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Abstract

The structure and function of diverse microbial communities is underpinned by ecological

interactions that remain uncharacterized. With rapid adoption of next-generation sequenc-

ing for studying microbiomes, data-driven inference of microbial interactions based on abun-

dance correlations is widely used, but with the drawback that ecological interpretations may

not be possible. Leveraging cross-sectional microbiome datasets for unravelling ecological

structure in a scalable manner thus remains an open problem. We present an expectation-

maximization algorithm (BEEM-Static) that can be applied to cross-sectional datasets to

infer interaction networks based on an ecological model (generalized Lotka-Volterra). The

method exhibits robustness to violations in model assumptions by using statistical filters to

identify and remove corresponding samples. Benchmarking against 10 state-of-the-art cor-

relation based methods showed that BEEM-Static can infer presence and directionality of

ecological interactions even with relative abundance data (AUC-ROC>0.85), a task that

other methods struggle with (AUC-ROC<0.63). In addition, BEEM-Static can tolerate a high

fraction of samples (up to 40%) being not at steady state or coming from an alternate model.

Applying BEEM-Static to a large public dataset of human gut microbiomes (n = 4,617) identi-

fied multiple stable equilibria that better reflect ecological enterotypes with distinct carrying

capacities and interactions for key species.

Conclusion

BEEM-Static provides new opportunities for mining ecologically interpretable interactions

and systems insights from the growing corpus of microbiome data.

Author summary

Characterizing the ecological interactions among microbial members is an important step

towards understanding the structure and function of diverse microbial communities.
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Widely used correlation based approaches for inferring interactions from cross-sectional

microbiome sequencing data are not able to predict the directionality of interactions, and

their results may not be interpretable. We developed an expectation-maximization algo-

rithm (BEEM-Static) that can infer directed interaction networks from cross-sectional

data based on an ecological model. Our benchmarking results showed that BEEM-Static

inferred presence and directionality of interactions accurately, while correlation based

methods had performance slightly better than random guesses. In addition, BEEM-Static

was robust to various types of noises using statistical filters to identify and remove data

points violating its assumptions. Applying BEEM-Static to a large public dataset of human

gut microbiomes, we were able to identify multiple stable equilibria with distinct ecologi-

cal properties.

1. Introduction

Microbial communities represent complex systems that impact various aspects related to

human health, e.g. agriculture [1], food processing [2], disease biology [3, 4] and healthcare

[5]. Interactions between members of a microbial community determine emergent phenom-

ena such as homeostasis in the ecosystem [6, 7] and overall function of the microbiome [8].

Ecological interactions can be grouped into six major categories including mutualism (posi-

tive-positive), competition (negative-negative), antagonism (positive-negative, further

includes predation and parasitism), commensalism (positive-neutral), amensalism (negative-

neutral) and neutralism (neutral-neutral) [9]. Correspondingly, ecological modeling of micro-

biomes taking into account such interactions is a key step towards understanding community

function [10, 11], forecasting dynamics [12, 13] and rationally designing interventions that

alter community structure and function [14].

Advances in high-throughput sequencing and metagenomics have enabled several data-

driven approaches to infer microbial interactions, bypassing limitations of experimental

approaches in terms of time, resources and cultivability [9, 15]. In particular, correlation-

based methods are widely used for their convenient applicability to cross-sectional datasets [9,

16], despite their inability to capture directionality of ecological interactions such as predation

and parasitism [9]. Recent studies have also highlighted other pitfalls in correlational analysis,

particularly the accuracy of interactions identified even when the data reflects known modes

of microbial interactions [17, 18].

Predictive and dynamic modeling of microbiomes based on first-order differential equa-

tions (e.g. with generalized Lotka-Volterra models or gLVMs) has found increasing usage and

provided useful insights into microbial interactions and dynamics [10, 19, 20]. Wider adoption

of such techniques has been hampered by the need for large datasets (as the number of param-

eters grows quadratically with the number of species) and dense longitudinal sampling to ade-

quately capture fine-grained dynamics [21]. Theoretical assumptions such as the availability of

data where all species are at equilibrium (i.e. abundances of species will not change without

external perturbation), and where absolute abundances are accurately known, make the deter-

mination of gLVM parameters from cross-sectional data solvable in principle [22]. In practice,

microbiome data generated from high-throughput sequencing (16S rRNA gene amplicon or

whole metagenomic sequencing) provides relative abundances and scaling these accurately

enough for gLVM parameter estimation can be challenging [23]. Furthermore, real-world

datasets often contain a mixture of perturbed and unperturbed microbiomes where the equi-

librium status is unknown, and where data may even come from multiple models [24].
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We have previously introduced an expectation maximization (EM) algorithm which cou-

ples gLVM parameter and scaling factor estimation (BEEM), specifically for longitudinal

microbiome data [23]. Here we transform this EM algorithm to work with cross-sectional data

from communities that are at or near equilibrium (BEEM-Static; Fig 1). In benchmarking

comparisons with simulated communities against 10 other methods that infer microbial inter-

actions from cross-sectional data, we noted that while all other methods only improved slightly

over random predictions (AUC-ROC<0.63), BEEM-Static exhibited high accuracy similar to

estimation using true scaling values (AUC-ROC>0.88). Similar observations were made with

synthetic communities based on all-pair co-culture experiments, where BEEM-Static accu-

rately recapitulated nearly all known interactions and their directionality. Based on statistical

filters to identify non-model and/or non-equilibrium samples in real and simulated datasets,

we show that BEEM-Static can be robust to up to 40% of data violating these assumptions.

Applying BEEM-Static to a large public collection of human gut microbiome profiles

(n = 4,617) identified multiple stable equilibria that appear to better reflect ecological entero-

types with distinct carrying capacities and interactions for key species (e.g. Prevotella copri)
compared to prior clustering based definitions [24]. BEEM-Static thus provides new opportu-

nities for mining ecologically interpretable interactions and systems insights from the growing

corpus of microbiome data in the public domain.

Fig 1. Schematic overview for the BEEM-Static algorithm. BEEM-Static takes relative abundances from a cross-sectional

microbiome dataset (A), and runs an expectation-maximization algorithm (B) to estimate both biomass values (C), the

interaction network (D) and carrying capacities (E).

https://doi.org/10.1371/journal.pcbi.1009343.g001
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2. Methods

2.1 Estimating biomass and gLVM parameters with cross-sectional data

The gLVM model is a set of differential equations describing the instantaneous growth rate of

each species (dxi(t)/dt) as a function of absolute cell densities (xi(t)) of the p species in a com-

munity:

dxiðtÞ
dt
¼ mixi tð Þ þ

Xp

j¼1

bijxiðtÞxjðtÞ

where μi is the intrinsic growth rate of species i and βij are interaction terms that define the

strength of the influence of species j’s abundance on species i’s growth. In general, estimating

gLVM parameters (μi and βij) requires longitudinal data to measure dxi(t)/dt. However, at the

non-trivial equilibrium (dxi(t)/dt = 0 and xi>0):

mi þ
Xp

j¼1

bijxj ¼ 0;

where the time parameter t now becomes implicit in the equation. Dividing both sides by -βii
and the biomass m, rearranging terms, and re-parameterizing the equation we get:

~xi ¼
ai
m
þ
Xp

j¼1;j6¼i

bij~xj;

where ai = −μi/βii, bij = −βij/βii and ~xi is the relative abundance of species i at equilibrium (ai is

also known as the carrying capacity of the species). This equation allows us to estimate gLVM

parameters (through ai and bij) from cross-sectional data, assuming that samples are at equilib-

rium, and absolute abundances are known (xi ¼ m~xi). To account for the fact that microbiome

data provides relative abundances and biomass is typically not measured, BEEM-Static extends

an EM framework to jointly estimate model parameters and biomass (S1 Text; [23]):

Estimating biomass (E-step): for a sample, the equation for each species i provides an esti-

mate for the biomass, and BEEM-Static takes the median of estimates across species as a robust

estimator for the biomass of the sample:

mðTÞ ¼ median �
aðT� 1Þ

i
Pp

j¼1
bðT� 1Þ

ij ~xj

 !

:

Estimating model parameters (M-step): BEEM-Static estimates model parameters (aðTÞi

and bðTÞij ) for each species i with sparse regression (implemented with the ‘glmnet’ package in

R) in iteration T:

~xi �
1

mðTÞ
� aðTÞi þ

Xp

j¼1;j6¼i

bðTÞij ~xj:

Initialization and termination: BEEM-Static initializes biomass values based on normali-

zation factors from cumulative sum scaling (CSS [25]), with a user defined scaling constant as

the median of biomass values (kept constant through EM iterations). The EM process is then

run until the maximum number of iterations specified (200 by default) or until convergence

when the median of relative changes in biomass values is <10−3. Confidence values (Z-scores)

for the final interaction matrix (non-zero off-diagonal entries) were calculated for each species
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i using forward stepwise regression (implemented in R package “selectiveInference”; version

1.2.5; Akaike information criterion as the stopping criterion).

2.2 Statistical filters to detect violations of modeling assumptions

BEEM-Static uses the following filters to identify and remove samples that violate modeling

assumptions and could thus impact model inference:

Equilibrium filter: to identify samples that may not be at equilibrium, BEEM-Static first

predicts the abundances of species at equilibrium (based on the current model) for all species

that are present:

~x� ¼ �
1

mðT� 1Þ
B� 1að Þ;

where B is the matrix form of b̂ðTÞij (= estimate for bðTÞij ), a is a column vector taking the value of

âðTÞi (= estimate for aðTÞi ) and ~x� is a vector of predicted relative abundances at equilibrium for

each species (~xi
�

is set to 0 if species i is not present). Samples with median relative deviation

above a user defined threshold (�1) from these equilibrium values were then excluded as being

potentially not at equilibrium (medianðj~xi � ~x�i j=~xiÞ > �1; ~xi 6¼ 0 and �1 = 20% by default).

Model filter: to account for cases where some samples may come from an alternate gLVM,

BEEM-Static calculates the median of squared errors for each sample k with respect to the cur-

rent model parameter estimates (âðTÞi and b̂ðTÞij ):

ek ¼ median
~xi 6¼0

~xi � ð
1

mðT� 1Þ
� âðTÞi þ

Xp

j¼1;j6¼i

b̂ðTÞij ~xjÞ

 !2 !

This is done in the M-step for each iteration and samples with large median squared error,

i.e. (ek−median(ek))/IQR(ek)>�2 where IQR is the inter-quartile range and �2 is a user defined

parameter (default value of 3), are then removed for the next iteration’s M-step.

2.3 Selecting shrinkage parameters for sparse regression

The shrinkage parameter λ in the sparse regression penalizes the number of parameters to

avoid overfitting and is selected based on five-fold cross-validation in each iteration (selecting

the value one standard error away from the best λ [26]). In the M-step of iteration T, a crude

selection of l
ðTÞ
c is made in BEEM-Static from a large range from 10−10 to 10−1, and then

refined with a fine-grained sequence from l
ðTÞ
c =10 to 10l

ðTÞ
c .

2.4 Generating simulated datasets

Simulated gLVM data was generated based on previously described procedures [16, 19]. Spe-

cifically, to parameterize distributions for generating model parameters, MDSINE [19] was

used to estimate the mean and standard deviations of growth rates and inter-/intra-species

interaction parameters from the C. difficile infection experiment data provided with the soft-

ware. Growth rates and intra-species interactions were sampled from normal distributions

(forced to be positive and negative respectively to model logistic growth). The interaction net-

work structure was generated by randomly adding edges from one species to another (with

probability ranging from 0.1 to 0.5) and the magnitude of the interactions was sampled from a

normal distribution (with 0 mean and standard deviation estimated from real data as noted

above). Initial abundances of p (30) species were sampled from a uniform distribution (from

0.001 to the mean carrying capacity μi/βii of all the p species), with each species having a
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probability of π to be absent from a sample (π was estimated as the average rate of absence for

the top p most prevalent species in all healthy gut microbiome profiles from the database cura-

tedMetagenomicData [27]). A dataset with n samples was generated by numerically integrating

the gLVM with the same parameters until equilibrium, starting with n different initial abun-

dance profiles. The abundances of a random time point along the numerical integration

(>20% away from the abundance at equilibrium for>50% of the species) was selected as a

sample not at equilibrium. Poisson noise was added to the abundance of each species to simu-

late experimental variability.

2.5 Generating datasets based on growth curves and co-culture experiments

Microbiome profiles for co-culture experiments were taken from a previous study [20] and the

relative abundances were scaled using the corresponding biomass measurements (OD600). Six

species pairs were randomly selected, and one of the three conditions were randomly picked

for each pair in each sample: (1) only the first species was present, (2) only the second species

was present and (3) both species were present. For the first two cases, a random timepoint (last

6 timepoints near the equilibrium) was taken from the growth curve (measured by OD600) of

species present. For the last case, the scaled abundances of the two species near the steady state

(randomly taken from the three replicates) were used. Abundances were re-scaled to relative

abundances and the process repeated to generate a dataset with 500 samples. The interaction

matrix reported in Venturelli et al [20] was treated as the ground truth (“M-PW1-PW2”).

2.6 Evaluation metrics

We computed the median of relative errors to assess the accuracy of predicted parameters as:

median
jŷ � yj

maxðjŷj; jyjÞ

 !

;

where ŷ and θ are the estimated and true parameters (a, b and m) respectively. The area under

the receiver operating characteristic curve (AUC-ROC) was computed for the interaction matrix.

Z-scores were used to rank interactions (off-diagonal entries only) predicted by BEEM-Static.

Sensitivity for predicting the signs of interaction was calculated as the fraction of interactions

with correctly predicted signs in the true interaction matrix (non-zero off-diagonal entries only).

Sign precision was computed as the fraction of interactions with correctly predicted signs.

2.7 Benchmarking with correlation-based methods

The following correlation-based methods (Table 1) for inferring interactions from micro-

biome data were tested.

The -log(p-value) or edge stability were used to rank CCREPE and SPIEC-EASI correla-

tions, respectively, while the absolute values of correlation coefficients were used for the other

methods. AUC-ROC was calculated from the lower triangle of the inferred correlation matrix

(an inference was considered correct if there was an interaction between the corresponding

species regardless of the interaction direction). Sensitivity and precision of signs were calcu-

lated as described above, excluding positive-negative interactions as they cannot be differenti-

ated from positive-positive and negative-negative interactions using correlation analysis.

2.8 Analysis of gut microbiome data

Healthy gut microbiome profiles from the database curatedMetagenomicData were prepro-

cessed and used as the standard dataset for learning gLVMs by removing (1) replicate samples,
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(2) timepoints other than the first timepoint in longitudinal studies, (3) samples under antibi-

otic treatment and (4) samples from infants. In addition, we included two validation datasets

to evaluate different aspects of the model learned by BEEM-Static: (1) all samples from Ray-

mond et al [36] to validate BEEM-Static’s estimated growth and (2) samples from healthy

infants (only the first timepoint for each subject) with ages below 12 months to evaluate

BEEM-Static’s biomass estimation. Both datasets were also used to validate BEEM-Static’s abil-

ity to filter out samples violating model assumptions. To make the number of parameters trac-

table with the number of data points available, we only kept core species that were present

(relative abundance >0.1%) in more than 30% of samples and subsequently removed samples

where none of the core species were found, resulting in 42 core species (S6 Fig) and 4,617 sam-

ples overall. BEEM-Static was applied with the “model filter” (�2 = 0.9) to learn two models

(1,995 and 1,145 samples for each model) in two iterations, in which samples violating the fil-

ter were removed (1,477 samples removed in total). BEEM-Static was then rerun without the

filter on samples assigned to each model separately to re-learn parameters.

2.9 Estimating in situ growth using BEEM-Static and GRiD

With BEEM-Static, in situ growth can be estimated as the deviation from equilibrium:

âi þ m̂
Xp

j¼1

b̂ij~xj;

where âi; m̂ and b̂ij are estimated parameters. In addition, species replication rates for samples

not under antibiotic treatment in Raymond et al [36] were estimated with the high-throughput

mode of GRiD (v1.2.0; default parameters) [37]. Gut microbiome associated genomes pro-

vided with GRiD were used as references and read reassignment using pathoscope2 [38] was

enabled (parameter “-p”) to resolve ambiguous mappings.

3. Results

3.1 Accurate inference of ecological interactions from cross-sectional

microbiome data

To evaluate if ecological interactions can be inferred from cross-sectional microbiome data

(16S rRNA gene amplicon or whole metagenomic sequencing) we first began by conducting

Table 1. Correlation methods tested.

Algorithm Version Parameters Note

Pearson and Spearman

correlation

Directly calculated from relative abundances

CCREPE [28] v1.2.0 1000 iterations Correction done for both Pearson and Spearman

correlations

SparCC [29] commit id: 9a1142c Default

CCLasso [30] v1.0 Default

REBACCA [31] https://tinyurl.com/

ymdts4wy

nbootstrap = 50, B = 500, FWER = 0.01

MInt [32] v1.0.1 Default

SPIEC-EASI [33] v0.1.4 lambda.min.ratio = 0.01, nlambda = 20, rep.

num = 50

Both “mb” and “glasso” algorithms

BAnOCC [34] v1.0.1 Default

gCoda [35] commit id: 584bd07 Default

https://doi.org/10.1371/journal.pcbi.1009343.t001

PLOS COMPUTATIONAL BIOLOGY Accurate inference of interactions from cross-sectional microbiome data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009343 September 8, 2021 7 / 16

https://tinyurl.com/ymdts4wy
https://tinyurl.com/ymdts4wy
https://doi.org/10.1371/journal.pcbi.1009343.t001
https://doi.org/10.1371/journal.pcbi.1009343


extensive benchmarks on complex simulated communities where the truth is known (using

gLVMs, number of species = 30, equilibrium conditions; Methods). Consistent with prior

reports [17, 18], we noted that all 10 state-of-the-art correlation-based methods provided per-

formances that were only slightly better than random predictions in identifying true interac-

tions, even while ignoring directionality (AUC-ROC<0.63; Figs 2A and S1). The ability to

correct for compositionality of microbiome data (CCREPE, SparCC, CCLasso, REBACCA), or

reduce false positives from transitive correlations (MInt, SPIEC-EASI, BAnOCC and gCoda),

did not notably change performance compared to naïve correlation calculations (Pearson or

Spearman) when inferring ecological interactions. In contrast, BEEM-Static was able to infer

the interactions with notably higher sensitivity and specificity than all correlation-based meth-

ods (AUC-ROC = 0.88; Figs 2A and S1). Although BEEM-Static only used noisy relative

Fig 2. Benchmarking performance for network structure and edge directionality. Note that CCREPE has two versions with Pearson and Spearman correlations

(CCREPE.P and CCREPE.S), while SPIEC-EASI using “mb” and “glasso” algorithms is represented as SE.mb and SE.glasso, respectively. (A) ROC curves for

different correlation based methods, the regression method using true biomass values and BEEM-Static for one simulated dataset with 30 species and 500 samples.

(B) Boxplots showing precision and recall for directionality/sign of interactions for 30 different simulated communities with 30 species and 500 samples each. (C)

True interaction network for a synthetic community based on all-pair co-culture data (Ground truth), inferred correlation network by BAnOCC and inferred

interaction network by BEEM-Static (numbers on edges represent gLVM parameter values or correlation coefficients). PC: Prevotella copri, BV: Bacteroides vulgatus,
BU: Bacteroides uniformis, BO: Bacteroides ovatus, BT: Bacteroides thetaiotaomicron, FP: Faecalibacterium prausnitzii, BH: Blautia hydrogenotrophica, ER:

Eubacterium rectale, CA: Collinsella aerofaciens, EL: Eggerthella lenta, DP: Desulfovibrio piger, CH: Clostridium hiranonis.

https://doi.org/10.1371/journal.pcbi.1009343.g002
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abundances for gLVM inference, its performance matched that of a positive control that

assumes noise-free biomass values to scale relative abundances to absolute abundances (Figs

2A and S1, BEEM-Static vs. true biomass), an assumption that is unlikely to be met in realistic

settings [23].

In addition to knowing that two species are interacting, a key aspect of ecological interac-

tions is the directionality/sign of interactions, with correlation-based methods either exhibit-

ing low sensitivity (REBACCA, SPIEC-EASI) or low precision (Pearson, Spearman, CCREPE,

SparCC, CCLasso, MInt, BAnOCC, gCoda) despite the exclusion of predatory interactions

(positive-negative) when calculating their performance (Fig 2B; Methods). BEEM-Static

addresses this issue by providing high sensitivity (>80%) and precision (nearly 100%) using

cross-sectional microbiome data (Fig 2B). These observations were recapitulated in a wide

range of simulated datasets with varying network structure and edge sparsity, highlighting

BEEM-Static’s robustness (S2 and S3 Figs). Furthermore, BEEM-Static provides estimates for

biomass values that were found to be consistently accurate (relative error<10%) and can be

used to provide meaningful biological insights [23].

We extended the evaluations to experimental data, using all-pair co-culture and isolate

growth curves for 12 species [20] to create synthetic communities where the interaction net-

work is known, albeit sparse (Fig 2C; Ground truth). Not surprisingly, recapitulating the struc-

ture of such a simple interaction network was not difficult for most correlation-based

methods, with BAnOCC having the best performance overall (AUC-ROC = 0.9, S4 Fig). How-

ever, determining directionality of interactions was still a challenge, despite the simplicity of

the network. For example, in the case of BAnOCC the commensalistic interaction between DP

and FP was captured as a negative correlation, while the predatory interaction between BH

and ER was captured as a positive correlation (Fig 2C; BAnOCC). BEEM-Static, on the other

hand, was able to capture all interactions and their directionality correctly, except for one false

positive (FP to DP) and one false negative (BT to EL) involving interactions with weak strength

(Fig 2C; BEEM-Static). BEEM-Static’s utility in such datasets was consistently observed in

comparison to correlation-based methods with AUC-ROC close to 1 (S4 Fig).

3.2 Statistical filters in BEEM-Static provide robustness to violations in

modeling assumptions

While the simulations in the previous section account for experimental errors, they assume

that all samples come from equilibrium states, an unlikely situation for most real datasets.

Relaxing this assumption, we noted that with as little as 5% non-equilibrium samples,

AUC-ROC decreased by>10%, and with 15% non-equilibrium samples AUC-ROC perfor-

mance degraded to match that of correlation-based methods (Naïve algorithm, Figs 3A and

S5A; Methods). Incorporating a statistical filter in BEEM-Static that compares estimated spe-

cies relative abundances at equilibrium with observed abundances (equilibrium filter; Meth-

ods) helped identify samples that were not at equilibrium with high sensitivity and specificity

(S5A Fig). This in turn allowed BEEM-Static to be robust to having nearly half of the samples

(45%) in the dataset being at a non-equilibrium state (performance reduction <5%; Figs 3A

and S5A, BEEM-Static).

We next investigated the impact of relaxing the “universal model” assumption i.e. that all

samples have the same ecological conditions and model parameters. This assumption may not

hold true in many real-world settings (e.g. gut microbiome samples from different enterotypes

[24]), and as expected relaxing it had a strong impact (30% reduction in AUC-ROC) even with

slight deviations (5%, Naïve algorithm; Figs 3B and S5B; Methods). In addition, AUC-ROC

performance continued to decrease beyond 60% even after nearly half the samples (40–45%)
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were derived from a different model. To address this, BEEM-Static implements a filter that

identifies samples that have poor goodness-of-fit to the current model (model filter; Methods)

and excludes them in subsequent iterations of model inference. This approach was found to

provide robustness to up to ~40% of samples from a different model (performance reduction

<20%, BEEM-Static; Figs 3B and S5B).

Finally, we employed real microbiome datasets to test BEEM-Static’s robustness where a

subset of samples is known to violate modeling assumptions i.e. some subjects undergoing oral

antibiotic treatment or samples from newborn infants, where the majority of samples are from

adults who are not undergoing antibiotic treatment. BEEM-Static was able to identify such

samples with high sensitivity (>80%) using its model filter (Fig 3C and 3D), and the filtered

samples were significantly enriched for those from antibiotic-treated adults and infants (Fish-

er’s Exact test p-value<10−22).

Fig 3. BEEM-Static robustly filters samples violating modeling assumption in simulated and real datasets. (A-B) Performance reduction for BEEM-Static

(with filters) and the naïve algorithm (without filtering of samples) as the percentage of samples at (A) equilibrium or (B) generated from the main model,

decreases. Reduction is measured relative to BEEM-Static with no filters and all data from the model and at equilibrium. Points denote the means while error

bars denote the standard deviation across 30 simulations each. (C-D) Principal coordinates plots (Bray-Curtis dissimilarity) representing gut microbiome

taxonomic profiles from 4,617 samples. Points represent samples from individuals taking antibiotics (C) or from newborn infants (D), while crosses represent

samples from adults who are not undergoing antibiotic treatment. Points that were filtered by BEEM-Static are colored blue and red otherwise.

https://doi.org/10.1371/journal.pcbi.1009343.g003
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3.3 BEEM-Static analysis of human gut microbiomes identifies distinct

ecological configurations

To further assess BEEM-Static’s utility we evaluated the concordance of parameters learnt dur-

ing the training process with orthogonal information for a large human gut microbiome dataset

(N = 4,617; Methods). In particular, we noted that biomass estimates from BEEM-Static were

significantly higher for adults versus newborn infants (~2×; Wilcoxon test p-value<10−15; Fig

4A), consistent with our understanding of a maturing gut microbiome [39, 40]. Additionally,

we used deviations from equilibrium (dxi(t)/dt = 0) to estimate instantaneous growth (popula-

tion increase or decrease) of each species in each sample (Methods), and assessed concordance

with an in silico approach to estimate DNA replication rates [37]. Despite the fact that growth

rates are also impacted by death rates, we observed that species predicted to grow based on

BEEM-Static analysis were also found to have significantly higher DNA replication rates (GRiD

values; Wilcoxon test p-value = 3×10−4; Fig 4B).

Fig 4. Analysis of human gut microbiomes with BEEM-Static. (A) Violin plots showing the significant difference in BEEM-Static biomass estimates for adults

and newborn infants. (B) Boxplots showing differences in DNA replication rates (GRiD estimates) for species predicted to decrease and increase in population size,

respectively, by BEEM-Static. Each point represents one species in a sample. (C) Scatter plot showing the first two components from a principal component

analysis of equilibrium abundances for samples (as predicted by BEEM-Static). (D) Predicted carrying capacities (square root transformed) of species in the two

models. Species with divergent carrying capacities (ratio is>2 standard deviations from 1) in the two models are marked with stars.

https://doi.org/10.1371/journal.pcbi.1009343.g004
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Using an iterative approach to train a new model on samples excluded from the first model,

we observed that BEEM-Static classifies a majority of the samples to two models (1995 for

model 1 and 1145 for model 2; S1 Table). Visualizing the expected microbial composition for

each sample at equilibrium, we noted three distinct clusters in a principal component analysis

plot (Fig 4C), where samples in clusters 1 and 2 largely correspond to profiles from models 1

and 2, respectively. Analysis of carrying capacities highlighted that the clusters were defined by

Prevotella copri, which has higher carrying capacity in cluster 1 vs 2 and is absent in samples

from cluster 3 (Fig 4D). Several other species were also found to have divergent carrying

capacities in the two models, including Bifidobacterium adolescentis, Collinsella aerofaciens
and Coprococcus comes (enriched in model 2), some of which have been shown to be associated

with fiber intake [41, 42]. Overall the ecological models identified here have distinct sets of

interactions (S1 Table) and do not appear to match earlier definitions of enterotypes [24]

based on principal coordinate analysis and clustering (S7 Fig).

4. Discussion

As microbiome research increasingly moves from descriptive studies to those that seek to pro-

vide a mechanistic understanding of microbial communities, the ability to infer microbial

interactions from microbiome data is an important capability. In particular, the directionality

and sign of interactions provide biologically interpretable information that is missed by corre-

lation-based approaches. BEEM-Static provides an alternative avenue to infer this, with the

caveats that it assumes a specific model (generalized Lotka-Volterra) for community dynamics

and removes rare and low abundance species with limited number of samples in practice. In

addition, as we show here, other values obtained from BEEM-Static models can have utility,

including the strength of interactions, biomass estimates, deviation from equilibrium, and fit

to model.

In addition to accounting for relative abundance estimates from microbiome data, the sta-

tistical filters employed by BEEM-Static make it robust to some of the violations in model

assumptions that can be expected in real datasets. These features make BEEM-Static widely

applicable, and also extends the use of ecological models with microbiome data. For instance,

our analysis of large public microbiome datasets provides an alternate perspective to the dis-

cussion on microbial enterotypes [24] and universality of microbiome dynamics [43]. The eco-

logical types observed here are characterized by distinct carrying capacities that might be a

function of the environment (e.g. host factors or diet). Fiber rich diets are known to have a

strong impact on the gut microbiome [42] and have been linked to some of the species with

differential carrying capacities in our models [41]. We anticipate that the incorporation of

such environmental factors into future models would be an exciting avenue to study their

influence on microbial community structure in vivo. Finally, hybrid methods that learn models

from both longitudinal and cross-sectional data represent another promising direction to

explore for studying general and individual specific microbiome dynamics [23].

Supporting information

S1 Fig. Performance comparison for determining interaction network structure. Boxplots

show AUC-ROC values for 30 different simulated communities with 30 species and 500 sam-

ples each.

(TIFF)

S2 Fig. Robustness of BEEM-Static performance across different network structures. Box-

plots showing relative error for (A) parameter estimates for biomass (scaled to have the same
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median as the ground truth) and carrying capacity, and (B) interaction network AUC-ROC as

well as sign recall and precision, based on 30 simulations. Diamonds mark median perfor-

mance using true biomass values. Different network structures (except “random”) were gener-

ated with the SPIEC-EASI R package.

(TIFF)

S3 Fig. Robustness of BEEM-Static performance with varying edge densities. Boxplots

showing relative error for (A) parameter estimates for biomass (scaled to have the same

median as the ground truth) and carrying capacity, and (B) interaction network AUC-ROC as

well as sign recall and precision, based on 30 simulations. Diamonds mark median perfor-

mance using true biomass values.

(TIFF)

S4 Fig. Benchmarking on synthetic communities created based on co-growth experimental

data. Boxplots show the performance of various methods based on 30 replicates that use ran-

domly selected interacting pairs.

(TIFF)

S5 Fig. Utility of BEEM-Static filters for avoiding performance reduction in the presence

of model violations. Results are shown for increasing proportion of samples that are, (A) not

at equilibrium or (B) not from the main model. The naïve algorithm is without filtering of

samples and performance reduction is measured relative to BEEM-Static with no model viola-

tions for the data. Points show means while error bars show standard deviation across 30 simu-

lations.

(TIFF)

S6 Fig. Percentage of the gut microbiome represented by the 42 core species used by

BEEM-Static for modeling with the curatedMetagenomicData dataset.

(TIFF)

S7 Fig. Ecological models from BEEM-static represent distinct configurations from entero-

types. Principal coordinates plot (Bray-Curtis dissimilarity) based on gut microbiome taxo-

nomic profiles. The contour lines highlight the two different regions where points aggregate.

Points are colored by the BEEM-static models that they belong to (unassigned samples not

shown), showing that while there appears to be some enrichment, model ids and enterotypes

do not show a 1–1 correspondence.

(TIFF)

S1 Table. Parameters estimated by BEEM-Static for the two models learned from the cura-

tedMetagenomicData dataset.

(XLSX)

S1 Text. Derivation of the expectation-maximization algorithm and training convergence.

(PDF)
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