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Abstract

We present an application of nonlinear image registration to align in microscopy time lapse

sequences for every frame the cell outline and interior with the outline and interior of the

same cell in a reference frame. The registration relies on a subcellular fiducial marker, a cell

motion mask, and a topological regularization that enforces diffeomorphism on the registra-

tion without significant loss of granularity. This allows spatiotemporal analysis of extremely

noisy and diffuse molecular processes across the entire cell. We validate the registration

method for different fiducial markers by measuring the intensity differences between pre-

dicted and original time lapse sequences of Actin cytoskeleton images and by uncovering

zones of spatially organized GEF- and GTPase signaling dynamics visualized by FRET-

based activity biosensors in MDA-MB-231 cells. We then demonstrate applications of the

registration method in conjunction with stochastic time-series analysis. We describe distinct

zones of locally coherent dynamics of the cytoplasmic protein Profilin in U2OS cells. Further

analysis of the Profilin dynamics revealed strong relationships with Actin cytoskeleton reor-

ganization during cell symmetry-breaking and polarization. This study thus provides a

framework for extracting information to explore functional interactions between cell morpho-

dynamics, protein distributions, and signaling in cells undergoing continuous shape

changes. Matlab code implementing the proposed registration method is available at https://

github.com/DanuserLab/Mask-Regularized-Diffeomorphic-Cell-Registration.

Author summary

By adapting optical flow based, nonlinear image registration we created a method for the

time-series analysis of local subcellular processes across the entire cell. This is an extension

to our previously published cell edge-based referencing method, which does not allow the

extraction of meaningful subcellular time-series more than a few microns away from the

cell edge. We leverage the new capacity of sampling at every subcellular location for the

discovery of organized Profilin dynamics in symmetry-breaking and polarizing cells,

which in turn are related to the dynamics of its regulatory target Actin.
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Introduction

Time-series analysis of live cell movies can quantify functional interactions between proteins

in the context of complex regulatory networks [1–4]. Utilization of these statistical tools

requires extraction of time-series in a cell-centric frame of reference that retains the locations

of molecular interactions over time despite cellular movements and shape variation. For cell

biology this means following these locations through large morphological deformations such

as protrusion and retraction of the cell boundary and associated advective movements of the

cytoskeleton and other subcellular structures. Because of the difficulty in tracking subcellular

locations over time, many analyses of live cell movies have been limited in their ability to test

models of dynamic cell behavior quantitatively.

Historical solutions to the extraction of temporal information in one subcellular location

can be broken down into three categories: manual sampling (i.e. kymographs) [5, 6], cell edge

propagated sampling [1], and experimental approaches that limit cell deformation [7]. Kymo-

graphs, while intuitive and easily used, do not inform on spatiotemporal relations across the

entire cell and even locally they tend to cause significant artifacts to the time-series as they gen-

erally do not follow cell deformation [5, 6]. The introduction of edge propagated sampling has

overcome some of these issues, in principle [1, 8]. However, while registration of locations

near the cell edge reveal expected interactions between proteins [1, 2, 9], time-series at loca-

tions deeper inside the cell comprise a convolution of the real molecular dynamics with cyto-

plasmic deformation, leading to uninterpretable data typically a mere few microns away from

the cell edge. Experimental constraints such as micropatterning try to overcome this problem

by fixing the cell footprint to a particular shape [10], but they do not necessarily limit the

advective movements of subcellular structures. More importantly these constraints often intro-

duce harsh perturbations to the cell architecture, which obscure many of the natural cellular

behaviors. A more promising approach is the use of image processing to constrain the foot-

print of the cell across time through nonlinear registration. This approach can either utilize

principles of optimal transport or optical flow.

Optimal transport methods find the minimum movement necessary to redistribute the

intensity from an input image to the intensity of a target image [11–13]. This is well suited to

registration of images collected from multiple samples since minimal displacement is the most

appropriate assumption without real displacements between the two images to approximate.

Prior work at the cellular scale utilizing optimal transport principles to track time-series in live

neutrophils focused on a stereotypical set of behaviors, i.e., the formation of an immunological

synapse attacking a model bead [11]. Although in this study the authors compiled a great num-

ber of signaling time-series from morphologically diverse neutrophils, the analysis was focused

on the narrow synapse region with almost rigid geometry. Neutrophils, whose morphology

differed too much from the stereotype, were discarded as outliers. Moreover, the study was

designed to analyze relatively coarse cellular processes, which softened the requirement for

spatial alignment of the time-series with detailed variations of the synapse shape.

Optical flow-based methods also work under the assumption of intensity conservation but

estimate local displacements based on local intensity differences and the observed intensity

gradient [14–16]. These methods have been applied to great success in registration of func-

tional brain studies that also seek to extract time-series with high spatial granularity [17]. How-

ever, the computation of optical flow belongs to a class of underdetermined inverse problems

that requires regularization. Although much of the recent work in optical flow analysis has

deployed deep learning approaches to accomplish implicit regularization[18], in many scenar-

ios with priors, for example, on the length scale of variation in the displacement field, it

remains advantageous to deploy application-specific constraints to stabilize the flow
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reconstruction [19, 20]. Here we present an optical flow-based approach with a regularization

scheme tailored for cell biological applications. The method enables the registration of the cell

outline and of image patterns within the cell perimeter throughout live movies. We then illus-

trate how the registration can be employed to extract local time-series across the entire foot-

print of arbitrarily deforming cells. To demonstrate the potential of this time-series extraction

pipeline we chose to analyze FRET-based biosensor activation signals and the dynamics of

Profilin, which is a diffuse cytoplasmic protein implicated in the regulation of Actin polymeri-

zation. Profilin’s interaction with Actin cannot be mapped without cellular registration.

Results

Cell-centric frame of reference for the analysis of the spatiotemporal

dynamics of diffuse proteins in live cell movies

To extract time-series from live cell movies all frames must be mapped from the lab-centric

frame of reference of the image detector into a cell-centric frame of reference, where any sub-

cellular location covers a relevant time-series. This is an ill-defined problem since we cannot

directly observe all physical and chemical processes that govern the transport of a labeled pro-

tein or its activation over time, including the changes in cell morphology itself. Nevertheless,

by using an approximation of these processes using optical flow principles we often can cap-

ture subcellular dynamics near the resolution of the imaging.

Among the various techniques for computing optical flow, Thirion’s demons have gained

popularity because of fast computation speed, intuitive approach, and ease of adjustment of

the regularization to diverse data sets [21–23]. Thirion’s demons define correspondence

between two images following locally the intensity gradient to approximate the advective pro-

cess that took place between the two images [21]. The procedure thus makes minimal assump-

tions about the data and performs well when a movie is sampled quickly relative to the

changes in morphology, a shared prerequisite for the intended goal of time-series analysis.

Our goal is to facilitate the analysis of subcellular patterns of dynamic molecular activities

visualized via fluorescently labeled proteins in 2D movies of single cells. We conceptualize the

cell as a dense space where the location of a molecular activity or concentration, referred to as

the signal of interest, is coupled to the morphodynamics of the cell (Fig 1a, second row). The

morphodynamics is observed by a separate probe, referred to as the location fiducial (Fig 1a,

top row). Using the location fiducial, we apply nonlinear image registration techniques with

the objective of matching all location fiducial images in the movie as closely as possible to a ref-

erence frame (S1 Movie, top). The reference frame can be any image of the same location fidu-

cial, including an image of another cell. Without losing the power of generalizing the pipeline,

we will focus here on demonstrating the scenario where the middle frame of a movie is used as

the reference frame. We then remap images of the corresponding signal of interest using the

deformations that produced closely matched fiducial images to compile a movie of the signal

of interest with a fixed cell shape (Fig 1a, third and fourth row). The resulting new movie dis-

plays the spatial and temporal dynamics of the signal of interest that were not coupled to the

advective movement of location fiducial and cell boundary (S1 Movie, bottom).

The implemented pipeline rests on important assumptions about the data and signal of

interest: i) The sampling rate is below the Nyquist limit of the biological behavior of interest.

This implies small shape changes between timepoints but large shape changes can occur over

the course of the entire movie. ii) The cell should sit flat in 2D and should not move out of

view for the duration of the analysis. While the cell can contact other cells, it should not move

below or above other cells as in 2D this produces a region of high intensity in the fiducial chan-

nel that will be separated by the remapping process. iii) The subcellular motion is accurately
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Fig 1. Registration of a signal of interest captured by a live cell movie using a co-imaged location fiducial. a)

Illustration of the cell registration pipeline. Top row: The pipeline establishes a frame-by-frame diffeomorphism

between all images of a location fiducial time lapse sequence and a reference frame. Without loss of generality, all

analyses in this paper rely on the center frame of the sequence as the reference frame. Bottom row: The diffeomorphic

functions are applied to remapping a signal of interest from the original movie to a new movie with a rigid geometry

defined by the location fiducial reference. The temporal dynamics of the signal of interest is conserved by the

remapping process. b) Application of the pipeline to a cell undergoing symmetry breaking, i.e. it transforms from a

round geometry to a geometry with front (F)-back (B) polarity (see annotation in the center frame of the remapped

Actin signal). The data includes a Halo-CAAX and mNG-Actin time lapse sequence as a location fiducial and as the

signal of interest, respectively. Colored points in the center frame of the remapped Actin signal indicate the three

positions at which mNG-Actin time-series are sampled in d. c) Cell edge color-coded from blue (early time points) to

red (late time points) in the geometry of the original movie (left) and in the geometry of the reference frame (right).

With the exception of two regions with strong, intermittent ruffling activity (arrowheads), the registration produces a

stationary cell edge. d) The registration of the time lapse image sequence in a spatially stationary reference frame
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represented by a location fiducial marker. While this assumption drives the primary objective

of cellular registration, our choice of regularization substantially relaxes the requirement for

complete tracking of the fiducial marker throughout the cell perimeter.

Fig 1b introduces the pipeline on the example of a polarizing U2OS cell. Over the course of

approx. 20 minutes the cell changes from a rounded shape to a canonical migratory shape with

a leading edge. We use Actin as the signal of interest and a CAAX membrane marker as the

location fiducial. The method eliminates shape deformation except for spurious artifacts in

two peripheral regions of erratic ruffle formation where cell edge tracking fails (Fig 1c and

S2 Movie).

After remapping, time-series of the signal of interest can be extracted at any subcellular

location (Fig 1d, positions of lamellipodia, retraction fiber, and transverse arcs are indicated in

the reference time point of Fig 1b 3rd row). Of note, in this example the registration is accom-

plished based on a diffuse signal associated with the plasma membrane. Nonetheless, fine

fibrous structures of the Actin signal of interest are preserved at both the cell front and the

back (Fig 1b 3rd row), indicating the accurate estimation of a fine-grained deformation field

over time.

Algorithm for fitting deformation fields

The original Thirion’s demons algorithm framed image registration as an advective process in

which a moving image (movie frames) is deformed locally onto a target image (the reference

frame) such that the remapped moving image, through interpolation, matched the target

image as closely as possible [21, 22]. The algorithm alternates between calculating the local dis-

placements based on intensity differences and spatially regularizing the displacements with a

Gaussian kernel. For a given coordinate, let m be the local intensity of the moving image and f
be the local intensity of the target image. The local displacement u = [u1, u2] is given by:

u ¼
ðm � f Þrf

a2ðm � f Þ2 þ jrf j2
ð1Þ

Here,rf denotes the gradient of the target image intensity and α is an optional throttling term

usually set to limit the maximal displacement calculated at each iteration to 1 pixel. A deforma-

tion field U = [U1, U2] concatenating two matrices containing the first and second displace-

ment components across the image, respectively, is then smoothed by a Gaussian kernel Kdiff

and the entire process repeated n times until a registered image is achieved.

u Kdiff � u ð2Þ

The solution for any given two images depends on the setting of α and Kdiff, which determines

the influence of small, local structures on the image matching.

The original algorithm was developed for photography of natural scenes. Compared to this

kind of imagery, live cell movies contain higher noise and lower dynamic range. This creates a

scenario where the result is highly dependent on α and Kdiff values, where low values will

cause the algorithm to get stuck in local minima and large values will cause the algorithm to

not register small cell protrusions with known biological importance. To solve this, we intro-

duced a mask regularization component, in which the mask is a segmentation of the cell

permits straightforward sampling of time-series of the signal of interest. The traces indicate mNG-Actin signal

fluctuations at stereotypical sites of interest: Red–retraction fibers, Blue–transverse arcs, Black–lamellipodia. All scale

bars 10 μm.

https://doi.org/10.1371/journal.pcbi.1009667.g001
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separating the cell foreground from background and other cells in the field of view:

u ¼
ðm � f Þrf

a2ðm � f Þ2 þ jrf j2
þ

ðmmask � fmaskÞrfmask

a2ðmmask � fmaskÞ
2
þ jrfmaskj

2
ð3Þ

Here mmask is the location of the segmentation mask in the moving image and fmask is the loca-

tion of the mask in the target image. We derive the mask gradientrfmask over the entire cell

footprint from the gradient of the map of shortest distances to the cell edge (Fig 2a). In practice

the mask regularization component is non-zero where the two image segmentations do not

overlap. Thus, it guides the registration process to an overlay of the two cell images moving the

registration out of local minima. In presence of a high-quality segmentation of the cell outline,

the regularization component is independent of the noise of the location fiducial. This permits

us to set Kdiff based on the expected diffusion distance between time steps as opposed to an

arbitrary number for better registrations. We then set α to limit displacements to 1 pixel, but

higher limits can be used to quickly test suitability of input data for this pipeline (not shown).

The original publication of Thirion’s demons presented a way to enforce diffeomorphism

based on Lie group theory [21]. The approach broke each displacement into a series of smaller

steps based on the magnitude of the displacement and smoothed for each of these steps. This

approach tends to be trapped in local minima, especially with a parameter selection meant to

capture the granularity in cell data [23]. We chose instead to constrain the mapping to a diffeo-

morphism via an explicit topological sorting of the displacements. Given the matrix of

unsorted displacements U, we compute Usorted = [U1, sorted, U2, sorted], with

U1 ¼

u1ð1; 1Þ � � � u1ð1; nÞ

..

. . .
. ..

.

u1ðm; 1Þ � � � u1ðm; nÞ

2

6
6
6
4

3

7
7
7
5
and U2 ¼

u2ð1; 1Þ � � � u2ð1; nÞ

..

. . .
. ..

.

u2ðm; 1Þ � � � u2ðm; nÞ

2

6
6
6
4

3

7
7
7
5
;

such that

8U1 2 U1;sorted : U1ð:; aÞ þ a � U1ð:; bÞ þ b 8a > b ð40Þ

8U2 2 U2;sorted : U2ða; :Þ þ a � U2ðb; :Þ þ b 8a > b ð400Þ

To illustrate this diffeomorphism constraint, a deformation field U is indexed as a mesh for

interpolation (Fig 2b, panels i and ii). Square meshes indicate an identity transform and non-

square meshes indicate local image deformation. A break in diffeomorphism occurs when

mesh indices are out of order, leading to a crossing of edges (Fig 2b, panel iii). Per iteration the

sorting procedure corrects violations of the diffeomorphism (Fig 2b, panel iv) by reordering

the mesh indices. In practice, diffeomorphism breaks occur when either a fine-grained pattern

or noise push the optimization towards a registration with crossings. With our sorting imple-

mented, such displacements will be suppressed.

To illustrate the performance of the proposed cell registration we chose a U2OS cell

undergoing a stereotypical isotropic spreading process and remapped two distant time

points (160 frames sampled at 5s per frame) while setting Kdiff to a low value of 0.5 pixels. This

condition deviates from our expectation of fast sampled changes but allows easy interpretation

of the impact of our modification to the original Thirion’s demons and shows that our

approach can handle more extreme morphology changes. In combination, the motion mask

and sorting-based regularization permit near-pixel perfect edge alignment between the two

distant time points (Fig 2c). Without these constraints, a typical remapping can exhibit perim-

eter-normalized boundary deviations (total pixel difference in image masks/length of
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Fig 2. Computational elements for the remapping process. a) Extraction of the mask gradientrfmask. Based on a cell

mask, we calculate for each pixel the distance to the nearest cell boundary element for both the cell-interior and cell-

exterior spaces. The gradient on this distance field definesrfmask. b) Diffeomorphism constraint. From left to right,

illustrations of interpolation fields, where edges indicate the sampling position of an input image to remap onto a

target. The mesh diagram shows displacements as deviation from a square mesh (1st diagram from left). A

diffeomorphic transform (2nd diagram) is represented by a deformed mesh. A break in diffeomorphism (3rd diagram)

is represented by crossings of mesh edges. By sorting the mesh coordinates in sequential order, breaks in

diffeomorphism can be reverted (4th diagram). c) Effect of algorithm components on cell edge registration. Accuracy

of registration over n iterations is indicated by the area of mismatch (green and purple) between the moving cell and

the target cell image, normalized by the target cell perimeter. Removing the mask regularization and topological

constraint enforcing diffeomorphism reduces both the rate of convergence and the final accuracy. The dashed line

indicates the iteration stop for a visualization of the registration results (bottom row). The proposed algorithm gives a

near pixel perfect registration of the two images. Removing the mask regularization largely reduces the rate of

convergence. Removing both mask regularization and topological constraint causes failure in the capture of small

protrusions.

https://doi.org/10.1371/journal.pcbi.1009667.g002
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perimeter in pixels) larger than 8 pixels, which means a loss of an entire protrusion event. Our

modified algorithm additionally requires fewer iterations to converge to an accurate edge

alignment, showing that accuracy is not traded with computational inefficiency.

We empirically determined the iteration number n = 200 as sufficient for all our movies to

achieve near-pixel alignment for the cell mask (Fig 2c). This value is fixed in the current soft-

ware distribution, but can be readily adjusted by the user. To remap a sequence of moving

frames onto a final reference frame, we change the target image after n iterations to the next

frame in the sequence (Fig 1a). Thus, frames at time points farther from the reference frame

receive more passes through the algorithm.

Evaluation of algorithm by image signal remapping

Our approach relies on a subcellular location fiducial. Generally, this requires an additional

fluorescence channel for live cell imaging besides the signal of interest. To test the performance

in cellular registration for location fiducials with different spatial characteristics we acquired

three channel movies of U2OS cells labeled with mNeonGreen (mNG)-Actin, SNAP-Profilin

and Halo-Vasp. For a visual test we first overlaid two mNG-Actin frames of the movie sepa-

rated by 8 minutes in green and magenta pseudo-colors (Fig 3a). Whereas in the total Actin

signal differences between the two frames were discernible only at the cell periphery, they

became more obvious for Actin fibers in the cell center in an overlay of the two frames con-

taining only the high intensity components. We thus tested registration performance for both

the total Actin signal and the high-intensity signal as the signals of interest. To do so we used

the SNAP-Profilin and Halo-Vasp channels as the location fiducials (Fig 3b). Profilin is a cyto-

plasmic binding partner of monomeric Actin and presents a largely diffuse signal. In concert

with Actin polymerases, including formins and Vasp, it serves as a pacemaker for Actin fila-

ment elongation [24–26]. Vasp localizes at the tip of polymerizing Actin filaments and thus is

visible as a punctate cytoplasmic signal colocalized with focal adhesion complexes with a high

concentration of terminating Actin filaments [27].

The use of a dedicated fluorescence channel only for registration can be quite cumbersome

and can increase photo-toxicity. Since the goal of the cell registration is the extraction of infor-

mative time-series, we can treat the signal of interest as a mixture of high spatial frequency sig-

nals describing local molecular activity and low spatial frequency signals describing the coarse

scale dynamics of subcellular molecular organization. Assuming separability of the spatial fre-

quencies, we can use the low frequency bands for registration without artificially flattening the

informative high frequency signals. In the example of Fig 3b, we therefore computed as loca-

tion fiducial a lowpass-filtered version of the mNG-Actin signal by applying a Gaussian filter

with σ = 20 pixels.

Real world photography and medical image registration use landmark comparison and

reconstruction of computationally distorted images to measure performance. Neither is a fea-

sible metric for our live cell movies as we have no ground truth. Moreover, a simulated distor-

tion can arbitrarily favor a particular fiducial choice. We therefore introduce the ‘to-target

transform’ and the ‘half-distance transform’ accuracies as alternative performance measures

for the remapping quality (Fig 3c). For both measures, we first remapped the signal of interest

from the moving image to the target image using location fiducial deformation fields over two

frames. To ensure that broadly visible movement exists between consecutive time points we

tenfold down-sampled the original movie (50 s frame interval instead of the original 5 s inter-

val). For the to-target transform accuracy we then asked how similar the remapped signal of

interest is in comparison to the imaged signal of interest in the target image. The proximity

between remapped and target signals of interest was determined by the average pixelwise
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Fig 3. Impact of location fiducial on remapping accuracy. a) Overlay of two frames separated by 8 minutes of the

total Actin channel (top) and a high intensity component (defined by manually selected intensity cutoff) emphasizing

Actin fibers (bottom). b) Qualitative comparison of the remapping quality for both Actin signals of interest using the

lowpass-filtered Actin image (top row left), Profilin (top row middle), and Vasp as location fiducials. There were

minimal differences in the registration quality in both the total Actin (middle row) and Actin fiber (bottom row)

components of the Actin signal of interest. c) Definition of the half-distance transform used as a ground truth for

performance evaluation. First, we estimate the diffeomorphic map between moving frame (t = 1) and target frame

(t = 3). We then asked how well a half diffeomorphic map matches the middle frame (t = 2) under the expectation that

the mapping between moving and target frames follows a linear deformation path. d) Quantification of subcellular

remapping accuracy (sum of squared distance (SSD) between target and remapped images) using the to-target and

half-distance transforms for indicated location fiducials. The SSD between untransformed moving and target frames is

computed as a baseline. Box plots illustrate 25th, 50th, and 75th percentile of n = 116 moving/target frame pairs pooled

from m = 4 movies. Whiskers indicate the 5th and 95th percentile. P-values are calculated by one-way ANOVA testing.

Overall, there were only small differences in accuracy between the choices of location fiducials. e, f) Comparison of
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squared intensity difference. This metric quantifies how much of the dynamics is captured by

the location fiducial and the remapping process. For the half-distance transform accuracy, we

divided the magnitude of the deformation field over two frame intervals in half and compared

the thus remapped signal of interest to the signal of interest in the skipped frame (Fig 3c). This

metric quantifies how well the approximations of an advective process underlying the remap-

ping capture the real spatial dynamics of the signal of interest.

Equipped with these two performance measures we remapped the raw as well as high-inten-

sity Actin structures as the signal of interest, using Profilin, Vasp, and lowpass-filtered Actin as

location fiducials. We included the sum of squared intensity differences between unregistered

original images over two frames as a baseline (background set to 0). Like in Fig 1, we chose

Actin as the test case because of the dynamic and multi-factorially regulated structure, making

it unlikely that any of the fiducials would fully capture the evolution over time. Overall, the

half-distance transform accuracy is worse than the to-target transform accuracy (Fig 3d). This

is mostly attributable to poor registration near the cell edge, which moves on a much faster

timescale than the cell interior [1, 28]. Both Profilin and Vasp as location fiducials greatly out-

performed the baseline deviation, despite the diffuse image character in the former and the rel-

atively scarce punctate pattern in the latter. Similar performance was accomplished in cells

that expressed a diffuse Halo-CAAX membrane marker as a location fiducial rather than fluo-

rescent Vasp (S1 Fig). Unsurprisingly, in both tests the highest remapping accuracy was

achieved with lowpass-filtered Actin as the location fiducial (Figs 3d and S1B). This shows that

for generating precisely stabilized images of cytoskeleton structure in a reference frame our

algorithm works best using a low pass filtered copy of the original signal for alignment.

Evaluation of the remapping algorithm for the extraction of subcellular

time-series

To further establish confidence that the remapping algorithm permits extraction of meaning-

ful time-series throughout the cell and over the entire duration of a movie, we compared the

performance against our well-established cell edge-tracking windowing method [1, 8]. In brief,

this method tracks the cell edge and places a grid of probing windows indexed by radial posi-

tion and depth in layers. While the newly proposed registration-based approach can handle a

variety of cell behaviors, the windowing strategy has largely been used in scenarios of a rela-

tively stationary edge dynamics. We, therefore, chose a less motile U2OS cell (labeled with

mNG-Actin, Halo-CAAX, SNAP-Profilin) undergoing stereotypical cell spreading to compare

the two methods.

In U2OS cells the periphery is demarcated by distinct and persistent network of transversal

Actin arcs. We segmented the arcs throughout the movie using a simple intensity threshold

time-series sampling using a fixed grid of probing windows in the reference frame of a full cell registered movie vs.

using edge-tracking probing windows. e) Snapshots of the actomyosin organization in a U2OS cell at an early (top left)

and later (top right) stage before symmetry breaking. The cell displays characteristic transversal arcs behind a thin

lamellipodia layer at the periphery. Towards the symmetry breaking event, the arcs begin to dissolve. In between, the

transversal arcs follow the displacement of the cell edge. We detected these arcs using an intensity filter (red regions

bottom row). Overlaid to the segmented arcs region is a grid of 0.6 μm wide (at initial time point) and 0.6 μm deep

edge-tracking probing windows. Highlighted in blue, 5th layer of probing windows, which sample the transverse arcs in

early time points (left). In late time points the windows fall outside the arc region. f) Sampling of the transverse arcs by

the 5th layer of probing windows that are either tracking the cell edge in the original movie or fixed after remapping the

movie to a reference frame (left). Space vs time heatmaps of the samples (right, top & bottom). The maps show the

presence (white) or absence (orange) of transverse arcs. Edge-tracking windows have frequent “drop-outs” (black) in

layers further away from the cell periphery. Window “drop-outs” (black) are persistent in time when the movie is

remapped. All scale bars 10 μm.

https://doi.org/10.1371/journal.pcbi.1009667.g003
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and hole-filling operation (Fig 3e). We then applied the cell edge-tracking windowing

approach to define layers of 0.6 μm deep probing windows that follow the edge movement (S3

Movie). In early time points the arcs begin ~3 μm away from the cell edge (sampled by layers 5

to 8). We chose to examine the sampling of the circumferential Actin region in layer 5 in a

movie where the Actin signal of interest was first remapped based on the CAAX membrane

marker as location fiducial. In the remapped movie we applied the window positions from the

reference frame to the entire movie as a stationary probing grid. Due to the fixed one-to-one

window correspondence between layers, deeper layers of the edge-tracking probing windows

exhibit drop-out events (Fig 3f black streaks on the space-time representation of layer 5).

Importantly, these drop-out windows do not persist over time since they are dependent on the

geometry of the cell edge. In contrast, the window grid in a remapped movie has persistent

drop-outs. The band between cell edge and transversal arcs, i.e., the lamellipodium, varies in

width over time and also in space. Accordingly, in a sampling approach that preserves a con-

stant distance from the edge, windows at the transition between lamellipodium and arcs alter-

nate in the structure they sample. In contrast, the proposed cell registration accounts for the

variation in subcellular structures. Indeed, while edge-tracking probing windows in layer 5

sampled the transversal arc structure in only 58% of the windows and time points, 92% of the

stationary windows of layer 5 in the remapped movie sampled transversal arcs (Fig 3f). The

loss of connection to subcellular structures has been a serious limitation for many studies rely-

ing on edge tracking probing windows as they sample time-series associated with distinct regu-

latory regimes [29, 30]. The proposed remapping resolves this issue now for subcellular

structures that follow the diffeomorphism defined by the location fiducial.

Spatial coherence in fluctuation time-series of FRET-based biosensors of

molecular signaling activity increases with cell registration

Using edge-tracking probing windows for the local sampling of time-series in a cell edge-cen-

tric frame of reference we have in the past conducted studies of the coupling between cytoskel-

eton and signaling dynamics and the movement of the cell edge [1, 31–34]. As indicated in Fig

3, this approach is limited to a relatively narrow band along the cell edge and it makes the

strong assumption that the larger organization of the signal of interest follows the edge move-

ment. With the proposed cell registration we may be able to relax this condition as we remap

the signal of interest under the influence of a fiducial marker throughout the entire cell. To test

the effect of the cell registration on capturing the subcellular organization of a dynamic signal

of interest, we turned to previously published and analyzed live cell movies of GTPase signal-

ing activity and their upstream regulators visualized by Foerster Resonance Energy Transfer

(FRET)-based biosensors [34]. Specifically, we examined the alignment of movies displaying

the activation of the GTPase Cdc42 and its activating Guanine Exchange Factor (GEF) Asef

(Fig 4a). Compared to the Actin cytoskeleton images in Fig 3, the activity of these molecular

signals is more diffuse, albeit visibly organized in space. We registered the movies to the mid-

dle frame as the reference (Fig 4b), using the donor fluorescence of the Cdc42 FRET-sensor as

the location fiducial. The pattern of the donor images is dominated by the topographic varia-

tion of the cell. Therefore, the location fiducial controls in this case the remapping of the signal

of interest primarily for intensity shifts associated with changes in cell thickness that arise with

cell movement.

To test whether the registration yields a gain in the spatial information that is contained by

a diffuse signal of interest we created an operator that computes the local spatial coherence of

the signal dynamics. The operator considers the time-series sampled in fixed pixels or super-

pixels in a 3x3 neighborhood and determines the mean correlation of the 36 unique time-series
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Fig 4. Analysis of spatial coherence in diffuse molecular signals. a) Select frames of a movie visualizing the

activation of the GTPase Cdc42 (middle) and its upstream GEF Asef (bottom) using multiplex FRET-based biosensors.

Shown are normalized FRET-ratio signal indicating local activation of the molecues. For registration the donor signal

of the Cdc42 biosensor is used as the location fiducial (top). b) Remapped, normalized FRET-ratio signals for the same

time points as in a). c) Spatial coherence of the Cdc42 donor (left), Cdc42 FRET-ratio (center), and Asef FRET-ratio

(right) time-series extracted from the remapped (top) and raw time-lapse sequences. d) Distributions of average spatial

coherence of the Cdc42 donor, Cdc42 FRET-ratio, and Asef FRET-ratio time-series. Box plots illustrate 25th, 50th, and

75th percentile of average values in for m = 4 movies. Whiskers indicate the 5th and 95th percentile. P-values are

calculated by one-way ANOVA testing. Scale bars 10 μm.

https://doi.org/10.1371/journal.pcbi.1009667.g004
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pairs among the 9 time-series. The coherence value falls between 0 and 1, where higher values

indicate self-similarity within the neighborhood. This analysis resembles fluorescence correla-

tion spectroscopy, which typically captures fluctuations at the millisecond time scale [35].

However, at the time scales of seconds, the coherence does not relate to a single molecule prop-

erty but captures regulatory processes that maintain spatial similarity of fluctuation time-series

through either biochemical interactions or local scaffolds. Without spatial registration of the

signal of interest to a reference frame the self-similarity of adjacent time-series cannot be

detected. Indeed, we observed a systematic increase in coherence for both the Cdc42 and the

Asef activity signals when the time-series were sampled in image sequences registered to a ref-

erence frame rather than in the original lab frame of reference (Fig 4c and 4d). The increase

was relatively mild when considering the entire cell footprint. It was in fact not statistically sig-

nificant in the case of Cdc42. The reasons for this result are the relatively high noise in the

FRET time-series, also reflected by the rather low correlation values in the range 0.2–0.3, and

the concentration of the coherence increase in a fairly narrow band along the cell edge where

GEF-GTPase interactions are known to be actively regulated [1, 36] (Fig 4c). In contrast, after

registration the coherence in the FRET-donor signal significantly decreased from a value close

to 1 for pixels sampled in the original lab frame of reference (Fig 4c and 4d). The decrease in

coherence is concentrated in the perinuclear region, where the improved spatial alignment

after cell registration reveals locally incoherent, volumetric fluctuations in biosensor concen-

tration that are blurred by cell motion in the lab frame of reference. In summary, these experi-

ments indicate how the registration of the cell footprint over a time lapse sequence permits the

recovery of fine-grained spatial patterns in the temporal fluctuation of otherwise diffuse image

signals.

Time-series of Profilin reveal spatiotemporal organization of dynamic

concentrations

Equipped with tools for sampling and unveiling fine-grained spatial patterns in the temporal

fluctuation of otherwise diffuse signals across an entire cell, we turned to examining the sub-

cellular organization of Profilin. Profilin is a 15kDa molecule binding monomeric Actin and

Profilin-Actin is considered the physiological substrate of filament growth [25, 26, 37].

Numerous biochemical experiments have shown specific interactions between Profilin-Actin

and key cytoskeletal regulators (such as formins) suggesting that distinct Actin structures

would colocalize with local pools of Profilin with distinct dynamics [24, 38]. Endogenously

SNAP-tagged Profilin in live cells displayed a diffuse signal with no visually discernable pattern

beyond intensity variations that related to the integration along the optical axis of fluorescence

in variably thick cells (Fig 5a–5c, left).

We anticipated that local time-series coherence analysis would uncover a hidden spatial

organization in the Profilin dynamics, akin to the GTPase- and GEF-signals. We performed

this analysis on 3 cell populations: First, U2OS cells expressing cytoplasmic mCherry as a vol-

ume marker in a background of mNG-Actin and Halo-CAAX (Fig 5a). Second, U2OS cells

expressing fluorescent endogenously SNAP-tagged Profilin, mNG-Actin, and Halo-CAAX

(Fig 5b and S4 Movie). These cells were further treated with the myosin-II inhibitor Blebbista-

tin to induce symmetry breaking throughout the movie, as described by Lomakin et al [39].

This allowed us to follow a putative reorganization in Profilin dynamics in response to a

change in global cell morphology. Third, we exogenously co-expressed wild-type EGFP-Profi-

lin (WT) and a mutant mApple-Profilin (R88E) at very low levels using a leaky CMV100

alongside SNAP-Actin in Profilin KO cells (Fig 5c). The R88E mutation abrogates binding to

Actin [38]. Therefore, we hypothesized that the dynamics of the mutant Profilin would follow
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a different coherence pattern than that of the wildtype (S5 Movie). In the first 2 cases, we

remapped the movies on a central reference frame using the CAAX marker as a location fidu-

cial (images not shown). Due to the limitations in expressing yet another tag for live cell imag-

ing, we remapped the double Profilin labeled cells using a lowpass-filtered Actin channel set to

mimic the results of CAAX-based remapping.

The coherence analysis revealed drastically different patterns relative to the raw Profilin sig-

nal. High coherence is observed in select sites along the cell edge, in puncta throughout the

cytoplasm, and around the nucleus in both the endogenously and exogenously tagged Profilin.

We quantified the increase in heterogeneity produced by application of the coherence operator

via the Gini coefficient of statistical dispersion (Fig 5d). The Gini coefficient occupies a value

range between 0 to 1, where 1 indicates a signal concentrated in one pixel of the cell and 0 indi-

cates a homogeneous signal across all pixels of the cell [40]. For all three cell conditions, the

coherence of the Profilin intensity is more heterogenous than the raw Profilin signal, indicat-

ing a high degree of local dynamic organization of Profilin, potentially related to its roles in

facilitating Actin polymerization. As a control, we performed the same analysis for a cell

expressing mCherry as a volume marker. In this case the intensity shows a higher level of het-

erogeneity than the coherence value, because of significant variation in cell thickness. The

coherence of the mCherry volume marker was homogeneously high throughout the cell.

Profilin coherence is related to actin dynamics

Since WT and R88E Profilin displayed distinct coherence patterns in the same cell, we hypoth-

esized that WT Profilin coherence would show a stronger relationship with Actin dynamics

(Fig 6a). Our coherence calculation thus far relied on time-series spanning the entire movie.

To test whether Profilin coherence changes in concert with Actin dynamics we computed a

coherence sequence using a moving window of 25 frames, i.e. 1/10 of the length of our shortest

movies (S5 Movie). The resulting sequence could then be locally correlated with a measure of

the Actin signal fluctuations. To match the time scales of changes in Profilin coherence and

Actin dynamics, we computed the Shannon information entropy of the Actin signal at every

location of the cell using the same moving window approach (Fig 6b and S6 Movie). This sig-

nal transform extracts from the overall fairly static Actin images second-to-minute scale pro-

cesses such as stress fiber growth and movements and retrograde flow.

We then examined the cross correlation of Profilin coherence and Actin entropy near the

cell edge (edge– 1.2 μm), around the circumferential Actin network (3.6–6 μm), and around

the nucleus (8.4–12 μm) since the data in Fig 5c indicated patterns of high Profilin coherence

in these positions. As expected, near the cell edge we observed higher cross correlation

between Actin entropy and WT Profilin when compared with the non-interacting R88E Profi-

lin mutant (Fig 6e boxed). The difference is less substantial in deeper regions of the cell

because both Actin entropy and Profilin coherence are temporally less salient. This is

Fig 5. Profilin dynamics in live cells show patterns in local time-series coherence. Raw intensity vs local time-series

coherence scores of diverse Profilin probes. The computation of reliable coherence scores is enabled by the remapping

of the movie into a spatially stationary reference frame. a) Control experiment using an mCherry cytoplasmic volume

marker. As expected, coherence of a diffuse signal is high across the entire cell footprint. For remapping, a Halo-CAAX

tag membrane marker was used as the location fiducial. b) Cell undergoing drug-induced symmetry breaking, which

expresses SNAP-Profilin at endogenous levels. For remapping, a Halo-CAAX tag membrane marker was used as the

location fiducial. c) WT EGFP-Profilin (top) and R88E mApple-Profilin mutant (bottom) concurrently expressed at

low concentration from a leaky CMV100 promotor in a Profilin knockout cell. For remapping, the lowpass-filtered

Actin-SNAP signal was used as the location fiducial. WT and R88E Profilin display distinct coherence patterns. d)

Quantification of subcellular heterogeneity of the signals observed in a-c using the Gini coefficient. Dots indicate

values for individual cells. All scale bars 10 μm.

https://doi.org/10.1371/journal.pcbi.1009667.g005
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Fig 6. Co-expressed wildtype and mutant Profilin exhibit different relationship to Actin dynamics. a-d) Signal

transforms to relate Profilin organization to Actin dynamics. The transforms are enabled by remapping the movie into
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reinforced by the fact that the volume marker’s cross correlation with Actin entropy is high in

the periphery but low near the nucleus where there is a persistently high volume marker coher-

ence but rare high Actin entropy events (Fig 6e). Together, these analyses indicate how the

proposed remapping of signals to a stationary reference frame permits the application of time-

series preprocessing in order to extract subtle but significant dynamic behaviors in otherwise

diffuse signals for the purpose of assessing the local functional interactions between molecular

processes.

Profilin coherence correlation with actin dynamics is responsive to

perturbation

To test the hypothesis that the observed relationship between Profilin coherence and Actin

entropy relates to Profilin’s functions as a modulator of Actin polymerization, we analyzed

cells undergoing symmetry breaking (S7 Movie). Symmetry breaking is a process where the

cell transitions from a stable rounded state to a polarized migratory state. In doing so the cell

must greatly reorganize its Actin network. After remapping the entire movie to a common ref-

erence frame just before the symmetry breaking event, we split the movies into a phase of high

morphodynamic activity during symmetry breaking and a phase of slower, steady state mor-

phodynamics after symmetry breaking (Fig 7a). We then computed Actin entropy (Fig 7b)

and Profilin coherence (Fig 7c) for these two phases. In phase 1, Actin entropy increases

throughout the entire protrusive front as the cell begins to repolarize (Fig 7b panels 0 min vs 4

min). In phase 2, the entropy returns to a lower steady state pattern with elevated entropy val-

ues limited to the leading edge of the polarized cell (Fig 7b panels 17 min and 21 min). This is

consistent with the notion that high Actin turnover in membrane ruffles and transversal arcs

all around the cell edge of the non-polarized cell is shifted during symmetry breaking towards

the wide lamellipodia and lamella regions at the new cell front [39]. This reorganization of

Actin dynamics is paralleled by a reorganization of high Profilin coherence (Fig 7c). Specifi-

cally, in phase 1 we see high Profilin coherence along the arc of the cell edge that will later

become the leading edge in the polarized state, on top of transversal arcs and around the

nucleus. We see background levels of coherence near the retraction fibers that will later

become the cell rear. Locally high Profilin coherence indicates high spatial coupling in the con-

centration fluctuations of Profilin-Actin complexes that are fed into Actin polymers by nuclea-

tors such as formins, which promote the growth of linear Actin structures at the future leading

edge [25, 26, 37]. Importantly, it is unlikely that these distinct zones of high Profilin-Actin

interactions result from artifacts in the remapping process. The size of these zones significantly

a spatially stationary reference frame. U2OS cells expressing a) Actin-SNAP with b) entropy of the Actin signal, c) WT

EGFP-Profilin, and d) R88E mApple-Profilin. The remapping was accomplished using lowpass-filtered Actin as a

location fiducial. To reduce perturbation by overexpression, the two Profilin constructs were expressed in a Profilin

null background. Panels in (c) and (d) display the dynamics of the diffuse image signals as local time-series coherence

scores over a rolling window of 25 time points (250 s). The SNAP-Actin signal consists of various filament forms as

well as a diffuse background of monomers. The mixture makes a direct cross correlation to other molecular processes

difficult to interpret. We therefore extracted the entropy over a rolling window of 25 time points, which indicates

relative stability of Actin structures (high entropy delineates regions of high polymer turnover and/or concentration

variation). e) Cross correlation of Actin entropy and Profilin coherence in subcellular regions defined by distance from

the cell edge. We performed this analysis on 3 zones: 0–1.2 μm from the cell edge (top row) roughly corresponding to

the thin lamellipodia, 3.6–6 μm from the cell edge (mid row) roughly corresponding to transverse arcs, and 8.4–12 μm

corresponding to perinuclear regions. As a control we also calculated the cross correlation between Actin entropy and

the coherence of an mCherry volume marker (right column). WT Profilin and Actin show a significant correlation

only in the band 0–1.2 μm from the edge, confirming the biochemical function of Profilin as a promoter of Actin

polymerization. The correlation collapses for R88E Profilin, which is deficient in Actin binding (boxed). The coupling

between Profilin and Actin dynamics is absent in regions more distal from the cell edge. All scale bars 10 μm.

https://doi.org/10.1371/journal.pcbi.1009667.g006
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exceeds the deformation of the movie frames. Moreover, the facts that the R88E mutant and

WT Profilin filmed in the same cell exhibit different dynamics along the edge (Fig 6c) and that

the more stable future cell rear where we expect lower Actin turnover does not exhibit high

coherence leads us to conclude that these data faithfully report effects driven by the Profilin-

Actin interaction. Hence, enabled by the proposed remapping algorithm, this analysis visua-

lizes for the first time directly in a living cell Profilin’s function and organization as a facilitator

of Actin assembly.

Discussion

In this work we implemented a nonlinear cell registration framework to analyze subcellular

protein dynamics in cells undergoing substantial morphological variation throughout the

observation window. The key contribution of our work to the sizable literature on nonlinear

image registration algorithms is the capacity to handle the high noise and small structures of

interest present in cell microscopy. This was accomplished by introducing a cellular motion mask

as a regularization term in the image mapping objective function and by enforcing

Fig 7. Cell symmetry breaking reveals polarization dependent organization of Profilin coherence a) Time course

of a drug-induced symmetry breaking experiment, following the protocols published in [39]. 500 s prior to imaging

cells seeded on glass slides are treated with 25 μM Blebbistatin. During the initial phase after drug induction the cells

exhibit a stable morphology (not filmed). The remainder of the displacement time course (total cell edge displacement

integrated over the cell boundary) displays distinct phases of cell morphodynamic activity, as indicated. Symmetry

breaking occurs 150–250 s into the movie. b) Remapped mNG-Actin signals at four select time points. See Fig 1b for

the original image sequence. The cell registration relied on Halo-CAAX as a location fiducial. c) Actin entropy

computed over a rolling window of 25 time points. d) Profilin time-series coherence score computed over a rolling

window of 25 time points. Both the Actin entropy and Profilin coherence reveal a shift in high values away from the

cell front to the cell center and back during the symmetry breaking process showing that Profilin organization is

responsive to changes in subcellular Actin polymerization. See text for further discussion. All scale bars 10 μm.

https://doi.org/10.1371/journal.pcbi.1009667.g007
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diffeomorphism via a sorting of the displacement field. The former causes the map estimator to

bypass local minima, the latter permits the preservation of fine-grained structures during the

mapping.

The primary gain this fine-grained registration framework lends to the study of cellular

processes is the capacity of extracting reliable time-series at every pixel position in the cell foot-

print. As demonstrated in the present work, the availability of such time-series enables the fur-

ther processing of image signals for information on the spatiotemporal organization of

molecular processes that is inaccessible without consideration of the temporal dynamics. Spe-

cifically, we introduce the local time-series coherence and the Shannon information entropy as

transforms of diffuse image signals that unveil hidden structures of spatial organization in the

underlying molecular regulation. We illustrated these new features first by identifying narrow

zones of coherent molecular signaling activities and then in a study of the relationship between

Actin dynamics and its regulator Profilin. Fluorescently labelled Profilin generates a diffuse

image signal with visually uninterpretable spatiotemporal variation. Fluorescent Actin gener-

ates a mixture of structured and amorphous image signal components. As a cell undergoes

morphological changes, the structured components often display complex patterns of defor-

mation whereas the amorphous components undergo flows that are difficult to track. Because

of the proposed time-series transformations both the Profilin and Actin signals displayed spa-

tiotemporal patterns that revealed Profilin and Actin interactions, even during a cellular sym-

metry breaking event that produces large scale cell shape changes. It should be noted that

while the presented registration enables time-series analyses of interactions between diffuse

molecular signals in a fixed cell-frame of reference, for many studies the subcellular advective

motion that is eliminated with the registration is the focus of interest. In this case, users of the

framework can either exploit the diffeomorphic mappings as an estimator of the advective

motion components, or directly track advective movements by techniques such as quantitative

fluorescent speckle microscopy and derivatives[41].

While designing this framework we expected the resulting time-series to strongly depend

on the choice of the location fiducial used for the mapping estimation. We were surprised that

a punctate signal (Vasp) permits the algorithm to remap Actin structures over time with an

accuracy that is comparable to the mapping accuracy supported by a location fiducial derived

from a diffuse signal like Profilin or a blurred, lowpass-filtered version of the Actin signal itself.

This is likely because adhesion proteins like Vasp have a faint but implicitly traceable diffuse

component that constrains the estimation of the diffeomorphic mapping between frames simi-

larly to the Profilin and blurred Actin signals. Moreover, cytoskeleton structures are highly

coordinated in healthy cells and the cytoplasm is a dense compartment meaning that subcellu-

lar molecular flows in general are coupled. Hence, there is some degree of tolerance in choos-

ing a location fiducial.

Our framework opens the door to analyses of subcellular signals with dynamics that occur

on the same or slower timescale as cell morphological changes. For processes much faster than

cell morphological changes (e.g. cell electrical potentials and calcium signaling), microscopy

has produced predictive quantitative models for in vivo signaling behavior and outcomes

because changes in cell morphology could be ignored. However, many molecular processes

occur in concert with cell morphodynamics. While previous work has mostly relied on visu-

ally-guided analyses of these processes in select cell regions, the presented framework now sup-

ports an unbiased analysis across the entire cell.

The current software implementation is restricted to 2D time lapse image sequences of cells

cultured on flat substrates, although Eqs (1), (3) and (4) are generalizable to 3D data. For prac-

tical purposes this means that the software can only be run on movies of cells whose footprint

is kept in focus over the entire recording. The biological artifacts associated with cell culture
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on flat and often stiff substrates are widely discussed and intense developments are ongoing in

microscopy design and image analysis to circumvent these caveats [42, 43]. Nonetheless, a sig-

nificant portion of imaging-based cell biological investigations still relies on 2D live cell

microscopy. These studies may readily benefit from the presented work.

Related to the limitation to 2D imaging are potential sources of inaccuracy that need to be

considered when applying the accompanying codes: As introduced with the choice of Thir-

ion’s demons and expanded regularization, the cell registration algorithm assumes that the

motion of the location fiducials is i) fully visible throughout the movie and ii) restricted to the

directions parallel to the substrate. While these assumptions are mostly valid for adherent cells,

weakly adherent cells with substantial extension in the direction perpendicular to the substrate

may not be analyzable with the proposed framework. Dependent on the dynamics of the loca-

tion fiducial and signal of interest this caveat can be remedied partially by rapid 3D imaging of

the full cellular volume by light-sheet microscopy [44], followed by projection of the 3D signal

to 2D. Even for adherent cells uncertainty arises in the perinuclear region and/or in vertical

membrane ruffles, where both the location fiducial and signal of interest contain significant

out-of-focus intensity contributions when imaged by wide-field microscopy and suffer from

non-detectable axial movement, regardless of the 2D microscopy mode. Both imaging limita-

tions cause a violation of the assumption of intensity conservation underlying Thirion’s

demons. However, one of the strengths of the proposed regularization approach is the implicit

propagation of geometric information from regions of the cell with full in-focus data and

largely lateral deformation to regions with geometric information loss. The inclusion of the

cell boundary provides particularly stabilizing support to the estimation of diffeomorphic

maps under conditions of incomplete location fiducials (see also Fig 2c). Thus, for many prac-

tical applications the proposed algorithm may prove robust enough.

The second assumption requiring consideration with applications of the proposed frame-

work is the geometric coupling of location fiducial and signal of interest. For example, cell reg-

istration of a cytoplasmic molecule with a location fiducial that is localized in the plasma

membrane or even in close contact with the substrate will produce poor results. The proposed

framework is best suited for registration of dynamic and relatively diffuse patterns of molecu-

lar distributions and activities using dense cytoskeleton structures as location fiducials. Cyto-

skeleton structures tend to follow the morphodynamic behavior of the cell at large and many

of the molecular components in cytoplasm and even in the plasma membrane tend to directly

or indirectly, e.g. via cytoskeleton-driven fluid flows, interact with these polymer assemblies.

In the present study we illustrate this performance by mapping out for the first time the

dynamic organization of the cytoplasmic molecule Profilin. In summary, despite these limita-

tions we anticipate a wide range of applications that will benefit from the potential of the pro-

posed framework to spatially align patterns of molecular behaviors in a frame of reference that

compensates for cell morphodynamic activity.

Materials and methods

Plasmids

pSpCas9(BB)-2A-GFP (PX458) and pX335-U6-Chimeric_BB-CBh-hSpCas9n(D10A) were

gifts from Dr. Feng Zhang (Addgene plasmid #48138 and #42335, respectively). Gene-target-

ing single guide RNAs (sgRNAs) were designed using the online program CRISPor (http://

crispor.tefor.net) [45]. pmCherry-C1 was from Clontech. The self-cleaving vector pMA-tial1

was from Dr. Tilmann Bürckstümmer [46]. pBlueScript II SK(+) was from Agilent. The prim-

ers to clone the Profilin-1 (PFN1)-targeting sgRNA pair used for knockouts were 5’- CAC

CGTCGATGTAGGCGTTCCACC-3’ and 5’-AAACGGTGGAACGCCTACATCGAC-3’ and
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were cloned into PX458. PFN1-targeting sgRNA pairs for the knock-in were 5’- CACCGGC

TGCTACTGGGGCTGCTCTCGG -3’, 5’- AAACCCGAGAGCAGCCCCAGTAGCAGCC -3’,

5’- CACCGCGCCTACATCGACAACCTCATGG -3’ and 5’- AAACCCATGAGGTTGTCG

ATGTAGGCGC -3’, all cloned into PX335. The self-cleaving donor vector containing the

Blasticidine selection cassette was previously described [47, 48]. The N-terminal SNAP-tag

knock-in donor was flanked with homologous arms targeting the first exon of PFN1 (BAC

library: CH17-25E2) including a 13 amino acid linker (SGRTQISSSSFES) in between SNAP-

tag and PFN1, a configuration well-characterized to preserve all functional properties of Profi-

lin-1 [49, 50], and cloned into pBlueScript II SK(+). pLVXCMV100-mNeonGreen-18-Actin

and pLVXCMV100-Halo-21-VASP were previously described [29]. pLVXCMV100-Halo-

CAAX was generated by Gibson Assembly (NEB) using HaloTag sequence as a template and

the following primers: 5’-attaactagtgccaccatggcagaaatcggtactggctttcc-3’, 5’-ttacataattaca-

cactttgtctttgacttctttttcttctttttaccatctttgctcatcttttctttatgGCCGGAAATCTCGAGCGTCGAC-3’

and 5’-attacgcgtTTACATAATTACACACTTTGTCTTTGACTTCTTTTTCTTC-3’.

N-terminally tagged EGFP-C-Profilin-10 and mApple-C-Profilin-10, both harboring

mouse Profilin-1 and a 10 amino acid linker (SGLRSRAQAS) were gifts from Michael David-

son (Addgene plasmids #56438 and #54940). The Actin-binding deficient Profilin-1 mutant

R88E [51] was generated by mutating the Arginine at position 88 on Profilin to Glutamic acid

(R88E) using primers 5’-gagACCAAGAGCACCGGAGGAGCCCC-3’ and 5’-AAGATCCAT

TGTAAATTCCCCGTCTTGCAGCAGTG-3’ and PfuUltra II Fusion High-fidelity DNA poly-

merase (Agilent). EGFP-Profilin and mApple-Profilin were subsequently subcloned into the

SpeI/MluI sites of the lentiviral vector with attenuated CMV promoter, pLVXCMV100 [52],

using primers 5’- ttaactagtGCCACCATGGTGAGCAAGGGCGAG -3’, 5’- ttaactagtgccaccA

TGGTGAGCAAGGGCGAGGAGAATAACATGG -3’ and 5’- aaacgcgtTCAGTACTGGGA

ACGCCGCAGGTGAGA -3’. All newly generated constructs were sequence verified.

Antibodies

Mouse monoclonal anti-Profilin-1 (Santa Cruz; B-10; sc-137235), mouse monoclonal anti-vin-

culin (Sigma; V9264) and mouse monoclonal anti-Actin (Sigma; AC-15; A1978) antibodies.

Cell lines

Human Osteosarcoma U2OS cells were cultured in DMEM media supplemented with 10%

fetal bovine serum (Sigma; F0926-500ML) in a humified incubator at 37˚C and 5% CO2. All

cells were tested for mycoplasma using a PCR-based Genlantis Mycoscope Detection Kit

(MY01100).

Lentiviral particles were generated using the packaging vectors psPAX2 and pMD2.G

(Addgene plasmids #12260 and #12259). Infected cells were bulk sorted using FACS.

Profilin-1 (PFN1) knockout U2OS cells were generated by co-transfecting the PFN1-target-

ing sgRNA supplemented with the self-cleaving Blasticidine selection cassette. Genome-edited

cells were selected using 5 μg/ml Blasticidine S selection (Thermo) and isolated using 8 mm

colony cylinders (Sigma). Knockouts were verified using western blot with mouse anti-Profi-

lin-1 antibodies. Profilin KO clone #2 were used for subsequent experiments (S2 Fig).

Endogenously SNAP-tagged Profilin-1 cells were generated by co-transfecting the two pairs

of PFN1-targeting sgRNAs with Cas9 nickase supplemented with the donor vector. Genome-

edited cells were labeled with SNAP-Cell Oregon Green (S9104; NEB) and single cell sorted

into 96 wells plated coated with attachment factor (S006100; Gibco). Successful genome-edited

cells were validated using western blotting.
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mCherry was expressed in U2OS cells expressing mNeonGreen-Actin and Halo-CAAX by

transient transfection with polyethylenimine and 1 μg of pmCherry-C1 one day prior to imag-

ing. U2OS Profilin-1 KO U2OS cells were rescued with wild-type EGFP-Profilin and Actin-

binding deficient mApple-Profilin mutant (R88E) using a lentiviral construct driven by a trun-

cated CMV promoter as discussed above. Infected cells were bulk sorted using FACS.

Live cell imaging

Cells were counted using Cellometer Auto 1000 Bright Field Cell Counter (Nexcelom) and

100.000 cells were seeded on 10 μg/ml fibronectin-coated glass bottom 35 mm. Halo-CAAX

was labeled using Janelia Fluor 549 HaloTag ligand (200–400 nM; GA1110; Promega) and

endogenous SNAP-Profilin-1 were labeled using SNAP-Cell 647-SiR (500 nM– 1 μM; S9102S;

NEB), 30 minutes prior to imaging. Cells were imaged in phenol-red free DMEM supple-

mented with 20 mM HEPES pH 7.4 on a climate-controlled (maintained at 37˚C), fully motor-

ized Nikon Ti-Eclipse inverted microscope equipped with Perfect Focus System, an Andor

Diskovery illuminator coupled to a Yokogawa CSU-XI confocal spinning disk head with 100

nm pinholes, and a 60x (1.49 NA) APO TIRF objective (Nikon) with an additional 1.8x tube

lens, yielding a final magnification of 108x (Andor Technology). Images were recorded at 5 s

or 10 s per frame using a scientific CMOS camera with 6.5-μm pixel size (pco.edge).

Blebbistatin treatment to induce symmetry breaking

Cells were treated with 25 μM myosin II inhibitor blebbistatin in DMEM for 5 min prior to

imaging as per [39]. Drug treatment was offset to allow for a complete 20 min imaging run per

dish under the expectation that symmetry breaking would occur at approx. the 10 min mark.

Fields were selected manually to center a single individual cell and cells were selected for a flat

rounded morphology. After imaging, the movies were examined for spontaneous symmetry

breaking near the midpoint. We utilized the first 1/3 of the movie as before symmetry breaking

samples and the last 1/3 of the movies as post symmetry breaking samples.

Remapping pipeline parameters

For all published results we set α = 1 for a maximum step size of 1 pixel. For sequentially trans-

formed movies for time-series analysis we set n = 100 iterations per time step and Kdiff = 1.5

pixels. For transforms between the first and last image frames we set n = 2000 iterations. For ½
deformation accuracy we set n = 200 iterations.

Coherence analysis

For every subcellular location we sampled a 3x3 matrix of 9 time-series centered on the target

pixel. We calculated the correlation coefficient for all 36 = non-identical time-series pairs,

where the correlation coefficient ρ(A, B) between time-series A and B is:

r A;Bð Þ ¼
1

N � 1

XN

i¼1

Ai � mA

sA

� �
Bi � mB

sB

� �

μA and σA are the mean and standard deviation of A, respectively, μB and σB are the mean and

standard deviation of B, and N is the number of time points in the series A and B. The coher-

ence is the mean of the resulting coefficients. We restricted the coherence analysis to pixels

whose 3x3 neighborhood fell completely inside the cell mask in the reference frame. We calcu-

lated coherence values based on time-series over the entire movie or in moving windows of 20

frames (1/10 length of typical movie) to analyze coherence change during symmetry breaking.
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Actin entropy calculation

The mNG-actin channel visualizes a mixture of local monomers, branched Actin, and linear

bundles. To assess the local concentration change in all of these entities we calculated the

Shannon information entropy Actinin moving windows of 20 frames (1/10 the length of a typ-

ical movie). For every Actin intensity series X the entropy H(X) is defined as:

HðXÞ ¼
XN

i¼1

PðXiÞ log2
PðXiÞ

Where Xi is a value in series X and P(Xi) is the probability of drawing Xi from series X. Actin

Windowing parameterization

Cell edge-tracking probing windows were defined with the ‘Windowing-Protrusion’ software

package available on our Github site (https://github.com/DanuserLab). The underlying algo-

rithm is published in [1, 8]. We used the option ‘Constant number’ as a method of propagating

the windows to the next time frame. The size of the probing windows was set to 600×600 nm2,

comparable to previous work examining Actin dynamics in U2OS cells [29]. Over time and

between window layers, the width is variable to follow the cell edge movement. The depth of

the windows remains fixed.

Supporting information

S1 Fig. Impact of location fiducial on remapping accuracy (related to Fig 3). a) Reference

frame images of the three location fiducials, lowpass-filtered Actin, Profilin, and CAAX in the

same U2OS cell displayed in Fig 1b) To-target transformation and half-distance transforma-

tion accuracies (sum of squared distance (SSD) between target and remapped images) com-

puted for the full mNG-Actin signal of interest (see Fig 1) using different location fiducials as

indicated. The SSD between untransformed moving and target frames is computed as a base-

line. Box plots illustrate 25th, 50th, and 75th percentile of n = 91 moving/target frame pairs

pooled from m = 4 movies. Whiskers indicate the 5th and 95th percentile. P-values are calcu-

lated by one-way ANOVA testing.

(PDF)

S2 Fig. Verification of Profilin knockout clones. Profilin knockout was verified using west-

ern blotting using mouse monoclonal anti-Profilin-1 antibodies. Vinculin and Actin provided

as loading control. See materials and methods for antibody source.

(PDF)

S1 Movie. Cell registration of an Actin signal of interest based on a CAAX location fiducial

(related to Fig 1). Cell: U2OS SNAP-CRISPR-Profilin, mNG-Actin, Halo-CAAX treated with

25 μM Blebbistatin. Top left: CAAX original movie. Top right: CAAX remapped movie. Bot-

tom left: Actin original movie. Bottom right: Actin remapped movie. Acquisition rate: 1

frame/5s. Replay rate: 21 frames/s

(AVI)

S2 Movie. Registration of cell edge before and after remapping (related to Fig 1). Cell:

U2OS SNAP-CRISPR-Profilin, mNG-Actin, Halo-CAAX treated with 25 μM Blebbistatin.

Left: original movie. Right: remapped movie. Color scale: red-current time point edge position

-> blue-past time point edge position. Acquisition rate: 1 frame/5s. Replay rate: 21 frames/s

(AVI)
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S3 Movie. Windowing of transverse arcs (related to Fig 3e and 3f). Cell: U2OS SNAP--

CRISPR-Profilin, mNG-Actin, Halo-CAAX treated with 25 μM Blebbistatin. Left: full cell

view. Right: zoomed in view. Color: red-subcellular windows, pink-transverse arc detection,

black lines-window boundaries. Acquisition rate: 1 frame/5s. Replay rate: 7 frames/s

(AVI)

S4 Movie. Comparison of Profilin signal and Profilin Coherence (related to Fig 5b). Cell:

U2OS SNAP-CRISPR-Profilin, mNG-Actin, Halo-CAAX treated with 25 μM Blebbistatin.

Left: Profilin signal. Right: Profilin coherence in 25 time point moving windows. Acquisition

rate: 1 frame/10s. Replay rate: 7 frames/10s

(AVI)

S5 Movie. Comparison of WT-Profilin and R88E-Profilin coherence in same cell (related

to Fig 5c). Cell: U2OS EGFP-ProfilinWT, mCherry-ProfilinR88E, SNAP-Actin. Left: WT-Profi-

lin coherence in 25 time point moving windows. Right: R88E-Profilin coherence in 25 time

point moving windows. Acquisition rate: 1 frame/10s. Replay rate: 7 frames/10s

(AVI)

S6 Movie. Comparison of Actin signal and Actin entropy (related to Fig 6). Cell: U2OS

SNAP-CRISPR-Profilin, mNG-Actin, Halo-CAAX treated with 25 μM Blebbistatin. Left:

Actin signal. Right: Actin entropy. Acquisition rate: 1 frame/5s. Replay rate: 7 frames/5s

(AVI)

S7 Movie. Profilin coherence before and after symmetry breaking (related to Fig 7). Cell:

U2OS SNAP-CRISPR-Profilin, mNG-Actin, Halo-CAAX treated with 25 μM Blebbistatin.

Left column: before symmetry breaking. Right column: after symmetry breaking. Top row:

original Actin signal. Mid row: remapped Actin signal. Bottom row: Profilin coherence in 25

time point moving windows. Acquisition rate: 1 frame/5s. Replay rate: 7 frames/5s

(AVI)
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