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Abstract

Expression QTL (eQTL) analyses have suggested many genes mediating genome-wide

association study (GWAS) signals but most GWAS signals still lack compelling explanatory

genes. We have leveraged an adipose-specific gene regulatory network to infer expression

regulator activities and phenotypic master regulators (MRs), which were used to detect

activity QTLs (aQTLs) at cardiometabolic trait GWAS loci. Regulator activities were inferred

with the VIPER algorithm that integrates enrichment of expected expression changes

among a regulator’s target genes with confidence in their regulator-target network interac-

tions and target overlap between different regulators (i.e., pleiotropy). Phenotypic MRs were

identified as those regulators whose activities were most important in predicting their

respective phenotypes using random forest modeling. While eQTLs were typically more sig-

nificant than aQTLs in cis, the opposite was true among candidate MRs in trans. Several

GWAS loci colocalized with MR trans-eQTLs/aQTLs in the absence of colocalized cis-

QTLs. Intriguingly, at the 1p36.1 BMI GWAS locus the EPHB2 cis-aQTL was stronger than

its cis-eQTL and colocalized with the GWAS signal and 35 BMI MR trans-aQTLs, suggest-

ing the GWAS signal may be mediated by effects on EPHB2 activity and its downstream

effects on a network of BMI MRs. These MR and aQTL analyses represent systems genetic

methods that may be broadly applied to supplement standard eQTL analyses for suggesting

molecular effects mediating GWAS signals.

Author summary

Most human genetic variants lie outside of genes (the functional units of the genome that

directly affect a cell’s biology) making it unclear which genes are responsible for influenc-

ing their associated traits. The gold-standard for linking genetic variants to genes is

expression QTL (or eQTL) analysis, which tests for associations between genetic variants
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and the expression of genes. However, this approach often fails to identify gene(s) poten-

tially mediating the effects of trait-associated variants. Here we propose the use of a sup-

plementary approach called activity QTL (or aQTL) analysis using existing eQTL data.

We first inferred the activities of genes that affect other genes’ expression based on a gene

regulatory network and then tested associations between genetic variants and these

inferred regulator activities. This can be advantageous when a gene’s measured expression

level is a poor indicator of its downstream activity or when multiple genetic influences are

funneled through key regulators in a gene regulatory network to affect the trait of interest.

Using this approach, we identified genes expressed in adipose tissue (i.e., fat) potentially

mediating genetic effects on BMI, fat distribution, diabetes risk and blood cholesterol lev-

els. More broadly, this work highlights the benefits of leveraging relational (i.e., topologi-

cal) information in addressing complex biological problems.

Introduction

Genome wide association studies (GWAS) have identified hundreds of thousands of germline

variants across the human genome that are associated with thousands of complex traits [1].

However, the complex, ancestry-dependent linkage disequilibrium (LD) landscape and the

propensity for genome-wide significant variants to lie in non-coding genomic regions make it

challenging to determine functional variants and their target genes. Therefore, the develop-

ment of empirically supported models explaining how these associations are mediated has

lagged further and further behind the discovery of new GWAS signals [2]. An essential ele-

ment of such explanatory models is the identification of the target gene(s) that are allele-specif-

ically affected by the functional variant(s) underlying a given GWAS signal. In parallel,

expression quantitative trait loci (eQTL) studies, wherein germline variants are tested for asso-

ciation with transcript levels in particular tissues or cell types, have discovered millions of vari-

ants associated with expression levels of one or more cis genes in at least one tissue type [3,4].

The hope has been that comparing GWAS signals to such eQTL results might readily suggest

the genes mediating GWAS associations. However, the relevant target genes of GWAS signals

have not become as readily apparent from eQTL results as once hoped [4–6].

Simple overlaps between eQTL and GWAS signals are insufficient to implicate target genes

mediating the GWAS signal. Colocalization analyses calculate the likelihood of a shared func-

tional variant underlying both the eQTL and GWAS signals, which must be the case if the

expression of a gene is mediating any component of the GWAS signal’s effect [7]. The Geno-

type-Tissue Expression (GTEx) Consortium reported a median of ~50% of GWAS loci across

21 traits colocalized with at least one cis-eQTL from any tissue in their v6p data freeze [5]. In

contrast, in the most recent GTEx data freeze (v8) they reported a median of only 21% of

GWAS loci colocalized with at least one cis-eQTL from any tissue across 87 traits despite

increasing the total samples by over 10,000 (~146%), suggesting the problem of identifying

mediating genes through eQTLs may be more subtle than merely a lack of statistical power

[4,5]. The potential limitations of cis-eQTLs in elucidating GWAS signals was further empha-

sized by new evidence suggesting on average only 11% of heritability across 42 tested GWAS

traits is explained by the cis genetic component of gene expression levels [6].

Given the limited success of cis-eQTLs in explaining the majority of GWAS signals, meth-

ods for determining genetic effects on molecular QTLs further downstream of transcript levels

may prove useful. Indeed, enrichment of GWAS variants among significant trans-eQTLs

tends to be stronger than that of cis-eQTLs [3,4]. However, trans-QTL analyses suffer from
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large multiple testing burdens that limit their power. Reducing tested targets based on regula-

tory interactions has previously helped identify trans-eQTLs [8,9]. While trans-eQTLs are

enriched for cis-eQTLs, only 31.6% of lead trans-eVariants are also cis-eVariants, though

mediation analysis does suggest most of those trans effects are likely mediated by the cis-eQTL

[4]. However, this means the remaining 68.4% of all lead trans-eVariants do not coincide with

any detected cis-eQTL. These unexplained trans effects could arise by undetected cis effects,

direct trans effects or more complex, indirect mechanisms.

Among all genetic variants, those with some effect on a complex trait of interest likely have

convergent downstream molecular effects that are functionally canalized by cellular regulatory

systems [10]. Consequently, we expect functional GWAS variants to frequently have detectable

impacts on the activity of regulatory networks in cell types and tissues relevant to the trait of

interest, even when more proximal cis effects continue to resist identification. Toward this

end, we propose the application of activity QTL (aQTL) analysis that leverages tissue-specific

gene expression regulatory networks to identify genetic effects on expression regulatory activi-

ties. Activity QTLs have been previously reported between master regulators (MRs) and func-

tional coding or promoter variants in regulatory genes upstream of the MRs in their respective

tissue-specific gene regulatory networks [11–13]. However, our present study is the first to

explore the utility of systematically applying aQTL analyses for the elucidation of the molecular

mechanisms mediating GWAS signals. These analyses have suggested candidate mediating

genes for several cardiometabolic GWAS loci that to our knowledge do not yet have explana-

tory models or colocalizing cis-eQTLs.

Results

Inference of gene regulator activities from transcriptomic data

Based solely on transcriptomic data, gene activity inferences are restricted to genes whose

products play a direct or indirect role in determining the gene expression landscape in the

studied tissue. We therefore designated transcription factors, transcription co-factors and sig-

nal transduction factors as expression regulators (6,153 genes listed in S1 Table). An adipose

gene co-expression network was inferred from 766 subcutaneous adipose RNA-seq samples

from the TwinsUK Study using ARACNe (S2 Table) [14–17]. Network edges in ARACNe co-

expression networks indicate significant mutual information (MI) between the two genes’

expression. Our adipose ARACNe network contained 4,221 regulators and 13,775 targets with

a total of 730,059 directed edges (S2 Table).

Regulator activities were then inferred using the VIPER R package based upon the adipose

ARACNe co-expression network and the expression of the downstream targets in all 766 adi-

pose RNA-seq samples [18]. Each target gene’s influence on the inferred activity of its regula-

tor is weighted by the significance of the association in the ARACNe network, is consistent

with the direction of their Spearman correlation (i.e. the mode of regulation) and is adjusted

by a pleiotropy correction to account for multiple upstream regulators [18]. Furthermore,

activities were only inferred for regulators with at least 25 expressed targets to ensure the

robustness of each inference.

Master regulator (MR) analyses for cardiometabolic phenotypes in

subcutaneous adipose tissue

Within this study we defined “master regulators” (MRs) as expression regulators that likely

play critical roles in the gene regulatory program that instantiates a cell state associated with a

given phenotype. These candidate MRs were identified as the regulators whose activities best
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predict the phenotype of interest. We identified putative phenotypic MRs for subcutaneous

adipose tissue by random forest regression modeling on regulator activities via the following

steps: 1) test cross-validation error for random forest models with increasing numbers of regu-

lators to determine a parsimonious number of regulators sufficient to minimize prediction

error; 2) identify the most important regulators as measured by the percent increase in the

mean square error (MSE) upon permutation; 3) train the final random forest model with the

determined number of top regulators by importance (S1 Fig). Training and test sets were

formed as a 70:30 split, respectively, of the TwinsUK adipose regulator activity profiles. Master

regulators were identified for body mass index (BMI), waist-hip ratio (WHR), the natural log

of the homeostatic model assessment of insulin resistance (HOMA-IR), plasma high-density

lipids (HDL) and plasma triglycerides.

The cross-validation random forest analyses suggested ~100 regulators sufficiently mini-

mized prediction error in the training sets for BMI, WHR, HOMA-IR and HDL, but triglycer-

ides only needed ~60 regulators (S2–S6 Figs). For each phenotype, the predictions by the final

random forest models (with the indicated number of MRs selected by importance) were well

correlated with actual measurements in both the training and test sets (-log10(P) between 7.3

and 78.6; Fig 1A–1O). To further test these putative phenotypic MRs in an independent data-

set we used the METSIM expression array data that includes 769 subcutaneous adipose sam-

ples from Finnish men [19]. First, regulator activities were inferred for the METSIM samples

from the expression data and the TwinsUK adipose co-expression network using VIPER.

Again, the associations between the actual phenotypic measurements and those predicted with

the TwinsUK MR random forest models were highly significant for all phenotypes (Fig 1C,

1F, 1I, 1L and 1O). However, there were differences in phenotype distributions between the

TwinsUK and METSIM datasets, which may in part be explained by gender differences (Twin-

sUK subjects are all female).

While correlations were noted between candidate MRs at the expression level, they were

much stronger between activities (S7A and S7B Fig). This is expected as the MRs are selected

based on activities rather than expression levels. Correlation between expression and activity

for matched MRs was strong overall (mean r = 0.72), though there are some MRs with rela-

tively weak correlation (i.e., r< 0.5), which highlights the important difference between these

two metrics (S7C and S7D Fig). However, the matched MR correlations were clearly stronger

than the unmatched (S7D and S7E Fig). The lack of clustering among MRs of the same pheno-

type is also notable, though perhaps not surprising for candidate MRs of well correlated cardi-

ometabolic phenotypes (S7A–S7C Fig). This was also reflected in the overlap in MRs between

phenotypes (S4 Table and S7F Fig).

Activity QTL (aQTL) and eQTL analyses at cardiometabolic GWAS loci

The main question of this study was whether activity QTL (aQTL) analysis may provide a use-

ful method to supplement eQTL analysis in identifying genes potentially mediating genetic

associations with complex traits. Therefore, we restricted the eQTL and aQTL analyses to vari-

ants with genome-wide significant (i.e. P� 5 x 10−8, the conventional GWAS threshold) asso-

ciations with cardiometabolic traits that may be in part mediated by adipose tissue.

Specifically, we separately ran cis-eQTL and aQTL analyses for variants associated with BMI,

BMI-adjusted WHR, BMI-adjusted type 2 diabetes (T2D), plasma HDL levels and plasma tri-

glycerides levels against all nearby regulator genes (within 1Mb) for which activities were

inferred. Note that these eQTL and aQTL results come from an all-female dataset and there-

fore specific associations cannot be safely generalized to both genders without further

validation.
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Overall, 55,855 GWAS variants were tested for association with the expression and activities

of 4,213 expression regulators in the cis analyses and 291 candidate MRs in the trans analyses.

These analyses together identified 264 cis-eRegulators, 11 cis-aRegulators, 20 trans-eMRs and

84 trans-aMRs significant at FDR < 0.05. In cis, eQTLs were almost always stronger than the

respective aQTLs (S5–S9 Tables). This was expected since transcript-level effects are presum-

ably more proximal to a functional variant’s allelic effects in the chain of molecular events than

gene product activities. However, among the 11 cis-aRegulators significant at FDR < 0.05 (ver-

sus 264 such cis-eRegulators), six aQTL signals had nominally better minimum P-values com-

pared to their corresponding eQTL signals (S10 Table). Of those, only two were decisively so

(nearly 2-orders of magnitude more significant than their corresponding eQTL signals): the

EPHB2 and USP6 cis-aQTL signals at the 1p36.1 and 17p13.2 BMI GWAS loci, respectively.

EPHB2 was the only significant aRegulator that was not also a significant eRegulator.

Given that MRs integrate upstream genetic and environmental information into a gene regu-

latory program that instantiates the cell state for a given phenotype, we hypothesized that expres-

sion levels and activities of putative phenotypic MRs may serve as sensitive gauges of the

mediating molecular effects of GWAS variants (for matching or related phenotypes) when the

given tissue is relevant to that particular GWAS signal. As such, by restricting trans-eQTL and

aQTL analyses of GWAS signals to candidate MRs of matching or relevant phenotypes, we

reduce the multiple testing burden of the analyses while simultaneously enriching the tested

genes for those regulators most important to the phenotype of interest in the given tissue. We

therefore assessed trans-eQTLs and aQTLs for significant BMI variants against BMI MRs, WHR

(BMI-adjusted) variants against WHR MRs, T2D (BMI-adjusted) variants against HOMA-IR

MRs, HDL variants against HDL MRs and triglycerides variants against triglycerides MRs. In

contrast to the cis analyses, trans-aQTLs tended to be more significant than their respective

eQTLs, especially for BMI and WHR GWAS signals (Tables 1 and S11–S15). Among all unique

QTLs for significant eRegulators/aRegulators (FDR< 0.05) across all analyses, only 20% of cis-
aQTLs were more significant than their respective eQTLs while 72% of trans-aQTLs were more

significant than their respective eQTLs (Z-test of independent proportions P = 3.03 x 10−280).

To ensure this aQTL advantage over eQTL in trans was not due to bias introduced by using

activity scores rather than expression values to infer MRs, we also performed the random for-

est MR approach described above to identify the same number of putative phenotypic MRs

based on expression. Trans-eQTL/aQTL analyses of these expression-based candidate MRs

indicated that 82% of trans-aQTLs were more significant than their respective eQTLs among

all unique, significant (FDR< 0.05) trans-QTLs. Therefore, trans-aQTLs maintain their

advantage over trans-eQTLs regardless of the metric used to infer putative phenotypic MRs.

However, activity score is expected to be a more robust metric preferred for identifying puta-

tive MRs (see Discussion) and using the expression-based MRs reduced the number of unique,

significant trans-QTLs (778 for expression-based MRs versus 804 for activity-based MRs), so

we proceeded in our analyses exclusively with the activity-based MR trans-QTLs.

Regulators and master regulators tend to be under complex expression

control

Recently, Wang and Goldstein reported a new Enhancer-Domain Score (EDS) that reflects the

size, redundancy and conservation of all enhancers linked to a gene’s expression [20]. They

Fig 1. Identification of phenotypic master regulators (MRs) in adipose tissue through random forest modeling. (A-O) Scatter plots with trendlines

comparing predicted and actual phenotypes for the TwinsUK training set (A, D, G, J, M), test set (B, E, H, K, N) and METSIM validation set (C, F, I, L, O)

for BMI (A-C), WHR (D-F), HOMA-IR, (G-I), HDL (J-L) and triglycerides (M-O).

https://doi.org/10.1371/journal.pcbi.1009563.g001
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found that genes involved in development or pathogenicity and those with nearby GWAS sig-

nals tended to have higher EDS, while in contrast, significant cis-eGenes (in GTEx across all

tissues) tended to have lower EDS. This mismatch between EDS distributions for GWAS genes

and significant cis-eGenes is concerning for the prospect of identifying the genes mediating

GWAS signal effects via cis-eQTL analysis alone. Therefore, we decided to explore the EDS

distributions among significant aGenes, MRs and trans-Genes (S16 Table).

First, we noted that expression regulators in general have significantly higher mean EDS

compared to all expressed genes in the TwinsUK data (Pt-test = 1.20 x 10−32; Fig 2 and S16

Table). We also observed lower mean EDS for cis-eGenes (those with an eQTL P< 5 x 10−6)

compared to all expressed genes and for cis-eRegulators (those with an eQTL P< 5 x 10−6)

Table 1. Cardiometabolic GWAS loci with significant master regulator (MR) trans-QTLs.

GWAS Locus Best locus

SNP

Chr Position Best locus

P
MR trait Significant MR trans-

Genes

Significant MR trans-
eGenes

Significant MR trans-
aGenes

BMI 1p36.1 rs6692586 1 23299906 1.10E-16 BMI 41 4 41

BMI 1q24.3 rs16864515 1 171435542 1.70E-10 BMI 4 0 4

BMI-adjusted

WHR

1q24.3 rs714515 1 172352990 4.40E-15 WHR 44 1 44

BMI 1q25.2 rs543874 1 177889480 1.20E-122 BMI 1 0 1

BMI-adjusted

WHR

1q41 rs2820443 1 219753509 5.30E-21 WHR 4 0 4

Triglycerides 2p24.1 rs676210 2 21231524 3.28E-71 Triglycerides 1 1 0

BMI 2p23.3 rs12468863 2 26940294 5.10E-21 BMI 1 1 0

BMI-adjusted

WHR

2q24.3 rs1128249 2 165528624 2.00E-15 WHR 1 0 1

HDL 3p25.3 rs2606736 3 11400249 4.80E-08 HDL 1 1 0

BMI 5q31.2 rs7716275 5 137631073 2.20E-10 BMI 1 0 1

BMI-adjusted

WHR

6q22.3 rs1936805 6 127452116 3.60E-35 WHR 2 1 1

Triglycerides 7q32.2 rs287621 7 130435181 7.67E-09 Triglycerides 3 3 0

HDL 7q32.2 rs11765979 7 130445877 3.11E-17 HDL 3 3 0

BMI 7q32.2 rs972283 7 130466854 5.10E-09 BMI 1 1 0

BMI-adjusted

T2D

7q32.2 rs61462211 7 130468015 1.00E-16 HOMA-IR 2 2 0

BMI 8q21.2 rs733594 8 85077686 5.90E-14 BMI 3 1 2

BMI 10q26.3 rs4880341 10 133992689 1.10E-11 BMI 3 0 3

BMI 11q13.1 rs7102454 11 65594820 2.4E-18 BMI 3 0 3

Triglycerides 11q23.3 rs10790162 11 116639104 1.1E-249 Triglycerides 1 1 0

BMI 12p13.33 rs11611246 12 939480 5.00E-32 BMI 6 0 6

BMI 12p13.1 rs12422552 12 14413931 1.60E-11 BMI 8 0 8

BMI 12q13.13 rs4759075 12 54667285 1.40E-11 BMI 1 0 1

HDL 15q21.3 rs10468017 15 58678512 1.21E-188 HDL 1 1 0

BMI 15q24.1 rs7164727 15 73093991 3.30E-25 BMI 3 0 3

HDL 17q25.3 rs4969178 17 76388202 1.53E-12 HDL 1 1 0

BMI 18q21.3 rs663129 18 57838401 1.60E-178 BMI 1 0 1

BMI 19q13.3 rs3810291 19 47569003 2.10E-52 BMI 1 1 0

BMI-adjusted

T2D

20q13.32 rs736266 20 57387352 1.00E-11 HOMA-IR 1 1 0

Table includes all tested cardiometabolic GWAS loci with at least one significant MR trans-QTL at FDR < 0.05. See S11–S15 Tables for all significant MR trans-eQTLs

and aQTLs at tested GWAS loci.

https://doi.org/10.1371/journal.pcbi.1009563.t001
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compared to all expressed regulators (respectively, Pt-test = 9.38 x 10−5 and Pt-test = 0.0022; Fig

2A and S16 Table). In contrast, cis-aRegulators (those with an aQTL P< 5 x 10−6) have a

higher mean EDS than all expressed regulators, though the difference was not significant, per-

haps due to a lack of power (Fig 2A and S16 Table). Unlike cis-eGenes, trans-eGenes (those

with an eQTL P< 1 x 10−8) had a significantly higher mean EDS than all expressed genes (Pt-
test = 7.57 x 10−4; Fig 2B and S16 Table), though their mean was still significantly lower than

for all expressed regulators (Pt-test = 0.0060; Fig 2B and S16 Table). Both trans-eRegulators

and trans-aRegulators (those with an eQTL P< 1 x 10−8) had significantly higher mean EDS

than all expressed regulators (respectively, Pt-test = 0.0097 and Pt-test = 1.22 x 10−4; Fig 2B and

S16 Table). The mean EDS scores of the trans-eMRs and trans-aMRs identified above with

GWAS variants were even higher than the trans-eRegulators and trans-aRegulators (trans-
eMRs vs. trans-eReglators Pt-test = 0.0956 and trans-aMRs vs. trans-aReglators Pt-test = 0.0468;

Fig 2B and S16 Table).

Given the consistent trend of higher mean EDS among genes identified by aQTL versus

eQTL, it is tempting to speculate that aQTLs have an advantage in detecting genes with more

complex enhancer structure, which are enriched near GWAS signals. However, given the

numbers of detected aGenes in these analyses, larger sample sets are needed to reach a firm

conclusion on this. What is clear is that expression regulator genes and significant trans-
eGenes trend towards higher EDS than genes in general, and likewise for trans-e/aRegulators

and trans-e/aMRs compared to expression regulators in general. This seems to imply that

genes in general, and expression regulator genes specifically, may be more likely to have

detectable trans-QTL associations when they are regulated by a more complex enhancer

structure.

Further analyses of select GWAS loci

The trans-QTL results presented in Table 1 represent cases in which trans-eQTLs/aQTLs (for

the putative phenotypic MRs inferred from regulatory activities) suggest hypotheses for the

mediation of GWAS signals that may warrant follow-up functional studies. This is progress,

since for most of these GWAS signals, standard eQTL analyses have failed to suggest genes

that mediate their effects. However, mere overlap between a GWAS signal and e/aQTL signal

is relatively weak evidence that the latter mediates the former as the two signals may result

from distinct functional variants with incidental correlation between the two signals [7]. We

therefore used the HyPrColoc R package to perform formal colocalization analysis between

the GWAS signals and all QTL signals for cis genes and relevant trans MRs at the 24 loci listed

in Table 1 as well as the 17p13.2 locus that contained a BMI GWAS signal that overlapped the

USP6 cis-aQTL signal mention previously. At a posterior probability (PP) >0.5, 13 cis-eQTL, 2

cis-aQTL, 55 trans-eQTL and 166 trans-aQTL signals colocalized with GWAS signals (full

results in S17 Table).

The chr7q32.2 locus, which includes GWAS signals for BMI, T2D, HDL and triglycerides,

has previously been studied in some detail (Fig 3A) [8,9]. Small et al. reported an adipose-spe-

cific KLF14 cis-eQTL signal overlapping the T2D and HDL GWAS signals, as well as 385

trans-eQTLs with genes enriched in “metabolic processes” and “binding by PPARG and

RXRA during adipocyte differentiation” GO: Biological Processes [21,22]. Therefore, we

assessed the results of our analyses at the 7q32.2 locus against those of Small et al. and per-

formed colocalization analyses for our eQTL and aQTL results with BMI, T2D (BMI-

adjusted), HDL and triglycerides GWAS signals using HyPrColoc [23]. We observed signifi-

cant KLF14 cis-eQTLs and cis-aQTLs overlapping the BMI, T2D (BMI-adjusted), HDL and tri-

glycerides GWAS signals, though the eQTL signal was more significant (Fig 3B; eQTL
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Prs972283 = 4.14 x 10−29 vs. aQTL Prs972283 = 2.50 x 10−5). Furthermore, significant trans-eQTLs

(at FDR< 0.05) for six MRs (AGT, GNB1, RABIF, NR2F1, ESR2 and TBX4) also overlapped

the GWAS signals (Tables 1, S11, and S13–S15). The four GWAS signals did colocalize well

(PP> 0.5) with each other, though the BMI-HDL and T2D-triglycerides pairs colocalized bet-

ter than other pairings (S8 Fig and S17 Table). Plots comparing the SNP-wise -log10(P) (i.e.

LocusCompare plot) for each pairing of the four GWAS suggested this may be due to at least

two functional signals represented by rs972283 and rs287621, which have an r2 = 0.31 in the

1000 Genomes EUR population (Figs 3A, 3C–3J and S8). While the BMI and HDL signals

appear best explained by the rs972283 signal, the triglycerides signal appears better explained

by the rs287621 signal and the T2D signal appears to include both signals at roughly equal

strength (S8 Fig). Conditional analyses of the GWAS summary statistics with COJO were con-

sistent (though not definitive) with the presence of the two functional signals for T2D, but not

for the other three GWAS (S18–S21 Tables) [24,25]. This impacted the colocalization analyses

as the presence of two T2D signals necessarily reduced the posterior probability (PP) that there

is a single shared functional variant with any eQTLs and aQTLs. The BMI and HDL GWAS

signals colocalized strongly with LINC-PINT, AC016831.7 and KLF14 cis-eQTLs, KLF14 cis-
aQTL and several MR trans-eQTLs and aQTLs (PPmedian = 0.89 [range 0.48–0.97]; Figs 3C,

3E, 3G, 3I and S9, and S17 Table). In contrast, colocalizations tended to be much weaker for

T2D and triglycerides GWAS signals with the various cis and trans eQTL and aQTL signals

(PPmedian = 0.59 [range 0.41–0.97]; Figs 3D, 3F, 3H, 3J and S9, and S17 Table). Notably, the

only cis signals to colocalize with the T2D signal were the AC016831.7 eQTL (PP = 0.62) and

the KLF14 aQTL (PP = 0.43) (Figs 3H and S9, and S17 Table). Also, all MRs that had a trans-

Fig 2. EDS score distributions among genes and regulators with cis or trans-QTLs. Box plots of the distribution of Enhancer-Domain Scores (EDS)

among (A) cis-eGenes (with Pmin< 5 x 10−6 among all SNPs and cis-Genes) and cis-e/aRegulators (with Pmin< 5 x 10−6 among all SNPs or restricted to

GWAS SNPs and cis-Regulators) or (B) trans-eGenes (with Pmin< 1 x 10−8 among all SNPs and genes), trans-e/aRegulators (with Pmin< 1 x 10−8

among all SNPs and expression regulators) and e/aMRs (with Pmin< 5 x 10−6 among GWAS SNPs and relevant MRs). For both panels, t-test was used

to assess significance of difference in mean EDS between the indicated gene set and all expressed genes (P = 0.05 for �, P = 0.0005 for ��, P = 5 x 10−6 for
���), or between the indicated gene set and all expressed regulators (P = 0.05 for +, P = 0.0005 for ++, P = 5 x 10−6 for +++). The numbers along the

bottom of each plot indicate the gene counts for the set.

https://doi.org/10.1371/journal.pcbi.1009563.g002
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Fig 3. KLF14 cis-eQTL/aQTL signals and their colocalization with GWAS signals at chr7q32.2. (A) LD matrix shaded by correlation (r2) for chr7q32.2

GWAS variants associated with BMI, T2D (BMI-adjusted), HDL and triglycerides. (B) Violin plot of normalized KLF14 expression or activity distributions

stratified by rs972283 genotype. (C-J) LocusCompare plots comparing the -log10(P) for variants from the indicated GWAS signals versus KLF14 cis-eQTL or

aQTL signals. Posterior probabilities (PP) of a single, common functional variant for the compared association signals were calculated with HyPrColoc.

https://doi.org/10.1371/journal.pcbi.1009563.g003
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eQTL or aQTL that colocalized with the GWAS signals were also identified in trans-eQTLs by

Small et al., which they had validated in other datasets (S17 Table) [9].

In contrast to the complexity of the pleiotropic 7q32.2 locus, the BMI locus at chr12p13.1

has only one likely functional candidate variant, rs12422552 (Figs 4 and S10). Strikingly, this

BMI signal colocalizes with 15 BMI MR trans-eQTLs (PPmedian = 0.67 [range 0.49–0.98]) and

64 BMI MR trans-aQTLs (PPmedian = 0.89 [range 0.49–1.00]), though among these nominally

significant, colocalized trans-QTL signals, only 8 trans-aQTLs (ANG, CSNK2A2, ID2, PIM1,

PTPRJ, TENM4, TNFRSF10C and ZFAT) were significant at FDR < 0.05 (Fig 4, and Tables 1,

S11–S15 and S17). Despite the many colocalized trans effects on BMI MR activities, no cis-
eQTL or cis-aQTL colocalized with the 12p13.1 BMI GWAS signal. This locus was just one

example among several in this study (1q24.3 BMI, 1q24.3 WHR, 3p25.3 HDL, 5q31.2 BMI,

10q26.3 BMI, 17q25.3 HDL, 20q13.32 T2D) where colocalizing MR trans-eQTLs/aQTLs were

identified in the absence of any colocalizing cis-eQTLs/aQTLs, and among such loci, trans-
aQTLs were typically stronger than their cognate eQTLs (S11–S15 and S17 Tables).

The BMI GWAS locus at 1p36.1 was rather exceptional among the loci we analyzed in that

it contains a cis-aQTL signal (for EPHB2) that is stronger than its cognate eQTL signal while

also having 41 BMI MR trans-aQTLs significant at FDR < 0.05 (Figs 5, 6C and 6D, Tables 1,

S5 and S11). All 41 FDR-significant trans-aQTLs were stronger than their corresponding

trans-eQTLs and this trend also extended to the nominally significant trans-QTLs (Fig 6A and

6B and S11 Table). Notably, EPHB2 was also identified as a putative BMI MR (S4 Table). The

EPHB2 cis-aQTL signal was the only cis-QTL to colocalize with the BMI GWAS signal

(PP = 0.86). Furthermore, 35 nominally significant BMI MR trans-aQTLs colocalized

(PP> 0.25) with the BMI signal, versus only 5 trans-eQTLs (S17 Table). Interestingly, Locus-

Compare plots for the BMI GWAS and each QTL again suggested at least two functional sig-

nals at this locus represented by rs6692586 and rs4654828 (r2 = 0.37 in the 1000 Genomes

EUR population) that were distinguishable to varying degrees among the tested QTLs at this

locus, though conditional analysis of the BMI GWAS summary statistics with COJO was inde-

cisive on the independence of BMI effects for these SNPs (Fig 5A and 5C–5I and S22 Table).

For example, the rs6692586 signal was clearly the strongest, if not the sole, signal for the BMI

GWAS, while for the DOK5 trans-aQTL the rs4654828 signal was stronger, and for the EPHB2
cis-aQTL the two signals were roughly equivalent (Fig 5C and 5D). Consequently, there were

many BMI MR trans-QTLs that colocalized only weakly (0.25< PP< 0.50) with the BMI

GWAS signal, but colocalized well (PP> 0.50) with the EPHB2 cis-aQTL, which itself coloca-

lized well with the BMI GWAS signal (Fig 5C–5I and S17 Table). In the adipose co-expression

network EPHB2 was directly connected to four other BMI MRs that had significant trans-
aQTLs that colocalized with the BMI GWAS signal, and it was a 2nd degree neighbor of all

other such BMI MRs (Fig 6). Therefore, while the presence of two putative functional signals

at this locus complicates the interpretation of the BMI GWAS signal, the aQTL results impli-

cated EPHB2 as a potential mediator of the genetic BMI effects of this locus in adipose tissue

via its downstream effects on the adipose gene regulatory program associated with BMI.

Discussion

In this study we have attempted to leverage information about the tissue-specific gene expres-

sion regulatory landscape to better inform hypothesis generation about the molecular conse-

quences of genetic signals that mediate their effects on complex traits. Toward this end, we

inferred activity scores for expression regulators that are distillations of patterns in the expres-

sion levels of their downstream targets in the tissue-specific regulatory network. These inferred
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activities have several advantages and disadvantages as quantitative molecular traits as com-

pared to transcript expression levels.

First, because the activity is dependent on the expression of many genes, it is far more

robust to noise in the expression data [18]. Standard transcriptomic approaches measure

steady-state expression as an average over many cells, which masks the complexity of expres-

sion dynamics within cells that are not necessarily synchronized across a tissue sample [26,27].

In contrast, inferred activity scores not only accommodate these unavoidable fluctuations due

to the dynamics of transcription through their robustness but are able to capture coordinated,

meaningful fluctuations in gene expression profiles. However, this and other advantages are

completely dependent on the accuracy of the activity inference that is in turn dependent on

the adequacy of the tissue/context-specific gene co-expression network. Also, using only
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Fig 4. PTPRJ and ID2 BMI master regulators trans-eQTL/aQTL signals and their colocalization with the BMI GWAS signal at chr12p13.1. (A) Violin

plot of normalized PTPRJ expression or activity distributions stratified by rs12422552 genotype. (B-C) LocusCompare plots comparing the -log10(P) for

variants from the BMI GWAS signal versus the PTPRJ trans-eQTL or aQTL signals. Posterior probabilities (PP) of a single, common functional variant for the

compared association signals were calculated with HyPrColoc. (D) As in A, but for ID2 expression or activity distributions. (E-F) As in C-D, but for ID2
trans-eQTL or aQTL signals.

https://doi.org/10.1371/journal.pcbi.1009563.g004
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Fig 5. EPHB2 cis-eQTL/aQTL and BMI master regulator trans-eQTL/aQTL signals and their colocalization with the BMI GWAS signal at chr1p36.1.

(A) LD matrix shaded by correlation (r2) for chr1p36.1 BMI GWAS variants. (B) Violin plot of normalized EPHB2 expression or activity distributions

stratified by rs4654828 genotype. (C-F) LocusCompare plots comparing the -log10(P) for variants from the BMI GWAS signal versus the EPHB2 cis-aQTL

signal (C) or indicated BMI master regulator trans-aQTL signal (D-F). (G-I) LocusCompare plots comparing the -log10(P) for variants from the EPHB2 cis-
aQTL signal versus the indicated BMI master regulator trans-aQTL signal. Posterior probabilities (PP) of a single, common functional variant for the

compared association signals were calculated with HyPrColoc.

https://doi.org/10.1371/journal.pcbi.1009563.g005
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transcriptome data, activities may only be inferred for genes that influence expression profiles,

like transcription factors (TFs), transcription co-factors and signal transduction factors.

Second, TF genes tend to be lowly expressed compared to other genes, which implies a

smaller expected variance in transcript levels under normal circumstances [26,28]. This rela-

tively low variance in the presence of the unavoidable noise inherent to steady-state transcrip-

tomic approaches suggests lower statistical power to detect eQTLs for TF genes. In contrast,

activity QTLs (aQTLs) would not face such limitations as they are derived from many down-

stream target genes with a range of expression means and variances. Though, as above, this

advantage depends upon the adequacy of the tissue/context-specific gene co-expression net-

work used for the activity inference.

Third, expression regulator activities are far closer in the causal chain to complex pheno-

types of interest than transcript levels but are consequently further removed from the proximal

molecular consequences of allelic variation. This larger distance in the causal chain between

genotype and activity provides increased opportunity for noise to be amplified, likely decreas-

ing the measured association between the two. Our comparison of cis-eQTLs and aQTLs bears

out this expectation. However, the increased distance between genotype and activity in the

causal chain also provides room for the canalization of the effects of genetic signals, potentially

in concert with other genetic signals and environmental interactions, such that the down-

stream molecular consequences relevant to a complex trait of interest may become apparent.

We hypothesized this may be best observed through trans effects on phenotypic master regula-

tors (MRs) for a tissue that is relevant to the complex trait of interest. Indeed, we observed

many significant MR trans-aQTLs at cardiometabolic GWAS loci, and these were often more

significant than their corresponding trans-eQTLs. Furthermore, these trans effects on pheno-

typic MRs in relevant tissues are theoretically not restricted to the tissue wherein the proximal,

allele-specific molecular effects occurred.

Finally, while many genetic signals associated with complex traits may be mediated by

effects on the steady-state gene-level expression, genetic effects on other molecular phenotypes

have been suggested as possible mediators of complex traits in the absence of detectable, gene-

level eQTLs [29,30]. Examples include missense coding variants, genetic effects on RNA modi-

fications (as in m6A-QTLs) and isoform QTLs that indicate genetic effects on alternative splic-

ing, promoter usage, or differential polyadenylation/cleavage sites [31–34]. Furthermore, there

has been evidence that transcription kinetics of expression regulators can influence their activ-

ity without any observable change in steady-state transcript levels [27,35]. Activity QTLs are

theoretically capable of capturing all these allele-specific molecular effects, though only for

genes that encode expression regulators and only when such effects are relevant to the activity

of the expression regulator. However, an aQTL does not reveal which of these upstream molec-

ular effects might mediate the activity effect. Conversely, even if such upstream molecular

effects (including eQTLs) are detectable for a given genetic signal, its relevance to other pheno-

types would be suspect without a consequent detectable effect on the regulator’s activity.

Fig 6. Adipose co-expression subnetworks of BMI master regulators with associations at the 1p36.1 BMI GWAS locus. (A-B)

Subnetwork graph of all putative BMI master regulators. (C-D) Subnetwork graphs of BMI master regulators with a significant

aQTL with rs4654828. (E-F) Subnetwork graph of BMI master regulators with a significant aQTL with rs4654828 that also

colocalized well with the BMI GWAS signal (PP> 0.50). (G-H) Subnetwork graph of BMI master regulators with a significant

aQTL with rs4654828 that also colocalized well with the BMI GWAS signal (PP> 0.50) and are first degree neighbors of EPHB2.

All subnetworks were extracted from the full adipose co-expression network. For all graphs nodes are shaded by eQTL (A,C,E,G)

or aQTL (B,D,F,H) effect sizes for rs4654828, node borders are shaded by Pearson correlation between BMI and the regulator’s

expression (A,C,E,G) or activity (B,D,F,H), and edges are shaded by the Spearman correlation (i.e. mode of action; red indicates

positive correlation and blue indicates negative) between regulator and target. Note that Spearman correlations may be near 0 due

to non-linear associations since edge inclusion was based on significant mutual information.

https://doi.org/10.1371/journal.pcbi.1009563.g006
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In this study we inferred regulator activities for sub-cutaneous adipose tissue samples from

the TwinsUK Study using VIPER [16–18]. However, there is an updated version called meta-

VIPER that infers activities based on multiple co-expression networks such that each regulator

may use a different regulon (i.e., the subnetwork of a regulator with its downstream targets)

based on the enrichment of differentially expressed target genes in the regulons across all

input networks [36]. This is particularly useful when the cell type or context of a sample is

uncertain or when an expression regulator’s transcript levels have too little variance to detect

correlation in the samples used to infer the context-specific co-expression network. Depending

on the context being studied and the co-expression networks available, metaVIPER could fur-

ther optimize the MR and aQTL approaches described here.

Another potential avenue for optimizing this approach would be the application of batch

effect correction methods, like PEER factors, for the aQTL linear models [37]. Such methods

have been shown to increase power in eQTL analyses [37]. However, the effects for which

PEER factors adjust are unknown, and may correlate with phenotypes relevant to the analysis

at hand if not included as covariates in the PEER training. Given the wide range of potentially

relevant phenotypes under consideration in our study, including some for which we lacked

data, we opted to simplify the analyses by omitting PEER factors from QTL models at the likely

cost of some loss in statistical power. In future analyses, careful application of batch effect cor-

rection may further optimize the aQTL method.

Setting aside the above discussed advantages and limitations, this MR and aQTL approach

still enjoys the benefit of requiring no additional data beyond the genotype, phenotype and

expression data already available in existing eQTL datasets. As such, the approach may be con-

sidered low risk with potentially high reward. Indeed, our analyses did generate some intrigu-

ing hypotheses for molecular traits that may mediate the effects of various cardiometabolic

GWAS signals, though it is again worth noting that these aQTL results have yet to be validated

in a male dataset. Consistent with previous studies, we found that the BMI, T2D (BMI-

adjusted), HDL and triglycerides GWAS signals at chr7q32.2 colocalize with KLF14, LINC-
PINT and AC016831.7 cis-eQTLs, KLF14 cis-aQTL and several MR trans-eQTLs and aQTLs to

varying degrees [8,9,38]. Though all these colocalized eQTLs were previously observed, the

colocalization with a significant KLF14 cis-aQTL was a new observation that lends further

weight to the hypothesis that KLF14 expression and activity may mediate at least some compo-

nent of these cardiometabolic GWAS signals. Conversely, the lack of significant LINC-PINT
cis-aQTL casts doubt on its relevance to these GWAS signals. AC016831.7 is uncharacterized

and consequently excluded from the aQTL analysis, but it is notable that its cis-eQTL coloca-

lized best with the T2D (BMI-adjusted) GWAS signal among all cis-QTLs. The generally

weaker colocalizations with the T2D (BMI-adjusted) GWAS was likely dues the presence of

two putative functional signals at the locus.

We also noted several examples of GWAS loci without any colocalized cis-QTLs that none-

the-less exhibited significant, colocalized trans-QTLs with relevant phenotypic MRs (e.g., the

12p13.1 BMI locus). Furthermore, among the MR trans-QTLs tested, the MRs’ aQTLs tended

to be stronger than their eQTLs, and this effect was not due to any biasing from using activity

scores to identify the putative MRs. This is particularly relevant given previous observations

that trans-eQTLs are more strongly enriched among GWAS variants than cis-eQTLs, which

may be related to observations by Wang and Goldstein, and this study, that both GWAS sig-

nals and trans-eGenes are enriched for high enhancer domain complexity (as measured by

EDS) while cis-eGenes tend towards lower than average EDS [3,4,20]. Focusing trans-QTL

analyses on expression regulators and candidate MRs resulted in even higher EDS distribu-

tions, which may be advantageous for explaining the effects of GWAS signals. Therefore, the

relative advantage of aQTLs over eQTLs in trans, combined with the reduced multiple testing
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burden achieved through the biologically motivated restriction of trans-QTL analyses to puta-

tive phenotypic MRs that likely mediate the flow of information through the regulatory net-

work results in a higher chance of detecting downstream molecular effects mediating the

effects of GWAS signals. This allows progress in the explanation of GWAS signals that cur-

rently lack any plausible, mediating cis effects.

Finally, at the 1p36.1 BMI locus we observed a situation where the EPHB2 cis-aQTL was

stronger than its eQTL and colocalized not only with the BMI GWAS locus, but also with

trans-aQTLs for 35 BMI MRs (15 of which were significant at FDR< 0.05). There are several

potential explanations for why EPHB2 has a stronger cis-aQTL than eQTL, including allelic

effects on transcript traits or transcription dynamics that have little impact on steady state

transcript levels, as discussed above. However, in this case it may in part be due to EPHB2’s

identification as a putative BMI MR. Consequently, its expression and activity were highly cor-

related with that of many other putative BMI MRs. Considering this and the observed colocali-

zations between the EPHB2 cis-aQTL and many significant MR trans-aQTLs, there may be

some feedback mechanism at play that amplifies the observed effect on EPHB2’s activity

through the trans effects on the activities of other BMI MRs. Functional studies are required to

further explore this phenomenon. Regardless, to our knowledge, prior to this study there was

no proposed explanation for the molecular effects that may mediate the BMI GWAS signal at

chr1p36.1. The notion of EPHB2 (which encodes the bi-directional ephrin receptor B2) as a

MR of the BMI-associated adipose cell state is consistent with the literature that has linked

EPHB2 expression to lipid metabolism in prostate tumor cells and adipose ephrin signaling to

obesity in mice [39,40].

In summary, by using only existing adipose eQTL datasets we were able to leverage the

gene regulatory landscape inferred from the expression data to infer expression regulator

activities, identify adipose phenotypic master regulators (MRs) matched or relevant to several

cardiometabolic traits, and detect activity QTLs (aQTLs) that colocalized with cardiometabolic

trait GWAS signals. Activity QTLs were often stronger than their eQTLs among MRs in trans,
but occasionally cis-aQTLs were also informative. Altogether, our MR and aQTL approach

enabled the generation of new hypotheses for molecular effects mediating GWAS signals for

complex traits that could be followed up in future functional studies.

Materials and methods

Transcriptome, genotype, phenotype and GWAS datasets

Subcutaneous adipose RNA-seq, imputed genotype and phenotype data were obtained via

controlled access from the TwinsUK resource for 766 female, twin subjects of European

descent [16,17]. The TwinsUK RNA samples were sequenced and quantified as described pre-

viously [17]. In brief, reads were mapped to GENCODE version 10 and normalized by median

number of well-mapped reads. We received the RNA-seq results as RPKM values, which we

converted to TPM values and log2 transformed. Genes were excluded for low expression by

the following scheme: < 5% samples with TPM greater than the minimum scaling factor

across all samples. The scaling factor for each sample was calculated as the ratio of average

TPM to average RPKM across all genes.

Genotype data for the TwinsUK samples were generated from various arrays (Human-

Hap300, HumanHap610Q, 1M-Duo and 1.2MDuo Illumina arrays) and imputation was per-

formed against the 1000 Genomes phase 1 reference panel using IMPUTE2 as previously

described [17,41,42].

BMI, waist and hip measurements (in cm), blood HDL, LDL and triglycerides (in mmol/L)

and fasting insulin (in pmol/L) and glucose (in mmol/L) were provided for most of the
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TwinsUK samples. Homeostatic model assessment of insulin resistance (HOMA-IR) was cal-

culated from fasting insulin and glucose using the HOMA2 Calculator (https://www.dtu.ox.ac.

uk/homacalculator/) and then natural log transformed [43]. All the above phenotypes were

measured at time of biopsy except the waist and hip measurements that were taken 7–16 years

earlier. In analyses using waist-hip ratio (WHR), we only used subjects whose BMI varied by

less than 10% between the time of waist/hip measurements and adipose biopsy.

METSIM study gene expression and phenotype data were downloaded from the Gene

Expression Omnibus (GEO) [19]. Expression array probe data was consolidated to gene level

expression with the limma R package using the avereps() function [44].

We used genome-wide association studies (GWAS) for body-mass index (BMI), waist-hip

ratio (BMI-adjusted WHR), type 2 diabetes (BMI-adjusted T2D), plasma high density lipids

(HDL) and plasma triglycerides from the European population [45–48].

Ancestry analysis

Initially, unrelated subjects were identified from the TwinsUK samples using KING (Kinship-

based Inference for GWAS) software and these unrelated subjects were combined with the

European references from the HGDP and the 1000 Genomes Project phase 3 [49–53]. The

combined data were LD pruned and used for admixture analysis to calculate admixture pro-

portions along with the European references using ADMIXTURE software [54]. Based on the

cross-validation error estimate, K = 3 was used for the model. The excluded related subjects

from the TwinsUK samples were subsequently projected to the previous ADMIXTURE result.

Principal component (PC) analysis of the TwinsUK data was performed using TRACE soft-

ware [55]. Briefly, the reference PCA was constructed from the European reference population

from the HGDP and the 1000 Genomes Project phase 3, then the TwinsUK data was projected

to the reference PCA.

Gene regulatory network inference

The adipose gene co-expression network was inferred using the Algorithm for the Reconstruc-

tion of Accurate Cellular Networks with adaptive partitioning (ARACNe-AP; https://github.

com/califano-lab/ARACNe-AP) [15]. This method uses mutual information (MI) to quantify

the dependence between each pair of genes to construct co-expression networks. It consists of

three steps: 1) Estimate the significance threshold of MI values from the given expression pro-

files, 2) Calculate bootstrap MI networks for randomly sampled subsets of given expression

profiles, and 3) Build a consensus network from the bootstrap networks. We ran the ARA-

CNe-AP network inference on 766 TwinsUK adipose expression profiles (in log2TPM) with

900 bootstraps and the default P-value threshold of 1x10-8. The source for each edge (i.e. the

regulator) was assigned according to the expression regulator list (6,153 genes listed in S1

Table) that included transcription factors, transcription co-factors and signal transduction fac-

tors. The final consensus network contained 4,221 regulators and 13,775 targets with a total of

730,059 directed edges (S2 Table).

Gene expression regulator activity inference

Expression regulator activity inference was performed using Virtual Inference of Protein

Activity by Enriched Regulon analysis (VIPER; http://bioconductor.org/packages/release/

bioc/html/viper.html) [18]. First, the ARACNe adipose co-expression network was converted

into an interactome by the aracne2regulon function within VIPER by the following calcula-

tions: 1) the mode of action (i.e. weighted direction of effect) between each regulator and each

of its targets based on their Spearman correlations; 2) the likelihood of the connection (S2
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Table). Activity scores were then calculated from Z-scaled log2TPM gene expression levels

(per gene across samples) based on the adipose interactome using the viper function.

Phenotypic master regulator (MR) analysis

Putative phenotypic MRs for subcutaneous adipose, defined as a set of regulators whose regu-

latory activity scores in adipose samples best predict a given phenotype, were identified by the

machine learning tool random forest regression (using the randomForest R package) via the

following steps: 1) test cross-validation error for random forest models with increasing num-

bers of regulators to determine a parsimonious number of regulators sufficient to minimize

prediction error; 2) identify the most important regulators as measured by the percent increase

in the mean square error (MSE) upon permutation of the regulator in all trees of the forest; 3)

train the final random forest model with the determined number of top regulators by impor-

tance (S1 Fig). Training and test sets were formed as a 70:30 split, respectively, of the TwinsUK

adipose regulator activity profiles. Phenotypic master regulators were identified for body mass

index (BMI), waist-hip ratio (WHR), the natural log of the homeostatic model assessment of

insulin resistance (HOMA-IR), plasma high-density lipids (HDL) and plasma triglycerides.

Only adipose samples that were time-matched to the phenotype measurement were used in

the MR analysis (388–699 samples), except for WHR, which was not measured at the time of

the adipose tissue biopsy. To mitigate the noise that could potentially be introduced by changes

in WHR, we restricted the WHR MR analysis to samples from subjects whose BMI varied by

less than 10% from the time of WHR measurement to the time of biopsy.

Expression and activity quantitative trait locus (QTL) analysis

For all QTL analyses, we used only one of each monozygotic twin pair and only subjects with

>80% European admixture (699 subjects after these filters). Furthermore, the top 5 principal

components from ancestry informative genotypes were included in all QTL analyses to adjust

for any remaining population stratification. Age was the only other covariable included in the

eQTL and aQTL linear models that were trained using Matrix eQTL [56]. Discovery eQTL

and aQTL analyses were run separately for each GWAS and tested only SNPs with GWAS

P� 5 x 10−8. Cis analyses included only expression regulator genes (for which activity scores

were inferred) within 1Mb of the significant GWAS SNPs, while trans analyses included only

the phenotypic MRs matched to the GWAS (i.e. BMI MRs for BMI GWAS, WHR MRs for

BMI-adjusted WHR GWAS, HOMA-IR MRs for BMI-adjusted T2D GWAS, HDL MRs for

HDL GWAS and triglycerides MRs for triglycerides GWAS). The following multiple testing

procedures were applied for the cis and trans QTL analyses:

Cis-QTL analysis for a given phenotype (e.g., BMI):

1. Identify all SNPs (denoted as A, N SNPs in total) achieving genome-wide significance.

2. For the phenotype, identify all expression regulator genes that are within 1Mb of any SNPs

in A. We assume there are K genes and denote the gene set as B.

3. For each gene (k) in B, identify all SNPs (n) in A that are within the cis-region of the given

gene k. Suppose the P-values for the QTL test are pk1,pk2,. . .,pkn. Let Pk ¼ min1�i�n pki be the

minimum P-value of the n SNPs in the cis region for gene k.

4. We performed 100,000 simulations using the genotype of the n SNPs in the subjects from

the 1000 Genome project to generate the empirical distribution of Pk, which was used to

generate the gene-wise P-value (denoted as qk) for the gene after accounting for multiple

testing of the n SNPs in the cis-region.
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5. We used the BH procedure to identify significant regulator genes controlling FDR� 5%.

Trans-QTL analysis for a given phenotype (e.g. BMI):

1. Identify all MR genes (L) for the phenotype.

2. For a given MR gene l, suppose the P-values of the QTL analysis were pl1,� � �,plN. Let Pl ¼
mini2A pli be the minimum P-value in the QTL analysis for the MR gene.

3. We performed 100,000 simulations using the genotype of the N SNPs from the 699 Euro-

pean, unrelated TwinsUK subjects to generate the empirical distribution of Pl and derived

the gene-wise P-value (denoted as qk) for the gene.

4. We used the BH procedure to identify significant MR genes controlling FDR� 5%.

5. We identified the trans-QTL significance threshold as the nominal P-value corresponding

to the FDR-adjusted gene-wise P = 0.05.

For the loci listed in Table 1 plus the BMI locus at 17p13.2, eQTL and aQTL analyses were

also rerun on the SNPs reported in the summary statistics of all five GWAS (regardless of

GWAS P) that were within a 1Mb window centered on the top GWAS variant against all MRs

and all cis genes (though aQTLs were again restricted to expression regulators). These focused,

dense eQTL and aQTL results were used only for colocalization analyses rather than discovery,

and therefore not corrected for multiple testing.

Colocalization analysis

Colocalization analyses were performed with the HyPrColoc R package (https://github.com/

jrs95/hyprcoloc) for the 25 distinct loci reported in Table 1 plus the BMI locus at 17p13.2

using the dense eQTL and aQTL results (described above), the GWAS summary statistics and

LD matrices for the loci calculated from the TwinsUK imputed genotype data for the 699 sam-

ples included in the QTL analyses [23]. Only those SNPs present in the QTL analyses and all

GWAS were included in the colocalization analyses. Pairwise colocalization was tested

between all pairs of significant GWAS signals, between all pairs of significant GWAS signals

and tested cis and trans eQTLs and aQTLs and between select matched eQTLs and aQTLs. We

used the default posterior probability (PP) threshold of 0.25 but distinguished between signal

pairs that colocalize weakly (0.25 < PP< 0.50) and those that colocalize well (PP> 0.50).

Conditional analysis

For conditional analyses of select GWAS signals we used the conditional and joint analysis

(COJO) method as implemented in the GCTA tool, which only requires summary statistics

[24,25]. The 1p36.1 BMI GWAS signal was conditioned on rs6692586, rs4654828 and

rs12408468 individually and in all combinations. The chr7q32.2 BMI, BMI-adjusted T2D,

HDL and triglycerides GWAS signals were conditioned on rs972283, rs287621 and rs738134

individually and in all combinations. These SNPs were chosen to represent distinct LD blocks

within the loci among the 1000 Genomes European population [41].

Generation of figures, plots and graphs

All scatter plots, box plots and violin plots were produced in R using plotting functions from

both base R and the ggplot2 package. Random forest importance score plots were generated in

R by the importance function of the randomForest package. Linkage disequilibrium (LD)

plots showing pairwise r2 between variants were generated by the LDmatrix tool within the
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LDlink suite of web-based application (https://ldlink.nci.nih.gov/?tab=home), and were

based on the 1000 Genomes EUR population [41,57]. Heatmaps were generated with the

base R heatmap function from Pearson correlation matrices between the indicated expression

or activity values that were also calculated in R. LocusZoom and LocusCompare plots were

generated in R with the locuscomparer package [58]. All R scripts are available on GitHub

(https://github.com/hoskinsjw/aQTL2021). Network graphs in Fig 6 were generated in Cytos-

cape v3.8.1 with node border colors continuously mapped by Pearson correlations between

BMI and regulator log2TPMs or activity scores, node colors continuously mapped by eQTL or

aQTL model betas, and edge colors continuously mapped by mode of action for regulator con-

nections in the adipose interactome described in S3 Table.

Supporting information

S1 Fig. Master regulator analysis workflow. First, test cross-validation error for random forest

models with increasing numbers of regulators to determine a parsimonious number of regula-

tors sufficient to minimize prediction error. Next, identify the most important regulators as

measured by the percent increase in the mean square error (MSE) upon permutation of the reg-

ulator in all trees of the forest. Finally, train the final random forest model with the determined

number of top regulators by importance and test the model in the test set and validation set.

(PDF)

S2 Fig. Adipose BMI master regulator analysis. (A) Cross-validated prediction performance

of random forest regression models with the number of predictors sequentially reduced by

five. Models were trained to predict BMI from regulator activities 12 times, each with a unique

seed. The plot compares the number of predictors included in the model versus the mean

cross-validation error and error bars indicate the standard deviation of the 12 analyses. (B)

Rank order for the top 100 regulators by importance to BMI prediction by the final random

forest model. The importance is measured as the percent increase in the mean squared error

(MSE) upon permutation of the regulator across all trees of the random forest.

(PDF)

S3 Fig. Adipose WHR master regulator analysis. (A) Cross-validated prediction perfor-

mance of random forest regression models with the number of predictors sequentially reduced

by five. Models were trained to predict WHR from regulator activities 12 times, each with a

unique seed. The plot compares the number of predictors included in the model versus the

mean cross-validation error and error bars indicate the standard deviation of the 12 analyses.

(B) Rank order for the top 100 regulators by importance to WHR prediction by the final ran-

dom forest model. The importance is measured as the percent increase in the mean squared

error (MSE) upon permutation of the regulator across all trees of the random forest.

(PDF)

S4 Fig. Adipose HOMA-IR master regulator analysis. (A) Cross-validated prediction perfor-

mance of random forest regression models with the number of predictors sequentially reduced

by five. Models were trained to predict ln(HOMA-IR) from regulator activities 12 times, each

with a unique seed. The plot compares the number of predictors included in the model versus

the mean cross-validation error and error bars indicate the standard deviation of the 12 analy-

ses. (B) Rank order for the top 100 regulators by importance to ln(HOMA-IR) prediction by

the final random forest model. The importance is measured as the percent increase in the

mean squared error (MSE) upon permutation of the regulator across all trees of the random

forest.

(PDF)
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S5 Fig. Adipose HDL master regulator analysis. (A) Cross-validated prediction performance

of random forest regression models with the number of predictors sequentially reduced by

five. Models were trained to predict HDL from regulator activities 12 times, each with a unique

seed. The plot compares the number of predictors included in the model versus the mean

cross-validation error and error bars indicate the standard deviation of the 12 analyses. (B)

Rank order for the top 100 regulators by importance to HDL prediction by the final random

forest model. The importance is measured as the percent increase in the mean squared error

(MSE) upon permutation of the regulator across all trees of the random forest.

(PDF)

S6 Fig. Adipose Triglycerides master regulator analysis. (A) Cross-validated prediction per-

formance of random forest regression models with the number of predictors sequentially

reduced by five. Models were trained to predict triglycerides from regulator activities 12 times,

each with a unique seed. The plot compares the number of predictors included in the model

versus the mean crossvalidation error and error bars indicate the standard deviation of the 12

analyses. (B) Rank order for the top 100 regulators by importance to triglycerides prediction

by the final random forest model. The importance is measured as the percent increase in the

mean squared error (MSE) upon permutation of the regulator across all trees of the random

forest.

(PDF)

S7 Fig. Comparisons between phenotypic master regulators in adipose. (A) Clustered heat-

map of Pearson correlations between the expression profiles for putative phenotypic master

regulators in the TwinsUK adipose samples. The black bars to the right and bottom of the heat-

map indicate for which phenotype each regulator was identified as a candidate master regula-

tor. (B) Same as A, but between the activity profiles for putative phenotypic master regulators

in the TwinsUK adipose samples. (C) Same as A, but between the expression profiles (for regu-

lators indicated by row)and activity profiles (for regulators indicated by column) of putative

phenotypic master regulators in the TwinsUK adipose samples. Note that the correlation coef-

ficients for the heatmap in S7C Fig are not symmetrical about the diagonal since correlation

between the expression profile of a row regulator and the activity profile of a column regulator

is not the same as the converse, except along the diagonal (where the row and column regula-

tors are identical). Consequently, though the rows and columns are in the same order, the clus-

tering is based solely on columns (i.e. the vectors of correlation coefficients for the column

regulators’ activity profiles versus the expression profiles for the row regulators). (D) Density

plot of Pearson correlation between matched expression and activity for master regulators. (E)

Density plot of Pearson correlation between unmatched expression and activity for master reg-

ulators. (F) Venn diagram demonstrating the number of master regulators that are unique or

in common among the phenotypes analyzed.

(PDF)

S8 Fig. Pairwise colocalization of GWAS signals at chr7q32.2. (A) LocusCompare plot of

chr7q32.2 locus variants’ -log10(P) from BMI GWAS versus T2D (BMI-adjusted) GWAS.

Points are colored according to the variant’s r2 with the reference variant, which is marked by

the purple diamond. Posterior probability (PP) of a single, shared functional variant was calcu-

lated with HyPrColoc. (B) Same as A, but for BMI GWAS versus HDL GWAS. (C) Same as A,

but for BMI GWAS versus Triglycerides GWAS. (D) Same as A, but for T2D (BMI-adjusted)

GWAS versus HDL GWAS. (E) Same as A, but for T2D (BMI-adjusted) GWAS versus
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Triglycerides GWAS. (F) Same as A, but for HDL GWAS versus Triglycerides GWAS.

(PDF)

S9 Fig. Pairwise colocalization of GWAS signals with LINC-PINT and AC016831.7 cis-
eQTLs at chr7q32.2. (A) LocusCompare plot of chr7q32.2 locus variants’ -log10(P) from BMI

GWAS versus LINC-PINT cis-eQTL. Points are colored according to the variant’s r2 with the

reference variant, which is marked by the purple diamond. Posterior probability (PP) of a sin-

gle, shared functional variant was calculated with HyPrColoc. (B) Same as A, but for T2D

(BMIadjusted) GWAS versus LINC-PINT cis-eQTL. (C) Same as A, but for HDL GWAS ver-

sus LINC-PINT cis-eQTL. (D) Same as A, but for Triglycerides GWAS versus LINC-PINT cis-
eQTL. (E) Same as A, but for LINC-PINT cis-eQTL versus LINC-PINT cis-aQTL. (F) Same as

A, but for BMI GWAS versus AC016831.7 cis-eQTL. (G) Same as A, but for T2D (BMI-

adjusted) GWAS versus AC016831.7 cis-eQTL. (H) Same as A, but for HDL GWAS versus

AC016831.7 cis-eQTL. (I) Same as A, but for Triglycerides GWAS versus AC016831.7 cis-
eQTL.

(PDF)

S10 Fig. BMI GWAS signal at chr12p13.1. (A) Plot of genomic position versus BMI GWAS

-log10(P) for variants at the chr12p13.1 locus. (B) LD plot between top nine BMI GWAS vari-

ants at the chr12p13.1 locus shaded by pairwise r2.

(PDF)

S1 Table. List of expression regulators.

(XLSX)

S2 Table. TwinsUK subcutaneous adipose ARACNe co-expression network.

(ZIP)

S3 Table. TwinsUK subcutaneous adipose interactome derived from the ARACNe co-

expression network.

(ZIP)

S4 Table. Phenotypic master regulator (MR) list with pleiotropy count.

(XLSX)

S5 Table. cis-eQTL and aQTL results between BMI GWAS SNPs and genes with at least
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