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Abstract

Read-depths (RDs) are frequently used in identifying structural variants (SVs) from

sequencing data. For existing RD-based SV callers, it is difficult for them to determine

breakpoints in single-nucleotide resolution due to the noisiness of RD data and the bin-

based calculation. In this paper, we propose to use the deep segmentation model UNet to

learn base-wise RD patterns surrounding breakpoints of known SVs. We integrate model

predictions with an RD-based SV caller to enhance breakpoints in single-nucleotide resolu-

tion. We show that UNet can be trained with a small amount of data and can be applied

both in-sample and cross-sample. An enhancement pipeline named RDBKE significantly

increases the number of SVs with more precise breakpoints on simulated and real data. The

source code of RDBKE is freely available at https://github.com/yaozhong/deepIntraSV.

Author summary

In this paper, we used the deep segmentation model UNet to alleviate the bin size limita-

tion of RD-based SV callers. UNet was initially proposed for image data. Here, we demon-

strated that the UNet model could also be applied for one-dimensional genomic data. We

formalized the breakpoint prediction as a segmentation task and inferred breakpoints in

single-nucleotide resolution from predicted label marks. Through a set of experiments

on both simulated and real WGS data, we demonstrated that the UNet model could be

trained with a small amount of data, and an enhancement pipeline called RDBKE signifi-

cantly increased the number of SVs with more precise breakpoints.

This is a PLOS Computational Biology Methods paper.
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Introduction

Structural variants (SVs) are genomic alterations with lengths greater than 50 base pairs

(bp). Compared with small-size mutations, such as single nucleotide polymorphisms

(SNPs) and InDels, the larger size of SVs makes them more likely to alter genome structures

and have functional consequences. In many diseases, such as Alzheimer’s disease and can-

cer, SVs have been found to play important roles [1–4]. With advances in sequencing tech-

nologies, a more accurate and comprehensive profiling of SVs on a whole-genome scale

becomes available.

For detecting SVs from whole-genome sequencing (WGS) data, various algorithms have

been developed. (Here, copy number variations (CNVs) are treated as a subtype of SVs). In

general, those methods can be classified into four major categories [5]: read-depth (RD)

based [6], paired-end (PE) mapping based [7], split-read (SR) based [8] and de novo assem-

bly (AS) based [9]. RD-based methods first divide a reference genome into non-overlapping

bins and calculate an RD for each bin. Duplications (DUPs) and deletions (DELs) are

detected based on abnormal RD changes of adjacent bins. PE-based methods use span and

orientation of paired-end reads, detecting more SV types, such as inversions (INVs). For SR-

based methods, if an adjoining read is separately aligned to different coordinates of a refer-

ence genome, the alignment can be used to determine breakpoints of an SV in single-nucleo-

tide resolution. AS-based methods assemble reads into larger contigs and use the assembly

contigs to detect SVs. However, the assembly itself has a high computational cost for short-

read sequencing data. Besides the above four categories, several methods integrate more than

one method. For example, DELLY [7] integrated both PE and SR for SV detection. Recent

benchmark studies [10, 11] show that no single SV caller can accurately and sensitively detect

all types and all sizes of SVs.

In this paper, we focus on RD-based methods. The bin size is an important parameter that

affects the performance of RD-based SV callers. A large bin size is reliable to capture large

SVs, such as CNVs. However, the large bin size brings about a sensitivity loss for detecting

small-length SVs. On the other hand, calculating RD using a small bin size is very noisy and

sparse, which results in more false positives. Here, we use the deep segmentation model

UNet to enhance the breakpoint resolution of SVs. More specifically, we train the UNet

model to learn base-wise RD patterns surrounding breakpoints of known SVs and apply the

model to segment RD vectors including breakpoints of candidate SVs. We infer new break-

points in single-nucleotide resolution from the segmentation results. Compared with the

recent work on applying deep learning methods for genotype profiling, our method has two

novel points. First, the breakpoint detection is formalized as a segmentation task. Usually,

deep learning models are used as classifiers. For instance, DeepVariant [12] uses a well-cali-

brated convolutional neural network to call SNPs and InDels based on the image pileups of

putative sites. Second, our proposed method leverages the power of traditional approaches

and deep learning methods. We first use an RD-based SV caller to predict initial breakpoints

in bin resolution. Then we apply the segmentation model to screen base-wise RDs surround-

ing candidate breakpoints for further refinement. We conduct a series of experiments on

both simulated and real WGS data. For the real data, we perform systematic experiments

both in-sample and cross-sample. The experiment results show that the UNet model can be

trained with a small amount of data and can be applied both in-sample and cross-sample.

The proposed pipeline using UNet significantly increases the number of SVs with more pre-

cise breakpoints.
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Methods and materials

Overall pipeline of breakpoint enhancement

Fig 1A introduces the overall pipeline of RDBKE for enhancing breakpoints of an RD-based

SV caller to single-nucleotide resolution. Before enhancement, an RD-based SV caller predicts

initial SVs with breakpoints in bin resolution. For a typical RD-based SV caller (e.g., CNVna-

tor [6]), reads are first aligned to a reference genome. The reference genome is split into non-

overlapping bin regions with a fixed length. The number of mapped reads covered by a bin is

counted as a smoothed RD of the bin. The bin size of an RD-based SV caller affects the sensi-

tivity of the SV caller and determines the resolution of SV’s breakpoints. In the enhancement

stage, the genomic regions surrounding candidate breakpoints are further analyzed by a deep

segmentation model, which identifies SV overlapping regions inside a screening window. The

new breakpoints are then inferred based on SV overlapping marks and updated accordingly,

as shown in Fig 1B.

We apply the enhancement pipeline in the following two scenarios. One is the in-sample

application. For a sample, we assume a small amount of SVs is validated. These known SVs are

used to train or tune the UNet model. Then, the trained UNet model is applied to refine the

rest of the non-validated SVs in the sample. The other is the cross-sample application. For

those samples sequenced on the same platform, we train the UNet model on the comprehen-

sively investigated sample (e.g., NA12878) and enhance the others.

UNet segmentation model

In general, regular base-wise RDs are treated as too noisy to be directly used in determining

SVs’ breakpoints. In fact, with a proper design of the model structure, a deep learning model

can be used to process base-wise RD data directly and learn to recognize RD patterns sur-

rounding candidate breakpoints. Here, we use a deep segmentation model to label SV overlap-

ping coordinates and infer breakpoint positions from the segmentation results.

Formally, given the base-wise RD vector X = {d1, d2, . . ., dl} of a screening window of l bp,

we aim to find the segmentation Y = {m1, m2, . . ., ml}, in which mi 2 {0, 1} indicates whether

the coordinate i overlaps with an SV. We use UNet [13] to learn the mapping from X to Y.

Fig 1. (A) Overall pipeline of RDBKE for enhancing an RD-based SV caller with a deep segmentation model. The initial SV predictions in bin resolution are provided as

a VCF file. (B) Example illustrating the enhancement of bin-resolution breakpoints using RDs surrounding breakpoint candidates.

https://doi.org/10.1371/journal.pcbi.1009186.g001
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UNet is a deep neural network featured with its U-shaped architecture. It combines the advan-

tages of the convolutional neural network (CNN) and the auto-encoder (AE). In image segmen-

tation tasks, especially in medical image segmentation tasks, it achieves the state-of-the-art

performance [14]. The structure of UNet is described in Fig 2. It is an encode-and-decode

architecture consisting of the left encoding module and the right decoding module. The left

encoding module denoises base-wise RD signals and extracts RD features by repeatedly apply-

ing a convolutional layer followed by a rectified linear unit (ReLU) and a batch normalization

(BN). A max-pooling operation is applied in every two module blocks. The right-U expands the

down-sampled feature map by up-convolution and concatenates the feature map of the corre-

sponding layer in the left-U module. The skip-connection between down-sampled and up-sam-

pled tensors is designed to avoid gradient vanishes and maintain positional information. Two

additional convolution layers follow each concatenated feature map with ReLU and BN. In the

output layer, 1x1 convolution is applied with the Sigmoid active function to predict label marks.

Compared with a typical CNN model, there is no fully connected layer in UNet.

For further inferring breakpoint positions from segmentation results, we let the output of

UNet has the same length as the input. We use padding and select proper max-pooling size

to avoid non-divisible numbers of hidden units during the down-sampling and up-sampling

process. The label of each position is predicted based on a criterion of whether the prediction

score is greater than 0.5. If it is greater than 0.5, label “1” is assigned to indicate the position

overlaps with an SV. Or else, label “0” is predicted.

Training the UNet model

To train the UNet model, we utilize validated SVs and generate base-wise RD vectors sur-

rounding known breakpoints as positive samples. All-zero RD vectors are filtered out. Note

that RD-based SV callers can only predict DELs and DUPs. As a breakpoint may not locate in

the center position of a screening window, we add a random shift to the start position of the

screening window. The distance between the start position and the breakpoint is randomly

Fig 2. Model structure of the deep segmentation model UNet used for labeling SV overlapping coordinates.

https://doi.org/10.1371/journal.pcbi.1009186.g002
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sampled in the range of [10, l-10]. A region with too small SV overlapping (the length of nucle-

otides overlap with an SV is less than 10 bp) is treated as too difficult to make proper predic-

tions only with the RD information. These samples are excluded from the training set. We

generate the same amount of randomly selected RD vectors from the rest genomic regions

without any reported SV as the negative samples.

We use Dice similarity coefficient (DSC) [15] as the loss function, and use Adam [16] as the

optimizer to train the UNet model.

DSCðYpred;YgoldÞ ¼
2
Pl

i¼1
mi

gold �m
i
pred þ �

Pl
i¼1

mi
gold þ

Pl
i¼1

mi
pred þ �

;

where mgold and mpred are the gold-standard (GS) and predicted label marks, and � (e.g., 1e-7)

is a numeric tolerance to avoid division by zero.

Using segmentation results for refining breakpoints of SVs

We use Algorithm 1 to infer breakpoint positions from segmentation results. As the enhance-

ment is independently performed for each breakpoint of an SV, we take an extra check on the

enhanced SVs, whether their SV sizes are less than 50 bp. If the enhancement makes an SV

shorter than 50 bp, we retain the original SV boundary.

Evaluation data

We used the simulated data provided by Kosugi et al. [10], which was designed for systematic

benchmarking of different SV callers. They predefined SVs with precise breakpoints based on

the Database of Genomic Variants (DGV) and validated SVs from the benchmark sample

NA12878. The predefined SV set consists of 3530 DELs, 1656 DUPs, 2819 INSs, and 309 INVs.

We evaluated DELs and DUPs in autosomes. Paired-end reads (125 bp read length and 500 bp

insert length, averaging 30x coverage) were generated based on the simulated GRCh37 human

diploid genome with these predefined SVs, using ART simulator [17].

Algorithm 1: Breakpoint enhancement for SVs
1 Input: SVs predicted by an RD-based SV caller.
2 Output: SVs with enhanced breakpoints.
3 foreach SV 2 SVs do
4 Extracting read-depth (RD) vectors surrounding the left and right
boundary of the SV;
5 foreach RD vector do
6 Predict SV label marks using a deep segmentation model;
7 Generate breakpoint candidates based on the label marks;
8 switch number of breakpoint candidates n do
9 case n=1 do
10 update breakpoint with the candidate;
11 end
12 case n > 1 do
13 use the one closest to the original breakpoint as the new
breakpoint;
14 end
15 otherwise do
16 retain the original breakpoint;
17 end
18 end
19 end
20 end

PLOS COMPUTATIONAL BIOLOGY Enhancing breakpoint resolution with deep segmentation model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009186 October 11, 2021 5 / 20

https://doi.org/10.1371/journal.pcbi.1009186


To evaluate the proposed method on real data, we used WGS data from the 1000 Genomes

Project (1kGP) and the Genome in a Bottle Consortium (GiaB). Samples with high-quality

SV callsets, such as NA12878 and HG002, were included. Besides, NA19238 and NA19239

from 1kGP were used for the cross-sample evaluation. The gold-standard SVs of NA12878,

NA19238, NA19239 were generated based on the VCF file (v8) of merged SVs from 1kGP.

The gold-standard SVs of HG002 are from the high-confidence Tier1 callset and were filtered

with “HG002_count� 8”. More detailed information of VCF files and alignment BAM files

are listed in S1 Table.

We normalized RD vectors using the mean and standard derivation of base-wise RDs from

randomly sampled bins in the “background” regions (known-SV-overlapping regions and

low-mappability regions were excluded) for each sample.

Evaluation metrics

We evaluated the proposed method in two aspects: model level and application level. At the

model level, we evaluated different models by the segmentation and classification tasks. We

compared UNet with two commonly used models: CNN and support vector machine (SVM).

CNN was used to compare different deep learning models for segmentation, while SVM was

applied for the simplified task of classifying whether a screening window contains SV-overlap-

ping regions. To evaluate UNet and CNN in the classification task, we first segmented the

screening window’s RD vectors and made classification predictions based on the segmentation

results. If there is any SV overlapping mark inside the screening window, it is classified as posi-

tive and vice versa. We measured classification performance using metrics of F1 score, FDR,

precision, and recall. We used DSC for measuring segmentation performance.

At the application level, we applied breakpoint enhancement using different segmentation

models for an RD-based SV caller. We evaluated SV and breakpoint changes before and after

the enhancement. Without loss of generality, we used CNVnator as an instance. Other RD-

based SV callers can also be used. To evaluate the accuracy of SVs, we used Jaccard similarity

(JS) between a predicted SV and a gold-standard SV, which is calculated as follows:

JðSVp; SVgÞ ¼
jSVp \ SVgj

jSVp [ SVgj
¼

loverlap
lgold þ lpredict � loverlap

;

where loverlap is the length of the overlapping region of the predicted SV and the gold-standard

SV. We defined the gold-standard overlapping SV as the one with the JS score greater than 0.5.

Compared with reciprocal overlap (RO) used in other related works, the value of JS is less than

or equal to that of the RO for the same pair (the denominator of JS is equal to or larger). In

other words, JS greater than 0.5 is a relatively stricter metric than the RO greater than 0.5. We

calculated the number of gold-standard-overlapping SVs and SVs with precise boundaries

(both-boundary-match and partial-boundary-match (left or right)). Here, a “precise” bound-

ary is defined as within 1 bp distance to the gold standard. Besides the evaluation of SVs, we

also investigated the number of breakpoints of different precision. We compared the numbers

of breakpoints in different distance ranges before and after the enhancement.

SV callers and model settings

We utilized three commonly used SV callers, CNVnator (v 0.4), Delly (v 0.8.1) and Lumpy (v

0.2.13). CNVnator is an RD-based SV caller, while Delly and Lumpy were used as SV callers of

other types for comparison. CNVnator and Delly were run in their default settings. For

CNVnator, different bin sizes range from 50 bp to 1000 bp were evaluated on the simulated

data. Lumpy was used with the “express” mode for analysis.
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For the enhancement models, the default length of the screening window was 400 bp. The

model structure of UNet is described in Fig 2. CNN used the typical LeNet structure [18].

More detailed information on network structures can be found in S2 Table. We trained deep

learning models using one Nvidia V100 GPU card. Hyper-parameters were determined based

on a random training split of the simulated data using Hyperopt (v 0.2). The learning rate and

batch size were 0.001 and 64, respectively. We applied early stopping with a minimum of 10

epochs and a maximum of 100 epochs for the training process. SVM used the default setting of

the Scikit-learn (v 0.22.2) package.

Results

Evaluation on simulated data

We first evaluated the proposed method on the simulated data. Typically, n-fold cross-valida-

tion uses n − 1 folds for training, while the rest one fold is used for testing. Besides the stan-

dard-setting, we also used one fold for training and the other n − 1 folds for testing to evaluate

models using a small amount of training data.

Model level performance. The typical 5-fold cross-validation setting (Train-data-propor-

tion is 80% of total SVs) was first investigated. As shown in Table 1, for the segmentation task,

UNet achieves a better segmentation performance with higher DSC scores. More specifically,

for the test set containing background samples, DSC-ALL of UNet is 2.61% absolute higher

than that of CNN. For the test set only containing SV samples, DSC-BK of UNet is around

2.03% higher than that of CNN. In the binary classification task, UNet achieves the best perfor-

mance among the three models. UNet has higher scores of F1, precision, and recall while

retaining a lower FDR value. For deep segmentation models, UNet and CNN achieve recalls

over 85%, which are higher than the recall of SVM, around 81.3%. Compared with CNN, SVM

also has a lower FDR value.

UNet can be trained with a small amount of data. In real applications, known validated

SVs are relatively few. It is worthwhile investigating training deep segmentation models with

only a small amount of data. Therefore, we adjusted the data-split setting and used only one

fold data for training (Train-data-proportion:20%). For the simulated data of a total of 19974

RD vectors, we trained models on 3989 RD vectors and tested on the rest.

Compared with the model performance in the typical data-split setting (80% Training, 20%

Testing), the performance of all the three models decreased when using a smaller amount of

training data. As shown in Table 1, in the segmentation task, DSC-BK of UNet has a relative

decrease of 1.9%, while DSC-BK of CNN has a relative decrease of 4.7%. In the classification

task, the relative decreases of the F1 score for UNet, CNN, and SVM are around 1%, 3.7%, and

1.2%, respectively. CNN is more sensitive to the data amount than the other two models on

Table 1. 5-fold cross-validation on the simulated data. The average result of 5-repeat runs is reported to reduce the effect of the randomness of GPU training. The results

of repeat runs are shown in S3 Table.

Model Train-data proportion Segmentation Classification

DSC-ALL DSC-BK F1 score Precision Recall FDR

SVM 80% / 0.8590 0.9102 0.8133 0.0898

20% / 0.8502 0.9002 0.8057 0.0998

CNN 80% 0.7979 0.827 0.8733 0.8962 0.8518 0.1038

20% 0.7478 0.7882 0.8407 0.8562 0.8266 0.1438

UNet 80% 0.8240 0.8473 0.8900 0.9288 0.8546 0.0712

20% 0.8030 0.8311 0.8787 0.9121 0.8486 0.0879

https://doi.org/10.1371/journal.pcbi.1009186.t001
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the data. Nevertheless, the decreases are not as significant as the reduction of training data for

nearly three quarters. This result indicates that it is feasible to train the UNet model with a

small amount of data.

Enhancement of breakpoint resolution. At the application level, we performed enhance-

ment in the following two scenarios. One is the in-sample enhancement that trains a segmen-

tation model with a small amount of validated SVs and does the breakpoint enhancement for

the rest of the candidate SVs in the same sample. The other is the cross-sample enhancement,

which trains a segmentation model with validated SVs from one sample and enhances SVs of

other samples. For the cross-sample case, we assumed both samples are sequenced on the

same platform, which is required to maintain models’ generalization ability.

We performed in-sample enhancement on the simulated data. For each sample, we ran-

domly sampled 20% of SVs and trained models. These 20% SVs were excluded from the evalu-

ation. CNVnator was applied to generate initial breakpoints of SVs in bin resolution. The deep

segmentation models analyzed the RD of each coordinate in the screening window surround-

ing these breakpoints. Based on the segmentation results, enhancement breakpoints were

generated using Algorithm 1. Table 2 shows the number of specific SVs before and after

enhancement. We applied CNVnator using five different bin sizes ranging from 50 bp to 1000

bp. CNVnator predicted more SVs when using a smaller bin size, which is shown in the “pre-

dicted SVs” column of Table 2. As the read-coverage of WGS data is fixed, the smaller the bin

size is, the fewer reads are counted in a bin. Therefore, bin-based RDs become sparse and

noisy as the bin size decreases, especially when the bin size is less than 100 bp. For CNVnator,

the number of predicted SVs has increased 21.3% to 4766 as the bin size reduces from 100 bp

to 50 bp. However, the number of gold-standard overlapping SVs does not increase in propor-

tion to the increased predictions, which indicates the CNVnator using a smaller bin size tends

to have more false-positive predictions.

We used a screening window of 400 bp length for refining breakpoints predicted by

CNVnator using different bin sizes. Candidate breakpoints were placed in the center of the

Table 2. Enhancement of the predicted SVs by CNVnator using different bin sizes. The length of the screening window surrounding predicted breakpoints is 400 bp.

“GS-ov” SVs are referred to as gold-standard overlapping SVs. “l/r match” represents SVs with partial-boundary-match (left or right), and “l&r match” denotes SVs with

both-boundary-match (left and right).

CNVnator Specific SVs w/wo Enhancement

Bin size predicted SVs enhancement GS-ov SVs (1) l/r match (2) l&r match ð1Þþð2Þ
GS� ov SVs

50 4766 / 2237 182 4 8.31%

+CNN 2241 374 39 18.43%

+UNet 2256 725 866 70.52%

100 3929 / 2227 101 3 4.67%

+CNN 2231 369 52 18.87%

+UNet 2239 704 887 71.06%

200 3469 / 2056 50 1 2.48%

+CNN 2058 268 31 14.53%

+UNet 2060 651 750 68.01%

500 2819 / 1750 19 0 1.09%

+CNN 1751 139 9 8.45%

+UNet 1751 635 316 54.31%

1000 2391 / 1578 13 0 0.82%

+CNN 1580 74 1 4.75%

+UNet 1581 443 77 32.89%

https://doi.org/10.1371/journal.pcbi.1009186.t002
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screening window in the enhancement step, which is different from that in the training step.

For the candidate breakpoints predicted by CNVnator using bin size no greater than 200 bp, at

least one full-length bin on each side of a breakpoint is overlapped by the screening window.

For those breakpoints predicted by CNVnator using bin size greater than 200 bp, the screening

window may only cover a partial length of a bin. The gold-standard breakpoint contained by

the bin may be outside of the screening window for such a partial coverage case. This observa-

tion explains that the number of enhanced SVs with precise boundaries reduces significantly

for CNVnator using bin size greater than 200 bp. Empirically, the screening window covering

at least four-bin length is preferred (two bins on either side).

We investigated the number of changed SVs with precise breakpoints before and after the

enhancement. From Table 2, we can observe: First, the number of SVs with precise boundaries

increases significantly. Before enhancement, due to the bin-size limitation, SVs with precise

boundaries are very few. For example, CNVnator predicted up to four both-boundary-match

SVs with the bin size of 50 bp. The number of partial-boundary-match SVs is also less than

10% of the predicted gold-standard overlapping SVs. After enhancement, the number of

both-boundary-match SVs increases up to 887. For CNVnator using the bin size of 50 bp, the

proportion of SVs with precise boundaries increases from 8.31% to 70.52% with the UNet

enhancement. For the enhancement using CNN, the number of SVs with precise boundaries

increases to 18.43%. These demonstrate the effectiveness and the potential of using UNet for

enhancing RD-based SV callers. Second, the number of gold-standard overlapping SVs

(JS > 0.5) slightly increases. Compared with the predicted SVs by CNVnator using the bin size

of 50 bp, there are 4 and 19 more gold-standard overlapping SVs after the enhancement using

CNN and UNet, respectively. These changes are due to the adjustment of breakpoints, which

makes more SVs with Jaccard similarity greater than 0.5. Third, UNet also achieves a better

performance than CNN in that there are more partial-boundary-match SVs and significantly

more both-boundary-match SVs using the UNet enhancement.

We further investigated the enhancement effect on breakpoints. For each breakpoint, we

evaluated the change of its distance to the gold standard (to-GS-distance). We counted the

number of breakpoints in different to-GS-distance ranges. Fig 3 shows the number of break-

point changes before and after the enhancement using UNet and CNN. We demonstrate

changes in the form of a confusion matrix plotted in a heatmap. We split to-GS-distance into a

range set of DR={[0,5), [5,10), [10,20), [20,50), [50,100), [100,200), [200, 500), [500, 1000),

[1000,)}. For each element in the change matrix, ci,j represents the number of breakpoints

changing from DRi to DRj after enhancement. For ci,i that represents breakpoints adjusted in

the same range, we ignored those unchanged breakpoints. For visualization, matrix elements

with larger values are plotted in darker colors. UNet enhances 2145 breakpoints with their

original to-GS-distance in the range between 5 bp to 50 bp to the breakpoints with to-GS-dis-

tance less than 5 bp, as shown in Fig 3A. The number of positive enhancements of CNN is less

than that of UNet. Note that there are negative adjustments that make to-GS-distance increas-

ing. The number is smaller than the number of positive enhancements. We took error analysis

and found that several negative adjustments belong to the case that gold-standard breakpoints

are too far away from the initially predicted coordinates, which are also out of the screening

window.

Comparisons of enhanced RD-based SV callers and other types of SV callers. As exist-

ing RD-based callers are not designed to predict breakpoints in single-nucleotide resolution,

we compared the proposed method with other types of SV callers that can make predictions in

single-nucleotide resolution. Here, we used Delly (v 0.8.1) [7] and Lumpy (v 0.2.13) [19]. Delly

detects SVs based on abnormally aligned reads, including discordant-paired-end reads and

split reads. Lumpy integrates paired-end aligner, split-read aligner, and CNV prediction under
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a probabilistic framework for SV discovery. On the simulated data, Delly predicted a total of

3460 gold-standard overlapping SVs (Jaccard similarity > 0.5, 1433 SVs (41.4%) are both-

boundary-match), while Lumpy predicted a total of 3525 gold-standard overlapping SVs (2672

SVs (75.8%) are both-boundary-match). These numbers of gold-standard overlapping SVs are

around 1.5 times more than the CNVnator using the bin size of 50 bp (total 2237 SVs) on the

same data. Around 90.82% and 92.95% of gold-standard overlapping SVs predicted by the

CNVnator are included in the predictions of Delly and Lumpy, respectively. Limited by the

bin size of 50 bp, the predicted SVs with both-boundary-match by the non-enhanced CNVna-

tor are very few (only four SVs). We then enhanced CNVnator with different segmentation

models of CNN and UNet. We compared the SVs with both-boundary-match predicted by

enhanced CNVnators with the GS-ov SVs predicted by Delly and Lumpy, as shown in Fig 4.

The UNet-based enhancement significantly increases the number of both-boundary-match

SVs to 866. These 866 SVs have 39.5% and 91.9% of both-boundary-match SVs that are over-

lapped by those predicted by Delly and Lumpy, respectively. There are 31 and 21 GS-ov SVs

that are not overlapped with any GS-ov SVs predicted by Delly and Lumpy. The number of

both-boundary-match SVs (total 39) with the CNN enhancement is much less than that of the

UNet enhancement (total 866). There is only one SV that is not overlapped with any GS-ov

SVs predicted by Delly and Lumpy.

Real data performance

We evaluated model-level performance on the two benchmark samples, NA12878 and HG002.

In Table 3, we observe a similar tendency as in the evaluation of the simulated data. UNet gives

better segmentation performance of higher DSC scores than that of CNN, which are around

2%� 2.36% higher on NA12878, and 2.43%� 3.88% higher on HG002 with different amounts

of training data. UNet also achieves the best performance in all evaluation metrics in the classi-

fication task. Meanwhile, only using 20% of training data, the performance of UNet does not

Fig 3. Change matrices for evaluating the enhancement effect of the UNet and CNN model. (A) Change matrix of the enhancement using the UNet model. (B) Change

matrix of the enhancement using the CNN model.

https://doi.org/10.1371/journal.pcbi.1009186.g003
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Fig 4. Comparison of the enhanced RD-based SV callers with two different SV callers on the simulated data. Evaluated SVs are the ones that overlap with the gold-

standard SVs (Jaccard similarity> 0.5). SVs with exact breakpoints (both-boundary-match, which is abbreviated as “�_exact”) predicted by CNVnator (w/wo

enhancement) are compared with the GS-ov SVs predicted by Delly and Lumpy, which are shown in the following Venn diagrams. Any two predicted SVs are treated as

overlapped as long as they overlap with the same gold-standard SV. The Venn diagrams were plotted using Eulerr [20]. (A) Comparison of CNVnator (w/wo

enhancement) and Delly. (B) Comparison of CNVnator (w/wo enhancement) and Lumpy.

https://doi.org/10.1371/journal.pcbi.1009186.g004

Table 3. Model-level performance on the real dataset. 5-fold cross-validations were performed on NA12878 and HG002 using a screening window length of 400 bp. The

average result of 5-repeat runs is reported to reduce the effect of the randomness of GPU training.

NA12878 HG002

Model Train-data proportion Segmentation Classification Segmentation Classification

DSC-ALL DSC-BK F1 score Precision Recall FDR DSC-ALL DSC-BK F1 score Precision Recall FDR

SVM 80% / 0.8371 0.8403 0.834 0.1597 / 0.8808 0.891 0.8709 0.109

20% / 0.8323 0.8351 0.8296 0.1649 / 0.8747 0.8885 0.8614 0.1115

CNN 80% 0.7688 0.8066 0.8546 0.8595 0.8505 0.1405 0.8024 0.8277 0.8956 0.8880 0.9035 0.1120

20% 0.7466 0.7862 0.8364 0.8575 0.8174 0.1425 0.7719 0.7987 0.8857 0.8842 0.8880 0.1158

UNet 80% 0.7911 0.8266 0.8698 0.8817 0.8595 0.1183 0.8284 0.8520 0.9117 0.9163 0.9076 0.0837

20% 0.7696 0.8098 0.8587 0.8709 0.8480 0.1291 0.8107 0.8358 0.9021 0.9087 0.8963 0.0913

https://doi.org/10.1371/journal.pcbi.1009186.t003
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decrease as significantly as that of CNN. In the classification task, FDR values of the three

models on NA12878 are higher than those on the simulated data, although NA12878 and the

simulated data have SVs in common. One reason is related to the precision of breakpoints of

the dataset. For the real dataset, breakpoints are integrated from several SV callers and defined

in a confidence interval that ranges from zero bp to several hundred bp. While in the simulated

data, breakpoints are more precisely defined. This observation indicates that more accurate

data is essential for training a segmentation model to achieve a lower FDR value.

In-sample enhancement on real data. We conducted in-sample enhancement using four

real samples. We randomly selected 20% of known SVs and generated RD vectors surrounding

SV boundaries to train UNet and CNN on each sample. The rest 80% of SVs were used for

evaluating the enhancement effect of the CNVnator using 50 bp bin size. Table 4 shows the

number of changes of specific SVs and breakpoints before and after the enhancement. UNet

predicted more SVs with precise boundaries (“l/r match” and “l&r match”) than CNN for all

four samples. For HG002, the total percentage of partial-boundary-match SVs and both-

boundary-match SVs is around 59.72%. Besides, we observe that the number of breakpoints

with the to-GS-distance less than 5 bp also increases significantly after the UNet enhancement.

The mean of to-GS-distances less than 5 bp also reduces, as shown in S4 Table. The change-

matrices are shown in S1 Fig. Most of the positively enhanced breakpoints by the UNet model

are these with the original to-GS-distance in the range between 20 bp and 100 bp. While for

the CNN model, its enhancement effect is relatively conservative in that fewer breakpoints are

enhanced with the to-GS-distance less than 5 bp.

Cross-sample enhancement on real data. We then evaluated the segmentation models

across different samples. The cross-sample evaluation investigated whether the models can be

generalized across samples. We assumed samples are sequenced on the same platform. Here,

we used WGS data from the 1kGP for satisfying this pre-condition. We used the comprehen-

sively studied sample NA12878 to train deep segmentation models and applied the trained

models for NA19238 and NA19239. Different from the in-sample evaluation that 20% of SVs

used in training were excluded, all known SVs of the target sample were evaluated.

Table 4. In-sample enhancement for the CNVnator using 50 bp bin size. For each SV caller, the largest number of breakpoints in the split regions is highlighted in bold.

“GS-ov” SVs are referred to as gold-standard overlapping SVs. “l/r match” represents SVs with partial-boundary-match (left or right). “l&r match” denotes SVs with both-

boundary-match (left and right).

CNVnator Specific SVs w/wo enhancement Breakpoints in different to-GS-distance (bp) ranges

Sample predicted

SVs

enhancement GS-ov

SVs

(1) l/r

match

(2) l&r

match

ð1Þþð2Þ
GS� ov SVs

<5 [5,

10)

[10

20)

[20,

50)

[50,

100)

[100,

200)

[200,

500)

[500,

1k)

[1k,)

NA12878 8649 / 598 8 0 1.34% 33 46 98 461 339 75 76 28 40

+CNN 600 23 1 4.0% 66 78 215 423 172 106 71 28 41

+UNet 599 121 53 29.0% 373 100 163 174 133 113 73 29 40

NA19238 10049 / 635 7 0 1.1% 30 37 90 449 410 99 57 47 51

+CNN 636 40 1 6.45% 156 131 220 314 179 110 66 48 48

+UNet 637 139 61 31.4% 397 104 126 183 166 127 73 46 52

NA19239 10747 / 683 9 0 1.32% 29 37 61 523 442 110 67 43 54

+CNN 686 29 0 4.23% 95 104 254 474 173 106 71 39 56

+UNet 686 169 79 36.15% 478 115 137 179 144 145 81 41 52

HG002 15244 / 1187 27 0 2.27% 69 84 302 1116 521 125 88 40 29

+CNN 1195 117 6 10.25% 347 375 520 609 263 118 89 42 27

+UNet 1199 569 147 59.72% 1159 198 270 252 197 146 106 44 26

https://doi.org/10.1371/journal.pcbi.1009186.t004
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Table 5 shows the cross-sample evaluation at the model and application level. At the model

level, recalls of all the models are relatively lower, while precision scores remain when compar-

ing with the in-sample evaluation. UNet achieves the best segmentation and classification per-

formance. SVM has the largest FDR value of 0.2045 and 0.1626 on NA19238 and NA19239,

respectively. This result indicates that classification based on segmentation results works better

than the classification making direct predictions for the cross-sample application. At the appli-

cation level, a similar enhancement effect as in the in-sample evaluation can be observed for

the UNet model. The proportion of SVs with precise boundaries increases from around 1.3%

to 34.39% and 36.26%. The mean and standard derivation of to-GS-distances in different

ranges are shown in S5 Table. The performance of CNN has a noticeable improvement when

compared with the in-sample case. Breakpoint change matrices of the samples are shown in S2

Fig and more breakpoints are enhanced with the to-GS-distance less than 5 bp. As discussed in

the simulation study, CNN is more sensitive to the amount of training data. In the cross-sam-

ple evaluation, more data were used for training, which contributes to the performance

improvement of CNN. However, the number of SVs with precise boundaries and the number

of breakpoints with the to-GS-distance less than 5 bp are still less than that of UNet.

Cross-sample enhancement on tumor WGS data. We performed an additional investi-

gation on UNet’s generalization ability on tumor WGS data. We used WGS data of COLO829

tumor cell line provided by Valle-Inclan et al. [21]. SVs were validated with orthogonal tech-

nologies, including Illumina Hiseq, Oxford nanopore, Pacific biosciences, and 10x genomics

for the sample. Besides that, additional validations, such as capture probe, PCR, and Bionano,

were also applied. We used the provided alignment (BAM file, around 100x coverage) and the

SV truthset that contains 32 DELs and 7 DUPs on autosomes (Insertions and translocations

were excluded from the evaluation). We trained the UNet model on NA12878 data and tested

it on the COLO829 tumor WGS dataset (without using paired normal WGS data). We used

the default setting as in the previous experiments that the length of the screening window is

400 bp, and the bin size of the CNVnator is 50 bp. The change matrix of the UNet enhance-

ment is shown in S3 Fig. From the figure, we observe that four breakpoints are enhanced with

a higher resolution within the 5 bp range, and two breakpoints are enhanced to the range of [5,

10]. This result demonstrates a generalization ability of the UNet model on the tumor WGS

data.

Effect of read depth and screening window length

The breakpoint enhancement is affected by read depth. We empirically evaluated how read

depth affects model performance through down-sampling the WGS data of NA12878. We

conducted 5-fold cross-validation with 20%-train-split for NA12878 of different read depths.

As shown in Fig 5, we observe a general trend of performance improvement as the increase of

read depth. Curves in the region of the down-sampling rate below 0.5 are relatively steeper

compared with the curves in the rest regions. The figure indicates the difficulty of training a

deep segmentation model for a single sample using low-depth data. Based on performance

gaps shown in the figure, read depth no less than 40x is empirically suggested for applying the

UNet model.

To evaluate the effect of the screening window length, we used NA12878 to perform in-

sample enhancement for the CNVnator using 50 bp bin size. The screening window length of

100 bp, 200 bp, 400 bp, 800 bp, and 1000 bp were evaluated. As shown in Fig 6, at the model

level, different screening window length does not make drastic performance changes as were

affected by the read-depth. For the classification task, we observe the performances of SVM

and CNN slightly decrease as the length of the screening window increases, while the F1 curve
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of UNet starts to diverge from that of SVM and CNN after the length of 200 bp. Meanwhile,

it has a trend of converging with higher F1 scores than that of SVM and CNN. The longer the

screening window is, the more RDs are included. SVM and CNN are more likely to be affected

by using more base-wise RD signals, while UNet generalizes well for the screen window with

longer lengths. As the screening window length increases for the segmentation task, the num-

ber of evaluated labels also increases. The DSC scores increase accordingly. UNet performs

better than CNN, especially with the screening window length greater than 400 bp.

Discussion

In this paper, we proposed RDBKE, a general enhancement approach to increase the break-

point resolution for read-depth based SV callers. The core component of RDBKE uses the

UNet model to segment regions surrounding candidate breakpoints. Previous RD-based SV

Fig 5. Performance of models using data of different read depths on the in-sample evaluation. Different read-depth data were generated through

down-sampling NA12878 WGS data of 60x read depth. The dashed curves connect F1 scores of classification, while the line curves show DSC-ALL

scores of segmentation.

https://doi.org/10.1371/journal.pcbi.1009186.g005
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callers usually require smoothed RD signals by bins, limiting the resolution of predicted break-

points. Here, we used UNet to process base-wise RD signals directly and refined breakpoint

predictions in single-nucleotide resolution. Although the base-wise RD of WGS data is very

noisy, a deep learning model with a proper neural network structure can be used to process it

directly. Besides the convolutional module, the encoding-decoding architecture and the skip-

connection structure contribute to this functionality. Furthermore, the UNet model can be

trained with a small amount of data, making the in-sample application practically feasible. The

enhancement pipeline can also be applied for the cross-sample application using more training

data under the condition that both samples are sequenced on the same platform.

Usually, an SV callset is generated through clustering predictions of different SV callers.

For those benchmark SV callsets, multiple sequencing technologies are also applied for the

same sample to derive high-confidence results. Several computational algorithms [22, 23] have

been developed for further filtering and merging SV predictions. For example, SVclassify [23]

Fig 6. Performance of models using different screening window lengths on NA12878 WGS data of 60x read depth. The dashed curves connect F1

scores of classification, while the line curves show DSC-ALL scores of segmentation.

https://doi.org/10.1371/journal.pcbi.1009186.g006
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used one-class SVM to cluster and classify whether candidate SVs have abnormal annotations

different from most of the genome. Here, we focused on the RD-based SV caller. Instead of

developing a new RD-based SV caller, we proposed using deep learning models to enhance

existing RD-based SV callers. Related but different from existing machine learning applica-

tions for SV detection that are modeled as classification tasks, we took a different modeling

approach as the segmentation task, which can provide a better granularity for the analysis of

putative regions.

Compared with other types of information, the regular RD is more common in the whole-

genome scale. Although the split-read based methods can accurately predict base-wise break-

points, there is a limited number of SVs that are overlapped by plenty of split-reads [24].

Pedersen et al., [25] proposed to integrate read-depth information to analyze putative events

generated through the clustering of discordant-read and split-read based algorithms. The

method compared the median depth in the event to the median depth from the 1000 bases

on either side, which is used to refine predictions of split-read and paired-end based methods.

However, this method still used bin-based RDs.

We took error analysis on the output of the segmentation models on the simulated data. For

those regions containing drastic RD changes, it is relatively easy for UNet and CNN to label

SV-overlapping coordinates. UNet tends to predict more consecutive identical label marks than

CNN, especially near candidate boundaries. For the regions with less drastic RD change, it is

still possible for both deep segmentation models to make almost correct segments, as shown in

Table A in S4 Fig. Both segmentation models show cases that detect small size SVs (Table B in

S4 Fig). Besides the issue of gold-standard breakpoints outside the screening window, the other

two types of errors are observed. One is that the RD signal is less informative to make reliable

segmentation. The other is the inconsistency of breakpoint annotations that some adjacent

known breakpoints have different RD signal patterns, as shown in Table C in S4 Fig. Although

the segmentation is not perfect, our experiments demonstrate that the base-wise RDs can still

be used to learn specific signal patterns surrounding breakpoints for refinement. We expect

the performance can be further improved when high-coverage and high-quality training data

become more and more available. To alleviate the effect of wrong segments, the original SVs

can also be retained along with the enhancement result for further clustering-based analysis.

In this work, we only used the read-depth information to enhance the breakpoint resolu-

tion of SVs. The proposed deep learning framework also has the flexibility of incorporating

other different features as the input. For example, we can incorporate sequence-related infor-

mation and read-depth of specific reads, such as split-reads and paired-end reads. DeepVar-

iant used pileup images of putative regions (100 bp) and applied CNN to classify genotypes

for detecting SNPs and InDels. Although the pileup image representation contains more

information than one-dimensional RD representation, they are much noisier, especially

when putative regions are usually larger in the SV detection task. On the other hand, this

method can also be extended for long-read WGS data through learning RD patterns of long-

reads. It is worth exploring further.

Conclusion

In this paper, we presented RDBKE for enhancing breakpoints in single-nucleotide resolution

for RD-based SV callers. RDBKE used UNet to learn base-wise RD patterns surrounding known

breakpoints. We showed that UNet can be trained with a small amount of data and can be

applied for breakpoint enhancement in-sample and cross-sample. RDBKE using UNet can sig-

nificantly increase SVs’ number with more precise breakpoints on both simulated and real data.
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