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Abstract

Hosts diverge widely in how, and how well, they defend themselves against infection and

immunopathology. Why are hosts so heterogeneous? Both epidemiology and life history are

commonly hypothesized to influence host immune strategy, but the relationship between

immune strategy and each factor has commonly been investigated in isolation. Here, we

show that interactions between life history and epidemiology are crucial for determining opti-

mal immune specificity and sensitivity. We propose a demographically-structured population

dynamics model, in which we explore sensitivity and specificity of immune responses when

epidemiological risks vary with age. We find that variation in life history traits associated with

both reproduction and longevity alters optimal immune strategies–but the magnitude and

sometimes even direction of these effects depends on how epidemiological risks vary

across life. An especially compelling example that explains previously-puzzling empirical

observations is that depending on whether infection risk declines or rises at reproductive

maturity, later reproductive maturity can select for either greater or lower immune specificity,

potentially illustrating why studies of lifespan and immune variation across taxa have been

inconclusive. Thus, the sign of selection on the life history-immune specificity relationship

can be reversed in different epidemiological contexts. Drawing on published life history data

from a variety of chordate taxa, we generate testable predictions for this facet of the optimal

immune strategy. Our results shed light on the causes of the heterogeneity found in immune

defenses both within and among species and the ultimate variability of the relationship

between life history and immune specificity.

Author summary

Organisms must use their immune defenses to counter infections, and their particular

immune needs and optimal strategy for defense are likely to depend on the infection

threats they face and their reproductive and survival schedules. Yet little is known about

how these factors might interact together to influence immune strategy. We used a popu-

lation dynamics model to examine how optimal immune specificity in host recognition of
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parasites depends simultaneously upon reproduction, survival, and parasite threats across

life. We find that the strength and direction of the association between immune specificity

and reproduction or survival depends on parasite threats and how they vary with age. For

example, a highly specific immune response is favored for long-lived, slow-reproducing

organisms when infection risk declines with age but is also favored for short-lived, fast-

reproducing organisms when infection risk rises with age. Thus organisms with very dif-

ferent life history schedules may have identical specificities depending on their particular

circumstances. Our research highlights how the immune strategies needed to “live fast

and die young” or “live long and prosper” are not fixed but rather will depend on the

interplay of different pathogen risks at different stages of life with when, during their lives,

organisms reproduce.

Introduction

Parasites are a central threat to organismal fitness, responsible for a considerable share of mor-

tality. Accordingly, all organisms possess some anti-parasite capacities, which can be brought

together under the umbrella of immune defenses. We expect immune defenses to be tailored

to a host’s ecological context to maximize efficacy and efficiency, particularly since immune

defense incurs resource, immunopathology, and other costs [1–5]. Accordingly, the strategies

hosts use may differ. For example, should parasites be directly resisted to extirpate them, or

should the damage they inflict be tolerated and contained without directly countering the par-

asites [6,7]? Should immune investment be constitutive or inducible [4]? Given immunopa-

thology, should parasite recognition systems be very sensitive to possible threats or highly

conservative and specific in identifying them [8]? Different strategies imply deployment of dif-

ferent immune defenses and in different quantities, which will in turn have different impacts

on parasites. In principle this applies to both inter- and intraspecific comparisons–there

should be variation in immune strategies within populations and across species. Discovery of

the causes of such variation will enable predictions for how organisms differ in their immune

defenses and explain previously confounding empirical phenomena, as well as a better under-

standing of the vulnerabilities and strengths of any given immune defense strategy.

But what factors might shape immune strategy? One commonly-hypothesized ecological

factor affecting immune strategy and deployment is epidemiology [9–13]. For example, we

expect investment in immune defenses to rise with increasing parasite threat [10]–without

parasites, why waste resources on immune defense? Ecological feedbacks between parasite

dynamics and immune defenses can have intriguing non-linear effects on optimal immune

strategies, including negative frequency-dependent selection on specific defenses [12,13]. Fur-

thermore, we expect variability and diversity in parasite threats to affect the apportionment of

that investment to different defenses [9,10,14] and the architecture of those defenses [15,16].

Immunopathology–damage inflicted on the self by the immune system–also presents a signifi-

cant risk to hosts; balancing immunopathology with averting parasite-inflicted damage may

constrain investment in immune defenses and alter their form [8,17–19]. While assessing

details of epidemiological risk in empirical settings can be difficult and relatively few studies

have attempted to look across multiple taxa, empirical work has generally supported the influ-

ence of disease environment on optimal immune defense and strategy [19–21].

Host life history has also been proposed to affect immune strategy [1,3,22–24]. This idea

springs from the aforementioned resource costs of immunity, since life history is intimately

tied to resource allocation [25]. Correspondingly, immune defenses have been proposed to be
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linked to the fast/slow spectrum of life history and the related pace-of-life concept [22,23]. In

particular, immune investment is predicted to correlate negatively with reproductive output

[1,3,23] and positively with longevity [23]. Furthermore, Lee [23] suggests that species with a

faster life history may use more specific immune defenses and fewer inflammatory immune

defenses. A body of theory predicts ties between immune strategy and survival or reproduc-

tion, [13,18,26], but the life history traits are usually modeled as simple rates of reproduction

and mortality per unit time that are constant across life, rather than variable as in most popula-

tions [27]. Experimental evidence supports a negative trade-off between immune investment

and reproductive effort [28–30], but generally, empirical investigations of the relationship

between immune strategy, the type of immune defenses used, and life history have been incon-

clusive [31–33]. Despite this, predictions of consistent relationships between pace-of-life and

immune strategy remain common organizing hypotheses in disease ecology [24,33].

While epidemiology and life history are both considered important for immune defense,

their intersection has rarely been explored. The few studies that exist have uncovered intrigu-

ing contingencies for the relationship between immunity, epidemiology, and life history. For

example, Donnelly et al. [34] have shown that the diversity of parasites in a host’s environment

can shape the relationship of lifespan with immune memory. Even in one-parasite systems,

optimal investment in memory peaks at intermediate lifespans due to ecological feedbacks

between immune defenses and parasite transmission and prevalence, as well as, in some mod-

els, the contribution of herd immunity [12,26,35–37]. In two-parasite systems, that effect dis-

appears, and optimal memory investment increases with increasing lifespans [34]. Thus, the

epidemiological context (here the diversity of parasites) shapes the relationship between life

history (lifespan) and optimal immune strategy (immune memory).

These results suggest that life history and epidemiology interact strongly to determine opti-

mal immune strategies and may thereby explain why said strategies vary. Here we are espe-

cially interested in variation in epidemiological environment with age. Empirical work shows

that variation in infection risk and burden with age is widespread, with different profiles of

age-dependence for different host and parasite species [38–40]. For example, in Cape buffalo

(Syncerus caffer), infections during the first year of life are largely restricted to tick-borne para-

sites [41]; in Seychelles warblers (Acrocephalus sechellensis) the prevalence of Haemoproteus
blood parasites is greatest in juveniles [42]. And sexually transmitted infections will generally

only pose a threat to hosts after reproductive maturity [43]. Immune strategies may be pulled

in multiple directions by different infection threats at different stages of life. But studies of the

effect of epidemiological context on immune defense generally neglect variation in disease

risks with age. Therefore, by studying the intersection of age-dependent epidemiological varia-

tion with life history variation, we aim to elucidate causes of varied immune strategies across

host taxa.

To this end we build on the model of immune sensitivity and specificity developed in Met-

calf et al. [8] and Metcalf and Graham [44] by considering age-associated changes in infection

risks and a broad range of life histories, particularly in reproductive demography, drawn from

empirical research. The logic of the basic model is as follows. Hosts face a variety of antigenic

stimuli, from harmful sources–generally non-self–and benign sources. The host must correctly

ascertain from these stimuli whether or not it is infected and should mount an immune

response (Fig 1). As in other signal detection systems [45,46], a trade-off between sensitivity

and specificity then arises: an organism with a more sensitive immune system will more fre-

quently correctly identify parasite stimuli and attack them, but it will also more often produce

immunopathology by mistaking self molecules for parasite signals. An organism that is more

specific is less likely to produce a damaging autoimmune response, but it is also more likely to

ignore a parasite and therefore suffer more parasite-inflicted damage. Sensitivity and
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specificity may be encoded in receptor structure or in activation thresholds for the immune

system [8,19] or possibly even in the range of defenses deployed against different parasites

[47]. Although relatively little research has directly explored immune defenses from this per-

spective, such trade-offs have been documented: for example, greater reactivity to non-self-

antigens (i.e. sensitivity) correlates with greater reactivity to self antigens [48], suggesting a

trade-off between susceptibility to infection and susceptibility to immunopathology. Cross-

reactivity (i.e., lack of specificity) of T cell, B cell, and antibody responses contributes to the

immunopathology underlying severe dengue hemorrhagic fever [49] and might be a causal

explanation for why infection sometimes brings about autoimmune disease [50].

Combining sensitivity and specificity with epidemiological risks–infection risk, infection

mortality risk, and immunopathology risk–allows us to determine survival in a given risk envi-

ronment (Fig 1A). We can then use a demographic matrix framework to provide resolution on

both life history and epidemiological variation. Demographic matrices–sometimes called pop-

ulation projection matrices or Leslie matrices–are a general tool for framing and quantifying

population outcomes (population growth, stage, or age structure) when demographic pro-

cesses (survival, reproduction) vary by age or stage [51]. The optimal immune strategy is that

which maximizes fitness; we define fitness here as the population growth rate, λ, which

Fig 1. Sensitivity and specificity in immunity. A) Decision tree outlining the relationship of sensitivity and specificity to infection and mortality

risks. Sensitivity and specificity, together with frequency of infection, determine the relative balances of various types of mortality. B) Receiver-

operator curve showing trade-off between sensitivity and specificity in immunity. Different points on trade-off curve indicate different

combinations of sensitivity and specificity and produce different response thresholds. The shape of the trade-off curve is governed by how much

host and parasite signals overlap and the capacity of the host to discern fine molecular differences. C) Schematic showing how sensitivity and

specificity manifest in response to distributions of benign (blue) and pathogenic (red) signals. Different combinations of sensitivity and specificity

define the location of the response threshold. A more sensitive immune system has a response threshold shifted to the left, responding to a greater

range of signals; a more specific immune system has a response threshold shifted to the right, responding to a smaller range of signals.

https://doi.org/10.1371/journal.pcbi.1009714.g001
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describes the population rate of increase through time and is the dominant eigenvalue of the

population projection matrix. As we initially consider static epidemiological contexts, and

include no explicit forms of density dependence among hosts within our matrix models, the

success of any host immune strategy will not be contingent on strategies being used by other

individuals in the population. This framing makes a focus on optimizing λ appropriate, rather

than developing resistance-to-invasion analyses to identify Evolutionarily Stable Strategies

(ESS) [9–13].

Prior work has shown that the relative balance of the different types of epidemiological

threats shapes immune strategy: in general, an organism facing greater infection risk should be

more sensitive, and an organism facing lower infection risk should be more specific [8,44].

Unlike some models exploring other aspects of immune strategy (e.g. [13]), our framework

does not currently include ecological feedbacks on disease transmission, though incorporating

such feedbacks would be a fascinating vein for future work. Our simpler epidemiological risk

parameters could be held to represent a broad suite of pathogens posing some overall risk to

the host of infection-induced mortality. Furthermore, in our framework, background mortal-

ity does not affect sensitivity and specificity, except when disease or immunopathology risks

vary with age [8,44]. When such risks do not vary with age, then no aspect of demography

affects immune specificity and sensitivity [44], although background mortality can, in other

modeling frameworks, affect other aspects of optimal immune strategy [34, 36]. However, as

discussed above, disease and immunopathology risks are rarely static.

Here we explicitly study the interaction between life history and epidemiology as it influ-

ences optimal immune strategy, drawing on a variety of scenarios reflecting empirical patterns.

We mix variation in life history strategies with variation in epidemiological risk across life to

bring potentially-influential nuance to both life history and disease risk within life. First we

focus on different simple reproductive output schedules, exploring how they shape optimal

immune specificity and sensitivity in various epidemiological contexts. We then marry a range

of realized life histories drawn from the COMADRE database of demographic matrices [52]

with epidemiological risk schedules to explore in greater detail the complex interplay between

life history, epidemiology, and immune strategy. We find that this confluence is indeed critical,

with epidemiology mediating both the strength and direction of the relationship between life

history traits and optimal immune strategy.

Results

Reproductive demography affects optimal immune strategy

We explored five different schedules for reproduction in our analysis of the relationship

between reproductive demography and optimal immune strategy (Fig 2). Each reproductive

schedule gives a different set of fertility parameters for the age classes in a demographic matrix.

For a given set of epidemiological risk parameters, each reproductive schedule has a different

associated optimal immune sensitivity and specificity maximizing the population growth rate

(λ) (Fig 2). In the case considered here, where infection risk drops at the age of first reproduc-

tion, a life history associated with higher reproductive output leads to lower sensitivity and

higher specificity, and vice-versa for lower reproductive output. The two reproductive sched-

ules having changes in output with age are further polarized in their associated optimal

immune strategies (Fig 2). Each reproductive schedule and optimal immune strategy also asso-

ciates with different stable age structures and distributions of reproductive value and the elas-

ticities of λ to both survival and fecundity (S1 Fig). These elasticities are defined as the

proportional change in λ produced by a change in survival or fecundity parameters, respec-

tively [51]. Because different reproductive schedules produce different values of λ, we also
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explored optimal immune strategies when we manipulate background mortality (μb) to equal-

ize λ across the reproductive schedules; the effect of reproductive schedule on immune strategy

is unaltered (S1 Table). Thus, it is not λ that is associated with a given immune strategy, it is

the reproductive schedule itself.

Epidemiological risk environment modulates effects of reproduction on

immune strategy

Different organisms experience different epidemiological risks across their lives. We therefore

expanded on the analysis above by exploring how the relationship between reproductive

demography and immune strategy changes in different epidemiological scenarios (Fig 3). We

find that a different epidemiological context can completely reverse the direction of this rela-

tionship (Fig 3A). In an epidemiological setting with infection risk (ir) decreasing at reproduc-

tive maturity from a high level to a low level, the late-skewed rising reproductive schedule

(red) has the most specific immune strategy of our five reproductive schedules, whereas when

ir rises at reproductive maturity from low to high, that same reproductive schedule associates

with the least specific immune strategy. The early-skewed declining reproductive schedule

(blue) has the opposite set of associations in these two epidemiological environments. When

infection risk is high in early life and low in late life, the rising schedule favors greater immune

specificity than the declining schedule, and vice-versa. In essence, a “flip” in the ordinal

Fig 2. Influence of reproductive demography on optimal immune strategy. Plot showing optimal combination of immune sensitivity and specificity for

each of five reproductive demographic schedules (color-coded at left), for an epidemiological risk environment where infection risk ir = 0.6 for the first two

age classes (prior to reproductive maturity) and ir = 0.2 thereafter. Reproduction begins in the third age class for all demographic schedules. Strategy

optima, shown as points on the dashed curve, are determined as the immune specificity and sensitivity maximizing λ, the population growth rate. Dashed

curve shows the shape of the specificity/sensitivity trade-off curve for γ = 4. Solid lines show values of the respective optimal strategies on each axis. Other

parameter values are μb = 0.15, μi = 0.1, μd = 0.3, and μid = 0.01.

https://doi.org/10.1371/journal.pcbi.1009714.g002
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relationship between reproductive and immune strategies takes place when organisms experi-

ence the same risks but at different points in life–i.e. when the epidemiological schedule is

reversed. This flipping effect also appears when we explore variation in undetected infection

mortality risk (μd) across life while holding ir constant (S2A Fig).

Differences in the range and magnitude of epidemiological risk variation with age alter the

differences in optimal immune strategy between reproductive demographies. Overall level of

risk produces different immune strategies, and when the magnitude of variation across life

changes, the strength of the reproduction-immunity relationship changes (Fig 3B). Here,

greater ir variation across life is associated with greater differences in immune strategy between

reproductive schedules. Variation in other risk parameters produces the same insight: when

we examined variation in μd, we found the same correlation between the strength of the repro-

duction-immune strategy relationship and degree of epidemiological risk variation (S2B Fig).

Overall, our results suggest we cannot know from life history alone which of two populations

or species should be more sensitive or specific in immune defense without knowing the epide-

miological context of each population.

Epidemiology interacts with several demographic traits to influence

immune strategy

To expand on our above results, we considered the relationship between specific life history

traits and optimal immune strategy. We did this by exploiting the life histories recorded in the

COMADRE database of animal demographic matrices [52,53]. These matrices provide repro-

ductive schedules and estimated mortality curves across a wide taxonomic range, and we

Fig 3. Epidemiological environment alters the effect of reproduction on immune strategy: infection risk ir. Reproduction begins in the third age class

for all schedules. In each scenario, ir starts at one value and changes to a different value at the third age class. A) The change in optimal immune specificity

associated with differences in epidemiological context (i.e. changes in ir, on the x-axis) and reproduction (different points and lines, color-coded at center).

In the declining scenario, ir drops at reproductive maturity from 0.6 to 0.2; in the rising scenario, ir increases from 0.2 to 0.6. Other parameter values are μb
= 0.15, μi = 0.1, μd = 0.3, μid = 0.01, and γ = 4. B) The change in range of optimal specificities associated with different reproductive demographies for

different magnitudes of variation in decline of infection risk ir at reproductive maturity. In the lower range scenario, ir drops from 0.45 to 0.2; in the higher

range, from 0.7 to 0.45; in the broad range, from 0.7 to 0.2; in the narrow range, from 0.525 to 0.375. Other parameter values are μb = 0.15, μi = 0.1, μd = 0.3,

μid = 0.01, and γ = 4.

https://doi.org/10.1371/journal.pcbi.1009714.g003
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processed the raw matrices to mesh them with our immune strategy estimation approach with-

out changing the essential demographic patterns encoded in said matrices (see Methods, S3

Fig). Each age class in the demographic matrices corresponds to a year of life, rather than a life

stage of some variable length of time. We combined the output matrices with various epidemi-

ological scenarios to explore, in a given epidemiological context, the change in predicted opti-

mal immune strategy among different demographies. We analyzed the relationship between

predicted optimal immune specificity and life history traits with a Bayesian linear model. For

epidemiological variation we used stepped variation in ir as above, where ir changes once at

reproductive maturity. We used fixed values for the other parameters in our method; while

there is no a priori reason to expect parasite mortality threats and immune system functioning

to be identical across a wide range of taxa, this enables a mathematically-controlled compari-

son. In preliminary work we explored other combinations of parameter values and did not

find any differences between sets of parameter values that affect our qualitative results.

We find correlations between predicted optimal immune strategy and three different life

history traits–age class of first reproduction, mean reproductive rate, and reproductive life

expectancy (Figs 4 and 5 and Table 1). And we identify the same epidemiology-induced flip in

the life history-immune strategy relationship that we describe above. The effects of the life his-

tory traits are interlocking, such that variation unexplained by one life history trait may be

explained by another. An early age class of first reproduction can be associated with a wide

range of optimal immune strategies, but these strategies are in turn shaped by the mean repro-

ductive rate (Fig 4). For decreasing infection risk with age and an early age class of first repro-

duction, high specificity corresponds to low rates of reproduction, and vice-versa. At later age

classes of first reproduction, the range of associated reproductive rates contracts, and optimal

specificity becomes less variable and confined to relatively higher values (Fig 4A). The reverse

pattern is observed when infection increases with age (Fig 4B and Table 1).

In general, the strength and direction of the relationship between any given life history

parameter and predicted optimal immune strategy depends on the level of infection risk and

the amount it varies with age (Fig 5). When risk does not vary at all with age, then there is no

Fig 4. Interaction of demography and epidemiology for immune specificity. Infection risk is set such that there is one infection risk ir for age classes

prior to reproductive maturity and a different risk ir for reproductive age classes. Our dataset comprises 298 population matrices representing 129 chordate

species. For all scenarios, parameter values are μd = 0.3, μi = 0.1, μid = 0.01, ρ = 0.75, and γ = 4. A) Predicted optimal immune specificities when infection

risk declines with age, with respect to population age class of first reproduction and mean reproductive rate as calculated from original matrix. Infection risk

ir prior to reproductive maturity is 0.45; for reproductive age classes, it is 0.2. B) Predicted optimal immune specificities when infection risk rises with age,

with respect to population age class of first reproduction and mean reproductive rate as calculated from original matrix. Infection risk ir prior to

reproductive maturity is 0.2; for reproductive age classes, it is 0.45.

https://doi.org/10.1371/journal.pcbi.1009714.g004
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relationship between any individual demographic trait and immune specificity, regardless of

absolute risk level (as previously described). However, as the magnitude of change in infection

risk at reproductive maturity grows, the strength of each immunity-demographic trait rela-

tionship increases, with the sign of the relationship depending on which trait is being exam-

ined and whether risk increases or decreases at reproductive maturity. The estimated

relationship between mean reproductive rate and immune specificity is the strongest in all

infection risk scenarios, followed by age class of first reproduction and then reproductive life

expectancy (Fig 5 and Table 1).

We further examined the robustness of our central finding with different datasets and other

life history traits. The epidemiological dependency of the life history-immune strategy

Table 1. Results from Bayesian linear model for demography and immune specificity. Linear model looks at predicted optimal immune specificity as a function of

three different life history summary statistics. Results are means and, in brackets, boundaries of 89% highest posterior density intervals (HPDI) for posterior probability

distributions for parameter values. Entries in italics indicate the 89% HPDI overlaps with 0 for that parameter. All summary statistics were calculated from original matrix

in COMADRE database, log-transformed, and standardized as Z-scores. Dataset includes 298 qualifying matrices from 129 chordate species. For stepped epidemiological

scenario, when infection risk is rising, ir in pre-reproductive years is 0.2, and ir in reproductive years is 0.45. When infection risk declines in the stepped scenario, ir in pre-

reproductive years is 0.45, and ir in reproductive years is 0.2. In smoothed declining scenario, ir declines from 0.45 to 0.2; in rising scenario, ir rises from 0.2 to 0.45. Other

parameter values are μd = 0.3, μi = 0.1, μid = 0.01, ρ = 0.75, and γ = 4.

Parameter Declining stepped infection risk

ir
Rising stepped infection risk

ir
Declining smoothed infection risk

ir
Rising smoothed infection risk

ir
Intercept 0.603

[0.600, 0.605]

0.544

[0.541, 0.547]

0.538

[0.536, 0.541]

0.608

[0.605, 0.611]

Age class of first

reproduction

-0.0381

[-0.0411, -0.0352]

0.0357

[0.0327, 0.0384]

4.82x10-4

[-0.00285, 0.00380]
-0.00121

[-0.00463, 0.00239]
Mean reproductive rate -0.0423

[-0.0454, -0.0390]

0.0412

[0.0379, 0.0444]

-0.0409

[-0.0444, -0.0374]

0.0440

[0.0402, 0.0479]

Reproductive life

expectancy

0.0190

[0.0155, 0.0224]

-0.0184

[-0.0218, -0.0150]

-0.0232

[-0.0269, -0.0197]

0.0252

[0.0211, 0.0292]

Standard deviation 0.0278

[0.0260, 0.0298]

0.0280

[0.0260, 0.0300]

0.0304

[0.0285, 0.0324]

0.0322

[0.0301, 0.0344]

https://doi.org/10.1371/journal.pcbi.1009714.t001

Fig 5. Epidemiological dependency of life history-immune specificity relationship. Tile plots showing, for a variety of scenarios of variation in infection

risk ir, coefficients of relationship between the designated life history trait and predicted optimal immune specificity as estimated from Bayesian linear

models. Each tile is a scenario in which predicted optimal immune specificities were generated for 298 population projection matrices representing 129

chordate species. A linear model was used to estimate relationship coefficients for each scenario. The coefficient value in the plot represents the mean value of

the posterior probability distribution, except on the diagonal; on the diagonal, all coefficients are 0 (see text). The value of ir on the x-axis is the risk for pre-

reproductive years, jumping in age class of first reproduction to the value of ir on the y-axis. Life history trait values were log-transformed and standardized

as Z-scores for comparability of coefficients. For all estimated coefficients off the diagonal, 89% credible intervals do not include 0. For all scenarios,

parameter values are μd = 0.3, μi = 0.1, μid = 0.01, ρ = 0.75, and γ = 4.

https://doi.org/10.1371/journal.pcbi.1009714.g005
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relationship is recapitulated when we repeat our analysis with a dataset of only mammal life

histories (S2 Table) and when we consider generation time as the sole life history trait influ-

encing immune strategy in our linear model (S3 Table). When we calculate our life history sta-

tistics from our matrices after dimension manipulation and mortality curve approximation

(see Methods), results are qualitatively the same while differing to a small degree quantitatively

(S4 Table). This highlights that our matrix processing method, while producing matrices that

approximate the original COMADRE matrices but are not identical, is not inducing significant

distortions and generating mirages. All these analyses reinforce our main result, that epidemi-

ological context determines the strength and direction of the relationship between life history

traits and optimal immune strategy.

The interaction between epidemiology and life history for immune

specificity spans multiple modes of risk variation

We also explored an alternate mode of infection risk variation with age. In this mode, rather

than infection risk changing just once at reproductive maturity, we defined a risk for the first

age class of the matrix and a risk for the last age class and allowed risk to change at a constant

rate across intermediate age classes (see Methods, S4 Fig). This scenario represents a smooth

change of infection risk with age. For use with our COMADRE process, we adjust the slope

such that the relative change in infection risk with respect to matrix dimension (itself deter-

mined as a function of age at first reproduction and reproductive life expectancy) stays con-

stant, ensuring comparability between matrices with different life histories (S4 Fig).

We repeated all of the preceding analyses for this second mode of infection risk variation,

and we identified the same major results. Reproductive demography does influence optimal

immune specificity and sensitivity (S5 Fig and S5 Table), with the strength and direction of

that influence depending on the direction and magnitude of change in epidemiological risk

parameters (S6 and S7 Figs). Furthermore, when we extend to our broader demographic anal-

ysis, we find the same epidemiological dependency for the strength and direction of the rela-

tionship between immune specificity and specific life history traits (S8 and S9 Figs).

Intriguingly, we do find different relative and absolute magnitudes for each relationship when

compared to the stepped mode of infection risk variation (S9 Fig and Tables 1 and S2–S5). If

infection risk varies in the smoothed manner, our linear models are not confident that age

class of first reproduction has an influence on optimal immune strategy (Tables 1 and S2–S5).

And the directions of the relationships between optimal immune specificity and reproductive

life expectancy are reversed (S9 Fig). This further highlights our finding that how epidemiolog-

ical context varies with age shapes the relationship between life history traits and immune

strategy. Particular demographic traits may have more or less influence on immune strategy,

and in different directions, depending on precisely the epidemiological context.

Discussion

Here, using a demographic model, we demonstrate that the influence of life history on

immune specificity and sensitivity depends on the epidemiological context and the way that

epidemiological risk varies across life. Both the strength and direction of the relationship, for a

variety of different life history traits, are changeable. Thus, for example, when infection risk

declines with age, a reproductive schedule with high output will push populations towards

more sensitive and less specific immune strategies, while when infection risk rises with age,

high reproductive output will select for less sensitive, more specific immune strategies. In envi-

ronments where infection risk variation with age is high, life history is very influential; when

such variation is low, it is less important. Infection risk variation could be created by several
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factors–for example, sociality [54]. In non-social species we might expect infection risk to be

relatively low pre-reproduction, with a rise at reproductive maturity associated with the

increased contact of mating and sexually-transmitted infections. In such species, those with

greater reproductive output should have less sensitive, more specific immune strategies than

those with lower reproductive output. But closely-related social species might not have the

same variation in infection risk across age; perhaps they have a higher frequency of early-life

infections relative to infection in adulthood (see [54] for more discussion of sociality and infec-

tion). In these species, we would find that high reproductive output selects on immune strategy

in the opposite direction, pushing for more sensitive, less specific defenses. We find a similar

context-dependency for the relationship of immune sensitivity and specificity to age at first

reproduction, a development- and longevity-associated trait, and reproductive lifespan, a lon-

gevity-associated trait. These results crystallize the importance of epidemiology for optimal

immune strategy, contrary to the common assumption that particular life history traits are

consistently associated with particular immune phenotypes regardless of epidemiological con-

text [23,24,33].

Nuances of life history and epidemiology are crucial for optimal immune

strategy

By employing a broad variety of life histories, we study the forces shaping immune strategy in

greater detail than previously explored. Most prior studies of immune defense have used a con-

stant background mortality to define lifespan. Such studies have produced intriguing results

[8,34,37], but two species with the same average or maximum lifespan may have radically dif-

ferent survival curves and therefore demographic patterns [55]. By here describing lifespan in

terms of age of first reproduction and reproductive life expectancy, we have identified how dif-

ferent facets of lifespan may in fact select for different strategies of immune specificity. For

example, our model tells us that two species with similar average lifespans but different ages at

first reproduction and reproductive life expectancies should differ in the specificity of their

defenses against infection. Our analysis may also prove illuminating for the study of sex differ-

ences in immune defense [3,44]; males and females within a species may differ demographi-

cally–and in infection risks–in such a way as to push them towards different immune

strategies. In general, our results show that greater detail in life history and epidemiology offers

greater insight into optimal immune defense.

One particularly intriguing result is that differences in reproductive schedule alone can

influence optimal immune specificity when epidemiological risk varies with age. This surpris-

ing finding is explained by the relationship between the reproductive schedule and the relative

contributions to fitness of different life stages. In our model, greater reproductive output leads

to population growth rate (λ) being more heavily dependent on both survival and fertility in

early age classes relative to later age classes (S1C and S1D Fig, [51]). Donnelly et al. [13] dem-

onstrate in their model that optimal immune resistance should be tuned to favor stages that

contribute the most to the rate of population growth. Our model is not amenable to an analyti-

cal determination and examines a different aspect of immune strategy, but by analogy with

Donnelly et al. [13], we might expect an immune strategy that boosts survival in those early

stages to be optimal when reproductive output is higher, at the cost of survival in later stages.

And, indeed, that is what we find: when infection risk declines with age, greater reproduction

associates with greater sensitivity to mitigate greater infection risk in early life, when the elas-

ticity of λ to survival is highest (ex ¼
@lnðlÞ
@lnðaxÞ

, where ax is the survival or fertility parameter of

interest in age class x) [51]. The rising and declining reproductive schedules produce the most

divergent elasticity distributions, weighted towards late and early age classes respectively, and
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accordingly have the most divergent immune specificities. Just as the elasticity of population

growth rate (λ) to survival may be informative for optimal immune specificity against mortal-

ity-causing parasites, so then might elasticity of λ to fertility shed light on how specificity

would be affected by parasites that depress fertility. Given such parasites, specificity should be

similarly calibrated to mitigate threats in stages with the greatest elasticity to fertility, minimiz-

ing costs to fertility in those stages.

Thus reproduction may influence some aspects of optimal immune strategies through its

effects on demographic structure in a population, independent of the resource allocation

trade-offs often explored in models of immune strategy [18,28]. And because natural selection

from threats across all life tunes immune strategy, the variation in epidemiological risk and

host demography may produce apparent mismatches between immune strategy and the

threats faced during given life stages, such that different mortality risks are more or less promi-

nent at different times of life. This could be one source of immunosenescence, perhaps moder-

ated by flexibility in sensitivity and specificity across age (see [8,44] for a more thorough

discussion of the consequences of variation in immune sensitivity with age and

immunosenescence).

Our results also suggest that theories predicting immune strategy primarily or only from

pace-of-life or the fast-slow spectrum of life history [22–24] may not be accurate, at least for

immune sensitivity and specificity. There are two reasons for this. First, the direction of the

association between any given life history trait and optimal specificity is contingent upon epi-

demiology, and thus reproduction or longevity may not necessarily always have the same asso-

ciation with immune strategy or even, when infection risk does not vary across life, any

association at all. Second, in certain epidemiological contexts, increased reproduction and

increased longevity (which occupy opposite ends of the fast/slow spectrum) push immune

specificity in the same direction. And age class of first reproduction and reproductive life

expectancy have opposite associations with immune specificity in all epidemiological contexts

we explored, despite both being associated with a slow pace of life [27]. Further work is neces-

sary to establish whether this conclusion applies to other aspects of immune strategy, like resis-

tance and tolerance. In particular, the aforementioned resource allocation trade-offs may

influence different aspects of the immune system to greater or lesser degrees. Furthermore,

particular life histories and ecological strategies may be associated with particular epidemio-

logical risks [33,56], which may more closely tie life history to immune strategy. These are

promising directions for future research.

Our incorporation of changes in infection risk with age allows fresh insights, but there are

additional aspects of epidemiology that may affect optimal immune specificity and sensitivity.

For example, co-evolution of host immune systems with individual parasite species can shape

at least some aspects of host immune defense [e.g. 57]. In our framework, we neglect this pro-

cess, favoring an approach that aggregates infection and mortality risk across a broad and static

community of parasites. Different parasites may impose different selective pressures that wash

out, making our approach a reasonable approximation of empirical selective pressures. How-

ever, it is also possible that co-evolution may be more influential for the specificity of immune

memory–e.g., Schnaack and Nourmohammad [58] show that the extent of parasite evolution

during an organism’s lifespan shapes optimal specificity of memory against that parasite,

which will trade off with the cross-reactivity of that memory against evolved variants of that

parasite. Long-lived organisms with many encounters of a particular evolving pathogen should

thus have more specific immune memory of that pathogen, because across long durations

cross-reactivity becomes less valuable [58]. Indeed, repeated exposure may be an additional

selective pressure that modulates evolved specificity in adaptive immune systems, in addition

to the pressures that we describe here, although the precise concepts labeled “specificity” here
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and in [58] are not exactly the same. A further selection pressure might be imposed by patho-

gens that occur irregularly with respect to age (including epidemic pathogens). Such pathogens

would create fluctuating selection and may lead to a certain amount of standing variation in

immune sensitivity and specificity within a population, with different phenotypes rising and

falling in abundance as pathogen pressure ebbs and flows [59].

Insights and opportunities for empirical ecoimmunology

Our findings, while focused on the one axis of immune strategy (specificity vs. sensitivity),

may help explain why empirical investigations have struggled to consistently identify relation-

ships between life history and immune defense when looking across multiple taxa. For exam-

ple, lifespan correlates positively with immune investment in some [60] but not all studies

[31,61,62] looking at various different suites of taxa. Our results here highlight two potential

explanations for such variation. First, as described above, different aspects of lifespan produce

different selective pressures on immune defense; thus the precise life histories of the species

being compared are important context. As noted above, for cases where two organisms have

similar mean lifespans but different ages at first reproduction and reproductive life expectan-

cies, we would expect different optimal immune specificities. Second, in general these studies

do not incorporate variation in epidemiological risk across taxa. Yet the disease ecology of

each species shapes strategy to a great extent, especially via level of risk [8,10,13,21]. As long as

epidemiological context varies across species–for example, infection risk rising with age in

some species and declining with age in others–immune strategy may not correlate with life his-

tory per se. None of this is to say that life history does not matter–we clearly find that it can

matter a great deal. But researchers studying variation in immune strategy should consider

and examine both epidemiology and demography, including variation in infectious disease

risk with age. Epidemiology is at present a hidden variable in many ecoimmunological studies;

we should bring it to the light [63].

Empirical studies testing our predictions face several challenges but also present opportuni-

ties for advancing the fields of disease ecology and ecoimmunology. One such challenge is

characterizing epidemiological risk and how it varies with age. Longitudinal studies like [41]

and [42], though logistically challenging, may be our most promising avenue forward. Tracta-

ble force-of-infection models [64,65] may be particularly useful for establishing infection risk

per unit time, which is highly influential in our analysis as it describes the frequency with

which the immune system faces a challenge. An additional difficulty here is that the variation

within a population in epidemiological risk is important for assessing the amount of resolution

we can obtain in comparative studies. The greater the variation among individuals in epidemi-

ological risk, the greater their predicted variation in immune strategy, which in turn would

spill over to reduced differences among populations in the distributions of optimal immune

specificities each contains.

Another challenge for empirically testing our results is the development of methods to char-

acterize immune sensitivity and/or specificity. One potential avenue entails dose-response

curves of immune defenses produced in response to antigen exposure or experimental infec-

tion [66,67]–these might offer a window into specificity and sensitivity as they would describe

the threshold of receptor stimulation producing an immune response. Particular gene expres-

sion profiles, and how much they overlap across different antigenic stimuli, as discussed by

Hawash et al. [47], offer another intriguing new approach. Ascertaining incidence of immuno-

pathology may also provide insight into immune sensitivity, because ultimately immunopa-

thology should be more common in more immunologically-sensitive but less pathogen-

specific organisms. Alternatively, to understand receptor specificity and the range of antigens
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provoking an immune response, one could directly examine binding affinities for toll-like

receptors (TLRs) or the specificity of B and T cell receptors and the activation thresholds for

cells thus bound [8]. Any of these approaches would help us identify sensitivity and specificity

in identifying and responding to infections. Indeed, our results may even provide a framework

to interpret empirical results already in the literature, such as delineating epidemiological sce-

narios underlying apparently greater immune sensitivity for apes as compared to monkeys

[47].

Broader applications in disease ecology

Our insights may also have value for researchers interested in global health and conservation

of endangered taxa. The identification of reservoirs for zoonotic infections is a key research

concern, one that has only been highlighted further by the COVID-19 pandemic [68–72]. To

the extent that heterogeneities in zoonotic capacity exist, our model might help us to under-

stand why, by highlighting the importance of demographic and epidemiological nuance in

determining immune specificity and sensitivity, such that we can identify whether species

housing a greater proportion of zoonoses have particular immune strategies as a consequence

of their demography and epidemiology. For example, fast pace-of-life is hypothesized to be an

indicator of zoonotic reservoir capacity, but evidence for this is mixed [33]; our results high-

light how demographic and epidemiological differences within pace-of-life may create

immune heterogeneities that could shape which species with a fast pace-of-life genuinely are

important zoonotic reservoirs. Furthermore, the immune strategy of a zoonosis’s reservoir

host may be important for the level of threat that pathogen poses to humans [73–75]. For

example, if indeed human immune systems are relatively sensitive, as suggested by Hawash

et al. [47], then species with more specific immune systems may harbor zoonoses more dan-

gerous to humans due to the mismatch between human and reservoir immune strategies. Our

work offers a route to identifying these mismatches by a careful consideration of the compara-

tive demography and epidemiology of species.

Lastly, while we use a demographic framework based on single-year age classes, and while

we only focus on chordates, our modeling framework is taxon-agnostic. It is therefore quite

plausible that our results apply more broadly, to many different organisms with lifespans on

many different temporal scales. For example, do tree seedlings in the undergrowth experience

different risks of infection and mortality than adults stretching into the canopy? How do the

temporal durations of these different growth stages affect the weighting of such different haz-

ards in shaping plant immune sensitivity and specificity? Considering these two factors might

help us gain insight into the immune defenses deployed by plants and other organisms. Our

results might also offer insight into the immune strategies of microbial organisms. Past

research has described how epidemiology can shape prokaryote immune defenses [19,21,76],

and our results may help us understand how risk variation and host strategy would contribute.

The general principle that we find here is that immune specificity and sensitivity in chordates

should be shaped according to how disease and immunopathology risks differ across ages and

the contributions of those ages to fitness, and there is no reason that this would not apply

across a wider range of host taxa.

Conclusion

We have quantified an important ecological interaction shaping optimal organismal immune

strategy. In so doing, we show that differences in magnitude and timing of reproductive output

can drive differences in immune strategy, and that different longevity-associated life history

traits can pull in different directions on immune strategy. But epidemiology sets the strength
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and direction of the life history-immune strategy relationship for all life history traits. Thus

researchers hoping to understand immune defenses and their evolution must be mindful of

the interaction between overall host strategy and host environment.

Methods

Basic model

We use a model of immune system recognition and response strategy first developed in [8]. In

this model, immune strategy is described as a trade-off between sensitivity and specificity in detec-

tion and discernment of parasite signals (Fig 1, [8]). The trade-off between sensitivity and specific-

ity can be expressed mathematically with a receiver-operator curve (ROC), a tool frequently used

in describing signal detection [8,45,46]. Sensitivity and specificity are related with the equation

se ¼ 1 � expð� gð1 � spÞÞ; ð1Þ

where se is immune sensitivity, sp is immune specificity, and γ is a discrimination coefficient influ-

enced by the overlap of the distributions of parasite and non-parasite signals and the ability of the

host to discern that overlap (Fig 1B and 1C). Higher values of γ indicate less overlap and greater

discernment. Both se and sp are constrained on the interval [0,1].

Overall mortality risk is a sum of mortality hazards from disease and non-disease causes.

We include background, infection, and immunopathology mortality. Sensitivity and specific-

ity, coupled with infection risk, influence the total mortality attributable to infection and

immunopathology. Survival sx at age x is expressed via the following equation:

sx ¼ expð� ½mb þ ð1 � irÞmið1 � spÞ þ irmdð1 � seÞ þ irmidse�Þ; ð2Þ

where ir is infection risk, μb is background mortality risk, μi is the risk of immunopathology

mortality when uninfected, μd is the risk of infection-induced mortality, assuming no immune

response, and μid is the risk of infection-induced mortality when there is an immune response,

including any immunopathology risk. While the various mortality parameters are constrained

only to be non-negative, ir is constrained on [0,1]. Substituting Eq (1) into Eq (2) allows calcu-

lation of sx as a function of sp.
When we discuss epidemiological risk in this paper, we are referring to any of ir, μi, μd, and

μid. By varying these parameters with age we can explore how immune strategy affects survival

at different ages when the risks differ during life. We combine the resulting survival curve with

a reproductive output schedule to produce a demographic matrix with survival and fertility

parameters for multiple age classes. This matrix describes the dynamics of a population with

the given background mortality, epidemiological risks, reproductive output schedule, and

immune strategy. Each column in the matrix represents an age class of some duration (all uni-

form length in our approach) and contains one parameter in the top row describing the fertil-

ity of individuals of that age class and another parameter in the subdiagonal describing their

survival to the next age class. The last column has its survival parameter in the diagonal and

describes all individuals in that age class and older age classes. Survival parameters for each age

class x are sx as calculated above. As in [44], we define the fitness of a population as λ, the dom-

inant eigenvalue of the matrix, which is the population growth rate [51]; λ is considered prefer-

able to R0, the net reproductive rate, in circumstances with overlapping generations like our

framework [77]. By calculating λ for a range of immune specificities and sensitivities–here sp
values from 0 to 1 with intervals of 0.001 and the associated values of se−we can identify the

strategy maximizing fitness. While we mostly report our results as optimal immune specificity

for convenience, all values can be transformed to optimal immune sensitivities by Eq (1).
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Designating reproductive and epidemiological variation

In our exploration of the effects of reproductive demography, we defined five different sched-

ules for reproductive output. For our baseline strategy, rate of reproduction was constant at all

ages from the age of first reproduction (“Baseline”). We then chose two strategies that also fea-

tured constant rates of reproduction across age classes, but with higher (“High”) or lower

(“Low”) yearly reproductive outputs relative to that baseline. To investigate how variation in

reproduction with age might affect optimal immune strategy, we also used simple schedules

where reproduction either increased with age class at a constant rate from a low initial value

(“Rising”) or decreased with age class at a constant rate from a high initial value (“Declining”).

These reproductive schedules give the fertility parameters for each age class in the demo-

graphic matrix, beginning from the age class of first reproduction; age classes pre-reproductive

maturity have a fertility of 0. For matrices built with each of these reproductive schedules we

calculated the optimal immune strategy, as described above, in a particular epidemiological

context where infection risk drops at the age of reproductive maturity. In addition, changing

reproductive output alters fitness, such that our five schedules have different fitness values

when confronted with the same mortality risks; therefore, to establish the robustness of our

results, we also explored an alternate case with different background mortality rates μb for each

schedule to approximately equalize the fitness values associated with them while still using the

same epidemiological context across the five schedules.

We next considered how variation in epidemiological risk across life affects optimal

immune strategy. We identified two epidemiological scenarios, each with a single change in

risk at reproductive maturity–a “stepped” mode (S6 Table). For our main results we focused

on variation in infection risk (ir). In our scenarios ir fell (A1) and rose (A2) at reproductive

maturity, respectively. For all scenarios, the other parameters remained constant. These sce-

narios could be held to examine a case where infection risk declines from high to low (A1) and

where infection risk rises from low to high (A2). We then combined these two scenarios with

the five different reproductive schedules to explore how varying epidemiological context alters

the relationship between reproduction and optimal immune strategy. As previously shown, if

epidemiological risk does not vary with age, features of demography do not modulate the opti-

mal immune sensitivity and specificity in our model [44] and therefore, we do not further eval-

uate scenarios where epidemiological risk is flat over age.

We also explored how different magnitudes of risk, and quantities of variation in said risk,

affected optimal immune specificity and sensitivity. Here we explored four different scenarios

for variation in infection risk (ir), again with risk changing once at reproductive maturity (S7

Table). To characterize the importance of absolute magnitude of risk, we used two scenarios

where ir dropped at reproductive maturity; the amount of decline was the same between the

two scenarios, but the absolute level of risk differed in each age class, with a low-risk scenario

(B1) and a high-risk scenario (B2). To explore how the magnitude of risk variation affected

optimal strategy, we used two scenarios with different quantities of risk change at reproductive

maturity, with a large-change scenario (B3) and a small-change scenario (B4). For all scenarios,

the other parameter values in our model were μb = 0.15, μd = 0.3, μi = 0.1, μid = 0.01, and γ = 4.

As above, we combined these scenarios with the five reproductive schedules to investigate how

magnitude and variation of risk affect optimal immune strategies.

To further consider the importance of which risk parameters vary with age and how they

do so, we also considered two alternative types of variation in risk with age. For the first type,

we varied undetected infection mortality risk (μd) with age while infection risk (ir) was held

constant. We repeated each of the A and B scenarios for ir with variation in μd instead. In these

scenarios, ir = 0.4 at all ages, while μd varies on the same intervals that ir did in the analogous
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scenarios, and all other parameters retain the same values. For the second type, we defined a

separate mode of variation–“smoothed”–in which the increase or decrease in risk between age

classes is constant. To translate between our scenarios, we used the risk value prior to repro-

duction in our stepped scenarios as the risk value for the first age class in our smoothed scenar-

ios, and we used the risk value for reproductive years in the stepped scenarios as the risk value

for the last age class in our smoothed scenarios. We used this approach with both ir and μd,
with the same values for other parameters. We therefore explored versions of A1–A2 and B1–

B4 for both the stepped and smoothed modes and for both ir and μd.

Predicting optimal immune defense from population projection matrices

To root our analysis in existing empirical schedules of reproduction and survival, we leveraged

a large representative dataset of population projection matrices from the COMADRE database

[52,53] to serve as starting points for the analysis. These matrices give us survival and fertility

parameters calculated from wild populations of various animal species. We combined these

parameters, with some transformation, with epidemiological risk parameters and then

explored a range of specificity (sp) and sensitivity (se) values–again from 0 to 1 with intervals of

0.001 –to determine what immune specificity and sensitivity would produce the maximum

population growth rate given those risk, fertility, and survival parameters.

We restricted our analysis to primitive, irreducible, and ergodic COMADRE matrices (i.e.,

the matrix diagonal contains 0s except for the final entry, survival is contained in the off-diago-

nals, and fertility is contained in the first row) that are structured by age in years and for which

each age class is equivalent to one year. By using only matrices structured in this manner we

ensured comparability between populations in epidemiology and life history. After this filter-

ing, we were left with 298 population matrices representing 129 chordate species. We also

report results for an analysis that includes only 151 population matrices representing 47 mam-

mal species.

Transforming matrices for use with prediction method

The population projection matrices from COMADRE can be of varying dimension, depending

on both the demography of the population and the data available. For matrices with each age

class equivalent to one year, which we are using, this primarily affects the amount of detail in

describing the population dynamics of later age classes. Because we are interested in how epi-

demiological risk variation across life affects immune strategy and accordingly want to ensure

that the epidemiological schedules are comparable across taxa, we standardized matrix dimen-

sion with respect to checkpoints in the life history of an organism. We transformed each origi-

nal matrix to a new one with its transformed dimension being the sum of the age at first

reproduction of the organism and the reproductive life expectancy of the organism. In this

way we can scale epidemiological risk variation over age to each species’s lifespan while retain-

ing comparability across taxa with respect to life history.

Re-sizing matrices according to our above criterion requires increasing the dimension of

some matrices and decreasing the dimension of others. Increasing dimension is simple: we

added columns and rows with the same survival and fertility parameters as those in the final

column and row of the original matrix. Such a matrix describes the exact same population

dynamics, including population growth rate (λ), as the original matrix, because the final age

class of any matrix describes the survival and fertility of any individual of that age class or

older. Decreasing dimension is a slightly more complex process. To accomplish this, we used

an algorithm designed by Hooley [78]. In brief, this algorithm collapses designated rows and

columns by taking an average of the survival and fertility parameters in those rows and
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columns and weighting by stable age structure in those age classes. The weighted average

parameters are used as the fertility and survival parameters for a single new column replacing

the collapsed columns. We follow the recommendation from Salguero-Gómez and Plotkin

[79] to collapse the rows and columns that represent the oldest age classes, as this criterion

minimizes the distortion of demographic patterns by only affecting the degree of nuance in

later age classes, which will generally have relatively small contributions to population dynam-

ics. This collapsing algorithm produces a matrix of the desired dimension with population

dynamics quite tightly approximating those of the original matrix. Overall 288 of the 298

matrices in our dataset required resizing, but this resizing has minimal impact on estimates of

population dynamics for each matrix (S3 Fig).

While the COMADRE matrices do provide the age trajectory of survival (and thus cumula-

tive mortality hazard) for our focal species, they offer no insight into causes of mortality. In

theory one would want to determine immune strategy based on a precise knowledge of infec-

tion and immunopathology-associated risk. But there is no way to establish what fraction of

the mortality recorded in the matrix is attributable to infectious disease or immunopathology

vs. other causes of death. To address this, we must define our own background mortality and

epidemiological risk parameters, and these can only be loose approximations of the risks expe-

rienced by a given organism as recorded in the relevant population projection matrix. Because

it has previously been established that epidemiological context strongly affects immune strat-

egy in this model framework [8,44], we want to compare among species subject to the same

epidemiological risks to understand how life history might be linked to immune specificity

and sensitivity without confounding. We therefore choose arbitrary epidemiological risk

parameters (and schedules of variation thereof) which can be defined consistently for all matri-

ces, although in natural systems we would expect variation in risks.

Our remaining problem is choosing background mortality parameter values. Because we

are deriving life history from the original population projection matrix, we want to choose our

value for background mortality (μb) based on the mortality recorded in the original matrix.

We therefore designate μb for each age class of our new matrix as being some proportion ρ of

the original total mortality for that age class as given in the original matrix. This designation

arbitrarily defines ρ as the proportion of overall mortality attributable to background causes.

Thus the μb value for each given age class x in our new survival curve is calculated as a product

of the logarithm of survival sx in the relevant age class x of the re-sized matrix and a constant ρ,

such that

mb ¼ � rðlogðs
orig
x ÞÞ: ð3Þ

For our analysis we used ρ = 0.75, but the value of ρ has a minimal effect on our results. We

combine the new μbvalue for each age class calculated as in Eq (3) with epidemiological risks

to produce a new survival curve for the population under consideration. The resulting survival

curve only approximates the original survival curve, but it allows us to investigate different epi-

demiological scenarios and immune strategies.

Because the qualitative results from variation in infection risk (ir) and undetected infection

mortality risk (μd) are the same in our earlier analyses, we only looked at different ir scenarios

for this portion of our analysis. We considered two ways that ir might vary with age. The first

is identical to our stepped mode described earlier: we define one ir value for pre-reproductive

age classes and another ir value for reproductive age classes. Our second mode is similar to our

smoothed mode previously described in allowing ir to change smoothly across lifespan. Here,

we define a starting risk for the schedule, which would be ir in the first age class of the matrix,

and an ending risk for the schedule, which would be ir for the last age class of the matrix, and
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allow a uniform change in ir across intermediate age classes. However, since each matrix differs

in dimension (and therefore absolute time and age described), this rate of change in ir cannot

be the same from matrix to matrix. Therefore we scale the rate of change by the dimension of

the matrix, such that change in ir relative to the demography described by the matrix–demog-

raphy that is standardized as the sum of age at first reproduction and reproductive life expec-

tancy–is constant across all populations (S4 Fig). An example of how this works: in a matrix

with dimension 3 (i.e. having 3 age classes), a schedule for ir might be [0.45, 0.325, 0.2], while

for a matrix of dimension 6 the equivalent schedule for ir would be [0.45, 0.4, 0.35, 0.3, 0.25,

0.2]. As noted above, the absolute pace of change of risk varies between the two schedules, but

the relative pace of change with respect to life history is constant and the absolute change

across life is also constant (S4 Fig).

In this way we produce equations for survival sx for each age class in the matrix. With these,

and the fertility parameters of the original matrix, we determined optimal specificity as

described above, creating matrices across the range of values of sp and identifying the values of

sp and se that produce λmax. This is our predicted optimal immune specificity and sensitivity

associated with the original matrix from the COMADRE database. As above, we present our

results in terms of specificity, but sp values can be easily translated to se values by Eq 1.

Linear model for relationship between demography and predicted immune

strategy

To describe the relationship between life history and immune specificity, we calculated four

life history summary statistics from our matrices: age class of first reproduction, life expectancy

post-reproductive maturity or reproductive life expectancy, mean reproductive rate, and gen-

eration time. Each of these statistics is calculated in the manner defined by [27]. To describe

the relationship between the life history traits and the predicted optimal immune specificity,

we used a Bayesian linear model of specificity as a function of life history trait values. For our

main results we used life history statistics as calculated from the original matrix in the

COMADRE database, rather than the transformed, optimized matrix, to counteract any sys-

tematic distortions introduced by our manipulation of matrix dimension and survival curve

calculation (although note as above that dimension manipulation does not seem to induce any

demographic distortions). However, to ensure robustness we also did repeat our analysis using

statistics calculated from the post-processing matrices. In addition, we considered generation

time separately from the other three traits because in our dataset it is highly collinear with each

of them.

Life history trait parameter values were first log-transformed to produce trait value distribu-

tions approximating a normal distribution. They were then standardized by calculating Z-

scores from the mean and standard deviation of the sampled values for each parameter. Pre-

dicted optimal immune sensitivity sp
�

was left unstandardized because it has no units and is

constrained on the interval [0,1]. We also assumed for our linear model that sp
�

is normally

distributed; while sp does have a constrained possible range, our model predictions never

approached those boundaries, such that a normal distribution can reasonably be used. The

model was constructed with the “ulam” function of the “rethinking” package v2.01 (which

implements RStan) in R v4.0.1 and run for 2000 samples [80,81]. We designated the prior for

the intercept of sp
�

as a normal distribution with μ = 0.5 and σ = 0.15; for all coefficients, we

similarly used a normal distribution prior centered on μ = 0, with σ = 0.1. In total we examined

121 different scenarios for variation in infection risk, with differences in how much infection

risk changed across life and whether it rose or fell. We produced predicted optimal immune

specificities for our set of population projection matrices, and we analyzed the results with
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linear models for each scenario. We repeated these analyses for both stepped and smoothed

modes of ir variation.

Supporting information

S1 Fig. Demographic details for reproductive schedules with optimal immune strategies.

Optimal immune strategies identified in Fig 2 and S1 Table. Dashed line shows age class of

reproductive maturity, the third age class. A) Reproductive value distributions, with reproduc-

tive value in the first age class defined as 1; B) Stable age structures; C) Elasticities of λ with

respect to survival; D) Elasticities of λ with respect to fertility. Infection risk ir drops from 0.6

in pre-reproductive age classes to 0.2 in reproductive age classes. Other parameter values are

μb = 0.15, μi = 0.1, μd = 0.3, μdi = 0.01, and γ = 4.

(PDF)

S2 Fig. Epidemiological environment alters the effect of reproduction on immune strategy:

infection mortality risk μd. Reproduction begins in the third age class for all schedules. In

each scenario, μd starts at one value and drops to a lower value at the third age class. A) The

change in optimal immune specificity associated with differences in epidemiological context

(i.e. changes in μd, on the x-axis) and reproduction (different points and lines, color-coded at

center). Parameter values are μb = 0.15, μi = 0.1, μid = 0.01, ir = 0.4, and γ = 4. In the declining

scenario, μd drops with age from 0.6 to 0.2; in the rising scenario, μd increases from 0.2 to 0.6.

B) The change in range of optimal specificities associated with different reproductive demog-

raphies associated with different magnitudes of variation in decline of infection mortality risk

μd with age. Parameter values are μb = 0.15, μi = 0.1, μid = 0.01, ir = 0.4, and γ = 4. In the lower

range scenario, μd declines from 0.45 to 0.2; in the higher range, from 0.7 to 0.45; in the broad

range, from 0.7 to 0.2; in the narrow range, from 0.525 to 0.375.

(PDF)

S3 Fig. Implementation of matrix manipulation methods does not distort demographic

patterns. A) Histogram shows, for the 298 matrices used from the COMADRE database, how

they were altered in dimension, either expanded or collapsed, and the change in dimension

after alteration. B) Plot shows the change in matrix dimension and the associated difference

between λ when calculated for the original matrix and when calculated for the matrix after the

dimension has been altered.

(PDF)

S4 Fig. Method for scaling risk parameter change to matrix dimension. X-coordinates for lines

in absolute age plots determined by age classes within matrix, and so the blue line is for an organ-

ism with a short lifespan and smaller matrix dimension, while the red line is for an organism with

a long lifespan and larger matrix dimension. Dimension of manipulated matrices (see S3 Fig)

determined as sum of age at first reproduction and reproductive life expectancy.

(PDF)

S5 Fig. Influence of reproductive demography on optimal immune strategy: smoothed

infection risk ir variation. Plot showing optimal combination of immune sensitivity and spec-

ificity for each of five reproductive demographic schedules (color-coded at left), for a single

epidemiological risk environment where infection risk declines at a constant rate from ir = 0.6

in age class 1 to ir = 0.2 in age class 10. Reproduction begins in the third age class for all sched-

ules. Strategy optima, shown as points on the dashed curve, are determined as the immune

specificity and sensitivity maximizing λ, the population growth rate. Dashed curve shows the

shape of the specificity/sensitivity trade-off curve for γ = 4. Solid lines show values of the
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respective optimal strategies on each axis. Other parameter values are μb = 0.15, μi = 0.1, μd =

0.3, and μid = 0.01.

(PDF)

S6 Fig. Epidemiological environment alters the effect of reproduction on immune strategy:

infection risk ir with smoothed risk variation. Reproduction begins in the third age class for

all schedules, and ir changes a constant amount from age class to age class within each sched-

ule. A) The change in optimal immune specificity associated with differences in epidemiologi-

cal context (i.e. changes in ir, on the x-axis) and reproduction (different points and lines,

color-coded at center). Parameter values are μb = 0.15, μi = 0.1, μd = 0.3, μid = 0.01, and γ = 4.

In the declining scenario, ir declines with age from 0.6 to 0.2; in the rising scenario, ir increases

from 0.2 to 0.6. B) The change in range of optimal specificities associated with different repro-

ductive demographies associated with different magnitudes of variation in decline of infection

risk ir with age. Parameter values are μb = 0.15, μi = 0.1, μd = 0.3, μdi = 0.01, and γ = 4. In the

lower range scenario, ir declines with age from 0.45 to 0.2; in the higher range, from 0.7 to

0.45; in the broad range, from 0.7 to 0.2; in the narrow range, from 0.525 to 0.375.

(PDF)

S7 Fig. Epidemiological environment alters the effect of reproduction on immune strategy:

infection mortality risk μd with smoothed risk variation. Reproduction begins in the third

age class for all schedules, and μd changes a constant amount from age class to age class within

each schedule. A) The change in optimal immune specificity associated with differences in epi-

demiological context (i.e. changes in μd, on the x-axis) and reproduction (different points and

lines, color-coded at center). Parameter values are μb = 0.15, μi = 0.1, μid = 0.01, ir = 0.4, and γ =

4. In the declining scenario, μd declines with age from 0.6 to 0.2; in the rising scenario, μd
increases from 0.2 to 0.6. B) The change in range of optimal specificities associated with differ-

ent reproductive demographies associated with different magnitudes of variation in decline of

infection mortality risk μd with age. Parameter values are μb = 0.15, μi = 0.1, μid = 0.01, ir = 0.4,

and γ = 4. In the lower range scenario, μd declines with age from 0.45 to 0.2; in the higher range,

from 0.7 to 0.45; in the broad range, from 0.7 to 0.2; in the narrow range, from 0.525 to 0.375.

(PDF)

S8 Fig. Interaction of demography and epidemiology: smoothed infection risk ir variation.

Infection risk is set such that infection risk changes at a constant rate relative to lifespan from a

defined value of ir for the first age class to a defined value of ir for the last age class. Our dataset

comprises 298 population matrices representing 129 chordate species. For all scenarios,

parameter values are μd = 0.3, μi = 0.1, μid = 0.01, ρ = 0.75, and γ = 4. A) Predicted optimal

immune specificities when infection risk declines with age, with respect to population repro-

ductive life expectancy and mean reproductive rate as calculated from original matrix. Infec-

tion risk ir prior to reproductive maturity is 0.45; for reproductive age classes, it is 0.2. B)

Predicted optimal immune specificities when infection risk rises with age with respect to popu-

lation reproductive life expectancy and mean reproductive rate as calculated from original

matrix. Infection risk ir prior to reproductive maturity is 0.2; for reproductive age classes, it is

0.45.

(PDF)

S9 Fig. Epidemiological dependency of life history-specificity relationship: smoothed

infection risk ir variation. Tile plots showing, for a variety of scenarios of variation in ir, coef-

ficients of relationship between the designated life history trait and predicted optimal immune

specificity as estimated from Bayesian linear models. Each tile is a scenario in which predicted

optimal immune specificities were generated for 298 population projection matrices
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representing 129 chordate species. A linear model was used to estimate relationship coeffi-

cients for each scenario. The coefficient value in the plot represents the mean value of the pos-

terior probability distribution, except on the diagonal; on the diagonal, all coefficients are 0

(see text). The value of ir on the x-axis is the risk for the first age class in the matrix, while the

value on the y-axis is the risk for the last age class; rate of change between intermediate age

classes is adjusted per matrix, based on dimension, so that risk changes at a constant rate from

age class to age class within a matrix but the absolute magnitude of risk change is equivalent

for all matrices. Life history trait values log-transformed and standardized as Z-scores for com-

parability of coefficients. For all estimated coefficients off the diagonal, 89% credible intervals

do not include 0. For all scenarios, parameter values are μd = 0.3, μi = 0.1, μid = 0.01, ρ = 0.75,

and γ = 4. Unlike Fig 5, age class of first reproduction is not shown because our models do not

confidently predict a relationship with immune specificity for any ir scenario.

(PDF)

S1 Table. Effect of background mortality μb on optimal immune strategy. Comparison of

results from analysis of effect of reproductive schedule on optimal immune strategy when μb
does not change to equalize λ (original) and when μb does change to equalize λ (adjusted). sp

�

is the optimal immune specificity that maximizes λ. Infection risk ir declines from 0.6 before

reproductive maturity (age classes 1 and 2) to 0.2 after (classes 3+). Other parameter values are

μi = 0.1, μd = 0.3, μid = 0.01, and γ = 4.

(DOCX)

S2 Table. Effect of background mortality μb on optimal immune strategy: smoothed infec-

tion risk variation. Comparison of results from analysis of reproductive schedule on optimal

immune strategy when μb does not change to equalize λ (original) and when μb does change to

equalize λ (adjusted). sp
�

is the optimal immune specificity that maximizes λ. Infection risk ir
declines smoothly from 0.6 in the first age class to 0.2 in the final age class. Other parameter

values are μi = 0.1, μd = 0.3, μid = 0.01, and γ = 4.

(DOCX)

S3 Table. Results from Bayesian linear model for demography and immune strategy–anal-

ysis using only mammal life histories. Linear model looks at model-predicted optimal

immune specificity as a function of three different life history summary statistics. Results are

means and, in brackets, boundaries of 89% highest posterior density intervals (HPDI) for pos-

terior probability distributions for parameter values. Entries in italics indicate the 89% HPDI

overlaps with 0 for that parameter. All summary statistics were calculated from original matrix

in COMADRE database, log-transformed, and standardized as Z-scores. The only matrices

included are those 151 qualifying matrices from 47 different mammal species. For stepped epi-

demiological scenario, when infection risk (ir) is rising, ir in pre-reproductive years is 0.2, and

ir in reproductive years is 0.45. When infection risk declines in the stepped scenario, ir in pre-

reproductive years is 0.45, and ir in reproductive years is 0.2. In smoothed declining scenario,

ir declines from 0.45 to 0.2; in rising scenario, ir rises from 0.2 to 0.45. Other parameter values

are μd = 0.3, μi = 0.1, μid = 0.01, ρ = 0.75, and γ = 4.

(DOCX)

S4 Table. Results from Bayesian linear model for demography and immune strategy–anal-

ysis with generation time only. Linear model looks at model-predicted optimal immune spec-

ificity as a function of the common life history summary statistic generation time, which is

heavily confounded with other summary statistics. Results are means and, in brackets, bound-

aries of 89% highest posterior density intervals. All summary statistics were calculated from

original matrix in COMADRE database, log-transformed, and standardized as Z-scores.
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Dataset includes 298 qualifying matrices from 129 chordate species. In smoothed declining

scenario, infection risk (ir) declines from 0.45 to 0.2; in rising scenario, ir rises from 0.2 to 0.45.

For stepped epidemiological scenario, when infection risk is rising, ir in pre-reproductive years

is 0.2, and ir in reproductive years is 0.45. When infection risk declines in the stepped scenario,

ir in pre-reproductive years is 0.45, and ir in reproductive years is 0.2. In smoothed declining

scenario, ir declines from 0.45 to 0.2; in rising scenario, ir rises from 0.2 to 0.45. Other parame-

ter values are μd = 0.3, μi = 0.1, μid = 0.01, ρ = 0.75, and γ = 4.

(DOCX)

S5 Table. Results from Bayesian linear model for demography and immune strategy–anal-

ysis with post-processing life history statistics. Linear model looks at model-predicted opti-

mal immune specificity as a function of three different life history summary statistics. Results

are means and, in brackets, boundaries of 89% highest posterior density intervals (HPDI) for

posterior probability distributions for parameter values. Entries in italics indicate the 89%

HPDI overlaps with 0 for that parameter. All summary statistics were calculated from output

matrices after manipulation and optimization of sp (unlike results shown in Fig 4 and Table 1),

log-transformed, and standardized as Z-scores. Dataset includes 298 qualifying matrices from

129 chordate species. For stepped epidemiological scenario, when infection risk (ir) is declining,

ir in pre-reproductive years is 0.2, and ir in reproductive years is 0.45. When infection risk

declines in the stepped scenario, ir in pre-reproductive years is 0.45, and ir in reproductive years

is 0.2. In smoothed declining scenario, ir declines from 0.45 to 0.2; in rising scenario, ir rises

from 0.2 to 0.45. Other parameter values are μd = 0.3, μi = 0.1, μid = 0.01, ρ = 0.75, and γ = 4.

(DOCX)

S6 Table. Epidemiological Risk Scenarios: Set A. The parameter values for each different

analysis of the reproductive demography-immune strategy relationship as described in the

Methods. We also considered similar scenarios in which infection mortality risk (μd) varies on

the same intervals as infection risk (ir) does here, while ir is held constant at 0.4. For Figs 3 and

S2, risk parameters changed from the first value in brackets for pre-reproductive age classes

(classes 1 and 2) to the second for reproductive age classes (classes 3+). For S5 and S6 Figs,

infection risk smoothly changed from the first value in the brackets in the first age class to the

second value in the last age class of the matrix, with the same change in risk between each age

class.

(DOCX)

S7 Table. Epidemiological Risk Scenarios: Set B. The parameter values for each scenario of

the reproductive demography-immune strategy relationship as described in the Methods, used

for an analysis of the influence of magnitude of change in risk with age on immune strategy.

We also considered scenarios where infection mortality risk (μd) varied on the same intervals

as infection risk (ir) does here, with ir then being held at 0.4 across all age classes. For Figs 3

and S2, risk parameters dropped from the first value in brackets for pre-reproductive age clas-

ses (classes 1 and 2) to the second for reproductive age classes (classes 3+). For S5 and S6 Figs,

infection risk smoothly fell from the first value in the brackets in the first age class to the sec-

ond value in the last age class of the matrix, with the same change in risk between each age

class.

(DOCX)

S1 Code. R code necessary for running simulations to find optimal immune specificity and

sensitivity and recreating figures and tables in the main text and supplement.

(R)
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