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Abstract

The development of mobile-health technology has the potential to revolutionize personal-

ized medicine. Biomedical sensors (e.g., wearables) can assist with determining treatment

plans for individuals, provide quantitative information to healthcare providers, and give

objective measurements of health, leading to the goal of precise phenotypic correlates for

genotypes. Even though treatments and interventions are becoming more specific and data-

sets more abundant, measuring the causal impact of health interventions requires careful

considerations of complex covariate structures, as well as knowledge of the temporal and

spatial properties of the data. Thus, interpreting biomedical sensor data needs to make use

of specialized statistical models. Here, we show how the Bayesian structural time series

framework, widely used in economics, can be applied to these data. This framework cor-

rects for covariates to provide accurate assessments of the significance of interventions.
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Furthermore, it allows for a time-dependent confidence interval of impact, which is useful for

considering individualized assessments of intervention efficacy. We provide a customized

biomedical adaptor tool, MhealthCI, around a specific implementation of the Bayesian struc-

tural time series framework that uniformly processes, prepares, and registers diverse bio-

medical data. We apply the software implementation of MhealthCI to a structured set of

examples in biomedicine to showcase the ability of the framework to evaluate interventions

with varying levels of data richness and covariate complexity and also compare the perfor-

mance to other models. Specifically, we show how the framework is able to evaluate an

exercise intervention’s effect on stabilizing blood glucose in a diabetes dataset. We also pro-

vide a future-anticipating illustration from a behavioral dataset showcasing how the frame-

work integrates complex spatial covariates. Overall, we show the robustness of the

Bayesian structural time series framework when applied to biomedical sensor data,

highlighting its increasing value for current and future datasets.

Author summary

In this paper, we propose and describe a robust and flexible modeling framework called

MhealthCI based on the Bayesian structural time series, for which we have found to excel

at analyzing diverse biosensor data. While Bayesian modeling is often employed in various

fields such as finance, marketing, and weather forecasting, it is rarely used in biomedicine,

specifically for biosensor and wearable data relating to human health and behavior. We

use and apply this framework with the goal of interpreting and quantifying the causal

impact of an intervention, a widespread goal of biomedicine. We describe the diversity of

data types to which it could apply, provide intuition to its mechanics, collect relevant data

in various fields, provide a wrapper tool around well-known R packages that prepares and

registers diverse biosensor data to be analyzed, and finally apply the method to showcase

its strength in quantifying the impact of interventions.

This is a PLOS Computational Biology Methods paper.

Introduction

Background

As mobile technology advances rapidly, the global mobile healthcare market is projected to be

over 90 billion USD in 2022 [1]. Investment is bolstered by the great potential for advancing

precision medicine in the near future [2–4]. Whereas medicine has previously focused on

determining the right interventions, it is now more focused on for whom and when [5]. Identi-

fying the right time for and timing of treatments remains relatively understudied, but this

trend is expected to change soon as large streams of sensor data are released [6]. As sensor

technology develops, data-rich features such as physical, chemical, behavioral, and biological

variables will be measurable. In addition to time series data, spatial information is becoming

more popular as well [7], all of which can be used for a more detailed understanding of inter-

ventions. A survey of distinct types of data are presented in Fig 1.
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Though increasing amounts of sensor data is being released and publications highlighting

their usefulness in personal health exist [8–10], there is still a paucity of analytical methods in

the biomedical field that can accommodate the complex covariate structures as well as the tem-

poral and local trend considerations necessary to analyze these longitudinal data. Existing
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Fig 1. A) MOVES data set showing different exercise activities over time, with each color representing a different activity. B) Weight over time from the Withings data

set. C) An example of human behavioral data, the use of SeeClickFix, over time. D) Various neighborhoods in New Haven and their crime data over time. E) Spatial map

of New Haven illustrating the use of SeeClickFix and the associated geographical data. Open source map shapes can be found at https://rdrr.io/github/CT-Data-Haven/
cwi/man/neighborhood_shapes.html. F) Various measurements taken from an indoor air quality sensor averaged over a day across a month.

https://doi.org/10.1371/journal.pcbi.1009303.g001
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methods applied to these situations are limited. In the simple case, t-tests can evaluate differ-

ences of averages before and after an intervention, but do not account for temporal aspects.

Another type of method, auto regressive integrated moving average (ARIMA), is common for

addressing longitudinally observed patterns that could inform the timing of an intervention

but does not evaluate the impact and efficacy of such an intervention or provide dynamic p-

values (more details in S1 Text). Specifically, the ARIMA model makes use of lagged forecast

errors in order to evaluate the best fit and forecast future values, though it is generally not set

up to forecast multiple, connected time points in the future. Other methods like cumulative

sum control chart (CUSUM) are used to detect changes in time series data, though they do not

evaluate the degree and length that a change may last, and are thus not suitable for evaluating

long term impact of an intervention [11–13].

While the nature of data from sensors and wearables will vary depending on the context,

most of them share certain properties, such as being densely sampled and longitudinal. A vari-

ety of such data can be seen in Fig 1. It is important to discern these properties and to establish

a flexible model for emerging sensor and wearable data, as it will have broad implications in

fields such as personalized medicine [2]. Therefore, in this study we aim to contextualize a

model and establish a flexible statistical framework to model various sensor and mobile health

data. The model we adapted here is a combination of the Bayesian structural time series model

and the Causal Impact model from Google [14]. The principles of this modeling framework

stem from Bayesian inference and the analysis of time series data, which have been well estab-

lished for decades [15]. While the idea of using Bayesian inference models has been extensively

used in fields such as finance [16], ad campaigns [17], and marketing [18], they have been

rarely used in the context of wearable and sensor data analysis to evaluate impact intervention

over various time periods. A simple literature search for the application of Bayesian structural

time series modeling of biosensor data yields few results. Therefore, here we apply this widely

accepted statistical framework to the specialized context of biomedicine. We showcase the

effectiveness of detecting the strength and duration of an intervention when applied to a vari-

ety of sensor data we collected and accurately assess the impact that various interventions have

on individuals.

Modeling framework

To establish an intuitive modeling framework for data taken from sensors and other mobile

health sources, it is important to lay out the structure as well as any assumptions that may be

essential for the model. First, we must recognize that the dataset is a time series data with a

known response variable that evolves over time, such as a person’s weight. This response variable

could be a direct measurement taken from a sensor, or it could be a derived value–calculated

from various underlying variables measured by a device–such as calories burned [19] or a “Nike

Fuel Score” [20]. The response variable’s evolution in time is important, as it should be dynamic

and change based on covariates and interventions. In the example of weight, the measured weight

fluctuates over time based on things such as seasonality [21], temperature [22], or diet [23].

Because we are interested in the impact that an intervention has on such a variable, an

important assumption is that we know when the intervention occurs as well as its duration.

There exist methods that detect intervention times [24,25] though to jointly assess the impact

and time of an intervention would result in a significant disadvantage in statistical power.

Therefore, by having prior knowledge on the time of occurrence and duration of the interven-

tion, we are able to more accurately assess the impact on an individualized level.

Given a specific intervention and its duration, we can split our time series into two seg-

ments–the pre- and post- intervention periods. These periods are used to describe all variables,
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known and unknown, as well as any parameters associated with them. For the example of

weight and diet, the pre-intervention would be the period before the diet starts and the post-

intervention is the period after the diet starts. This is distinct from “post-cessation of interven-

tion” (e.g., return to pre-diet eating following several weeks of dieting) which is not addressed

by our present model.

Our goal is to model the pre-intervention period including covariates to most accurately

assess the behavior of the response variable before any intervention has occurred. We also

assume that any covariates used in our model should not be affected by the intervention, to

provide a similar control in the post-intervention period. Though the post-intervention covari-

ates themselves may change in value, the assumption is that they are derived from the same

distribution as in the pre-intervention. Finally, using the model derived from the pre-interven-

tion period and the covariates in the post-intervention, we can calculate a counterfactual in the

post-intervention. The counterfactual predicts the response variable without intervention. It

serves as a baseline to compare the actual observation in the post-intervention and ultimately

is what we use to calculate the impact of an intervention. Compared to linear models, this

framework allows for an evolving measure of impact, due to the dynamic confidence interval

for the difference between counterfactual and observation that is inherent to using Bayesian

structural time series. This temporal consideration, in addition to the more common advan-

tage of using hyper-parameters and priors, is an important consideration for the Bayesian

framework, and sets it apart from other models.

This Bayesian structural time series framework can make use of complex covariate struc-

tures, which is useful and necessary to get an unbiased measure of impact. Two main types of

covariates can be used: those that have known effects on the response and those that can

account for hidden effects. The first type refers to covariates that could be correlated to the

response, or cause changes to the response unrelated to the intervention. In relation to our

example about weight, covariates of this type may include temperature, weather, or season.

Since it is very unlikely to know all covariates of the first type that may perturb the response

variable, we also introduce the notion of a second type of covariate, termed a “paired covari-

ate”. The paired covariate is an independent stream of sensor data of the same type as our orig-

inal data in question. They could be collected in different locations, but the ideal case is they

receive little to no treatment or intervention. If we imagine a scenario where the roommate of

our subject is subject to many of the same external factors, but the roommate does not partici-

pate in the dieting, then this roommate’s weight could be considered the paired covariate.

Since both the original data and paired covariate share underlying biases, by using the paired

covariates we can determine the true impact of the intervention.

As a whole, the Bayesian structural time series framework addresses many of the limitations

of other methods and serves to advance the field by providing a structured method for analyz-

ing data from sensors and mobile health sources. We give more details in the Statistical For-

malism section and provide a schematic of the framework in Fig 2.

Statistical formalisms

Bayesian structural time series

In order to understand the causal impact of interventions on longitudinal datasets that may be

affected by a wide range of factors it is important to have a statistical framework that considers

carefully the prior and posterior measurements as well as covariates that may affect the

response variable. We detail aspects of this framework below and include a graphical schematic

in Fig 2.
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We assume for a given time point, t, there exists an observation yt, linked to a variety of

other parameters, at : fmt; dt; xt; Z
y
t ; Z

m
t ; Z

d
t g. Here, at represents all of the state parameters at

time t. The parameters are defined below. As time progresses from t to t+1, the other parame-

ters also progress due to their time dependency.

We use the following equations to represent our time series data [14,26].

yt ¼ mt þ b
Txt þ Z

y
t

mtþ1 ¼ mt þ dt þ Z
m

t

dtþ1 ¼ dt þ Z
d

t

Here we see that the equation involving the observation or response variable, yt, depends
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Fig 2. Schematic and illustration of the Bayesian structural time series. Latent parameters and hyperparameters are shown in blue, observations are shown in green,
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https://doi.org/10.1371/journal.pcbi.1009303.g002
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on μt, and additionally a variable xt to represent the covariates. Furthermore, we additionally

include another layer of dependency, δt, which μt depends on. Because our observation, yt, can

be biased, it is important to take into account as many covariates in the form of xt. Each equa-

tion has an error term represented by ηt. Since each of the processes are different, the error

term is also different. For example, the error associated with μt is Zmt . These ηt are drawn from

some distribution satisfying Nð0; s2
t Þ. Specifically, the parameters {σμ, σδ, σy} correspond to the

standard deviations of the distribution that each of fZmt ; Z
d
t ; Z

y
tg are drawn from, respectively.

In general, the {σμ, σδ, σy} variables are initially sampled based on the prior distribution, usually

a Gamma v
2
; s

2

� �
.

Similar to other regression-based models, the covariates here are scaled by a coefficient vec-

tor βT. The model also employs a spike and slab method to penalize and select for important

covariates when the number of covariates is large. Additionally, one important feature of each

covariate is the posterior inclusion probability (PIP), which can be calculated from the sum of

all posterior probabilities of all regressions that include that particular covariate [27]. The PIP

gives a ranking measure to show how favorable the inclusion of a particular covariate is. The

variable μt, representing the local trend of the model, contributes to our response variable, and

its representation is given as a time dependent equation. If we ignore the δt variable, our equa-

tion becomes

mtþ1 ¼ mt þ Z
m

t

and this is a representation for the random walk. That is to say, in this simplified form of μt,
our observation is a random walk, where at each time point, there is some progression to the

next time point in random fashion, based on the parameter ηt,μ. However, one optimization

that can be done for this parameter is the inclusion of δt, which results in the pair of equations

mtþ1 ¼ mt þ dt þ Z
m

t

dtþ1 ¼ dt þ Z
d

t

Here δt follows a random walk, and the μt equation is dependent on δt. That is to say, δt
serves as a trajectory or slope parameter that helps to guide the behavior of μt. If μt is steadily

increasing, it is likely that at μt+1 there is also an increase, due to the inclusion of δt. In other

words, the δt allows for more stability between each time point and serves a purpose similar to

a slope parameter. We provide more examples in Figs A-E in S1 Text.

Evaluating intervention impact. While the above model describes longitudinal sensor

data well, it is important to consider how the pre- and post- intervention periods differ. To

determine if an intervention was effective in bringing about a change in our dependent mea-

surement, yt, it is important to have a framework in which comparisons can be quantified. To

do so, we define the pre-intervention period as time points t = 1,. . .,n, while the post-interven-

tion period is defined as t = n+1,. . .,N. Furthermore, we define observations as y and predic-

tions of the model as y0. Therefore, the set of observations in the pre-intervention period, y1,. . .,

n, serve as the training data, based on all covariates. At each time point t = 1,. . .,n, we update

our parameter set of the model to better fit y1,. . .,n using a Markov Chain Monte Carlo

(MCMC) method of sampling from the posterior distribution. After estimation of parameters

in the pre-intervention period, we predict the counterfactual in the post-intervention, y0n+1,. . .,

N. This is done by using the parameter set defined in the pre-intervention period and the

covariates from the post-intervention period. In particular, because a Bayesian approach cou-

pled with MCMC is used to estimate the state parameter distributions, predicted values in the

post-intervention are estimated based on distributions of parameters. This enables the
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counterfactual predictions to have reliable and accurate credible intervals, unlike many other

time series methods. Additionally, because the counterfactual predictions are described as a

distribution, these credible intervals can be propagated for the whole post-intervention period

(which gives rise to the cone shape credible interval). Specifically, the counterfactual output

value itself is the mean of the distribution and the credible interval is determined from the

bounds (i.e. 95%) of the counterfactual distribution. Due to the stochastic nature of MCMC,

small variations between runs of the framework may arise, though this can be mitigated with

more iterations. Given y0n+1,. . .,N has an associated credible interval, we can calculate a signifi-

cance p-value associated with the difference between y0n+1,. . .,N and yn+1,. . .,N. While we can get

a p-value at every time point in the post intervention, it is more useful to consider the impact

that an intervention had on the whole post-intervention period. The p-value associated with

the full post-intervention time period (t = n+1,. . .,N) is known as the cumulative impact. It

should be noted that the credible interval associated with y0n+1,. . .,N generally will increase as

time progresses. This is one advantage of the Bayesian model and allows for an evolving cumu-

lative impact. This is due to the fact that at every time point after the intervention, the variance

associated with the distribution that the prediction is drawn from is compounded at every

time point. It is useful to factor in this temporal aspect since the confidence that an interven-

tion resulted in a causal impact may be dependent on time.

Biomedical adapter tool and software implementation. We provide a customized bio-

medical adaptor tool, MhealthCI, around a specific Google implementation of the Causal

Impact model, which makes use of the bsts R package. Altogether, our wrapper uniformly pro-

cesses, prepares, and registers diverse biomedical data. Specifically, time series data from bio-

sensor data that are measured at different time points and intervals are unified so that given a

time interval set t = {1,. . .,N}, there exists a set of variables (observation and covariates), yt and

xt for each time point in t. The adaptor tool that applies Causal Impact and bsts to evaluate a

user defined intervention and gives a report of results [14,28].

Results

To showcase the wide applicability of the Bayesian structural time series framework for bio-

medical applications, we provide examples of analysis from various types of sensor data. First,

we apply the model to a real-world example–environmental sensor data collected from an air

quality device–and show the usefulness of our model in identifying the effect of simple inter-

ventions in real world data. Second, we apply the Bayesian structural time series framework on

data collected from an Android phone sensor in order to give intuition for–and demonstrate

several key features of–our model. In this case, a known intervention is implemented, and

allows for model comparison to ARIMA and model performance analysis. Third, we provide a

core biomedical example that showcases a strong application of the framework and the poten-

tial it has in personalized medicine. In particular, we collected extensive biosensor data from a

diabetes and exercise study which aims to understand how structured exercise can help to sta-

bilize glucose levels throughout the day. The framework was then used to quantify the impact

of an exercise regimen on clinical health markers of glucose level. We find a strong stabilizing

effect on glucose after this exercise intervention and believe it is the first report of such a find-

ing using data of this type. While these data are informative, they currently lack several attri-

butes that we expect future biomedical data to have. In particular, we anticipate future

biomedical datasets to have a large number of context-rich covariates (e.g., activity in different

locations or environments) that can dramatically increase intervention assessment. Thus, we

give a final example dataset rich in covariates to showcase how these (paired) covariates can be

used creatively to more accurately assess the effect of interventions. Specifically, we collected
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human behavioral sensor data to showcase the patterns of crime across different neighbor-

hoods in a city, and how the introduction of a mobile application aimed at increasing social

cohesion affected these patterns. Below, we give more details regarding each of the specific

sub-studies and their corresponding findings.

Simple real-world example: Environmental sensor data

We then transitioned to a simple real-world example where we performed a similar analysis

using data collected from an AWAIR monitor, with measurements of CO2, dust, humidity,

and temperature (Fig 1E). The data were collected over a one-month period, with measure-

ments taken every 15 minutes. The data were aggregated at each time point across all 30 days

to give a smoother signal and limit the analysis to one intervention with a clearly delineated a

pre- and post- intervention period, namely exposure of the room to people. It should be noted

that though intervention often implies some treatment put in place, it can be widely adapted in

the realm of Bayesian structural time series to allow for any disruption or change in status such

as the effect that people have on environmental CO2 levels. After correcting for covariates such

as dust, humidity, and temperature [29], there was a significant increase in CO2 in the hours

when workers were in in the room with the sensor (p-value < 0.001). Fig 3A shows the

CO2measurements across the aggregated time points in a 24-hour time frame. We can see that

as CO2 levels increased drastically after the 9am time point, the cumulative causal impact in

the post-intervention period increased. This cumulative impact increases until around 5pm in

the evening, where the cumulative impact tapered off, signaling a state was reached in the

post-intervention that was similar to that of the pre-intervention period. Although there is one

p-value associated with the whole post-intervention period, this framework can show confi-

dence intervals for each time point in the post-intervention period as a function of both the

observation and covariates. This helps us to define period of time where the intervention is

most effective.

Wearable sensor timeseries with a controlled, defined intervention

To evaluate the performance of the BSTS modeling framework we designed an experiment

with an intervention of defined size. In addition, we used this framework to demonstrate key

features of the flexible covariate structure that set the BSTS framework apart from more com-

monly used methods. We used the Google Science Journal app on an Android phone and col-

lected data for a person spinning and then extending the phone to arm’s length while

maintaining the same spin rate (intervention = change in centripetal force, see schematic in

Fig 3B–3D). In the simplest case a single user’s longitudinal data was used to estimate the effect

of the intervention (Fig 3B). The model successfully detected the state change associated with

the intervention, as shown by the cumulative change relative to the predicted values. For com-

parison, we also modeled these data using the more commonly used Autoregressive Integrated

Moving Average (ARIMA) framework, which did not confidently detect an invention (p-value

was greater than 0.05) due to larger confidence intervals (Fig 3B, left-middle panel). To further

demonstrate the performance difference between the BSTS and ARIMA models, the size of the

intervention was computationally altered (Fig 3B, middle panel). By scaling the effect size to 10

times larger than was experimentally generated (the equivalent of holding the sensor 30 ft

away from the body while maintaining a constant rate of spin), we were able to compare the

performance of two methods and show that our modeling framework confidently detected the

intervention in half of the models when the effect size matched the experimental condition,

while ARIMA required a 3x increase in the effect size to reach the same confidence.

PLOS COMPUTATIONAL BIOLOGY Bayesian structural time series for biomedical sensor data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009303 August 23, 2021 9 / 21

https://doi.org/10.1371/journal.pcbi.1009303


Next, we demonstrate how the previous scenario is susceptible to noise, i.e. something that

affects the signal but is not related to the intervention. In this case the noise is represented by a

hop, which occurred after the intervention began and was therefore not predicted by the

model (Fig 3C). In this case the model does not detect an effect of the intervention–the hop

affected the signal to such a degree that the confidence in the prediction decreased, i.e. the

credible intervals widened greatly. Neither BSTS, nor ARIMA confidently identified that an

intervention occurred in this condition (Fig 3C, middle panel).

Finally, we show how including a paired covariate—another data stream that affects the

state being measured but is not related to the intervention–can effectively correct for noise

(Fig 3D). In this case two sensors were held while spinning, but only one was subjected to the
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intervention (extended away from the chest). Both, however, experience the noise (hop),

which the model is then able to control. Here again the BSTS model correctly identifies the

intervention similar to the case without noise (Fig 3B). The difference in the performance of

the ARIMA model is greater even than in the simplest case, with a five times difference in

effect size needed to detect an intervention with the same confidence as the BSTS model.

A real-world analogy comparable to this simple experiment could be sleep data (accelerom-

eter displacement) and the effect of changing one’s pillow. Having no other information than

one individual’s sleep data is equivalent to the first experiment (Fig 3B). Next, the “noise” that

we showed with a hop could be loud neighbors moving in next door (adding noise in a literal

sense), which leads to poor sleep in a way that is unrelated to the pillow intervention. Finally,

the paired covariate that we demonstrated with a second phone could be another device mea-

suring the sleep of one’s partner sharing the same bed, but who did not change their pillow.

This is distinct from a non-paired covariate that uses a different, relevant data stream. For

example, a non-paired covariate could be a device that measures the decibel level in the room;

it is relevant to the state (sleep quality), is not affected by the intervention (pillow change) and

identifies the noise that affects the state (loud neighbors). Both paired and non-paired covari-

ates are effective, however, a paired covariate has the characteristic that it is able to control for

unknown confounders, akin to a control arm of a randomized controlled trial.

Core biomedical example: Clinical sensor data

We next provide a core biomedical example of how the framework can be applied to clinical

sensor data. In particular, we collected biosensor data from a person with type 1 diabetes over

a 12-week period who completed an exercise regimen (intervention). We chose to model this

set of biomedical data because it is arguably one of the most established applications of person-

alized medicine today [30,31]. People with type 1 diabetes are advised to intensively monitor

and manage their blood glucose to maintain it within the target range. Since this process is

quite involved and requires continuous adjustments based on numerous biological factors, the

result is a complex and high-stakes problem in personalized medicine.

Fig 4A shows the data from a continuous glucose sensor and insulin pump as well as a com-

prehensive set of Apple Watch data from the study. The 12-week evaluation spanned an initial

2-week sedentary period followed by a 10-week exercise regimen. The Apple Watch and the

insulin pump used by the patient provided several potential covariates, which could help us

understand the glucose sensor data. We took glucose readings from the participant’s glucose

sensor and aggregated them into 24-hour values by transforming the values into two clinically

relevant indicators of glucose stability, percent-in-target and percent-above-target [32]. In gen-

eral, values above the target range are predictive of long-term organ damage, while values

below the target range lead to acute hypoglycemia [33], a state of low blood glucose with symp-

toms that can range from mild fatigue and confusion to life-threatening coma, posing immedi-

ate threats to safety as well as long-term psychological consequences (e.g., fear of

hypoglycemia [34]).

Maintenance of glucose levels in the target range is achieved by strategically managing a

triad of factors: insulin administration, diet, and exercise. The timing and dosing of insulin

(which decreases blood glucose) with carbohydrate ingestion (which increases blood glucose)

must be carefully balanced. The role of exercise, however, is less clearly defined because it can

either decrease or increase blood glucose during and up to 24hr after a session. Determinants

of the direction and magnitude of the glycemic response to exercise are numerous and include

1) exercise characteristics (intensity and duration), 2) individual characteristics (endogenous

insulin sensitivity, and the effect of physical fitness to increase insulin sensitivity), and 3)
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contextual factors (pre-exercise blood glucose level, insulin- and carbohydrates-on-board, and

concentration of counter regulatory hormones) [30].

We applied our Bayesian structural time series framework to two different participants.

Participant #1 entered the study with excessive blood glucose time above-target indicated by

baseline glycosylated hemoglobin (HbA1c) 8.6% compared to recommended goal 7.0% [35].

Her HbA1c at the end of the exercise program reached the goal (6.9%), consistent with the

lowering effect that exercise has on blood glucose. Participant #2 entered the study with

extremely little blood glucose time above-target (baseline HbA1c 5.2%) which did not change

by the end of the exercise program (HbA1c 5.3%). Our developed method accurately predicted

both of these situations. Specifically, for participant #1, we found that the exercise regimen was

effective in increasing the percent-in-target and decreasing the percent-above-target (p = 0.014

and 0.002 respectively). These results are shown in Fig 4B and 4C. Thus, our model supports

the existence of a positive causal effect of this particular exercise regimen on maintaining a

healthy glucose level for this individual. For participant 2, we found that the exercise regimen

did not coincide with increased percent-in-target, which is supported by our model in Fig 4D

and 4E (p = 0.076 and 0.323 respectively). We also compared the model to a simple aggrega-

tion style test, which our model outperformed (see S1 Text). To further check the validity of

our results, we also performed a negative control analysis to showcase no significant impact

was detected when no intervention occurred (see S1 Text). Thus, our model accurately

reflected that there was minimal or insignificant difference in this biological variable with the

introduction of exercise. Furthermore, of all the covariates we used, insulin on board (IOB)

was found to have the highest PIP. This is reasonable since insulin is essential to glucose con-

trol. In summary, the Bayesian structural time series framework was effective in determining

the change for both of the participants analyzed.

Example with data rich in covariates: Human behavioral data

In our final example, we demonstrate how data rich in covariates can significantly improve

assessments of intervention impact. While the example we provide is not clinical in the tradi-

tional sense, we provide this example as a way to showcase how the Bayesian structural time

series framework performs when given extensive data and paired covariates–as we expect in

the future. One aspect of a rich covariate set could be location information, an important factor

in many clinical or personal health applications. For example, many watches collect GPS tracks

of a run as well as steps and heart rate (e.g., Apple Watch, Garmin Forerunner). The Bayesian

structural time series framework can flexibly accommodate location data through the inclusion

of spatial correlation matrices. In addition, the spatial information can be used to segment the

data where the intervention does and does not have an effect. By this method one can create

“synthetic” paired covariates, in that data are from different spatial segments from the same

source. However, spatial data are often protected for privacy concerns and are therefore less

accessible to researchers. We therefore demonstrate the utility of the framework on more

accessible behavioral data that share many characteristics: the effect of a social monitoring

application called SeeClickFix on negative behavioral patterns (crime).

Crime patterns show similar characteristics to spatial mobile health data. They are affected

by covariates such as temperature and precipitation [36] and can be linked to many other fea-

tures such as census data of household incomes or education [37] (analogous to covariates of

movement such as age, physical fitness, etc. [38]). SeeClickFix is a smartphone and web appli-

cation developed to allow users to report issues in their communities including non-violent

crimes. Posts can be voted on and supported by other users’ comments and local government

agencies acknowledge issues and post when they have been addressed. It has been
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hypothesized that SeeClickFix and similar tools may reduce crime through establishing social

cohesion, and promoting collective efficacy [39].

Following the intervention (creation of SeeClickFix) there was no detectable decrease in

crime across the entire area (Fig 5A), nor in particular neighborhoods (Fig 5B). However, one

would expect many other factors besides the introduction of SeeClickFix to affect crime in this

time (e.g., increases in the police force, changes to local employment, city-wide initiatives).

The Bayesian structural time series framework can leverage the spatial information in these

behavioral data to search for a paired covariate, in this case referring to locations not affected

by the intervention (no SeeClickFix use) in order to control for other, unobserved effects on

the outcome variable (increases in the city police force). We aggregated crimes and SeeClick-

Fix posts by neighborhood (Fig 5C) and then modeled the crime using a neighborhood that

was not affected by the intervention as a control (i.e. a neighborhood without SeeClickFix

posts), but did experience any city-wide initiatives that might affect crime (Fig 5D). Neighbor-

hoods with heavy SeeClickFix use showed an effect of the intervention on crime when control-

ling for unobserved factors with synthetic paired covariates (Fig 5E).

Discussion

In this paper, we demonstrated how the Bayesian structural time series framework can be

applied to biomedical sensor data and personalized medicine, as well as created a wrapper soft-

ware to facilitate the framework’s use. We also demonstrated better performance as compared

to other commonly used time series methods such as ARIMA. We successfully evaluated the

impact of interventions in a variety of examples and additionally showcase how a rich dataset

with complex covariates can benefit from the framework.

While some studies demonstrating the success of generalized linear models for mobile

health data do exist [24,25,40–42], there is a lack of emphasis on considerations for the tempo-

ral aspect of interventions and the effect-size of interventions at each time point in the post-

intervention period. Specifically, generalized linear modeling frameworks lack the flexibility to

evaluate the intervention’s impact cumulatively in the post-intervention period. In this study,

we illustrate the benefit of using a Bayesian structural time series framework for modeling the

behavior of various longitudinal data collected via apps and sensors. These data demonstrate

properties that are commonly found across other wearable sensor data, which are increasingly

gaining in popularity [3]. In order to effectively leverage such data for precision medicine and

health in the future, we must understand how specific timings and types of interventions

impact individual patients [2–4].

We show that the Bayesian modeling framework can take into account the rich covariates

in our behavioral sensor dataset–specifically the paired covariate structure between different

locations–and give results that are unbiased. Furthermore, the framework also considers the

temporal properties, ensuring that predictions of intervention impact are conditional on dura-

tion of the intervention. This is especially important for future data from sensors and mobile

health sources as one of the major concerns of personalized medicine is ensuring the right

time and duration of a treatment or intervention is considered [5]. With time varying confi-

dence intervals, we can begin to understand not only the effectiveness of an intervention but

determine the most effective intervention plan necessary to reach a desired result.

When applying this method to various datasets, an additional consideration is how infor-

mative the covariates are. For example, in the case of the sensor data derived from the diabetes

study, even though we were able to isolate the effect of the 10-week exercise regimen upon

both metrics of glucose stability, more covariates could be used in the future to improve the

prediction. Similar biological studies in the future could benefit from obtaining other clinically
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relevant covariates such as plasma cortisol, epinephrine, growth hormone, glucagon, and directly

sensed (not estimated) insulin levels or more to use high precision sensors with reduced noise.

Furthermore, paired covariates (e.g., control group) should be taken into consideration when

designing studies, as they can greatly increase model accuracy. While it is true that even an

improved set of covariates could lead to more accurate results, we showcase here that the frame-

work we have now is able to demonstrate results that converge with current literature showing

favorable impact of exercise upon blood glucose control metrics [43]. However, these prior

reports utilized HbA1c measured every 3–6 months as a chronic indicator of blood glucose con-

trol. We are the first study to our knowledge measuring changes in continuously measured

blood glucose over several months, thus allowing a Bayesian time series approach that permitted

analysis and adjustment for covariates at the individual participant level. We identified respective

individuals whose blood glucose responded favorably and neutrally to the exercise intervention,

after accounting for the blood glucose confounders of insulin dosing, physical activity outside of

structured exercise, and autonomic nervous system function. This information would be useful

feedback for the individuals and their healthcare providers since it can be otherwise challenging

to predict whether exercise will increase or decrease blood glucose in type 1 diabetes.

It is also important to consider the contexts in which this modeling framework does not

yield significant advantage over other frameworks. For example, a stable and consistent inter-

vention effect over the entire post-intervention period should be evaluated equally well by lin-

ear models. Given the computational complexity of the Bayesian method due to MCMC

sampling for each time point, such considerations could be very important for large datasets.

Furthermore, due to the nature of this type of model and the slight degree of randomness in

parameter estimation, it is possible to have varying results in calculating the impact of the

intervention. This is in contrast to the results found from linear models, which generally dem-

onstrate a singular solution.

Additionally, we also note that one assumption of our model is that the intervention does

not affect any of the covariates in the post-intervention period, and the strength of the results

are based on such an assumption. In some cases, a synthetic paired covariate may be difficult

to find. For example, though the exercise regimen is aimed at stabilizing glucose levels, we

note that exercise and physical activity can have a general effect on various biological factors

within the human body, including some of the covariates used. We minimize the effect of this

through our transformation of variables and aggregation on a 24-hour block.

Overall, the Bayesian structural time series framework is a flexible modeling approach that,

with relatively minor specialization we provide through our tool, can be applied to diverse bio-

sensor data. It has features that few methods in biomedicine share, such as dynamic forecasts

to observe the effect of an intervention and its evolution over time. These features are critical

to advancing personalized medicine and realizing the challenge of relating genotype and phe-

notype data in the context of human research.

Methods and materials

Data collection

There exist many datasets similar to those of mobile sensors and we should not confine our-

selves to just the traditional accelerometer and gyroscope data that one would traditionally

think of when envisioning sensor data. In studying the causal impact of an intervention, we

show that most data sharing longitudinal qualities allow for development of algorithms and

exploring how such algorithms can be useful in analyzing various sensor data. The data we

analyze in this paper consists of environmental sensor data, physical activity sensor data and

human behavioral sensor data.
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Due to the longitudinal nature of sensor and wearable data, these data not only demonstrate

interesting patterns in a response variable, but also are closely tied to the temporal property of

a phenomena. By introducing the aspect of time, it becomes important to find models that

leverage temporal considerations and use them to make accurate assessments about the data.

Also, some of the data showcase complex covariates (paired) and can be used to better correct

for unknown and hidden biases. More details about the data collection and data types are

given below.

Google science journal data collection. Data were collected using the linear accelerome-

ter measurement function in the Google Science Journal application on a Samsung Galaxy S8

smartphone. Each experiment lasted 20 seconds. One or two instruments were held at arm’s

length while spinning at a constant rate for 10 seconds. Next, one instrument was brought in

close to the body for 10 seconds while maintaining the spinning rate. In the case of the noise

simulation, the experimenter hopped once after 15 seconds (halfway through the intervention

period). Data were exported from Science Journal and analyzed using the CausalImpact pack-

age in R.

AWAIR collection. Data were collected from a one-month period from the AWAIR

device. The device was placed in an office lab setting where individuals frequented on a daily

basis. CO2 levels were measured in units of ppm. AWAIR also measures dust, temperature and

humidity, which were used as covariates.

SeeClickFix data collection. The application SeeClickFix is a smartphone and web appli-

cation developed in New Haven, Connecticut, where users report issues in their communities

including non-violent crimes. SeeClickFix posts can be supported and commented on by

other users, and local government agencies acknowledge and address issues. The SeeClickFix

data are publicly available, providing a rich longitudinal and spatial dataset for monitoring

behavior and interactions with other users and city representatives. Posts were aggregated by

month for the New Haven metropolitan area and by neighborhood (n = 19) from 2007–2015.

Aggregated crime data were shared through a memorandum of understanding with the

New Haven Police Department for 2000–2013. Rates were calculated using the 2014 ACS

5-year population estimates (crimes / 10K population per unit area).

Diabetes data collection. We used data from two participants in a single-group clinical

trial that was evaluating an exercise intervention for previously sedentary adults with type 1

diabetes. Participants completed a 2-week baseline period then a 10-week exercise interven-

tion, while wearing sensors that continuously monitored blood glucose, heart rate, heart rate

variability and physical activity. They continued their normal prescribed insulin therapy, and

shared device-recorded dosing logs with the research team. Besides these continuous mea-

sures, we assessed chronic diabetes control at the beginning of the baseline period and the end

of the 10-week intervention using blood glycosylated hemoglobin concentrations. The

10-week intervention included motivational enhancement of exercise (i.e., patient-centered

exercise coaching including instructional videos) and health feedback from biosensors

(NCT04204733) [44]. Both were delivered through a customized mobile digital application

and supported by a coach internally certified in exercise for diabetes (GlucoseZoneTM, Fit-

scriptLLC, New Haven, CT). The study was approved and overseen by the Yale University Insti-

tutional Review Board, and all participants provided written informed consent.

Biodata Collection. 1) 24hr blood glucose was measured every 5 minutes by the Dexcom G6

continuous glucose monitor (San Diego, CA), a subcutaneous wire sensor sampling interstitial

fluid glucose content which is converted to estimated blood glucose (validated against venous

blood glucose with mean absolute relative difference 9%) [45]. 2). Insulin was delivered

according to each participant’s usual prescribed therapy. The participants in this manuscript

received lispro insulin via the Tandem t-slim Control IQ pump (San Diego, CA). The pump
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subcutaneously infuses insulin every 5 minutes according to the patient’s individualized set-

tings and current blood glucose levels using proprietary algorithms [46]. The patient can also

manually dose insulin or adjust some standard settings for meals or other disturbances (e.g.,

planned exercise). Infusion doses are recorded, uploaded to a central server for exporting and

analysis, and converted to estimated insulin on board by the manufacturer’s proprietary phar-

macokinetics algorithm. 3) Heart rate (beats per minute, validated against electrocardiography

with mean absolute percentage error 1.1%-6.7%) [47] and heart rate variability (standard devi-

ation of interbeat intervals, validated against electrocardiography with intraclass correlation

coefficient 0.98) [48] were measured by the Apple Watch 3 (Cupertino, CA) using photo-

plethysmography. 4) Physical activity was measured by the Apple Watch 3 using accelerometry

and converted to kcals per day (validated against calorimetry with mean absolute percentage

error ~40%) [49]. 5) Diabetes control was measured by glycosylated hemoglobin. Participant

#1 used the DCA Vantage Analyzer (Bayer, Tarrytown, NY) at baseline and PTS Diagnostics

A1cNow+ (Indianapolis, IN) at 10 weeks. Participant #2 used the AccuBase A1c Home Test

Kit (DTI Laboratories, Thomasville, GA).

Computational Method. A computational method was developed in order to accurately

determine the response to the exercise study. There were three phases to the algorithm: 1)

align the imported data to the today study time period 2) match apple watch, insulin and glu-

cose data to five-minute intervals 3) causal impact analysis. This alignment is required to test

impact from the covariates. Following alignment, the casual impact analysis took covariates,

target range, intervention period, and other features to predict the total time in range, above

range, and below range. (more details in S1 Text).

Clinical Outcomes. Participant #1 was a 63-year-old white non-Hispanic female with type 1

diabetes for 50 years, receiving 81 units/day of insulin (0.9 units/kg body weight/day) and per-

forming no regular exercise at baseline. During the 10-week intervention she received 93

units/day of insulin (1.1 units/kg body weight/day) and exercised on average 2.5 days per

week, 26 minutes per session, at easy to moderate intensity (Borg rating of perceived exertion

2.5 / 10). Participant #2 was a 53-year-old white non-Hispanic female with type 1 diabetes for

35 years, receiving 22 units/day of insulin (0.3 units/kg body weight/day) and performing no

regular exercise at baseline. During the 10-week intervention she received 19 units/day of insu-

lin (0.2 units/kg body weight/day) and exercised on average 4.3 days per week, 40 minutes per

session, at moderate to hard intensity (Borg rating of perceived exertion 4.0 / 10). The exercise

routines were dynamic, interval-based, and equally emphasized all major muscle groups.

Processing and analysis of all data was done in R and Python and our packaged tool can be

found at https://github.com/gersteinlab/mhealthci.

Supporting information

S1 Text. Supplemental information text file with additional details for manuscript. Fig A.

Generated Data. Fig B. Using a linear model with no covariates to model the generated data.

Fig C. Using a linear model with covariates to model the generated data. Fig D. Using the

Bayesian structural time series model on the generated data. Fig E. Using the Bayesian struc-

tural time series with no covariates. Fig F. Spatial information from human behavior data set.

Fig G. Determining causal impact on behavior data with no paired covariates. Fig H. Deter-

mining causal impact on behavior data with a paired covariate. Fig I. Flowchart and workflow

for modeling. Fig J. Correlation Matrices For Daily Transformations of Variables Against

Daily Percent-Glucose-In-Target-Range And Each Other. Fig K. Control for Diabetes dataset.

Fig L. Effect of length of pre-intervention on statistical assessment of impact.
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