1 Fig (right). This result is consistent with the predictions of the theory proposed by

Stringer et al. [26].

Higher model robustness is associated with higher alignment with V1 of

their preferred spatial frequency tuning distributions

Previously, we described two robust models whose preferred spatial frequency tuning distribu-

tions of their most “V1-like” model layers were more like that of macaque V1 than the distri-

butions of non-robust models. In particular, robust models had more artificial neurons that

preferred “middle” spatial frequencies (i.e., approximately 3 cpd). We next investigated

whether or not this pattern extended across a larger set of architectures. We found that the

adversarial accuracy of a model was weakly correlated to its spatial frequency score (R = 0.544,

p< 0.001; Fig 7A), indicating that the image features extracted by more robust models have

spatial frequencies that might be more aligned with the image features extracted by V1. This

result was robust to the linear regression procedure used to select the “V1-like” model layer, as

shown in S2 Fig (left).

Finally, as shown in Fig 7B, we found that the more similar a model’s preferred frequency dis-

tribution is to that of macaque V1, the higher the model’s macaque V1 neural response predictiv-

ity (R = 0.663, p< 0.001). This indicates that our metric for the similarity of a preferred spatial

frequency distribution to that of macaque V1 can serve as a reasonable proxy for how good a

Fig 6. Adversarial accuracy is correlated with V1 neural predictivity and is weakly correlated with power law exponent. Each model is represented

by a dot in each subfigure, with blue denoting non-robust models and pink denoting robust models. Dashed line indicates the line of best fit through

the data points. A. A model’s adversarial accuracy is plotted against its (maximum) V1 neural response predictivity. As mentioned previously, neural

predictivity was defined to be the noise-corrected Pearson correlation between the predicted and observed neural responses. R = 0.772, p< 0.001. B. A

model’s adversarial accuracy is plotted against the power law exponent of its most “V1-like” layer, which was determined by neural predictivity. Each

purple line connects two models of the same architecture, where one is trained without robustness penalties (blue) and the other is trained with
robustness penalties (pink). R = 0.362, p = 0.022.

https://doi.org/10.1371/journal.pcbi.1009739.g006
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model is of V1. Of course, this metric can be combined with several other metrics concerning

other phenomena of V1, as in work by Marques et al. [31]. This result was also robust to the lin-

ear regression procedure used to select the “V1-like” model layer, as shown in S2 Fig (right).

Discussion

Task-optimized CNNs are susceptible to human-imperceptible adversarial perturbations. In

this work, we investigated properties of these CNNs related to robustness to these perturbations

in order to gain more insights as to why these models are so brittle. The theory of Stringer et al.

[26] suggested that the power law exponent of the eigenspectrum of a set of neural responses

(to natural scenes) may be indicative of how prone a system is to small stimulus perturbations,

where power law exponents larger than and closer to one would be indicative of a stimulus-neu-

ral response mapping that is less susceptible to small input perturbations [26]. We showed that

the eigenspectra of mouse and macaque V1 neural responses obeyed the theory’s predictions

and both followed a power law with exponent at least one. Analyzing the models’ eigenspectra,

we found that they decayed more slowly relative to the neurophysiology. Moreover, when fixing

a model architecture, models that were more robust to image perturbations had larger power

law exponents than those of non-robust models. However, robustness was not correlated with

power law exponent, somewhat consistent with the theory’s predictions. Since a slow decay of

the eigenspectrum suggests that substantial model response variance is related to the encoding

of fine stimulus features, we performed in-silico electrophysiology experiments in order to

assess the spatial frequency tuning of these models and found that models had a large propor-

tion of neurons tuned to high spatial frequencies. Furthermore, robust models had preferred

spatial frequency tuning distributions that were more like that of macaque V1 cells and also

improved macaque V1 neural response predictions. Taken together, these results describe

another way in which machine perception differs from human perception and also suggests

Fig 7. V1 spatial frequency score is somewhat correlated with adversarial accuracy and is correlated with V1 neural predictivity. Each model is

represented by a dot in each subfigure, with blue denoting non-robust models and pink denoting robust models. Dashed line indicates the line of best

fit through the data points. A. A model’s adversarial accuracy is plotted against its V1 spatial frequency score, which denotes the similarity between a

model’s preferred spatial frequency distribution and that of macaque V1 cells. R = 0.544, p< 0.001. B. A model’s maximum macaque V1 neural

response predictivity is plotted against its V1 spatial frequency score. R = 0.663, p< 0.001.

https://doi.org/10.1371/journal.pcbi.1009739.g007
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that one way in which our visual system achieves robustness to small image perturbations is by

ignoring high spatial frequency information in an image.

Our result that a large proportion of artificial neurons are tuned to high spatial frequencies

is consistent with other findings, providing additional evidence that there are differences in

the image features used by humans and by machines for image classification. For example,

Geirhos et al. [22] showed that when image classification-trained models were presented with

ambiguous images, they tended to classify images based on the images’ “texture” properties as

opposed to their “shape” properties. This is in contrast to humans, who generally classified the

ambiguous images based on their “shape” properties. Humans are, by definition, invariant to

adversarial perturbations. Ilyas et al. [23] suggested that these perturbations are in fact “non-

robust” features—features that are only weakly correlated with an image label, but still provide

useful information for the model to learn a good image-label mapping. To show this, the

authors constructed a dataset where only non-robust features were useful for the task. As

humans are invariant to these non-robust features, the dataset appears to be completely mis-

classified (cf. Fig 2 in Ilyas et al. [23]). Models that were trained using this “non-robust” dataset

attained non-trivial accuracy on a normal test set (i.e., test set images that were not adversa-

rially perturbed), providing evidence that these non-robust features—features that humans are

invariant to and presumably do not use—are used by models for image classification.

The model’s preference for high spatial frequencies (relative to that in macaque V1) is also

consistent with work that investigated model robustness to image corruptions through the lens

of Fourier analysis on images. Yin et al. [25] found that even when models were trained on

images that were strongly high-pass filtered, models were able to achieve non-trivial accuracy

on ImageNet, indicating the fact that models can detect high-frequency image components

that are both useful for the image-classification task and imperceptible to humans (cf. Fig 1 in

Yin et al. [25]). They additionally found that adversarially training models and training models

with Gaussian data augmentation both resulted in models that were less sensitive to high-fre-

quency noise, but more sensitive to low to mid frequency noise, suggesting that training mod-

els in these ways results in a weaker dependence on high-frequency image components.

We observed that models that better corresponded to macaque primary visual cortex also

had improved adversarial robustness, suggesting that building more “V1-like” models would

improve model robustness. One strategy to develop models that are more “V1-like” is to

explicitly optimize the artificial neural representations to be more like the representations

obtained from V1, while simultaneously optimizing for task performance. One example of this

strategy is work by Li et al. [32], who showed that models can be regularized by optimizing

model representations to be similar to those computed using neural responses to natural

scenes in primary visual cortex of mice. The authors showed that by incorporating this regular-

ization into the objective function for image classification, model robustness can be improved.

In a similar vein, Safarani et al. [33] showed that simultaneously training a model to perform

image classification and to predict macaque V1 neural responses led to improvements in

robustness to common image corruptions. Another strategy to improve model robustness

could be to build into models known properties of the visual system, as humans are invariant

to small image perturbations. For example, Dapello et al. [30] constructed a module based on

known properties of primary visual cortex, such as the distributions of preferred orientation

and of spatial frequency. The authors then showed that prepending this module to state-of-

the-art CNN architectures and optimizing the whole model (except for the module) to perform

ImageNet classification can improve adversarial robustness to small image perturbations.

Since adversarial robustness was only improved for small image perturbations and their mod-

els were outperformed by adversarially trained models in larger perturbation size regimes, a

simple smoothing of the inputs may not be sufficient to build more robust models.
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The work described above, however, do not provide normative explanations for the charac-

teristics observed in primary visual cortex (i.e., how these characteristics arose in the first

place), as the V1 properties are either learned in a data-driven manner or hard-coded into the

models. Our results suggest that such V1 properties as the power law exponent and preferred

spatial frequency tuning distribution may arise in order to be robust to high-frequency noise

or minute input perturbations. Furthermore, they could provide insight into objective func-

tions or constraints leading to improved robustness and to the phenomena observed in pri-

mary visual cortex. Recall our observation that when a model is trained with robust

optimization algorithms, the power law exponents in shallow and middle convolutional layers

increases and is slightly closer to one (Fig 3). This suggests that it may be useful to explicitly

optimize the eigenspectrum of the features in the shallow and the middle layers to have a

power law exponent closer to one, while simultaneously optimizing for task performance. Nas-

sar et al. [34] have made progress in this direction. They introduced a novel regularization

term that explicitly penalizes eigenspectra which do not have a power law exponent of one and

showed that this can improve the adversarial robustness of CNNs trained on a small dataset of

handwritten digits. Important future work, we believe, would be to incorporate these regulari-

zation methods in a computationally tractable manner in large-scale image classification tasks,

as higher performance on such tasks is associated with more quantitatively accurate models of

the ventral visual stream [8, 11, 14].

We also observed that more robust models had preferred spatial frequency distributions

more aligned with that of primary visual cortex. In particular, there was a larger proportion of

artificial neurons in robust models than in non-robust models that preferred spatial frequen-

cies in the middle (Figs 4B and 7A). The development of constraints or regularization methods

to tune the preferred frequency distribution is, to our knowledge, an open problem. However,

it may be the case that one does not need to explicitly constrain the convolutional filters to pre-

fer particular spatial frequencies. Instead, one could alter the image statistics during training to

bias models to learn convolutional filters that extract features across a larger extent of an

image. In particular, it is known that infant visual acuity is poor early in development as a

result of retinal immaturity and improves over time [35, 36]. This means that early in develop-

ment, the visual cortex of infants effectively receives images of low spatial resolution as input,

which increase in resolution over time. Training CNNs to perform face recognition with

blurred inputs has been shown to result in convolutional filters of lower spatial frequencies

[37]. We leave it to future work to investigate the implications of a developmental sequence of

image resolutions during task-optimization for the preferred spatial frequency distribution of

and the adversarial robustness of models.

Methods

Macaque V1 neural response dataset

We used a previously collected dataset of neural responses from macaque V1 [13]. We briefly

describe the dataset here and refer the reader to the original publication for further details on

the experiment [13]. Two macaques were presented with 1450 natural scenes and 5800 syn-

thetically generated images at approximately 2˚ of visual angle. The synthetic images were gen-

erated such that their higher-order image statistics (as defined by features in various layers of

VGG19) matched those of a natural image. Each stimulus was presented for 60 ms and a linear,

32-channel array was used to record spiking activity. Spike counts were obtained in the 40–

100-ms time window post stimulus onset. In our analyses, stimuli that did not have at least two

trials per neuron were removed, leaving a total of 6250 stimuli. 166 neurons were obtained for

further analyses so that the neural response dataset was of dimensions 6250 stimuli × 166
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neurons (after averaging across trials). The Spearman-Brown corrected, cross-trial correlation

of each neuron was used in the noise-correction of the predictivity metric for each model

layer. We found that the median of these values across neurons was 0.428.

Convolutional neural network architectures

A set of 26 models trained without robustness penalties and 14 models trained using various

robust optimization algorithms [18–21, 28] were used in the analyses. We refer the reader to

S1 Table for the complete list of models used in this work. Here we provide more information

about the models.

Non-robust models. The non-robust models that we used include: AlexNet [2], VGGs

[3], ResNets [6], wide ResNets [38], SqueezeNets [39], ShuffleNets [40], DenseNets [41], Goo-

gleNet [42], Inception [43], MobileNet [44] and MNASNets [45]. All of these models were pre-

trained on ImageNet (in a supervised manner) and accessed through the model zoo of

PyTorch [46]. We additionally performed the analyses on a ResNet-50 that was previously

trained using an unsupervised algorithm (SimCLR, [47]). This model’s linear evaluation head

(which was used for obtaining transfer learning performance on ImageNet) was kept for its

robustness evaluation.

Robust models. The robust models we used are somewhat robust to adversarial perturba-

tions. We consider these models as somewhat robust because even after training with these

algorithms, there still exists perturbations that can fool these models, evidenced by the fact that

they do not achieve the same accuracy on adversarially perturbed images as on unperturbed

images (see S1 Table). These models were trained using four different algorithms. We briefly

describe the algorithms below.

Adversarial training [18, 28]. In adversarial training, one seeks find model parameters that

minimize the loss due to the worst-case perturbation:

min
θ
Ex;y½max

δ2D
Lðxþ δ; y; θÞ�; ð1Þ

where Δ is the set of “allowed” input perturbations, δ is the perturbation, L is a loss function

(e.g., cross-entropy loss), x is the input (e.g., an image), y is the output (e.g., image label) and θ
are the model parameters. The inner maximization of Eq (1) is performed using a few steps of

projected gradient ascent. More details about this algorithm can be found in S1 Appendix.

Intuitively, this algorithm improves the robustness of models by training models using

adversarial examples that are generated during each iteration of training. As additional steps

are required to generate adversarial examples, this algorithm can be many times slower than

generic training (i.e., supervised training). Adversarially trained models were generously

released by Salman et al. [28]. In S1 Table, models trained using this algorithm are denoted as

robust_�, where � is the name of the base architecture that was adversarially trained.

TRADES [19]. This algorithm seeks to improve the adversarial robustness of a model by

adding a novel regularization term to the cross-entropy loss. The loss function LTRADES is

defined as follows:

Lcross� entropyðxi; θÞ ¼ � log
expðzi½c�Þ

PC� 1

j¼0
expðzi½j�Þ

 !

; i ¼ f1; . . . ;Ng

Lrobustðxi; θÞ ¼ max
v2Bðxi ;εÞ

DKLðf ðvÞ k f ðxiÞÞ; i ¼ f1; . . . ;Ng

LTRADESðX; θÞ ¼
1

N

XN

i¼1

Lcross� entropyðxi; θÞ þ bLrobustðxi; θÞ;

ð2Þ
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where N is the batch size, C = 1000 is the number of categories in ImageNet, zi 2 R
C

are the

model outputs (i.e., logits) for image xi, c 2 [0, C − 1] is the category index of the image (zero-

indexed), X ¼ fxig
N
i¼1

is a batch of N images, ℬðxi; εÞ is a neighbourhood of xi of radius ε,

f ðuÞ 2 RC
is the vector of log-probabilities for image u belonging to each of the C categories,

DKL(� k �) is the Kullback-Leibler divergence between the two quantities, β is the regularization

coefficient and θ are the model parameters.

As in the work of Zhang et al. [19], the maximization in Lrobust was performed using a few

iterations of projected gradient ascent. During each iteration, a new image v = x + δ is com-

puted so as to increase the value of DKLðf ðvÞ k f ðxÞÞ. The steps are nearly identical to those

used for the inner maximization in Eq (1). In particular, LðvðtÞ; θÞ ≔ DKL f ðvðtÞÞ k f ðxÞð Þ, and

the Project(�, �) function is that defined for ℓ1-norm constraints (i.e., perturbations are

clipped to be within [−ε, ε]).

We trained a ResNet-50 architecture on ImageNet using the loss function defined in Eq (2).

The loss function was minimized using stochastic gradient descent (SGD, [48]) with momen-

tum for 80 epochs. We used a batch size of 128, momentum of 0.9 and an initial learning rate

of 0.1, which was decayed by a factor of 10 at epochs 25, 45 and 65. The maximization in Lrobust

of Eq (2) was performed using three gradient ascent steps, with a step size of η = 4/255 × 2/3

and the regularization coefficient was set to β = 2. The maximum perturbation size allowed

was kδk1 � 4/255. Finally, the weight decay was set to 0.0001. The model trained with this

algorithm is denoted as trades_robust_resnet50_linf_4 in S1 Table.

Input gradient regularization [21]. This algorithm seeks to improve the adversarial

robustness of models by adding a regularization term to the cross-entropy loss. At a high-level,

the regularization term penalizes the gradient of the loss function with respect to the input.

Concretely, the loss function LIGR is defined as follows:

zi ¼ xi þ h �
rxi

Lðxi; θÞ
krxi

Lðxi; θÞk
2

; i ¼ f1; . . . ;Ng

LIGRðX; θÞ ¼
1

N

XN

i¼1

Lðxi; θÞ þ
l

2h2
ðLðzi; θÞ � Lðxi; θÞÞ2;

ð3Þ

where Lð�; θÞ is the cross-entropy loss, λ = 0.3 is the regularization coefficient, h = 0.01 is the

finite difference hyperparameter, X ¼ fxig
N
i¼1

is a batch of N images and θ are the model

parameters.

A model with the ResNet-50 architecture was trained to minimize Eq (3) using SGD with

momentum for 100 epochs. We used a batch size of 128, momentum of 0.9 and an initial

learning rate of 0.1, which was decayed by a factor of 10 at epochs 35, 70 and 90. Finally, the

weight decay was set to 0.0001. The model trained with this algorithm is denoted as igr_ro-
bust_resnet50 in S1 Table.

Adversarial training for free [20]. As mentioned previously, adversarial examples are gen-

erated on each iteration of adversarial training. Thus, assuming that K steps are used to gener-

ate the adversarial examples during each iteration, adversarial training can be K + 1 times

slower than generic training. “Free adversarial training” was developed in order to reduce the

total time required to train these models. At a high level, gradients with respect to the input are

accumulated over multiple training steps circumventing the need to compute the gradient

multiple times during each training step.

A model with the ResNet-50 architecture was trained using this algorithm for 23 epochs,

where each batch of 256 images was repeated four times during each epoch. SGD with

momentum of 0.9 was used and the weight decay was set to 0.0001. The initial learning rate of
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0.1 was decayed by a factor of 10 every 30 epochs. The maximum perturbation size allowed

was kδk1 = 4/255 and the step size was also 4/255. The model trained with this algorithm is

denoted as free_robust_resnet50_linf_4 in S1 Table.

Computing power law exponents

Power law exponent of macaque V1 neural responses. In order to compute the eigen-

spectrum of the macaque V1 neural responses to natural scenes, we used cross-validated prin-

cipal components analysis (cvPCA). It was developed by Stringer et al. [26] to compute the

eigenspectrum of neural responses from mouse V1. This algorithm computes unbiased esti-

mates of the eigenvalues (and hence the eigenspectrum) of the population neural responses.

Briefly, the algorithm operates as follows:

Xð1Þ ¼ USV> ðsingular value decompositionÞ
eX ð1Þ ¼ Xð1ÞV ðproject data onto eigenvectorsÞ
eX ð2Þ ¼ Xð2ÞV

λj ¼
XS

i¼1

eX ð1Þij eX
ð2Þ

ij ; for j 2 f1; . . . ;Cg ðcompute eigenvalueÞ

where S is the number of stimuli, N is the number of neurons, Xð1Þ;Xð2Þ 2 RS�N are the neural

responses for the first and second half of the trials (and averaged across trials), V 2 RN�C are

the C eigenvectors of the covariance matrix of X(1) and λ 2 RC
are the cross-validated eigenval-

ues associated with each of the eigenvectors (λj is the jth eigenvalue).

The first step of the cvPCA algorithm computes the eigenvectors of the neural response

covariance from one set of the trials. The second and third steps project the neural responses

from each half of the trials onto each eigenvector. The final step computes the (scaled) variance

of the neural responses when projected onto an eigenvector (that was computed using one half

of the trials). Thus, each cross-validated eigenvalue is related to the amount of stimulus-related

variance of the neural responses along the eigenvalue’s corresponding eigenvector. The power

law exponent was then determined as the negative slope of the line of best fit of the eigenspec-

trum in log-log space, similar to the procedure described by Stringer et al. [26]. We refer the

reader to the original publication for a more detailed mathematical analysis of this method

[26]. We ran this algorithm 20 times for the macaque V1 neural response dataset and averaged

the eigenvalues computed from each of the 20 runs.

Power law exponents of artificial neural responses. The eigenspectrum of artificial neu-

ral responses to three random sets of 2816 images from the ImageNet validation set was com-

puted for each model layer. Each image was first resized so that its shorter dimension was 256

pixels and then center-cropped to 224 × 224 pixels. Images were additionally preprocessed by

normalizing each image channel (RGB channels) using the mean and standard deviation that

was used during model training. Using these preprocessed images, we extracted activations

from several layers of each CNN and computed their eigenspectra using principal components

analysis (PCA). We did not use cvPCA, as we did for the macaque V1 neural responses,

because artificial neural responses are deterministic. Similar to the procedure described by

Stringer et al. [26], the power law exponent was estimated as the negative slope of the line of

best fit of the eigenspectrum in log-log space over the principal component indices in the

range of 10 to 999. For the analysis pertaining to the comparison of a model’s robustness with

its power law exponent, we summarized each model by the power law exponent of the model

layer that best predicted the macaque V1 neural responses.
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Spatial frequency tuning

Preferred spatial frequency tuning distribution of models. In order to assess the spatial

frequency tuning of artificial neurons, we performed in-silico electrophysiology experiments.

Specifically, we first generated Gabor patches of various orientations, spatial frequencies and

phases according to the following equation:

x0

y0

" #

¼
cos y sin y

� sin y cos y

" # x

y

" #

f ðx; y; s; l;c; y; gÞ ¼ exp �
x02 þ gy02

2s2

� �

cos 2p
x0

l
þ c

� �

;

ð4Þ

where σ = 35 determines the standard deviation of the Gaussian envelope in pixels, γ = 1 is the

aspect ratio of the Gabor patch, λ is the number of pixels for one cycle of the sinusoid, ψ is the

phase of the sinusoid in radians and θ is the orientation of the Gabor patch in radians. We gen-

erated Gabor patches with different orientations, phases and spatial frequencies using the fol-

lowing parameters: 10 orientations were evenly spaced between 0˚ and 172.5˚ and 10 phases

were evenly spaced between 0˚ and 360˚. The following spatial frequencies were used (in units

of cycles per image): 2.5, 3.5, 5, 7.1, 10, 14.1, 20, 28.3, 40, 56. This resulted in 10 × 10 ×
10 = 1000 Gabor patch stimuli. Prior to presenting the Gabor patch stimuli to the models, each

stimulus was preprocessed by normalizing the RGB channels using the mean and standard

deviation that the model was trained on.

Here we describe the method by which we obtained spatial frequency tuning curves of arti-

ficial neurons from model layers. The output of a convolutional layer is a matrix of dimensions

C ×H ×W, where C is the number of channels (i.e., convolutional filters), and H and W are

the height and width. Since the model layer is convolutional, each artificial neuron in each

channel would have the same “tuning”. Intuitively, each artificial neuron in the same channel

would detect the same “features” as they are each associated with the same convolutional filter.

As a result, one does not need to obtain the tuning for all artificial neurons in the output of a

convolutional layer. Thus, for a particular channel (i.e., convolutional filter), we computed the

tuning for the artificial neuron at the center of the activations matrix, which we denote as the

“representative neuron” (i.e., the neuron at location (bH/2c, bW/2c)). The receptive field of the

central artificial neuron would cover the Gabor patch stimuli, as the Gabor patch is placed at

the center of the model’s visual field.

To compute the value of the tuning curve for an artificial neuron at a particular spatial fre-

quency, we averaged the activations of the artificial neuron to Gabor patch stimuli of all orien-

tations and phases with that particular spatial frequency. This was performed for each of the

desired spatial frequencies. Once the tuning curves were computed, artificial neurons were fur-

ther sub-selected according to their tuning curves’ peak-to-peak value. Artificial neurons were

kept only if the peak-to-peak value of their tuning curves were greater than zero. The neuron’s

preferred spatial frequency was defined to be the frequency at which the tuning curve achieves

its maximum value.

To mimic one electrophysiology experiment, we randomly sampled 150 representative neu-

rons (with replacement) from the model layer’s output and obtained each neuron’s preferred

spatial frequency, resulting in the model layer’s preferred spatial frequency distribution. We

performed 1000 in-silico electrophysiology experiments and therefore obtained 1000 preferred

spatial frequency distributions for a particular model layer. Each of these distributions was

then compared with that of macaque V1 cells and a score was computed for each distribution,

resulting in 1000 scores (see below for the definition of the scoring function). Each model’s

PLOS COMPUTATIONAL BIOLOGY Increasing neural network robustness improves match to macaque V1

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009739 January 7, 2022 18 / 25

https://doi.org/10.1371/journal.pcbi.1009739


score was then defined to be the average score across the 1000 in-silico experiments (each of

which is presented in Fig 7A) and the error was defined to be the standard deviation of the

scores across the in-silico experiments.

Preferred spatial frequency tuning distribution of macaque V1. Using the online tool

called “WebPlotDigitizer” (https://apps.automeris.io/wpd/), we extracted data from Fig 6 of

De Valois et al. [29], which shows the preferred spatial frequency distribution of neurons in

the foveal area of macaque V1. The extracted spatial frequency bins were as follows (in units of

cycles per degree): 0.35, 0.5, 0.7, 1.0, 1.4, 2.0, 2.8, 4.0, 5.6, 8.0 (with 11.2 as the rightmost bin

edge). The extracted cell counts for each spatial frequency bin were as follows: 0, 3, 3, 6, 17, 22,

18, 19, 9, 4.

V1 spatial frequency score. Here we describe the metric that we used to assess the simi-

larity between a model’s preferred spatial frequency distribution and that of macaque V1 cells.

The score was defined to be one minus the maximum absolute difference between the two

empirical cumulative distributions (similar to the Kolmogorov-Smirnov distance):

scoreðx; yÞ ¼ 1 � max
i
jxi � yij; ð5Þ

where x and y are the empirical cumulative distributions of two different samples and xi is the

value of the cumulative distribution at the ith bin (and correspondingly for yi). In our case, y
would be the cumulative distribution for the preferred spatial frequency histogram of macaque

V1 cells (obtained from the histogram in Fig 6 of De Valois et al. [29]) and x would be the

model’s cumulative distribution for its preferred spatial frequency histogram.

V1 neural response predictivity

In line with Cadena et al. [13], we first cropped each stimulus to the central 80 pixels and then

resized the images to 40 × 40 pixels, as we also assumed that each models’ field of view is 6.4

degrees. Each stimulus was then zero-padded up to the image size on which each model was

trained. For example, the 40 × 40 pixels image would be zero-padded up to 224 × 224 pixels

for most models. Each image channel was additionally normalized according to the mean and

standard deviation used during model training. Model features were then extracted in

response to each preprocessed stimulus.

In order for neural response prediction for each of the 40 models (and their representative

model layers) to be more computationally tractable, we first projected the features of each

model layer into a 1000-dimensional space using PCA prior to linear fitting. If the number of

features was less than 1000 (e.g., there are 512 features in the average-pooling layer of a

ResNet-18), the number of principal components used was equal to the number of features.

ImageNet validation set images were used to compute the principal components so that the

transformation was held constant across all 20 train-test splits during neural fitting [11]. These

lower-dimensional stimulus features were then used as input to a partial least squares (PLS)

regression procedure with 25 components, consistent with prior work [8, 11, 30, 31]. Each

train-test split was generated by randomly selecting 75% of the stimuli to be in the train set

and 25% of the stimuli to be in the test set. For the data shown in S1 and S2 Figs, we performed

cross-validated ridge regression, where five-fold cross validation (using the train set) was used

to obtain the best regularization coefficient from {0.01, 0.1, 1, 10}.

The noise-corrected predictivity metric for a neuron was defined to be the Pearson’s corre-

lation between the neuron’s response predictions and the observed neural responses divided

by the square-root of the Spearman-Brown corrected cross-trial correlation of the neuron’s

responses, consistent with prior work [14, 49].
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Model robustness

We defined the robustness of a model to be its classification accuracy on the 50 000 ImageNet

validation set images that have been perturbed using a set of white-box adversarial attacks and

averaged across the set of adversarial attacks. This is referred to as the model’s “adversarial

accuracy”. Adversarial perturbations were generated using projected gradient ascent (PGD,

[18]). The algorithm used to generate adversarial images is the same as that used for the inner

maximization in Eq (1) of adversarial training. For more details, we refer the reader to S1

Appendix.

If the image perturbations can be as large as possible, one can easily distort the image so

that it becomes completely unrecognizable by a human (e.g., by modifying the image so that it

looks like noise). Thus, the sizes (i.e., norm) of the perturbations, δ, were bounded so that they

are imperceptible to humans. In order to generate more variability in the adversarial accuracy

across models, we used relatively small adversarial perturbations. Larger perturbations would

reduce the adversarial accuracy of most CNNs to chance level. Specifically, the maximum sizes

of the perturbations were defined as follows: kδk1 � 1/1020, kδk2� 0.15, kδk1� 40. Adver-

sarial examples were generated using projected gradient ascent for 20 steps. The step size was

set to be ε × 2/20, where ε is the maximum allowed size of the perturbation. This white-

box adversarial attack method and these perturbation constraints were also used in previous

work that compared adversarial accuracy with V1 neural response predictivity [30]. We used a

Python package known as Foolbox [50] to evaluate the robustness of the CNNs.

Optimal stimulus visualization

As in prior work, we optimized the discrete Fourier transform (DFT) of the input to maximize

the activations of a particular channel of a CNN layer. Concretely, we maximized the softmax

of the average activation in the desired channel of the output of a convolutional layer:

gðX; iÞ ¼
exp

1

H �W

XH� 1

h¼0

XW� 1

w¼0
X½i; h;w�

� �

PC� 1

c¼0
exp

1

H �W

XH� 1

h¼0

XW� 1

w¼0
X½c; h;w�

� � ; ð6Þ

where i is the index of the channel we would like to maximize the activations of, H and W are

the height and width of the outputs of the convolutional layer, C is the total number of chan-

nels in the output of the convolutional layer and X 2 RC�H�W is the output of the convolu-

tional layer. Eq (6) was maximized using the Adam optimizer with a learning rate of 0.05. We

used a Python package known as Lucent (a PyTorch adapation of Lucid [51]) to generate the

optimal stimuli.

Supporting information

S1 Fig. Relationships between adversarial accuracy, V1 neural predictivity and power law

exponent. In the main text, we showed results where the “V1-like” layer of a model was

obtained via partial least squares regression, where we found that adversarial accuracy corre-

lated with V1 neural predictivity and weakly correlated with power law exponent (recall that

the power law exponent for a model was obtained from the model layer that best predicted the

macaque V1 neural responses). Here, we show the same figures, but with results obtained via

cross-validated ridge regression (where five-fold cross-validation was used to obtain the opti-

mal regularization coefficient). Consistent with our partial least squares regression finding,

adversarial accuracy was correlated with V1 neural predictivity (R = 0.696, p< 0.001).
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However, when using ridge regression to determine the most “V1-like” model layer, adversar-

ial accuracy was found not to correlate with power law exponent (R = 0.159, p = 0.327).

Although there was no linear relationship between adversarial accuracy and power law expo-

nent, we noticed that when comparing two models obtained by training a single architecture

with and without robustness penalties, the robust model had higher power law exponents (as

shown by the purple lines pointing to the upper right in the figure, indicating higher adversar-

ial accuracy and higher power law exponent). This is consistent with the theory of Stringer

et al. [26].

(TIFF)

S2 Fig. Relationships between adversarial accuracy, V1 spatial frequency score and V1 neu-

ral predictivity. In the main text, we showed the relationship between a model’s adversarial

accuracy, its V1 spatial frequency score and its maximum V1 neural predictivity when partial

least squares regression was used to obtain a model’s “V1-like” layer. Here, we show results

pertaining to these relationships, obtained via cross-validated ridge regression. Qualitatively,

the results are the same as those described in the main text. Here, we find that a model’s adver-

sarial accuracy and its V1 spatial frequency score was correlated (R = 0.624, p< 0.001). Fur-

thermore, a model’s maximum V1 neural predictivity was correlated to its V1 spatial

frequency score (R = 0.565, p< 0.001).

(TIFF)

S3 Fig. V1 neural response predictivity as a function of maximum perturbation size

allowed during adversarial training. Here we asked whether V1 neural response predictivity

is related to the maximum allowed size of perturbation used during adversarial training.

Using previously adversarially trained models [28], we found, for both CNN architectures,

that as the maximum allowed perturbation size (using the ℓ2-norm) for model training

increased from zero, V1 neural predictivity increased. However, V1 neural predictivity pla-

teaus when the ℓ2-norm of the perturbation reaches and exceeds 0.5. Thus, just increasing the

maximum allowable perturbation size during adversarial training (and hence robustness to

larger image perturbations) is not enough to obtain further improvements in V1 neural pre-

dictivity.

(TIFF)

S4 Fig. Macaque V1 neural response predictivity as a function of model layer for all evalu-

ated models. We present the neural predictivity for all 40 models as a function of its model

layers. Consistent with other work [13, 14], we find that shallow to middle model layers best

predict neural responses to V1 neural responses for all evaluated models.

(TIFF)

S5 Fig. Eigenspectra and power law exponents as a function of the fraction of stimuli used

in the macaque V1 neural response dataset. As in Stringer et al. [26], we varied the fraction

of stimuli that were used in the neural response dataset and computed their eigenspectra and

their associated power law exponents. For each fraction of stimuli used, we randomly sampled

stimuli ten times and computed the eigenspectrum and power law exponent for each subset of

the neural responses, resulting in ten power law exponents and ten eigenspectra for each frac-

tion of stimuli. We found that for all fractions of stimuli used, the power law exponents were

greater than one and were more precise as more stimuli were used. We note that the power

law exponent in the macaque dataset may not have converged to one yet, so more neurons

may need to be recorded in the future to further verify the power-law-like behaviour of

macaque V1 neural responses.

(TIFF)
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S6 Fig. Changing the range of principal component variances used to fit the power

law exponent does not affect the relationship between robust and non-robust models.

In the main text, we fit the power law exponent using principal component variances from

indices 10 to 999. Here we fit the power law exponent for each eigenspectrum using principal

component variances from indices 1 to 1000. This small modification to the fitting procedure

does not alter the relationship between the power law exponents of robust models and those of

non-robust models. Specifically, we found that the power law exponents of robust models

were higher than those of non-robust models, implying that the dimensionality of the internal

representations of robust models is slightly lower than that of non-robust models.

(TIFF)

S7 Fig. Varying the image resolution does not change the relationship between the power

law exponents of robust and non-robust models. Changing the image size by downsampling

the image would remove high-frequency components and thus make spectral decay steeper.

Therefore, we investigated how the power law exponent varies as a function of the image reso-

lution. We used the 1250 natural scene stimuli (which are in grayscale) from the neural

response dataset of Cadena et al. [13] and varied the image resolution (in pixels) before pre-

senting them to the models. We fixed the model architecture to be ResNet-18 and ResNet-50

(using both robust and non-robust variations of them) and varied the input resolution from 40

pixels (the size used in neural response predictions) to 80 pixels (the size of the center crop

prior to the downsampling used in the neural response fitting procedure). Specifically, the

image transformations were as follows: (1) Center crop the original stimulus to 80 × 80 pixels

and (2) resize the image to one of {40 × 40, 50 × 50, 60 × 60, 70 × 70, 80 × 80} pixels. Using the

most V1-like model layer for each of the two models, we extracted activations to the images

and randomly sampled 166 artificial neurons (same as the number of neurons in the macaque

V1 neural response dataset) 20 times. Using the sub-sampled model response matrix (of

dimensions 1250 × 166), we computed their eigenspectra, the power law exponents and the

index at which cumulative principal component variance reached 75%. This resulted in 20

power law exponents and principal component indices and the mean and the standard devia-

tion across the 20 values was reported. We found that the power law exponents for both robust

and non-robust models was lower than that of macaque V1 neural responses and that they

decreased as a function of image resolution indicating that increasingly fine stimulus features

are encoded as more information is available in the stimulus (top row). These observations

were corroborated by another metric that measures the dimensionality of the model or the bio-

logical responses. Shown on the bottom row, we found that the indices at which cumulative

principal component variance reached 75% for the models were higher than that of macaque

V1 neural responses (i.e., higher principal component index indicates relatively higher-dimen-

sional responses).

(TIFF)

S1 Table. Model performance on ImageNet and V1 neural predictivity. This table lists all

the models we used, their macaque V1 neural response predictivity and their top-1 accuracies

on ImageNet validation set images which have not been perturbed (i.e., for a perturbation, δ,

and for any norm, kδk = 0) or were adversarially perturbed with different norm constraints on

the perturbations: kδk1 � 1/1020, kδk2� 0.15, kδk1� 40. For the models trained to be adver-

sarially robust, the suffix corresponds to the norm constraint imposed on the size of the pertur-

bation during model training. For example, robust_resnet50_l2_3 corresponds to a

ResNet-50 adversarially trained to be robust to perturbations, δ, of size at most kδk2� 3 [28],

igr_robust_resnet50 corresponds to a ResNet-50 trained with input gradient
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regularization (IGR, [21]) and resnet50_simclr corresponds to a ResNet-50 trained with

the SimCLR unsupervised loss function [47].

(PDF)

S1 Appendix. Additional details on adversarial training. Here we provide additional details

on adversarial training and on generating adversarial examples.

(PDF)
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