
RESEARCH ARTICLE

Hamming-shifting graph of genomic short

reads: Efficient construction and its

application for compression

Yuansheng LiuID, Jinyan LiID*

Data Science Institute, University of Technology Sydney, Sydney, Australia

* Jinyan.Li@uts.edu.au

Abstract

Graphs such as de Bruijn graphs and OLC (overlap-layout-consensus) graphs have been

widely adopted for the de novo assembly of genomic short reads. This work studies another

important problem in the field: how graphs can be used for high-performance compression

of the large-scale sequencing data. We present a novel graph definition named Hamming-

Shifting graph to address this problem. The definition originates from the technological char-

acteristics of next-generation sequencing machines, aiming to link all pairs of distinct reads

that have a small Hamming distance or a small shifting offset or both. We compute multiple

lexicographically minimal k-mers to index the reads for an efficient search of the weight-light-

est edges, and we prove a very high probability of successfully detecting these edges. The

resulted graph creates a full mutual reference of the reads to cascade a code-minimized

transfer of every child-read for an optimal compression. We conducted compression experi-

ments on the minimum spanning forest of this extremely sparse graph, and achieved a 10

− 30% more file size reduction compared to the best compression results using existing

algorithms. As future work, the separation and connectivity degrees of these giant graphs

can be used as economical measurements or protocols for quick quality assessment of wet-

lab machines, for sufficiency control of genomic library preparation, and for accurate de

novo genome assembly.

Author summary

We present a novel graph-based algorithm to compress next-generation short sequencing

reads. The novelty of the algorithm is attributed to a new definition of genomic sequence

graph named Hamming-Shifting graph. It consists of edges between distinct reads that

have a small Hamming distance or a small shifting offset or both. Efficient construction of

Hamming-Shifting graphs is challenging. We introduce a heuristic technique to detect the

weight-lightest edges through multiple minimizers from each read, then search the mini-

mum spanning trees and forests of the Hamming-Shifting graph for a high-performance

compression of the reads. Our method achieves an additional 10 − 30% file size reduction

compared to contemporary compression techniques.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Liu Y, Li J (2021) Hamming-shifting

graph of genomic short reads: Efficient

construction and its application for compression.

PLoS Comput Biol 17(7): e1009229. https://doi.

org/10.1371/journal.pcbi.1009229

Editor: Rob Patro, University of Maryland at

College Park, UNITED STATES

Received: January 6, 2021

Accepted: June 30, 2021

Published: July 19, 2021

Copyright: © 2021 Liu, Li. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The source code is

available at https://github.com/yuansliu/mstcom.

Funding: This research was supported by the

Australian Research Council Discovery Project

DP180100120 to J.L. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-7680-3155
https://orcid.org/0000-0003-1833-7413
https://doi.org/10.1371/journal.pcbi.1009229
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009229&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009229&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009229&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009229&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009229&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009229&domain=pdf&date_stamp=2021-07-29
https://doi.org/10.1371/journal.pcbi.1009229
https://doi.org/10.1371/journal.pcbi.1009229
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/yuansliu/mstcom


This is a PLOS Computational Biology Methods paper.

Introduction

High-throughput next-generation short-reads sequencing machines have technological char-

acteristics that can be translated into good graph definitions to understand the connectivity of

genomic sequences [1, 2]. A primary characteristic is the multi-coverage in-depth sequencing

of whole DNA or RNA molecules including on repetitive genome regions, which is prone to

producing duplicate reads [3]. We translate this characteristic into a node definition for the

graph of genomic reads that: a read having w duplicates is defined as a node labeled with the

number w. The sequencing machines are not perfect, sometimes making minor mistakes in

the nucleotide base-calling [4, 5]. Hence, some of these duplicate molecular inserts have actu-

ally been read as different sequence strings and all stored in a digital file. We translate this low-

rate of sequencing errors into an edge definition that: two reads can be connected if they mis-

match only at a few base positions to reflect the fact that the two reads should be the same but

they contain tiny sequencing errors. Random fragmentation for DNA or RNA samples in the

library preparation is another sequencing characteristic [6]. When combined with the multi-

coverage in-depth sequencing characteristic [7], it suggests that many pairs of overlapping or

shifting reads can exist. We translate this into another facet of edge definition that: two reads

can be connected if a long prefix of one read overlaps with a long suffix of the other [8]. Minor

mismatches in the overlaps are also permitted because sequencing errors can happen ran-

domly within and across reads.

Formally, let RS = {r1, r2, . . ., rm} be a set of distinct short reads of the same length, and let d
be a distance threshold between two reads. We define a Hamming-Shifting (HaS) distance

graph of RS as an undirected graph denoted by GHaS(d, RS) = (V, E), where V = {r1, r2, . . ., rm}

and E = {e = (ri, rj) | i 6¼ j}, satisfying that the mismatching distance between ri and rj is less

than or equal to d. The mismatching distance between ri and rj is defined as the Hamming dis-

tance between ri and rj when they do not shift, or otherwise defined as the number of base mis-

matches in the overlapping part between ri and rj, plus the reads’ shifting offset number (non-

zero). Each node of the graph is labeled with the number of duplicates of the read in the raw

data. Each edge is labeled with the mismatching nucleotide bases between the two reads, and

the edge is weighted as the mismatching distance or can be weighted by another distance func-

tion of these mismatching bases.

We call GHaS(d, RS) an HaS-graph of RS in short. An HaS-graph of RS can be simplified

into a Hamming graph of RS when only 0-shifting (i.e., offset = 0) edges are allowed in edge

construction; or it can be converted into a de Bruijn graph of RS if mismatches in the overlap-

ping part of any two reads are not permitted. The definition of GHaS(d, RS) is close to Coil’s

weighted similarity graph of RS [9], but the fundamental difference between HaS-graph and

Coil’s graph lies in the edge definition. An edge in Coil’s graph measures the frequency of

common k-mers between the two reads, but an edge in HaS-graph measures the number of

mismatching bases; these two measurements are not convertible.

Due to the above three sequencing characteristics, very often GHaS(d, RS) is a connected

graph for the reads sequenced from one chromosome or from one mRNA molecule. For every

path in such a graph, consecutive pairs of reads along the path are all mutually referred via

their edge labels. This chained mutual reference in every path of the graph provides an optimal

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 2 / 16

https://doi.org/10.1371/journal.pcbi.1009229


encoding mechanism for high-performance compression of these reads, especially when the

path accommodates all of the reads in RS. Fig 1A shows an example of GHaS(d, RS), where

d = 1 and RS = {r1, r2, . . ., r5}. The first two reads have mismatching bases only at one position

(base ‘C’ versus ‘T’ at position 24); while the fourth read has a right-shifting offset 1 with the

fifth read, overlapping from the 2nd to 100th position. The first two reads are mutually

referred via the edge label ‘24C,T’; the fourth and fifth reads are mutually referred via the edge

label ‘+C,A’; and similarly the other two consecutive pairs are also mutually referred.

As a real example, GHdB(d, RS) for data set SRR445718, where d is set as 1, has a long path

covering 3742 nodes with 1289 left-shifting edges, 1307 right-shifting edges, and 1146 Ham-

ming edges. Although all consecutive pairs of the nodes have a distance of only 1, the first and

the last nodes of the path mismatch at almost all places. It is this chained mutual reference in

HaS-graphs that can group seemingly irrelevant reads together in one path, signifying a unique

advantage over the consensus-based reads-grouping techniques [10, 11] that have a constraint

to group only those reads containing a common substring.

The compression of the five reads in Fig 1A can start at r2 using r1 as reference, with code

‘24T’. This means r2 can be decoded from r1 by just replacing r1’s base at position 24 with ‘T’.

Subsequently, r3 can be encoded using r2 as reference, with code ‘14G’; r4 can be encoded

using r3 as reference, with code ‘4G’; r5 can be encoded using r4 as reference, with code ‘+A’,

which means trimming the head base of r4 and concatenating base ‘A’ to decode r5. Therefore,

every read (from the second) in a path of GHaS(d, RS) can be encoded from its immediate pre-

vious one via the edge label information. As the reads are chained and mutually referred with

minimal codes in the paths, the cascading transfer of the implicit reference leads to very high

compression performance—this coding step alone can reduce 100 bytes to 2 bytes for each

read in Fig 1A.

In general cases, we search the minimum spanning tree (MST) of GHaS(d, RS) for the com-

pression of all reads in RS. As the weights of the edges in GHaS(d, RS) are defined as a descrip-

tion function of the mismatching bases between two reads, a minimum spanning tree of

GHaS(d, RS) guarantees minimal total codes for the compression of reads in RS. We take a

depth-first or breadth-first traversal on the tree to encode all nodes and store all edge labels. In

practice for whole genome sequencing, very often GHaS(d, RS) is not a connected graph. We

hence search a minimum spanning forest (MSF) from GHaS(d, RS), where every connected

subgraph induces an MST.

The exhaustive pairwise calculation of the edges’ weight to construct GHaS(d, RS) is prohibi-

tively expensive because a data set usually contains hundreds of millions of short reads. We

Fig 1. Illustration of mutually referred reads in a path, and various HaS-graph sub-structures. (a) A path containing 5 reads (of the same length

100) for the encoding of r2, r3, r4 and r5. (b) Various types of sub-structures of reads: ring, tree and star.

https://doi.org/10.1371/journal.pcbi.1009229.g001

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 3 / 16

https://doi.org/10.1371/journal.pcbi.1009229.g001
https://doi.org/10.1371/journal.pcbi.1009229


apply a heuristic algorithm based on lexicographically sorted substrings to detect a small subset

of possibly weight-lightest edges for every read, and then search an MSF from this extremely

sparse graph. Prior research [12] has shown that two reads are likely to have a large overlap if

they share a k-minimizer (the lexicographically smallest k-mer). Likewise, large overlap is

likely if two reads share a k-maximizer (the lexicographically maximal k-mer). We exploit the

joint power of multiple minimizers and maximizers to index the reads through multiple

rounds to detect, with very high probability, the pairs of reads that match at almost every base

position.

Materials and methods

We name our compression method Mstcom (short for minimum spanning tree based compres-

sion for genomic short reads). Mstcom is a lossless compression algorithm for the reads of a

fixed length in a FASTQ-format file. It is also applicable to paired-end FASTQ reads of differ-

ent lengths.

Overview

Mstcom constructs an MSF from the HaS graph of a set of reads. Every read in the non-root

node is encoded using its parent-read as reference in a way similar to Coil [9] or ReCoil [13]. For

optimal compression, we set the weight of the edge between ri and rj as w(e(ri, rj)) = mb � 3 + ob,

where mb is the number of mismatch bases in the overlapping part of ri and rj, and ob is the

number of the offset bases. Analysis about other weight settings are shown in S1 File. The famous

Kruskal’s algorithm [14] is used to find the MSF.

The core of the algorithm is the edge construction for the HaS graph. Pairwise comparison

of the reads is not practical due to its high computational complexity. Our method indexes

reads into blocks via minimizers, where those reads having the same minimizer or maximizer

are clustered into the same block. Neighbouring reads are compared in the same block, and

then we compute their edge weight using the minimizer as the anchor. The overall workflow

of Mstcom is depicted in Fig 2.

Definitions of minimizers and maximizers

A k-minimizer of a string is defined as the smallest k-mer under a fixed ordering (e.g., a lexico-

graphic order) in the set of all k-mers of the string [12]. An invertible hash function can be

used to perform a random ordering of the k-mers [15]. The identification of the minimizers is

conducted similar to the methods proposed in [11, 16, 17]. We also define the largest k-mer of

the string as its k-maximizer. k-maximizers can be independently used to search similar reads.

Efficient detection of weight-lightest edges

If two reads share the same k-minimizer, they will have a common substring of a length at

least� k. We use these minimizer substrings to index the reads into blocks. Then only those

reads in the same block are compared to get their mismatching distance (i.e., their weights) for

the construction of the HaS-graph. Here, minimizer is used as the anchor to achieve a fast

alignment and comparison. The details of the procedure are as follows:

• Step 1: Identify k-minimizers for all of the reads and cluster those reads having the same

minimizer into the same block;

• Step 2: In each block, reads are sorted according to the positions of the minimizer in an

ascending order;

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 4 / 16

https://doi.org/10.1371/journal.pcbi.1009229


• Step 3: For each read, search its neighbouring reads in its block to construct its edges. To

avoid duplicate edges, it is only compared to the reads ahead of it.

The clustering results, including the number of blocks and the sizes of blocks, are sensitive

to the setting of k. Assume that two reads have only one pair of mismatching bases, and sup-

pose they are clustered into two different blocks when k = d. It is the case that they can be clus-

tered into the same block when k = d − 1. Therefore, some good edges may be missed if only

one setting of k is used.

To overcome this sensitivity, we use multiple settings of k 2 {k1, k2, . . ., kn} and the above

search is carried out across n rounds independently. Moreover, k-maximizer can be used inde-

pendently to search the edges as the above search procedure except that k-maximizer is identi-

fied in Step 1. Therefore, we can find the weight-lightest edges through making use of multiple

minimizers and maximizers, with a high probability.

For large blocks, the computational complexity involved in Step 3 can still be high. To han-

dle such cases, we limit the number of reads for the search.

In each round of edge construction (with respect to a specific k setting), the edges are sorted

by their weight and stored. We note that the search space has slight effects on the compression

ratio (as we demonstrate in the S1 File).

We employ parallel computing for the edge construction steps. Specifically in Step 1, the

identification of each minimizer and/or maximizer is conducted in parallel for each read.

Next, the sorting of reads is conducted in parallel for each block. Finally, in Step 3, we exploit

one last piece of parallelisation. For each read, in parallel, we independently search its

Fig 2. The framework of Mstcom.

https://doi.org/10.1371/journal.pcbi.1009229.g002

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 5 / 16

https://doi.org/10.1371/journal.pcbi.1009229.g002
https://doi.org/10.1371/journal.pcbi.1009229


neighbouring reads in its block. Then those edges are stored into different files according to

their weight. Therefore, the edges can be sorted by their weight after the edge construction

step.

Construction of minimum spanning forests

We employ the well known Kruskal’s algorithm to find the MSF. The steps are:

• Step 1: Set each node of the graph as a separate tree;

• Step 2: Load edges from the disk in the order of the edge weights from the smallest to

largest;

• Step 3: For an edge, if it can connect two different trees, i.e., it does not introduce a cycle,

then add the edge to the forest and combine the two trees to form one tree.

In implementation, the disjoint-set data structure [18] is used to check whether two nodes

are in the same tree or in two different trees.

Encoding reads on the tree one-by-one through depth-first traversal

Given an MST, any node can be set as its root node. The encoded string of the root node is

itself. For every non-root node, it is encoded by using its parent node as reference. The

encoded string of a non-root read includes two parts: shifting substring and mismatch infor-

mation. The shifting substring is followed by the mismatch information. For each mismatch

base, the position (delta encoded) and the base are concatenated as a substring. For example,

assume that the current read is “ATGCAT”, its parent read is “GCATCC” and the shift offset is

2, then the encoded string of the current read is “AT2G”. An extra bit is used to indicate the

shifting direction (left or right direction).

Depth-first search (DFS) is taken to travel the MST for encoding the reads one-by-one. The

encoded strings are stored in a text file line-by-line following the DFS node visiting order.

When a leaf node is met, a backtracking step number is stored in a separate line to tell where

the next node to visit is. This information is necessary for recovering the tree structure in

decompression. It is easy to distinguish the backtracking step number and the encoded string,

since at least a letter is contained in the encoded string but only digital numbers are stored in

the line of the backtracking step number.

Data structures and other details in the encoding

Our method first detects all duplicate reads using 31-minimizer. Those reads sharing the same

minimizer at the same position are clustered into the same block. Duplicate reads are detected

in each block. As a minimizer is identified from two strands (original strand and its reverse

complementary strand), duplicate reads are also distinguished into two types. This duplicate

information is stored in the final compressed file.

We use the following five data streams to encode an MSF:

• Stream 1: a text file to store the encoded strings of all nodes (under the DFS order) and the

backtracking step numbers (in text numbers).

• Stream 2: a bit stream to tell the shifting direction of an encoded string.

• Stream 3: a bit stream to tell whether a read is encoded on its RC (reverse complementary)

strand.

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 6 / 16

https://doi.org/10.1371/journal.pcbi.1009229


• Stream 4: a bit stream to tell whether a node has duplicate reads;

• Stream 5: if a node has duplicate, two integers are stored. One is for the number of normal

duplicate reads and the other is for the number of RC duplicate reads.

All of these data streams are compressed by BSC (http://libbsc.com).

For the compression of paired-end reads, we need to store the pairing information. After

vertically concatenating the two FASTQ files, the minimum spanning forest construction fol-

lows the same steps as for constructing MSFs from single-end reads. For each read, including

duplicate reads, its visiting order is recorded in the DFS traversal. For each pair of reads, the

distance in the visiting order after removing the processed reads is stored. In our implementa-

tion, the binary indexed tree [19] is used to compute the distance of a pair of reads (see details

in the S1 File). An extra bit is used to record the reads order in the pair, i.e., whether the first

read of the pair is from the first (_1) file or from the second (_2) file. The distance data stream

is compressed by LZMA (http://www.7zip.org).

Mstcom supports compression of paired-end reads having different lengths in the two

FASTQ files. Although the reads lengths are different in the two files, the procedure of edge

detection and MST construction is not affected. But the relation between reads is more com-

plex and the above encoding step is not adequate. To maintain consistency, in the step of edge

detection, we only select those edges having shifting offset when the two reads have different

lengths. In the decompression step, the original shifting offset can be recovered from the

encoded string as the length of each read and the shifting direction are recorded.

Order-preserving mode

In the order-preserving mode for compressing single-end reads, the encoded strings are stored

in the order of their original reads in the FASTQ file instead of in the DFS visiting order. To

recover the tree structure, the ID of the parent read of every non-root node is stored. The ID

stream is compressed by BSC. Specially, a duplicating read is stored as an empty line and

Streams 4 and 5 are no longer needed. As singleton reads and duplicating reads will never be

any parent node, we update the IDs of the reads by removing these two kinds of reads. For

example, suppose there are seven reads (r1, r2, r3, r4, r5, r6, r7), assume r3 and r6 are duplicate

reads, and assume r2 is a singleton read. The reads IDs of r1, r4, r5 and r7 are updated as 1, 2, 3

and 4 respectively.

For compressing paired-end reads under the order-preserving mode, we use the same

encoding method as used by the order-free mode for compressing paired-end reads, and an

integer stream is used to store the original order of each pair of the reads. This order stream is

compressed by BSC.

Results

The first part of this section presents our theoretical results related to the efficient construction

of the best edges for an HaS graph. The theory indicates that our heuristics guarantee a very

high probability of producing the globally best edges. In the second part, we present break-

through compression results and compare them with start-of-the-art compression algorithms.

The compression experiments were carried out on a computing cluster running Red Hat

Enterprise Linux 7.5 (64 bit) equipped with 2.1 GHz Intel Xeon Platinum 8160 (24 Cores), 384

GB RAM and 5 TB disk space. All algorithms were run with 24 threads under their default/rec-

ommended parameters.

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 7 / 16

http://libbsc.com
http://www.7zip.org
https://doi.org/10.1371/journal.pcbi.1009229


High probability of detecting the weight-lightest edges through multiple

rounds of reads indexing

If a read r has a large overlap with a read u, the read u has a high probability to be indexed into

r’s block. However, it is still possible that there exists a read v outside the block that has a

shorter distance with r than any read x inside the block with r, namely the weight of edge (r, v)

can be lighter than that of (r, x). In this case the best (the weight-lightest) edge of r is missed

for the subsequent compression encoding.

We prove that this probability of missing the best edge is low, and in particular the proba-

bility of missing the best edge from n blocks is very small, where n is the number of different k
settings (i.e., k1, k2, . . ., kn) for the k-minimizer/k-maximizer across multiple rounds of

indexing.

Our proof is based on a hypothesis used in [15]:

Hypothesis 1. Every k-mer in a L-long read has an equal probability of 1/(L − k + 1) of

being the smallest k-mer.

Suppose that the best alignment of two reads has s shifting bases. Let ti represent the num-

ber of different k-mers in their overlap substring when k = ki. Then, the number of k-mers in

each of the two reads is (L − ki + 1), and the number of common k-mers in the overlap sub-

string is (L − ki + 1 − (s + ti)).
Corollary 1. The probability of the two reads sharing the same ki-minimizer is

pðkiÞ ¼
L � ki þ 1 � ðsþ tiÞ

L � ki þ 1

� �2

:

Let j ¼ arg max
i
ðkiÞ. For any ki< kj, the number of different k-mers in the overlap substring

ti� tj, and

pðkiÞ ¼
L � ki þ 1 � ðsþ tiÞ

L � ki þ 1

� �2

>
L � kj þ 1 � ðsþ tiÞ

L � kj þ 1

 !2

�
L � kj þ 1 � ðsþ tjÞ

L � kj þ 1

 !2

¼ pðkjÞ:

Proposition 1. After n rounds of independent indexing of the reads based on the n mini-

mizers, the probability p of two reads being clustered into at least one of the n blocks is

p ¼ 1 �
Yn

i¼1

ð1 � pðkiÞÞ > 1 � ð1 � pðkjÞÞ
n
:

Fig 3 illustrates these probabilities under different settings of n and p(kj). The probability

p can be high for a small p(kj) when n>= 20. For example, when n = 20 and p(kj) = 0.15,

the probability p is> 0.961. If n = 20 and p(kj) = 0.3, p will be> 0.999. When n = 10 and

p(kj) = 0.2, p> 0.892.

The complexity of this heuristic compared with the global search of the best edges is

reduced from O(m2) to Oð
Pn

i¼1
s2
i Þ, where m is the number of distinct reads, n is the number

of blocks, si is the size of i-th block and
Pn

i¼1
si ¼ m. For a large data set and a small setting of

k (e.g., 10), a block size can be bigger than one million. The running time is not acceptable in

practice. Therefore, we search only a limited scope of reads in such blocks to reduce the com-

plexity further.

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 8 / 16

https://doi.org/10.1371/journal.pcbi.1009229


Compression performance on benchmark short-reads data sets

The performance of Mstcom was evaluated on 14 single-end data sets and 7 paired-end data

sets, of which 5 are single-cell RNA-seq data sets. These data sets involve a variety of 6 species

such as microbial metagenome, Caenorhabditis elegans, Pseudomonas, Mus musculus, Theo-
broma cacao and Homo sapiens. There was significant variation in the sequencing depths and

the read lengths of these data sets. More details of these data sets are listed in S1 File. The per-

formance was measured under a compression ratio, which is defined as the number of bits per

base (bpb) in the compressed file. Mstcom was compared with three of the best compression

algorithms published recently: PgRC [20], SPRING [10], and Minicom [11]. Other classical

algorithms [21–26] were not compared in detail because they could not outperform Minicom,

SPRING, or PgRC.

Our compression performance (under the order-free mode) and performance gain are pre-

sented in Table 1. Mstcom outperformed the current methods on all of the benchmark

data sets, typically achieving an average improvement of 11% in comparison with the

Fig 3. Probabilities of two reads being clustered into one block at lease once in the n rounds of indexing. The horizontal lines in the curved grid are

scaled at step interval 0.01.

https://doi.org/10.1371/journal.pcbi.1009229.g003

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 9 / 16

https://doi.org/10.1371/journal.pcbi.1009229.g003
https://doi.org/10.1371/journal.pcbi.1009229


best-performing existing method. Specifically, on the data set SRR870667_1, Mstcom achieved

a 27% improvement over the best available result. Compared with SPRING, performance was

improved by 22% on average. In particular, an improvement of more than 50% was seen on

SRR1265495_1 and SRR870667_1.

The other methods examined have a common step to group similar reads into clusters, and

generate a contig within each group de novo as a reference to compress the reads. Our defini-

tion for HaS graph and use of MST give rise to the better compression performance because of

two key factors. The first is that our method can detect better-quality edges (weight-lighter

edges) through the novel use of multiple k-minimizers in the multiple rounds of indexing the

reads. The second is that every node in a minimum spanning tree allows multiple child nodes.

Thus it is not a linear structure, but instead it is a layered structure linking many specific con-

tigs where every branched path can be considered as a contig. Our layered structure is better

than PgRC’s linear structure pseudogenome because the encoding of the nodes cannot be

globally optimized at a linear structure.

Not only is the compression performance of our Mstcom better than the leading PgRC

algorithm, it is also faster on the majority of datasets examined.

In terms of memory usage, Mstcom consumed more memory than all other methods as it

had to maintain all of the reads, minimizer-based index structures, and the minimum span-

ning forest in memory. More details are presented in Table 2 about the running time and

memory usage of the four methods, where the total wall-clock time was measured using the

/usr/bin/time -v Unix command.

Table 1. Compression ratios by different methods under the order-free mode.

Type Data set Number of bases SPRING Minicom PgRC Mstcom Mstcom (speedy) Gain

SE ERR174310_1 20, 965, 526, 167 0.4093 0.5716 0.4527 0.3671 0.3695 10.30%

ERR532393_1 3, 575, 287, 300 0.4329 0.4097 0.3765 0.3175 0.3223 15.67%

SRR065389_1 3, 621, 458, 600 0.2238 0.2420 0.1819 0.1787 0.1794 1.81%

SRR1265495_1 1, 699, 645, 675 0.5845 0.3192 0.2894 0.2513 0.2535 13.18%

SRR1294116 4, 643, 407, 633 0.2768 0.2695 0.2415 0.2143 0.2184 11.27%

SRR1313062_1 1, 398, 017, 100 0.4589 0.4951 0.4557 0.4004 0.4138 12.13%

SRR445718 3, 294, 366, 500 0.3404 0.3061 0.2855 0.2461 0.2493 13.78%

SRR445724 5, 089, 652, 800 0.4349 0.3860 0.3444 0.2918 0.2953 15.27%

SRR490961 4, 912, 766, 800 0.2200 0.1996 0.1841 0.1591 0.1613 13.54%

SRR490976 3, 326, 194, 400 0.3919 0.3526 0.3411 0.2875 0.2924 15.71%

SRR554369_1 165, 787, 100 0.2411 0.2881 0.2409 0.2303 0.2317 4.43%

SRR635193_1 1, 472, 357, 574 0.2684 0.2887 0.2599 0.2189 0.2233 15.76%

SRR689233_1 1, 476, 715, 050 0.1947 0.1823 0.1700 0.1460 0.1470 14.13%

SRR870667_1 7, 476, 865, 380 1.2962 0.7348 0.7636 0.5264 0.5274 28.36%

PE ERR174310 41, 931, 052, 334 0.3180 0.4786 0.3071 0.2948 0.2963 3.98%

ERR532393 7, 150, 574, 600 0.5028 0.4714 0.4239 0.3551 0.3609 16.23%

SRR065389 7, 242, 917, 200 0.2375 0.2611 0.1906 0.1810 0.1831 5.03%

SRR1313062 2, 796, 034, 200 0.5641 0.6556 0.5981 0.5119 0.5227 9.25%

SRR554369 331, 574, 200 0.2231 0.2797 0.2207 0.2177 0.2194 1.40%

SRR635193 2, 944, 715, 148 0.3408 0.4187 0.3755 0.3104 0.3145 8.91%

SRR689233 2, 953, 430, 100 0.2410 0.2527 0.2414 0.1964 0.1976 18.49%

ERR174310� 41, 931, 052, 334 0.3647 × × 0.3331 0.3346 10.75%

Notes: Mstcom (speedy) stands for Mstcom without the use of maximizers; SE stands for single-end; PE stands for paired-end; Bold font indicates the best compression

in the row; ‘�’ means that the paired-end reads have different lengths; ‘×’ indicates that the method cannot compress such a dataset.

https://doi.org/10.1371/journal.pcbi.1009229.t001

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 10 / 16

https://doi.org/10.1371/journal.pcbi.1009229.t001
https://doi.org/10.1371/journal.pcbi.1009229


Computational resources used in decompression are presented in Table 3, showing little

difference in the running time or the memory usage across the methods.

Reducing the number of k settings is an easy way to reduce the running time of Mstcom.

We tested the performance of Mstcom without using any maximizers (the method is named

Mstcom(speedy)). The results are shown in the second-last column of Tables 1 and 2. We can

see that a minor sacrifice in compression performance gives rise to dramatic speed increasing,

reducing overall time taken by approximately 50% and generating performance that is much

faster than PgRC across most cases. A question for future work is how to choose an optimal

panel of k settings to optimally balance run times and compression performance for Mstcom.

Some ideas from SPRING or Minicom could be adopted for this purpose as they are currently

faster than Mstcom.

Compression performance under the order-preserving mode are presented in S1 File.

Mstcom outperforms all the state-of-the-art methods in terms of compression ratio on 18 data

sets. For the remaining 3 data sets, PgRC provides slightly better compression.

Impact of different numbers of k-minimizers and k-maximizers on the

compression ratio

In our implementation, we set k1 as the maximum value of ki and then set ki = ki−1 − 1 for

i> 1.

Table 2. Compression time (seconds) and memory usage (GB) of different methods under the order-free mode.

Type Dataset SPRING Minicom PgRC Mstcom Mstcom(speedy)

time memory time memory time memory time memory time memory

SE ERR174310_1 858 10.8 11, 383 80.0 15, 947 19.7 11, 552 65.16 7, 405 64.7

ERR532393_1 104 4.3 290 9.8 1, 714 5.8 2, 277 18.67 1, 644 16.6

SRR065389_1 105 3.2 256 8.8 840 2.0 1, 230 18.94 773 16.9

SRR1265495_1 52 3.3 163 4.9 493 2.1 388 10.88 260 8.4

SRR1294116 120 3.8 264 9.9 1, 522 4.1 1, 215 19.91 799 17.4

SRR1313062_1 59 2.5 119 5.7 711 2.6 453 10.26 347 8.8

SRR445718 112 3.5 232 7.8 1, 378 3.7 1, 124 18.63 640 15.2

SRR445724 247 4.9 636 12.2 2, 883 8.0 2, 138 28.68 1, 288 23.5

SRR490961 153 3.8 403 10.3 1, 359 3.5 1, 485 22.09 977 18.8

SRR490976 149 4.4 274 7.9 1, 810 5.0 1, 309 22.55 865 17.4

SRR554369_1 4 0.7 20 1.7 31 0.2 39 2.73 25 1.5

SRR635193_1 52 2.2 170 5.3 435 1.7 444 10.29 298 8.7

SRR689233_1 42 2.9 76 4.2 311 0.8 373 9.55 236 7.9

SRR870667_1 422 8.9 744 19.3 15, 410 18.6 5, 074 38.64 3, 132 36.7

PE ERR174310 1, 452 20.9 20, 895 120.0 20, 313 35.4 24, 953 112.94 15, 774 113.0

ERR532393 218 5.8 572 17.9 3, 461 9.5 5, 302 30.10 3, 586 27.2

SRR065389 191 4.1 422 15.2 1, 263 3.4 2, 304 28.80 1, 729 25.7

SRR1313062 128 2.9 218 9.6 1, 389 4.8 920 17.83 744 15.8

SRR554369 8 0.8 24 2.0 52 0.3 72 6.51 51 3.4

SRR635193 111 2.8 317 9.0 793 2.7 753 18.17 627 15.4

SRR689233 86 3.6 144 7.1 624 1.4 756 15.97 512 13.7

ERR174310� 1, 921 20.9 − − − − 35, 357 113.08 21, 641 113.15

Notes: SE stands for single-end; PE stands for paired-end.

https://doi.org/10.1371/journal.pcbi.1009229.t002

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 11 / 16

https://doi.org/10.1371/journal.pcbi.1009229.t002
https://doi.org/10.1371/journal.pcbi.1009229


Our reported findings are based on the performance when n = 20 and k1 = 29. To under-

stand the impact of varying n and k1, we examined compression performance on SRR445719

under different k1 and n setting (see Fig 4). The highest compression ratio is achieved when

n� 20. When n is small, e.g., n = 1 or 5, the compression ratio is much worse. These results

verified our probability analysis on the use of multiple minimizers for edge construction.

Discussion

Various types of frequent subgraphs in GHaS(d, RS) are interesting, including ring structures,

tree-structures, linear chains, wheels, or star structures (see schematic examples in Fig 1B).

These subgraphs are biologically meaningful. For example, a star structure means that the mid-

dle read is prone to sequencing errors or random fragmentation. We have studied separation

degrees of some HaS graphs. It was expected that for a whole genome sequencing reads set

RW, GHaS(d, RW) should be a large connected graph even when the distance threshold d is set

as a small number such as 2 or 3, or it should contain large connected subgraphs. For a mes-

senger RNA sequencing reads set RE, GHaS(d, RE) should be a disconnected graph, where the

reads from the same gene should be connected as a subgraph separated from other subgraphs.

However, for the whole genome sequencing data set ERR174310, there exists only one big con-

nected subgraph containing 22, 756, 808 reads when d = 5; the other 41 million subgraphs

each contain only two reads. This discrepancy implies that: (i) there would have had faulty

manipulation on the raw data before publication; (ii) the sequencing machine had a poor

Table 3. Decompression time (seconds) and memory usage (GB) by different methods under the order-free mode.

Type Dataset SPRING Minicom PgRC Mstcom

time memory time memory time memory time memory

SE ERR174310_1 85 6.0 61 4.1 134 9.4 673 32.0

ERR532393_1 18 3.5 15 0.6 19 1.2 99 4.7

SRR065389_1 17 1.9 14 0.6 11 0.6 73 5.1

SRR1265495_1 10 2.7 5 0.2 6 0.5 38 1.6

SRR1294116 20 3.0 27 0.6 18 1.2 93 4.0

SRR1313062_1 9 1.9 17 0.3 8 0.6 46 1.6

SRR445718 17 2.7 17 0.6 15 1.1 75 3.3

SRR445724 23 4.2 28 1.3 27 2.2 137 5.0

SRR490961 20 2.8 30 0.9 17 1.2 83 4.3

SRR490976 17 2.8 38 0.6 19 1.3 84 3.5

SRR554369_1 1 0.4 4 0.1 6 0.1 4 0.2

SRR635193_1 10 1.4 15 0.3 5 0.4 29 1.3

SRR689233_1 8 1.4 3 0.3 8 0.3 24 1.5

SRR870667_1 43 5.4 37 6.3 88 12.6 312 13.0

PE ERR174310 177 6.4 210 23.2 272 13.6 2, 367 118.9

ERR532393 41 5.5 129 4.0 73 2.5 333 19.1

SRR065389 37 2.9 34 4.1 29 1.8 221 19.4

SRR1313062 22 2.7 22 1.9 31 1.5 310 8.0

SRR554369 2 0.6 1 0.2 1 0.1 14 0.9

SRR635193 21 2.1 58 1.8 21 1.3 210 7.2

SRR689233 15 2.3 20 1.8 16 0.8 107 6.8

ERR174310� 286 4.7 − − − − 2, 470 118.9

Notes: SE stands for single-end; PE stands for paired-end.

https://doi.org/10.1371/journal.pcbi.1009229.t003

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 12 / 16

https://doi.org/10.1371/journal.pcbi.1009229.t003
https://doi.org/10.1371/journal.pcbi.1009229


distribution of sequencing depths or did not have ideal random fragmentation of the DNA or

RNA samples; or (iii) both. Therefore, separation and connectivity degrees of these giant

graphs of reads can be used as economical measurements or protocols for a quick quality

assessment of the wet-lab machines, for a sufficiency control of genomic library preparation,

or for a fast flaw detection of database management issues. Exploring the proposed graph

representation for quality control of sequencing data will be explored in our future work.

Our encoding algorithm can be effectively adapted for high-performance compression of

human chromosome or genome databases. The first step is to convert every genome into a fea-

ture vector, followed by conducting unsupervised clustering on these vectors to group the

genomes, and then detecting maximal exact matches or maximal exact matches containing

mutations. The mutual reference between the chromosomes or genomes is bridged by the sets

of maximal exact matches. If every chromosome or genome is denoted by a node in a graph,

the MST of such a graph provides an optimal mechanism to encode all of the sequences for

compression.

Conclusion

In the understanding of connectivities of genomic short reads, we found that edge definition is

important for organizing these reads as a graph. In our work, we have proposed to use

Fig 4. Compression ratios under different settings of k1 and n.

https://doi.org/10.1371/journal.pcbi.1009229.g004

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 13 / 16

https://doi.org/10.1371/journal.pcbi.1009229.g004
https://doi.org/10.1371/journal.pcbi.1009229


Hamming distance and shifting offsets to define the label and weight of the edges. Our HaS

graphs and the depth-first traversal encoding on the minimum spanning trees have shown

great potential in the compression of genomic short reads. The compression performance can

be 10 − 30% better than the current state-of-the-art algorithms. Another important contribu-

tion made by this work is in the efficient detection of the weight-lightest edges for HaS graphs.

We have proposed to use multiple minimizers and maximizers to index the reads, to limit the

search scope of the best edges. It has also been proven that this search strategy can reach the

solution with a high probability.

Using HaS graphs of genomic reads as a platform for de novo genome assembly is a highly

promising future research direction. The edge information (labels and weights) and the copy

numbers labeled in the nodes are key information for comprehending the real sequencing cov-

erage and depths at different regions of the genome, and they are also useful for detecting repe-

tition regions. In particular, the quality of the assembled genome would be further improved

when the graph is combined with single-cell multi-omics long reads sequencing data.

Supporting information

S1 File. Supplementary document. Details about data sets, results of different methods under

order-preserving mode and some parameter analysis of Mstcom.

(PDF)

Acknowledgments

J.L. would like to thank Professor Michael Blumenstein and Dr. Shoshana Fogelman for their

constant encouragement on the work, and thank Professor Limsoon Wong for his insightful

suggestions at early stage of the work. We would like to thank Associate Professor Adam

Berry, and Dr. Jiao Jiao Li for English proofreading of the manuscript.

Author Contributions

Conceptualization: Yuansheng Liu, Jinyan Li.

Data curation: Yuansheng Liu.

Formal analysis: Yuansheng Liu, Jinyan Li.

Funding acquisition: Jinyan Li.

Investigation: Yuansheng Liu, Jinyan Li.

Methodology: Yuansheng Liu, Jinyan Li.

Project administration: Jinyan Li.

Resources: Yuansheng Liu.

Software: Yuansheng Liu.

Supervision: Jinyan Li.

Validation: Yuansheng Liu.

Visualization: Yuansheng Liu, Jinyan Li.

Writing – original draft: Yuansheng Liu, Jinyan Li.

Writing – review & editing: Jinyan Li.

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 14 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009229.s001
https://doi.org/10.1371/journal.pcbi.1009229


References
1. Fritz MHY, Leinonen R, Cochrane G, Birney E. Efficient storage of high throughput DNA sequencing

data using reference-based compression. Genome Research. 2011; 21(5):734–740. https://doi.org/10.

1101/gr.114819.110

2. Ghazi AR, Kong X, Chen ES, Edelstein LC, Shaw CA. Bayesian modelling of high-throughput sequenc-

ing assays with malacoda. PLoS Computational Biology. 2020; 16(7):e1007504. https://doi.org/10.

1371/journal.pcbi.1007504

3. Wilton R, Szalay AS. Arioc: High-concurrency short-read alignment on multiple GPUs. PLoS Computa-

tional Biology. 2020; 16(11):e1008383. https://doi.org/10.1371/journal.pcbi.1008383

4. Chen Z, Zhou W, Qiao S, Kang L, Duan H, Xie XS, et al. Highly accurate fluorogenic DNA sequencing

with information theory–based error correction. Nature Biotechnology. 2017; 35(12):1170–1178. https://

doi.org/10.1038/nbt.3982 PMID: 29106407

5. Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in

genome assemblies. PLoS Computational Biology. 2020; 16(6):e1007981. https://doi.org/10.1371/

journal.pcbi.1007981

6. Syed F, Grunenwald H, Caruccio N. Next-generation sequencing library preparation: simultaneous frag-

mentation and tagging using in vitro transposition. Nature Methods. 2009; 6(11):856. https://doi.org/10.

1038/nmeth.f.272

7. Numanagić I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, et al. Comparison of high-through-

put sequencing data compression tools. Nature Methods. 2016; 13(12):1005–1008. https://doi.org/10.

1038/nmeth.4037 PMID: 27776113

8. Moeinzadeh MH, Yang J, Muzychenko E, Gallone G, Heller D, Reinert K, et al. Ranbow: A fast and

accurate method for polyploid haplotype reconstruction. PLOS Computational Biology. 2020; 16(5):

e1007843. https://doi.org/10.1371/journal.pcbi.1007843 PMID: 32469863

9. White WTJ, Hendy MD. Compressing DNA sequence databases with coil. BMC Bioinformatics. 2008;

9(1):242. https://doi.org/10.1186/1471-2105-9-242

10. Chandak S, Tatwawadi K, Ochoa I, Hernaez M, Weissman T. SPRING: a next-generation compressor

for FASTQ data. Bioinformatics. 2019; 35(15):2674–2676.

11. Liu Y, Yu Z, Dinger ME, Li J. Index suffix–prefix overlaps by (w, k)-minimizer to generate long contigs

for reads compression. Bioinformatics. 2018; 35(12):2066–2074.

12. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological

sequence comparison. Bioinformatics. 2004; 20(18):3363–3369.

13. Yanovsky V. ReCoil-an algorithm for compression of extremely large datasets of DNA data. Algorithms

for Molecular Biology. 2011; 6(1):23. https://doi.org/10.1186/1748-7188-6-23

14. Kruskal JB. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceed-

ings of the American Mathematical society. 1956; 7(1):48–50. https://doi.org/10.1090/S0002-9939-

1956-0078686-7

15. Marçais G, Pellow D, Bork D, Orenstein Y, Shamir R, Kingsford C. Improving the performance of mini-

mizers and winnowing schemes. Bioinformatics. 2017; 33(14):i110–i117.

16. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformat-

ics. 2016; 32(14):2103–2110.

17. Liu Y, Zhang X, Zou Q, Zeng X. Minirmd: accurate and fast duplicate removal tool for short reads via

multiple minimizers. Bioinformatics. 2020;.

18. Hopcroft JE, Ullman JD. Set merging algorithms. SIAM Journal on Computing. 1973; 2(4):294–303.

https://doi.org/10.1137/0202024

19. Fenwick PM. A new data structure for cumulative frequency tables. Software: Practice and Experience.

1994; 24(3):327–336.

20. Kowalski TM, Grabowski S. PgRC: pseudogenome-based read compressor. Bioinformatics. 2020;

36(7):2082–2089.

21. Grabowski S, Deorowicz S, Roguski Ł. Disk-based compression of data from genome sequencing. Bio-

informatics. 2015; 31(9):1389–1395.

22. Patro R, Kingsford C. Data-dependent bucketing improves reference-free compression of sequencing

reads. Bioinformatics. 2015; 31(17):2770–2777.

23. Roguski Ł, Ochoa I, Hernaez M, Deorowicz S. FaStore: a space-saving solution for raw sequencing

data. Bioinformatics. 2018; 34(16):2748–2756. https://doi.org/10.1093/bioinformatics/bty205 PMID:

29617939

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 15 / 16

https://doi.org/10.1101/gr.114819.110
https://doi.org/10.1101/gr.114819.110
https://doi.org/10.1371/journal.pcbi.1007504
https://doi.org/10.1371/journal.pcbi.1007504
https://doi.org/10.1371/journal.pcbi.1008383
https://doi.org/10.1038/nbt.3982
https://doi.org/10.1038/nbt.3982
http://www.ncbi.nlm.nih.gov/pubmed/29106407
https://doi.org/10.1371/journal.pcbi.1007981
https://doi.org/10.1371/journal.pcbi.1007981
https://doi.org/10.1038/nmeth.f.272
https://doi.org/10.1038/nmeth.f.272
https://doi.org/10.1038/nmeth.4037
https://doi.org/10.1038/nmeth.4037
http://www.ncbi.nlm.nih.gov/pubmed/27776113
https://doi.org/10.1371/journal.pcbi.1007843
http://www.ncbi.nlm.nih.gov/pubmed/32469863
https://doi.org/10.1186/1471-2105-9-242
https://doi.org/10.1186/1748-7188-6-23
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1137/0202024
https://doi.org/10.1093/bioinformatics/bty205
http://www.ncbi.nlm.nih.gov/pubmed/29617939
https://doi.org/10.1371/journal.pcbi.1009229


24. Kingsford C, Patro R. Reference-based compression of short-read sequences using path encoding.

Bioinformatics. 2015; 31(12):1920–1928.

25. Chandak S, Tatwawadi K, Weissman T. Compression of genomic sequencing reads via hash-based

reordering: algorithm and analysis. Bioinformatics. 2018; 34(4):558–567. https://doi.org/10.1093/

bioinformatics/btx639

26. Ginart AA, Hui J, Zhu K, Numanagić I, Courtade TA, Sahinalp SC, et al. Optimal compressed represen-

tation of high throughput sequence data via light assembly. Nature Communications. 2018; 9(1):1–9.

https://doi.org/10.1038/s41467-018-03711-0

PLOS COMPUTATIONAL BIOLOGY Application of Hamming-Shifting graph for genomic short reads compression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009229 July 19, 2021 16 / 16

https://doi.org/10.1093/bioinformatics/btx639
https://doi.org/10.1093/bioinformatics/btx639
https://doi.org/10.1038/s41467-018-03711-0
https://doi.org/10.1371/journal.pcbi.1009229

