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Abstract

Constraint-based (CB) metabolic models provide a mathematical framework and scaffold

for in silico cell metabolism analysis and manipulation. In the past decade, significant

efforts have been done to model human metabolism, enabled by the increased availability

of multi-omics datasets and curated genome-scale reconstructions, as well as the devel-

opment of several algorithms for context-specific model (CSM) reconstruction. Although

CSM reconstruction has revealed insights on the deregulated metabolism of several

pathologies, the process of reconstructing representative models of human tissues still

lacks benchmarks and appropriate integrated software frameworks, since many tools

required for this process are still disperse across various software platforms, some of

which are proprietary. In this work, we address this challenge by assembling a scalable

CSM reconstruction pipeline capable of integrating transcriptomics data in CB models.

We combined omics preprocessing methods inspired by previous efforts with in-house

implementations of existing CSM algorithms and new model refinement and validation

routines, all implemented in the Troppo Python-based open-source framework. The pipe-

line was validated with multi-omics datasets from the Cancer Cell Line Encyclopedia

(CCLE), also including reference fluxomics measurements for the MCF7 cell line. We

reconstructed over 6000 models based on the Human-GEM template model for 733 cell

lines featured in the CCLE, using MCF7 models as reference to find the best parameter

combinations. These reference models outperform earlier studies using the same tem-

plate by comparing gene essentiality and fluxomics experiments. We also analysed the

heterogeneity of breast cancer cell lines, identifying key changes in metabolism related to

cancer aggressiveness. Despite the many challenges in CB modelling, we demonstrate

using our pipeline that combining transcriptomics data in metabolic models can be used to

investigate key metabolic shifts. Significant limitations were found on these models ability

for reliable quantitative flux prediction, thus motivating further work in genome-wide phe-

notype prediction.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009294 June 24, 2022 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Vieira V, Ferreira J, Rocha M (2022) A

pipeline for the reconstruction and evaluation of

context-specific human metabolic models at a

large-scale. PLoS Comput Biol 18(6): e1009294.

https://doi.org/10.1371/journal.pcbi.1009294

Editor: Christoph Kaleta, Christian Albrechts

Universitat zu Kiel, GERMANY

Received: July 3, 2021

Accepted: April 15, 2022

Published: June 24, 2022

Copyright: © 2022 Vieira et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All of the scripts

required to replicate our model reconstruction and

validation pipeline can be found in the GitHub

repository at https://github.com/BioSystemsUM/

human_ts_models. These scripts require the

troppo framework, available at https://github.com/

BioSystemsUM/troppo. The human metabolic

model and its auxiliary reaction and metabolite

tables can be found on the Human-GEM GitHub

repository at https://github.com/SysBioChalmers/

Human-GEM. Fluxomics data for the MCF7 cell line

were kindly provided by E.Ruppin and R.Katzir.

Transcriptomics and gene essentiality assays for

https://orcid.org/0000-0001-9604-9586
https://orcid.org/0000-0001-8439-8172
https://doi.org/10.1371/journal.pcbi.1009294
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009294&domain=pdf&date_stamp=2022-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009294&domain=pdf&date_stamp=2022-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009294&domain=pdf&date_stamp=2022-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009294&domain=pdf&date_stamp=2022-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009294&domain=pdf&date_stamp=2022-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009294&domain=pdf&date_stamp=2022-07-13
https://doi.org/10.1371/journal.pcbi.1009294
http://creativecommons.org/licenses/by/4.0/
https://github.com/BioSystemsUM/human_ts_models
https://github.com/BioSystemsUM/human_ts_models
https://github.com/BioSystemsUM/troppo
https://github.com/BioSystemsUM/troppo
https://github.com/SysBioChalmers/Human-GEM
https://github.com/SysBioChalmers/Human-GEM


Author summary

Genome-scale models of human metabolism are promising tools capable of contextualis-

ing large omics datasets within a framework that enables analysis and manipulation of

metabolic phenotypes. Despite various successes in applying these methods to provide

mechanistic hypotheses for deregulated metabolism in disease, there is no standardized

workflow to extract these models using existing methods and the tools required to do so

are mostly implemented using proprietary software. We have assembled a generic pipeline

to extract and validate context-specific metabolic models using multi-omics datasets and

implemented it using the troppo framework. We first validate our pipeline using MCF7

cell line models and assess their ability to predict lethal gene knockouts as well as flux

activity using multi-omics data. We also demonstrate how this approach can be general-

ized for large-scale transcriptomics datasets and used to generate insights on the metabolic

heterogeneity of cancer and relevant features for other data mining approaches. The pipe-

line is available as part of an open-source framework that is generic for a variety of

applications.

Introduction

Over the last decades, systems biology has enabled the comprehension of the different layers of

biological processes, enabling the interpretation of the data generated by several emerging

high-throughput technologies. The recent growth in both the diversity and quantity of data

generated by these technologies led to the need of novel approaches for data processing, analy-

sis and modelling to take full advantage of these data. Genome-scale tools for genomics, tran-

scriptomics or proteomics allowed scientists to generate new approaches for experimental

design and analysis, with important tools such as Genome-Scale Metabolic Models (GSMMs)

granting the ability of simulating cellular processes and infer its phenotype, saving time and

costs [1].

Due to the recent evolution of systems biology, the study of metabolism has experienced

significant advances throughout the last years. Metabolism is crucial for the study of cellular

function and its disturbance is linked to several diseases, ranging from diabetes or hyperten-

sion to cancer [2, 3]. Some of these problems can be diagnosed from metabolite screenings in

human blood or urine [4] that are being exploited to help the discovery of treatments for the

aforementioned diseases [5, 6].

Cells can be described as an interconnected network of components, making it challenging

to understand processes, such as metabolism, in an isolated way, since it has interactions with

other sub-systems, such as the genome or the transcriptome. In recent years, significant efforts

have been made to better understand these connections. One relevant effort has been the

development of GSMMs, a tool which allows the computation of fluxes through metabolic

reactions, and has been heavily used in metabolic engineering [7, 8] and to study of metabolic

diseases [9–12].

Recon1 [13] was the first human GSMM, released in 2007. Since then, other metabolic

models, such as the Edinburgh Human Metabolic Network (EHMN) and Human Metabolic

Reaction (HMR) were developed, with constant revisions and integration occurring with

many contributions [9, 14–18]. However, the lack of standardization of certain properties,

such as gene or reaction nomenclature, led to propagation of errors throughout the years. The

most recent open-source GSMM, Human-GEM, integrates the knowledge from previous

models and tries to solve the main problems found, resorting to a joint effort of the scientific
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community [19]. This model comprises 13,417 reactions, 10,138 metabolites, 4164 being

unique ones and 3625 genes.

GSMMs’ potential for phenotype simulation can be attained through constraint-based

modelling (CBM) methods, which allow for fast calculations over large algebraic models,

under the assumption of a steady state (concentration of internal metabolites assumed to be

constant over time), since most kinetic parameters for metabolic reactions are not known. A

stoichiometric matrix S depicts the main structure of the model, with columns defining reac-

tions and rows metabolites, where Sij represents the coefficient of the i-th metabolite in reac-

tion j. The assumption of the steady-state can be expressed as: S � v = 0, where v is the flux

distribution vector. In addition to these constraints, every reaction in the model has an upper

and a lower bound, restraining the maximum and minimum amount of flux passing through

it. These constraints define an admissible space of flux distributions, i.e. the rate at which every

metabolite is either produced or consumed for each reaction [20].

These models can be used to support the definition of linear optimization problems, setting

their constraints, and allowing different formulations to be achieved through appropriate

objective functions over the flux distributions (v). A common approach is to define an equa-

tion (pseudo-reaction) representing the growth of a cell, which will be maximized [21], thus

defining Flux Balance Analysis (FBA), a linear programming (LP) problem [22]. Despite its

limitations (gene regulation, signaling processes or metabolic regulation are not taken into

account), FBA has been successfully used to assess wild-type phenotypes, but also the impact

of gene knockouts on metabolism [23–25].

Due to its simplistic and flexible approach, FBA motivated several extensions to address

some of its limitations and allow further analyses. One of these variants is the Parsimonious

enzyme usage FBA (pFBA), a method that relies on the assumption that flux distributions that

demand the lowest overall flux through the network and are quicker to grow are selected, lead-

ing to improvements in the assumption made by FBA [26].

GSMMs enable the integration of several types of information, including distinct omics

data. A relevant application of integrating these data is the generation of tissue/cell specific

metabolic models [27], starting from a general GSMM, for example, the Human-GEM.

Indeed, these general purpose species-level models contain information for all of the known

metabolic reactions present in all types of human cells. While this can be useful to understand

some generic processes of the human metabolism, it may run short on what it may provide in

specific cell types or tissues. Context-specific models can be particularly useful for researching

cancer metabolism, since they have been shown to be able to simulate rapid growth, mutations

in metabolic genes and the Warburg effect (aerobic glycolysis) [28].

Several methods were developed to build draft cell/tissue-specific metabolic models

throughout the past years, taking as inputs a template generic GSMM and different types of

omics data. Although these methods use different approaches, their final objective is to obtain

a draft model and/ or a flux distribution which tries to match the omics data provided [28]. In

this work, we will be focusing on the methods which retrieve a sub-model from the generic

one, since we want to build representative models of cell lines rather than simulate a very spe-

cific condition.

As reviewed by Robaina-Estevéz and colleagues, these methods can be classified into three

families, GIMME-, iMAT- and MBA-like. The main objective in the GIMME family is to try

to reach fluxes obtained from the model consistent with omics data, while maximizing a

Required Metabolic Function (RMF), such as growth. For the iMAT family, the objective is the

same without the need of a RMF. For the MBA family, methods try to achieve model consis-

tency according to a predefined core of reactions, which may come from literature or from the

omics data (e.g. the most expressed genes) [29]. It should be noted that the choice of the
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algorithm has an impact on the quality of the reconstructed model [30–33]. Here, we will be

using the FastCORE (from the MBA family) [34] and tINIT (both GIMME and iMAT fami-

lies) [35] to assess the importance of the choice of method to reconstruct a cell/tissue-specific

model.

The connection of expression data (transcriptomics or proteomics) to the GSMMs is possi-

ble due to the gene-protein rules included in the models, which contain information relating

the genes encoding the enzymes associated with each reaction (if they exist), in the form of

Boolean expressions. However, problems that may affect the accuracy of the reconstructed

model, such as experimental and inherent biological noise, several possible platforms to obtain

expression data, bias on the process of detection and non curated relationship between gene

expression and reaction fluxes, are still a main concern [15].

Since the steps to reconstruct tissue-specific metabolic models address a combination of the

aforementioned issues, it is necessary to establish a pipeline to integrate omics data (which will

be referred to as “preprocessing” from now on). In the most common pipelines, there are three

main steps to be fulfilled [36]. The first takes into account how to deal with reactions with iso-

zymes, complexes and/or promiscuous enzymes, i.e. do not have a one-to-one relationship

between gene and reactions (gene mapping). The second is the definition of a limit where a

gene is considered either active or not (thresholding). The final one is which is the order of

gene mapping and thresholding used in data integration. This study aims to provide a pipeline

enabling to evaluate their importance.

Another important factor to take into account when reconstructing or simulating a meta-

bolic model is the medium composition. By default, most of the GSMMs do not have a prede-

fined composition, allowing the user to define which one to use. However, for most cases, it is

difficult to discriminate all metabolites and their concentration, possibly leading to false pre-

dictions when the model is simulated [37]. Several efforts have been made in recent years to

overcome this problem. The work presented by Marinos et al [38] developed a pipeline to

overcome some of these limitations, providing strategies for the definition of a medium to

improve the predictions of GSSMs.

It has been proven that different media can lead to changes in the phenotypic behaviour of

the cells, how they respond to stress and change their epigenome or transcriptome. Specially in

humans, there are some added components to the medium, such as fetal bovine serum (FBS)

whose composition is not clear and add another unknown factor to how the model should

behave on its presence [39]. Although the impact of FBS can already be taken into account

when looking at trancriptomics data (due, for example, to the growth factors it includes), it is

not clear on how other present metabolites can help the predictions of a GSSM if taken into

consideration.

As impactful as the other raised issues, the choice of an algorithm to reconstruct a tissue-

specific model is another source of variability in the final model, mainly due to the differences

on the reconstruction algorithm principle. As a validation method for the reconstructed mod-

els, they can be tested with a set of required metabolic tasks, such as production of lipids and

vitamins [36]. Since not all tissues require the same set of tasks, some manual curation may be

needed.

When considering the issues described above, we understand that there are some limita-

tions that are troublesome to overcome, such as the lack of a standardization of preprocessing

methods, lack of certain types of omics data to fully characterize cells’ metabolism (such as

fluxomics) or even limitations of the methods themselves, like the assumption of a steady-state

or missing information for certain metabolic reactions. Alongside with the development of the

troppo package, we tried to tackle some of the previous problems. We sought to aggregate dis-

persed methods, both for tissue-specific reconstruction and thresholding, and to provide an
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open-source alternative to proprietary software, such as MATLAB, where most of the methods

are implemented.

With this in mind, we developed a generic pipeline for context-specific model reconstruc-

tion, allowing to test several ways of performing data preprocessing, as well as to choose the

algorithm used for model extraction and validation. In a first set of experiments, we applied

this pipeline to generate multiple reconstructions of the MCF7 breast cancer cell line using

recent transcriptomics data and knockout screenings from the Cancer Cell Line Encyclopedia

(CCLE) [40–42], as well as fluxomics and proteomics data from a recent work by Katzir et al

[43]. We complemented the validation of those reconstructions with analysis of gene essential-

ity and compared various sets of parameters with robust classification metrics. This pipeline

represents an effort to simplify the integration of omics data to generate context-specific mod-

els, requiring only simple scripts in Python. The goal of this work is not to provide an alterna-

tive to other already available Python frameworks, such as CobraPy, but instead an extension

to what is currently possible to be done in such an open-source environment.

Through this initial analysis, we were able to identify the best-performing set of parameters,

which were applied to a larger case study. So, in a second set of experiments, the best configu-

rations were used to reconstruct models for the whole set of the CCLE cell lines (over 700). We

validated the resulting reconstructed models with CRISPR gene essentiality screens. With this

work, we aim to establish a pipeline to find the optimal tuning of parameters for a given data-

set, to help to reconstruct a more insightful tissue-specific metabolic model. An important

advantage of this work is the use of open-source software in all steps of the pipeline, unlike pre-

vious studies mainly using proprietary software.

Materials and methods

The context-specific metabolic reconstruction (CSMR) pipeline employed in this work con-

tains four essential steps: input preprocessing (1), context-specific reconstruction (2), refine-

ment (3) and validation (4).

An overview of the work is present on Fig 1.

Input preprocessing

The inputs for any context-specific reconstruction always involve a template genome-scale

metabolic model capable of yielding a non-zero flux distribution and only containing reactions

capable of carrying non-zero flux, as well as a set of omics measurements integrated in the

model via CSMR algorithms.

Model preprocessing. We first ensured the model was consistent by identifying blocked

reactions—whose maximum and minimum fluxes are null under open exchange conditions—

with flux variability analysis, using the find_blocked_reactions function from the COBRApy

package. We also removed any boundary metabolites—usually added to balance exchange

reactions—prior to running any reconstruction, gapfill, or analysis method. This model must

be feasible in steady-state conditions and must be capable of allowing flux through the biomass

pseudo-reaction.

Transcriptomics data as a proxy of enzyme activity. In this pipeline, we focused specifi-

cally on transcriptomics data that is mappable with the model’s gene associations, although

some methods allow integration of other data types.

Similarly to previous approaches [19, 36, 44], we used transcriptomics data as a proxy for

enzyme presence and flux activity from which we can calculate reaction activity scores (RAS)

to serve as inputs for CSMR algorithms. These scores should ideally reflect whether a given

reaction in the model is likely to be present in the context represented by the transcriptomics
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Fig 1. Overview of the context-specific metabolic reconstruction. In (1), we preprocess the input; first, we run the original model through a

consistency step in order to remove some dead ends in the model. Afterwards, we preprocessed the data from 733 cell lines through three different

approaches to the threshold: global, localT1 and localT2. In preparation of the reconstruction, we applied both MinMax and MinSum methods to

include the gene information in the model and employed the FastCORE and tINIT algorithms (2). There were 320 reconstructed models for MCF7 and

over 6400 for the whole CCLE panel. Since these models may need refinement, all these models were subjected to a gapfill algorithm, EFMGapfill (3).

Finally, the models were subjected to several types of analysis, from phenotype simulation, gene essentiality to fluxomics (4).

https://doi.org/10.1371/journal.pcbi.1009294.g001
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data. The work of Richelle et al. details the implications of several ways to infer RASs and pro-

vides several thresholding options [44], which we adapted as a part of our work. Out of the

parameterization choices highlighted by the authors, we focused on varying the thresholding

approach and GPR integration functions.

Using transcriptomics to characterize enzyme activity is not trivial, since the relationship

between messenger RNA and protein expression is not fully understood, despite ongoing

progress in quantifying both of these biological entities. However, Nusinow et al. have recently

quantified the proteome for a subset of the CCLE panel and found a moderately positive corre-

lation (mean Pearson c.c. = 0.48) between mRNA and protein abundance [45]. In this work,

we assumed a linear relationship so that RASs were calculated based on gene expression

measurements.

Scoring transcript activity from expression measurements. RNA-Seq technologies typi-

cally produce transcript-level measurements represented as proportions of the entire transcrip-

tome. However, we intended, for the RASs used in this work, to obtain a positive or negative

value relative to reference thresholds calculated across all samples. To this end, we processed

expression measurements into transcript activity scores (TASs) that can better represent this

dichotomy. All the thresholding calculations were done over the transcript-level measurements.

We first defined the concept of a global threshold, where the expression of all genes contrib-

utes. This is useful in filtering out transcripts whose expression is low or high enough for them

to be assigned as inactive or active, respectively, with a high degree of confidence. However,

this type of thresholding does not take into account the variability of measurements between

transcripts. While originally available for microarray-based transcriptome quantification [46],

a generic expression threshold to barcode all cell types is hard to define and apply in RNA-Seq

measurements, due to the different conditions in which experiments are performed.

A local thresholding approach can also be considered to mitigate the aforementioned prob-

lems. Rather than condensing the entire measurements into a single value, thresholding can be

performed on a per gene basis, yielding a value for each gene independently. Similarly to the

global thresholding approach, local thresholds can also be used as a reference for fold change

calculations.

In this pipeline, both thresholds were calculated by first determining transcript-wise quan-

tiles for various percentages (from 10% to 90%), yielding multiple sets of local thresholds, one

for each percentage. To convert the latter to global thresholds, we used the mean value of a

local threshold set to obtain a single representative value for the entire expression dataset.

After establishing appropriate thresholds, we then combined them to establish rules that

can be used to determine whether a transcript is active and calculate its TAS to better represent

that activity level. We implemented an approach based on the work of Richelle et al [44],

where transcript activity can be represented in two main states, namely:

• Inactive: transcript expression is inactive with a high degree of confidence—assigned when

expression values are lower than a global lower threshold (gmin). The expected TAS values

will always be negative.

• Active: transcript expression is active with a high degree of confidence since its value exceeds

a global upper threshold (gmax). The expected TAS values are always positive.

This also implies the existence of an intermediate state of uncertainty for cases where tran-

script expression lies between the two thresholds. In these cases, we distinguished between

active and inactive transcripts by comparing the transcript’s expression with its transcript-spe-

cific local threshold (l(y)) and the expected TAS value is constrained between -1 and 1, with its

sign reflecting whether it is considered active.
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We implemented three thresholding strategies based on the work of Richelle et al [44] with

some minor changes to accommodate for the expected distribution of TAS values across mul-

tiple states. A global thresholding strategy implies a single global threshold to distinguish

between active and inactive transcripts. An extension of this strategy, named localT1, includes

local thresholding for transcripts that would otherwise be considered as inactive, and assigns

TASs based on the ratio between expression and the transcript’s local threshold. Finally, we

also included a localT2 strategy defined by the usage of two thresholds and an intermediate

state, as defined above.

TASs were then generated by calculating the ratio between measured expression values and

an appropriate threshold which is chosen according to the state in which the transcript is

assigned. A detailed description of the formulae used in each state for the three employed strat-

egies can be found on Table 1.

Inferring reaction activity from transcript scores. The TASs from the aforementioned

strategies are then converted to RASs using the gene-protein-reaction (GPR) rules provided

with the model. GPR rules are Boolean expressions that describe, for a given reaction, which

combinations of transcripts are involved with the synthesis of one or more enzymes capable of

catalyzing it. These rules are often expressed or can be converted into disjunctive normal

form, where multiple conjunctions (expressions with the AND operator) denoting the various

enzymes or isoforms involved are bound by a disjunction (OR operator).

RASs must be presented as continuous scores and, thus, the Boolean operators in GPR

rules must be replaced with numerical values. We replaced AND operators with a minimum
function—an enzyme’s activity is limited by the lowest expressed transcript/subunit—while

OR operations could be replaced with either sum or maximum functions. When using sum, we

assumed the reaction activity correlates with the combined activity of all enzymes and isoforms

catalyzing it, while the maximum function equates reaction activity with the highest expressed

enzyme’s score.

Model reconstruction

Normalizing inputs for context-specific reconstruction algorithms. This step includes

conversion of RASs into inputs accepted by the different CSMR algorithms, given their diverse

nature, and we have implemented two alternatives to perform this conversion in our routines.

Although our pipeline is generic, we chose the FASTCORE [34] and tINIT [47] algorithms for

context-specific model reconstruction.

Table 1. Functions used to convert transcript expression values into transcript activity scores, assuming x as a vec-

tor of expression levels for each transcript. The “Expression value” column represents the condition that values in x
must meet for the corresponding reference threshold t used to calculate a ratio with the formula log xi

t

� �
. Finally, the

range of TAS values for each condition is detailed on the last column.

Strategy Expression value Reference threshold TAS range

Global x� 0 gmax ]−1,1[

LocalT1 x� gmax l(y) ]−1,1[

x� gmax gmax ]0,1[

LocalT2 x� gmax gmax [1,1]�

x� gmin gmin ]−1, 0[

gmin� x< gmax l(y) [−1, 1]

� In the localT2 strategy, the TAS range does not start at 0 since 1 is added to the formula in the specific case when

the expression value is greater than gmax

https://doi.org/10.1371/journal.pcbi.1009294.t001

PLOS COMPUTATIONAL BIOLOGY Context-specific metabolic model reconstruction at scale

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009294 June 24, 2022 8 / 24

https://doi.org/10.1371/journal.pcbi.1009294.t001
https://doi.org/10.1371/journal.pcbi.1009294


Methods such as tINIT, where scores mirror the reactions’ states as present or absent, can

take RAS as input without any further processing. On the other hand, algorithms such as FAS-

TCORE require a set of core reactions as input. In this case, a further threshold must be

applied for these to be obtained. In our work, we emphasized the division between positive

and negative scores to represent activity, and as such, core reactions are those with a RAS

above 0.

Algorithm output and post-processing. With the inputs appropriately adapted, the out-

put of each algorithm is always a binary vector r of size n (equal to the number of reactions in

the template model), indicating reactions’ presence. Indeed, this vector includes Boolean flags

indicating whether each reaction should be kept or removed in the context-specific model.

The models generated by the CSMR algorithms were then checked for consistency with

expected phenotypes. For each of these models, we knocked out (set lower and upper bounds

to 0) reactions flagged for removal, before performing any simulation or analysis. We first

checked whether the model is capable of allowing non-zero flux through the biomass reaction,

to ensure lethality can be tested. When growth medium formulations are available, we can

additionally ensure that the model is feasible and capable of growth if the compounds present

in growth media are the only ones allowed to be consumed. This was achieved by constraining

exchange reactions that do not involve medium metabolites to only allow positive flux values,

thus only allowing medium metabolites to be consumed by the model.

Refinement

When the preliminary checks described above fail, gap filling approaches can be employed to

infer sets of missing reactions that can expand the solution space and enable expected

phenotypes.

Elementary flux mode-based gap filling approach. Gap filling was performed using a

novel EFMGapfill approach, which was implemented in the troppo Python package. This algo-

rithm leverages efficient elementary flux mode (EFM) enumeration algorithms to find mini-

mal sets of active fluxes required for feasibility under a specific condition. Assuming a

stoichiometric matrix S of m metabolites and n fluxes, the flux vector v and an identically sized

vector y, and a set K of reactions available to fill gaps, the LP formulation employed in EFM-

Gapfill can be defined as follows:

min
X

p2K

yk ð1Þ

s:t:
Xn

j¼1

Si;j � vj ¼ 0 ð8i 2 f1; . . . ;mgÞ ð2Þ

(LP1)

yk � Mvk � 0 ð8k 2 1; . . . ; nÞ ð3Þ

vk � yk � 0 ð8k 2 1; . . . ; nÞ ð4Þ

vk � 0 ð8k 2 1; . . . ; nÞ ð5Þ

v 2 <n
0þ
; y 2 f0; 1g;M ¼ 106 ð6Þ
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In the formulation represented in LP1, constraint 1 defines the steady-state constraint, sim-

ilarly to other CB approaches, such as FBA. Constraints 2 and 3 associate the binary variables

in y to the fluxes in the vector v. In this expanded solution space, the variables in y will hold a

value of 1 if their associated flux in the vector v is greater than 1. Otherwise, both variables are

set to 0. These variables and indicator constraints are then used to discretize fluxes into active

and inactive states. The objective function is dependent on the set of reactions K available for

the algorithm to add as a gap filling solution, although the objective is always to minimize the

sum of a subset of the vector y whose indices are contained in K.

We adapted the input K according to a Boolean vector r (a set of reaction indices). K will

have all reactions from the template model not included in r. The vector r is typically the out-

put of a previously determined CSMR reconstruction. Furthermore, we also defined and con-

strained an objective reaction u (usually the biomass pseudo-reaction) to always carry non-

zero flux, representing a phenotype that is expected to be maintained upon tailoring the model

to the subset of reactions in r.
We identified two possible gap filling scenarios that can be accomplished using this

approach. In the first, we did not assume constraints on external metabolite exchanges and

thus, we also excluded these reactions from K. The resulting solution from our gap filling

approach is the smallest set of intracellular reactions not found in r that should be included so

that the context-specific model is capable of carrying flux through u.

An alternative scenario may arise where the set of reactions r must not be manipulated, but

the model still requires gap filling to predict growth. The growth medium, rather than the

enzyme content of this model must be the target for manipulation. In this case, all intracellular

reactions not in r must be constrained and exchange reactions must be split into forward and

reverse reactions carrying flux in opposite directions. To find the minimal set of extracellular

metabolites required for the model to carry flux through u, the set K must be defined as the set

of reverse exchange reactions in the model.

Validation

An important question arising from any CSMR process is ensuring the reconstructed models

are capable of capturing the metabolic context of the cell or tissue, as represented by their cor-

responding omics measurements. Although literature review may reveal expected behaviours

and phenotypes associated with the specific context to be modeled, a truly systematic valida-

tion of these models can only be achieved with large-scale datasets covering a wide range of

measured biological entities. Such experiments should clearly point out the effect of perturba-

tions that can be mapped onto the model on cell metabolism so that simulated fluxes become

directly comparable. In this section, we describe how gene knockout screens and fluxomics

can be integrated in our pipeline to validate these models.

Gene essentiality. Gene essentiality screens, such as those performed with CRISPR, pro-

vide a directly quantifiable measurement of the impact of gene deletions on cell viability,

which can be modeled on CBMs through metabolic tasks [19]. The biomass objective function,

included in most human models, groups most of these tasks’ demands by aggregating the nec-

essary components for cell division and maintenance. Given the computational demand of

checking multiple gene knockouts for each task and each omics sample, we will focus on pre-

dicting lethal gene knockouts using the biomass objective function as a measure of cell growth.

The CBM workflow used to predict essential genes used GPRs to determine the set of reac-

tions to exclude given a knocked-out gene g. To this end, we first obtained a mapping ω(g, r),
which evaluates the GPR expression of reaction r with every gene marked as active, except for

g. To apply the gene knockout, we must first determine the set K = {r|r 2 R, 8¬ω(g, r)}, which
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identifies the reactions that are disabled upon deletion of g; then, we set the lower and upper

bounds of each reaction in K to 0. Adding these constraints to the model, the simulation can

be run using FBA, yielding predicted growth rates for each gene deletion.

Finally, flux distributions resulting from gene knockouts can be evaluated. It is useful to

always compare predicted mutant growth rates with wild-type levels. We considered several

growth rate thresholds based on the wild-type value to represent viability, but we assumed that

values of the mutant biomass flux below 0.1% of the wild-type biomass flux were considered a

knockout lethal. Additionally, infeasible solutions are considered as non-viable. We then dis-

cretized each gene knockout’s result as essential or non-essential and compared them with the

experimental screening.

We used Matthews’ correlation coefficient (MCC) to assess the predictive ability of our

models. The multiclass definition of MCC as implemented in the scikit-learn package is pre-

sented on Eq 7, assuming a generic classifier to predict K classes, t as a vector with the amount

of true positives and p the vector with the amount of predictions each class k, while c is the

total amount of true positive samples for all classes and s is the number of samples.

MCC ¼
c� s �

PK
k pk � tkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2 �
PK

k p2
kÞ � ðs2 �

PK
k t2

kÞ

q ð7Þ

Predicted fluxes. Alternatively, flux distributions obtained from the model using an

appropriate phenotype prediction method can be directly compared with experimentally mea-

sured fluxes, obtained from techniques such as isotope labeling coupled with metabolic flux

analysis. In this work, we employed parsimonious enzyme usage flux balance analysis (pFBA)

to predict phenotypes using our context-specific reconstructions. We have chosen this method

since it requires no prior knowledge and reduces the admissible solution space of FBA by

assuming cells not only attempt to achieve the predefined cell objective, but also minimise the

overall sum of metabolic fluxes to do so.

A key limitation in using CB models to predict flux values is the lack of reliable measure-

ments for substrate uptake fluxes. This directly influences the predicted growth rate and intra-

cellular fluxes. A more reliable comparison can be made by discretizing flux values into three

classes: forward active, if the flux is positive, reverse active if it is negative (flux is active, but car-

ried in the reverse direction), or null when there is no flux. Although less precise, this discards

the usage of experimentally measured external metabolite consumption rates. The model’s pre-

dictive ability can then be ascertained by using metrics suitable for multiclass predictive mod-

els such as Matthews’ correlation coefficient or weighted F1 scores.

Flux analysis

Models reconstructed using our pipeline yielded flux distributions obtained from pFBA that

were used for further analyses. Before applying decomposition methods, statistical tests or

using these data for classification tasks, we first scaled flux values to avoid numerical issues. To

achieve this, we transformed the entire dataset by applying a sigmoid function s(x) (Eq 8) that

maintains flux signs, but brings very large values closer. Standardization was not performed as

keeping the flux sign intact allows for proper interpretation of these values regarding alterna-

tive flux modes associated with the same reaction. The a value is to obtain a different range of
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values to be easier to work with, e is the Euler’s number and x is the value of the flux.

sðxÞ ¼ a �
1

1þ ex

� �

þ 1 ð8Þ

Relevant fluxes were selected before using supervised or unsupervised algorithms by elimi-

nating fluxes with low variance. Furthermore, we also selected an arbitrary number of features

ranked by their significance in explaining the variance of the data relative to a discrete clinical

feature using one-way ANOVA tests.

One of the methods used to analyse predicted fluxes was Principal Component Analysis

(PCA), which we used to further reduce the high-dimensionality of the metabolic model’s

solution space. We also inspected principal component loadings to identify groups of fluxes

that were relevant with the clinical features in the biological samples from which the models

were reconstructed.

Finally, we also used predicted fluxes to train supervised learning classifiers. We used Ran-

dom Forest classifiers with varying number of Decision Tree estimators. K-fold cross-valida-

tion (CV) was used to assess the classifiers’ predictive performance using Matthews’

correlation coefficient as our metric. In some instances, we trained classifiers using several

pFBA flux distributions for the same cell line. To avoid the inclusion of models from the same

cell line in both training and testing folds, we implemented a custom k-fold CV routine that

splits datasets by cell lines rather than by individual flux distributions.

Parameter importance. We assessed the effect of the model reconstruction parameters

on each validation task by fitting a linear regression model with parameters as inputs (inde-

pendent variables) and performance metrics (MCC) as the output (dependent) variable. First,

we built a feature matrix with one-hot encoded parameters for all reconstructed models. We

then fit the linear regression using this feature matrix to predict the MCC value. This model’s

coefficients for each parameter are then used to infer its impact on the predictive performance.

Software availability

The software featured in this work was developed using the Python programming language.

Although compatibility between language sub-versions should not cause any problems, we

recommend using Python 3.6 and above. The entire source-code to perform all steps of the

pipeline featured in this work is accessible through the GitHub repository at https://github.

com/BioSystemsUM/human_ts_models/. The packages cobamp, troppo, cobrapy, pandas, sea-
born, scikit-learn and matplotlib libraries are required to replicate the results and analysis fea-

tured in this work.

A significant part of our model reconstruction pipeline has been implemented using the

troppo framework [48], developed in-house but freely available for the community, available

through the GitHub repository at https://github.com/BioSystemsUM/troppo. This software

package provides an environment for omics data processing and subsequent integration with

constraint-based metabolic models. This software is structured around two main parts: the

omics layer handles data parsing, labeling and normalization, as well as mappings to previously

loaded constraint-based metabolic models; the reconstruction layer contains routines to easily

adapt omics inputs into appropriate reaction-level scores and run context-specific model

reconstruction algorithms using novel implementations of existing methods.

We also used the cobrapy package [49] to read genome-scale metabolic models in the stan-

dardized Systems Biology Markup Language (SBML) format, manipulate their content and

predict phenotypes using pFBA. The IBM ILOG CPLEX (version 12.8) solver was used for all

CB analysis and CSMR methods involving linear programming optimization problems, with
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or without mixed-integer constraints. Some parts of the omics data processing pipeline were

performed using the pandas package. These routines have been generalized and included in

the source-code of this work as auxiliary functions, although most parts of the input prepro-

cessing pipeline are fully accessible through troppo.

The remaining parts of the context-specific model reconstruction have also been imple-

mented in several components of troppo. Both fastCORE and tINIT algorithms used in this

work were run using in-house implementations, which had been validated in a previous work

[48]. The EFMGapfill approach is a novel addition to this software package and was imple-

mented using an in-house implementation of the k-shortest EFM enumeration already avail-

able as part of cobamp [50]. This package was also used to run these routines with

multiprocessing support whenever applicable.

The plots featured in this work were generated using the matplotlib and seaborn libraries.

Results

Our first study evaluated the influence of different input processing methods on model recon-

struction, using the MCF7 breast cancer cell line as a case study. The tested input processing

methods consisted of several values for thresholding transcript-level measurements with the

aforementioned strategies, global, local-T1 and local-T2, with different assigned values for the

threshold. The different strategies tested will help to highlight the best combinations of param-

eters to obtain a more accurate context-specific model (Table 2). Since these approaches are

not sufficient, we validated the predictive ability of each parameter setup through a compari-

son of predictions from the reconstructed models with expected phenotypes from gene dele-

tion screens and fluxomics measurements. This cell line was chosen due to its common use in

many previous studies, from which a large quantity of knowledge and omics data can be

accessed.

In a second stage, using knowledge from these MCF7 models, we selected the best perform-

ing preprocessing options for each algorithm, and reconstructed various models for all cell

lines, validating them with gene essentiality predictions. In the absence of fluxomics measure-

ments, we also assessed whether such models could be used to generate relevant information

for other tasks by using the result of several pFBA simulations as features for supervised

machine learning approaches.

Case-study setup

We used the Human-GEM (version 1.5.0) genome-scale metabolic reconstruction as our tem-

plate model, stemming from a recent effort by Robinson et al. to provide a consensus meta-

bolic model for Homo sapiens [19]. The model consists of 13417 reactions associated with a

total of 3625 genes and 4164 unique metabolites, integrating knowledge from previous

Table 2. Required parameters for model reconstruction and possible options from which to choose from (sepa-

rated by commas).

Parameter Options

Algorithm FASTCORE, tINIT

gmin quantile 10th, 25th, 50th, 75th, 90th

gmax quantile 25th, 50th, 75th, 90th

Local quantile 10th, 25th, 50th, 75th, 90th

Integration functions AND minimum

OR maximum, sum

https://doi.org/10.1371/journal.pcbi.1009294.t002
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reconstructions. The model and auxiliary reaction and metabolite tables were downloaded

from the corresponding version release on the GitHub repository at https://github.com/

SysBioChalmers/Human-GEM.

The experimental data used in this work was obtained from two different sources. The Can-

cer Cell Line Encyclopedia provides RNA-seq transcriptomics data for over 56000 genes across

1270 unique cell lines. These expression values are represented in transcripts per million

(TPM) and are already pre-processed using standardized GTEx pipelines. TAS calculations

were performed across the entire dataset, although the only integrated scores were those

whose associated genes were mapped to the template metabolic model.

These datasets are complemented with the Achilles dataset, characterizing lethal effects of

over 18000 gene knockouts through CRISPR experiments [41, 42]. Gene essentiality scores

from this experiment were generated using CERES [42], a metric used to estimate gene depen-

dency levels from CRISPR-Cas9 essentiality screens. In the DepMap project, the median of

negative and positive controls is 0 and 1, respectively.

For this work, after some extra processing, we considered five essentiality thresholds evenly

distributed across the range between -1.5 and -0.5. As of the first quarter of 2020, 739 cell lines

had been included in the Achilles dataset [51], which we then selected as the candidates for

our large-scale model reconstruction effort. Gene/transcript nomenclature was converted

using the latest HUGO Gene Nomenclature Committee approved symbol mappings whenever

needed [52].

Fluxomics measurements for MCF7 cell lines were obtained as part of the dataset used in

the analysis of the work of Katzir et al. [43], where time-series LC-MS metabolomics were used

to estimate the rates of 44 reactions in three growth media conditions. Despite being originally

mapped to the reactions in the Recon 1 GSMM, we processed the data and matched these flux

measurements and reaction directionality with the Human-GEM template model.

Reconstruction of MCF7 cell line models

We first reconstructed models of the MCF7 cancer cell line by considering every possible com-

bination of the parameters displayed on Table 2, excluding invalid combinations. In addition

to these models, we included a MCF7 cell line reconstruction featured in the work of Robinson

et al. as a baseline comparison [19].

We obtained 320 models from this reconstruction effort and assessed their ability to cor-

rectly predict essential genes and flux activity. To understand the influence of parameterization

on the models’ performance, we observed the distribution of values across multiple parameter

options and evaluated parameter importance numerically using a linear regression.

Gene essentiality predictions. The results summarized on Fig 2 show that global thresh-

olds have a greater impact on gene essentiality predictions, since the localT1 strategy, which

places a greater emphasis on local thresholding leads to worse gene essentiality predictions.

Additionally, the average of all models reconstructed using the global thresholding strategy is

close to that found in localT2 models. Our best models obtained a MCC value of 0.44 while the

best models from the work of Robinson as his colleagues was lower than 0.4, as represented on

Fig 2A.

Despite this similarity when comparing the average of all models for each strategy, the best

predictions were achieved using the localT2 strategy, which is a clear indicator that a combina-

tion of both thresholding approaches are useful to estimate RASs. Although the performance

achieved using the localT2 strategy could be attributed to the usage of two (rather than one)

global thresholds, we observed that the gmin parameter when using the localT2 strategy seems

to have little impact on the models’ predictive power. This supports the claim that when both
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local and global strategies are combined, they provide a positive effect on the TAS calculation

strategy, since localT1 does not show good results, and the ones from the global ones are

improved when coupled with the localT2 strategy. The complete results are provided on

S1 File.

We were also able to infer some of the properties associated with the dataset, where gmax

and local thresholds at the 25th percentile seem to have the most positive effect on predictive

ability in all models. Although the CERES score threshold representing the median essential

gene knockout was set at -1, our models show slightly increased predictive power at -0.75.

Aside from data preprocessing related parameters, we have found the best parameter com-

binations are to use the tINIT algorithm in conjunction with the maximum function as

replacement for the AND operator. We also observed that refining the model with EFMGapfill

to allow growth using only the defined growth media metabolites as substrate did not result in

better gene essentiality predictions.

Flux activity predictions. We also performed a similar assessment on the ability of our

models to correctly predict reaction activity/inactivity and directionality for the MCF7 cell line

under three growth medium compositions with associated fluxomics measurements. Note that

MCC is used given that the predicted variable is discrete. We did not address a quantitative

prediction, as the preliminary results showed poor results in directly predicting flux values.

Fig 2. Overview of the influence of parameterization on the models’ performance when predicting essential genes as determined by their MCC.

For B and C panels, the essentiality threshold selected was -0.75. A: MCC value distribution for each CERES score threshold (horizontal axis) and

algorithm combination (coloured box and whiskers). B: MCC value distribution for each thresholding strategy (horizontal axis) and algorithm

combination (coloured box and whiskers). C: Linear coefficients for each individual parameter value on a regression model aimed at predicting MCC

values. Each parameter variable was one-hot encoded as multiple binary variables.

https://doi.org/10.1371/journal.pcbi.1009294.g002
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For each parameter combination, we generated three corresponding predictions using the

growth medium as an additional flux constraint and calculated the MCC between the mea-

sured and predicted flux activities. In Fig 3A, we can see that most parameters affect flux and

essentiality predictions similarly. The best performing strategies are still those based on global

and local thresholding with 2 states. In both algorithms, we also observed that constraining

nutrient uptake to the metabolites that could be matched with the growth medium led to

higher predictive power.

The relationship between average MCC and its standard deviation is shown in Fig 3B,

where we can firstly observe that the flux predictions are, in general, of poor quality, with

MCC values near 0. FASTCORE reconstructed models were able to reach the highest correla-

tion with the experimental fluxomics data, although they are more sensitive to parameteriza-

tion. INIT, on the other hand, showed higher average MCC values across all parameter

combinations with less dispersion and yielded models that rank closer when evaluated with

this metric. We also compared our models with a baseline MCF7 cell line model featured in

the work of Robinson et al. [19], which ranks significantly lower than our best FASTCORE

and INIT models. The data used can be seen on the S2 File.

FASTCORE appears as the more consistent tool to extract context-appropriate sets of reac-

tions from a template model. Due to its low computational demand, these reconstructions can

be repeated with alternative parameters or to sample large amounts of models. tINIT, on the

other hand, shows consistently lower sensitivity to the parameters selection, as see on Figs 2A,

2B and 3B, leading to poorer performing models when compared to the best ones from

FASTCORE.

Large-scale metabolism reconstructions of cancer cell lines

We used 10 of the highest scoring parameter combinations from the MCF7 cell line case study

to reconstruct the entire panel of cell lines available in CCLE with associated gene knockout

effect screens (n = 739). A similar reconstruction pipeline was employed in this larger case

study, although we did not perform gap filling relative to the growth medium, due to heavy

computational demand and an expected negative impact in phenotype predictions. Another

important aspect to take into consideration is the lack of fluxomics data, which was used in the

optimization of the parameters for the MCF7 cell line. This was not employed in the large-

scale study since this type of data is rarely available. Still, we used it in the previous study to

demonstrate the importance that it can have in improving the reconstruction of context-spe-

cific models. Another limitation of this pipeline is the use of a shared objective function, a

generic biomass reaction. Due to the heterogeneity and different types of tissue being recon-

structed, the ideal scenario would be to have a specific objective function for each tissue, which

is very hard to attain.

We performed a large-scale analysis to demonstrate the predictive accuracy of the recon-

structed MCF7 cell lines. There are slight differences in gene essentiality prediction perfor-

mance between the 10 selected parameter combinations, with tINIT models reconstructed

displaying slightly higher scores. In all of these scenarios, the selected pipeline parameteriza-

tion choices improved gene essentiality predictions, when comparing with the models recon-

structed in the work of Robinson et al, which asserts the importance of using more complex

scoring strategies involving global and local thresholds. A deeper analysis can be found at the

S1 Appendix.

Exploring metabolic variability in breast cancer. We used the models and their respec-

tive predicted fluxes to explore the metabolic heterogeneity among various breast cancer cell

lines. To do so, we retrieved molecular subtype annotations from the DepMap repository and
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Fig 3. Overview of the influence of parameterization on the models’ performance when predicting flux activity

and using MCC as the evaluation metric. Top (A): Linear coefficients for each individual parameter value on a

regression model aimed at predicting MCC values for each parameter combination. Each parameter variable was one-

hot encoded as multiple binary variables. Bottom (B): Relationship between average MCC value and standard

deviation for each group of 3 simulations (conditions) that make up a single parameter combination. Different colors

represent different algorithms and/or baseline comparison models.

https://doi.org/10.1371/journal.pcbi.1009294.g003
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used PCA to project these flux distributions using reduced features and obtain relevant infor-

mation on the flux patterns present in different breast cancer subtypes. These results are sum-

marized on Fig 4.

The subset of models belonging to breast cancer were extracted and the 200 fluxes (filtered

by ANOVA, before the PCA) with most statistically significant differences among subtypes

were used to decompose the dataset. We included all reconstructed models, regardless of their

parameters, and reduced the latent space to 3 principal components (PCs) capable of explain-

ing 33% of the observed variance. The loadings of each principal component were obtained,

with each flux being summarised in their corresponding pathways by calculating the average

of the absolute ratios between the weights of each flux and the maximum observed values in

the PC loadings.

Firstly, we can conclude that the decomposition of predicted fluxes can adequately distin-

guish between major molecular subtypes of breast cancer. The second PC (PC2) marks a good

distinction between basal and luminal cell lines and correlates with reported prognosis and

aggressiveness [53], with luminal BCs with better prognosis assigned to positive values as

opposed to basal BCs which appear in this PC as negative values.

Predicted metabolic fluxes as relevant features. The lack of fluxomics data for the whole

set of cell lines featured in DepMap does not allow to carry out a large-scale systematic com-

parison of the pFBA flux distribution predictions with experimental data. However, we set out

to assess whether or not these predicted fluxes could be useful in predicting several clinical fea-

tures associated with each sample. To do so, we established a supervised classification task,

where the disease’s primary location would be predicted using various datasets as inputs,

namely, (1) standardized expression values (TPM from RNASeq) using the entire gene set, as

well as only those genes that can be integrated in the metabolic model, (2) TASs generated for

each sample, (3) predicted fluxes (using pFBA over reconstructed models) and (4) the reaction

presence (binary) from the CSMR algorithm outputs. Our results, using random forests as the

machine learning model to address these tasks, are summarized on Fig 5.

Fig 4. Cell line models reconstructed for breast cancer cell lines and projected in lower dimensions through the usage of PCA. The left figure

shows the first PC against the second, while the right figure displays the second PC against the third, in the horizontal and vertical axes, respectively.

https://doi.org/10.1371/journal.pcbi.1009294.g004

PLOS COMPUTATIONAL BIOLOGY Context-specific metabolic model reconstruction at scale

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009294 June 24, 2022 18 / 24

https://doi.org/10.1371/journal.pcbi.1009294.g004
https://doi.org/10.1371/journal.pcbi.1009294


Classifiers trained with standardized transcriptomics data showed good relative perfor-

mance (MCC mean = 0.570, sd = 0.038) with the subset corresponding to metabolic genes

only slightly outperforming it. Processing these data and generating TASs slightly increased

predictive capabilities (MCC mean = 0.594, sd = 0.030), which further justifies applying our

preprocessing workflows before analysing and integrating omics data. However, the outputs of

CSMR algorithms, namely, the presence or absence of each reaction resulted in models capable

of predicting a cancer cell line’s primary site with an average MCC of 0.525 (sd = 0.031). Fur-

thermore, pFBA simulations resulted in even worse classifiers that could only reach an average

MCC of 0.298 (sd = 0.042).

Overall, our results show that context-specific model reconstruction and flux balance analy-

sis approaches are not yet consistent enough for accurate quantitative flux predictions, as pre-

dicted metabolic fluxes by themselves did not appear to be relevant features for complex

classification tasks.

Discussion

We built upon several previous efforts to generate constraint-based models of differentiated

human tissues, being capable of assembling a generic pipeline that can be useful in standardiz-

ing the process of integrating transcriptomics data into human metabolic models for the scien-

tific community. Furthermore, this pipeline is available as part of an open-source software tool

providing a generic framework for the implementation of context-specific model reconstruc-

tion tasks.

We were able to leverage large-scale multi-omics experiments with cancer cell lines and a

state-of-the-art human metabolic reconstruction to generate meaningful models capable of

capturing the metabolic diversity among, and within, multiple types of cancer. We were also

able to validate the models using experimentally determined essential genes and fluxomics

data.

The usage of decomposition methods to understand flux predictions allowed us to establish

a link between metabolic phenotypes and breast cancer prognosis, and by making use of the

interpretability of constraint-based models, we were also able to pinpoint key enzymes and

metabolites associated with dysregulated growth. This elicits the potential for similar

approaches to assist in contextualizing transcriptomics profiles into metabolic phenotypes,

with the purpose of understanding the intricate mechanisms responsible for human diseases,

especially for personalized medicine applications.

The availability of metabolomics and proteomics data is still lower in comparison with

RNA-Seq technologies used for transcriptomics quantification. As such, we have developed

this work to only consider the latter omics type, and we argue that the reconstruction of mod-

els based on transcriptomics data results in computational tools that can be more easily

adapted to a clinical setting since they do not rely on generating multiple omics datasets.

Fig 5. Distribution of average Matthews’ correlation coefficient values for cross-validated classifiers trained with various datasets.

https://doi.org/10.1371/journal.pcbi.1009294.g005
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However, we have also built the computational tools, namely troppo, in a way that these data-

sets can be easily integrated and used with appropriate methods.

Although encouraging, our results show the difficulty in closing the gap between experi-

mentally measured and predicted fluxes. We argue that there is value in building representa-

tive models using gene expression alone, since the techniques used to obtain these

measurements are far more ubiquitous and less costly. However, naturally, this lack of infor-

mation implies some limitations when interpreting the model. This was evident when using

model simulations to predict a cell line’s disease, where classifiers trained with these predic-

tions displayed poor predictive performance. This leads to the conclusion that although we

may have some interesting results with the reconstructed models obtained, this was mainly

due to the characteristics of them, not so much for their predictive capabilities. As described

before, there is still a long way for metabolic models, independent of their type, to be able to

simulate the metabolism with a high accuracy. So, for now, we try to obtain the most of what

the current technology can offer.

In the absence of precise exo-metabolome uptake or secretion rates, CBMs in their original

definition, are merely capable of predicting metabolic pathways on a discrete level, and thus,

flux distributions must always be interpreted relative to a given original state or model context

rather than assuming these fluxes are numerically comparable. A related challenge also appears

when considering the biomass objective function, which is usually too generic to describe dif-

ferent tissue types, and hinders the ability for these approaches to generate meaningful models

for cells whose metabolic objective is difficult to define.

Recent works that have incorporated exo-metabolite measurements [36], metabolic task

protection and alternative formalisms to include more complex parameters [19], have reached

better Pearson correlation coefficients with fluxomics measurements, although with smaller

case studies. Another important aspect would be to expand the scope of constraint-based mod-

els to also include regulation and signal transduction enabling predictions of metabolic fluxes

that can be contextualized with their corresponding regulators.

We must, additionally, acknowledge the importance of using a fluxomics data source for a

reference cell line to serve as a basis for subsequent reconstructions. Although we know this

type of data is rare, we were able to prove it can be useful to improve the process of reconstruc-

tion with some degree of validation, when available. In this work, this led to a significant

decrease in computational resource usage, as well as a better choice of parameters without

exhaustive reconstructions, even if for only a specific cell line.

The implementation of this complex pipeline in a modular framework allows for the usage

of different methods that might fit a particular purpose. Previous works have reported the het-

erogeneity in outputs from various CSMR algorithms and our case study clearly shows that

this choice impacts the type of phenotypes to predict and, as such, we extended troppo in such

a way that reconstructing a context-specific metabolic model is a simple task, even for users

with limited programming skills.

Other similar studies have been done to try to establish a generic pipeline to reconstruct

and evaluate several context-specific models. StanDep is an alternative strategy to threshold/

integrate data for the reconstruction of context-specific tissue models (NCI-60 cancer cell line

panel) [54]. They took an alternative approach where the thresholding method tried to include

the most possible of their defined housekeeping reactions, which was used as a metric to evalu-

ate the performance against other methods of thresholding, such as local 2-state. In another

study, Opdam and his colleagues [55] also developed a pipeline to evaluate different states of

constraints in the template model, different expression thresholds and algorithms. They

highlighted the importance of including several types of data into the process of reconstruc-

tion, evaluated the influence of different gene expression thresholds (although their approach
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was much simpler than ours) and the necessity of refinements after the process of reconstruc-

tion. Another interesting study by Jalili and his colleagues [56] used several type of omics data,

integration strategies and algorithms for the reconstruction process to evaluate different flux

profiles in cancer to determine the best combination of parameters. As stated before, one of

the goals of our work was to provide an open-source software alternative to perform this type

of work, and in these studies, all of them used MATLAB, which can be a limitation for the

community.
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