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Abstract

miRNAs belong to small non-coding RNAs that are related to a number of complicated bio-

logical processes. Considerable studies have suggested that miRNAs are closely associ-

ated with many human diseases. In this study, we proposed a computational model based

on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction

(SCMFMDA). In order to effectively combine different disease and miRNA similarity data,

we applied similarity network fusion algorithm to obtain integrated disease similarity (com-

posed of disease functional similarity, disease semantic similarity and disease Gaussian

interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA

functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile

kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were

added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related

miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out

cross validation and five-fold cross validation, respectively. Furthermore, the case studies

on two common human diseases were also implemented to demonstrate the prediction

accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental

reports that indicated SCMFMDA was effective for prediction of relationship between miR-

NAs and diseases.

Author summary

Considerable studies have suggested that miRNAs are closely associated with many

human diseases, so predicting potential associations between miRNAs and diseases can

contribute to the diagnose and treatment of diseases. Several models of discovering

unknown miRNA-diseases associations make the prediction more productive and effec-

tive. We proposed SCMFMDA to obtain more accuracy prediction result by applying sim-

ilarity network fusion to fuse multi-source disease and miRNA information and utilizing

similarity constrained matrix factorization to make prediction based on biological infor-

mation. The global Leave-one-out cross validation and five-fold cross validation were
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applied to evaluate our model. Consequently, SCMFMDA could achieve AUCs of 0.9675

and 0.9447 that were obviously higher than previous computational models. Furthermore,

we implemented case studies on significant human diseases including colon neoplasms

and lung neoplasms, 47 and 46 of top-50 were confirmed by experimental reports. All

results proved that SCMFMDA could be regard as an effective way to discover unverified

connections of miRNA-disease.

Introduction

MicroRNAs (miRNAs) are a number of 17-24nt non-coding RNAs, which act a pivotal part in

controlling the expression of gene through RNA cleavage or translation repression [1–3]. Lin-

4 was the first miRNA inspected in experiment by Lee et al. [4] in 1993. Since that time, a large

amount of miRNAs was discovered by researchers in experiments [4,5]. Researchers have

sought out generous miRNAs from various of species that included viruses, animals and plants

[6]. Because miRNAs regulated the expression of a great quantity of target genes, the total

miRNA pathway played a key role in gene expression control [7–9]. miRNAs are bound up

with several crucial biological processes, such as cell development, cell differentiation, cell pro-

liferation and so on [10]. Developmental defects can be the result of the dysregulation of miR-

NAs that also associate with progression of diseases [11]. In the meantime, considerable

studies have indicated that miRNAs are connected with a serious of human neoplasms, which

include lung neoplasms [12], prostate neoplasms [13] and so on. Hence distinguishing miR-

NAs associated with diseases can deepen understanding of the genetic causes of complex dis-

eases. Massive connections between miRNAs and diseases have been found by a variety of

traditional experiments in the past few years [14,15]. Traditional manual models can infer the

connections between miRNA and disease, but which are time-consuming, laborious and high

failure rate. Therefore, showing the potential relationship between miRNAs and diseases in

need of computational methods with effectiveness and stability, as they can obtain increasing

reliable miRNA-disease connections [16].

In the past period of time, a great deal of computation-based algorithms and methods have

been applied to predict potential relationship of miRNA-disease [17,18]. For example, Jiang

et al. [19] proposed a model that applied the human phenome-microRNAome network to pre-

dict potential interactions between miRNAs with similar function and diseases with similar

phenotypic. However, the predictive performance of the model was not as decent as expected

due to be affected by high false positive and false negative rates existing in the associations

between miRNAs and targets. Later, the model WBSMDA [20] introduced the Gaussian inter-

action profile similarity to enrich similarity information of miRNA and disease. The

WBSMDA could also predict potential relationship between new miRNAs and new diseases

without any verified correlative information. The collaborative matrix factorization method

was applied to predict the relationship of miRNA-diseases in CMFMDA [21], which also

could utilize plentiful biological information observe unknown interactions. The model

EGBMMDA [22] began to take advantage of decision tree learning to discover novel miRNA-

disease interaction by integrating verified miRNA-disease connections, miRNA functional

similarity and disease semantic similarity. The informative feature vector was constructed by

multi-measures to train the regression tree under the gradient boosting framework. Zhao et al.

[23] applied adaptive boosting to observe unverified miRNA-disease association in ABMDA

model. And they utilized k-means clustering on negative samples to perform random sam-

pling, which could control the balance between positive samples and negative samples. The
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BHCMDA [24] model utilized biased heat conduction (BHC) algorithm to predict unknown

connections between miRNAs and diseases though combining miRNA similarity matrix, dis-

ease similarity matrix and miRNA-disease association matrix. The probabilistic matrix factori-

zation (PMF) algorithm was used in IMIPMF [25] model to infer potential miRNA-disease

interactions. The PMF was widely used in recommender systems, so it could effectively make

use of all information to recommend miRNAs which are strongly associated with the disease.

Recently, the methods based on random walk were gradually proposed and more accuracy

prediction results were obtained. Chen et al. [26] utilized the random walk with restart algo-

rithm to construct RWRMDA model. Because the prediction performance calculated by global

network similarity was better than local network [27,28], RWRMDA employed global network

similarity to gain the feasible interactions between miRNAs and diseases. Unfortunately,

RWRMDA was inappropriate to the diseases without known associated miRNAs. Shi et al.

[29] utilized the function links between human disease genes and miRNA targets to devise a

novel model. Random walk algorithm and global network distance measurement were applied

to search feasible relationship between miRNAs and diseases. Liu et al. [30] also implemented

random walk with restart algorithm in the model to make prediction results to a higher degree.

They employed random walk with restart algorithm on a heterogeneous graph established by

utilizing disease similarity and miRNA similarity. Luo et al. [31] employed imbalanced bi-ran-

dom walk method on a heterogeneous network with information of miRNAs and diseases to

identify feasible interactions of miRNA-disease. Niu et al. [32] applied random walk with

restart algorithm to extract miRNA features from integrated miRNA similarity network in

RWBRMDA model. Then these miRNA features were utilized by binary logistic regression

algorithm to predict potential miRNA-disease associations.

For the sake of obtaining reliable and accurate predictive performance, machine learning-

based methods gradually were utilized to predict unknown miRNA-disease associations. For

instance, the model RBMMMDA [33] utilized restricted Boltzmann machine to predict

miRNA-disease multi-type associations. The RBMMMDA could gain not only novel associa-

tions between miRNAs and diseases, but also corresponding association types. The model

PBMDA [34] constructed a heterogeneous graph including different interlinked sub-graphs

and further adopted depth-first search algorithm to seek potential miRNA-disease associa-

tions. PBMDA could function as a useful calculation tool to accelerate the prediction of

miRNA-disease interactions. The model DNRLMF-MDA [35] integrated dynamic neighbor-

hood regularized and logistic matrix factorization to predict potential relationship of miRNA-

disease. DNRLMF-MDA applied logistic matrix factorization algorithm to association proba-

bility between miRNAs and diseases. Then implementing dynamic neighborhood regularized

algorithm to improve predictive performance. Peng et al. [36] proposed the model MDA-CNN

for miRNA-disease connection identification. The miRNA-disease interaction features were

firstly captured by a three-layer network. Then an auto-encoder was employed to identify

obvious miRNA-disease feature combinations. After these feature representations were

reduced, the convolutional neural network utilized them to predict the final results. The signif-

icant machine learning-based model MLMDA [37] was proposed by Zheng et al. to predict

unknown relationship of miRNA-disease. The k-mer sparse matrix was used to extract

miRNA sequence information. Then integrating miRNA sequence information, miRNA and

disease similarity information to construct feature vectors. The deep auto-encoder neural net-

work (AE) and random forest classifier made full use of feature vectors to calculate the predic-

tion probability. The NCMCMDA [38] model integrated neighborhood constraint with

matrix completion algorithm to change the recovery task into an optimization problem. This

model applied the fast iterative shrinkage-thresholding algorithm to recover missing interac-

tions between miRNAs and diseases. Zhang et al. [39] proposed the computational model
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MSFSP to achieve a more accuracy predictive performance of miRNA-disease interactions.

The MSFSP firstly integrated various similarity information of miRNA and disease to con-

struct the similarity of miRNA and disease. Then miRNA and disease similarity matrices and

verified miRNA-disease association matrix were utilized to constitute the weighted network of

miRNA-disease connections. The final prediction labels were calculated by weighting miRNA

and disease space projection scores. Ji et al. [40] proposed SVAEMDA model to infer more dis-

ease-related miRNAs, which used miRNA similarity and disease similarity to obtain the repre-

sentations of miRNA and disease. In addition, the variational autoencoder based predictor was

trained to predict unknown interactions of miRNA-disease, which combined verified miRNA-

disease interactions with the representations of miRNA and disease to generate the feature vec-

tors of miRNA and disease.

Because there were several limitations in previous models, we presented a novel model

based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Predic-

tion (SCMFMDA). In order to obtain plentiful disease similarity data, we applied similarity

network fusion algorithm to integrate various disease similarities, which consisted of disease

functional similarity, disease semantic similarity and disease Gaussian interaction profile ker-

nel similarity. Similarly, miRNA similarity data was obtained by applying similarity network

fusion to integrate miRNA functional similarity, miRNA sequence similarity and miRNA

Gaussian interaction profile kernel similarity. In addition, we added L2 regularization terms

and similarity constraint terms to standard Nonnegative Matrix Factorization (NMF) method

to predict more unknown miRNA-disease associations. To evaluate the effectiveness of

SCMFMDA, global Leave-one-out cross validation and five-fold cross validation were carried

out on the verified miRNA-disease association data downloaded from HMDD v2.0 [41]. As a

result, SCMFMDA achieved AUC values of 0.9675 and 0.9447, respectively. Furthermore, we

performed case studies on colon neoplasms and lung neoplasms. Consequently, the miR2Di-

sease [42] and dbDEMC v2.0 [43] databases were utilized to validate results of case studies,

which achieved high confirmation ratios. Experimental results showed that SCMFMDA was

effective for inferring possible relationship between miRNAs and diseases.

Materials

Human miRNA-disease associations

In this study, we downloaded verified human miRNA-disease association information from

HMDD v2.0 database, which included 5430 known associations between 383 diseases and 495

miRNAs. For the sake of making calculation convenient, we made an adjacency matrix

A2Rnd×nm to indicate the verified miRNA-disease associations. The nd and nmmean the num-

ber of diseases and miRNAs, respectively. We used aij to represent the (i,j)th element of matrix

A. Specifically, The element aij is set to 1 if disease di is related to miRNAmj; and otherwise, it

is set to 0.

Disease functional similarity

The phenotypically similar diseases tend to associate with similar genes. Therefore, we could

calculate disease functional similarity based on the functional information of gene. The log-

likelihood score (LLS) represents the probability of a functional linkage between different

genes, which can be downloaded from the HumanNet database [44] and be normalized as fol-

lows:

LLSnðga; gbÞ ¼
LLSðga; gbÞ � LLSmin
LLSmax � LLSmin

ð1Þ
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where LLS(ga, gb) denotes the LLS between gene ga and gene gb, LLSmax and LLSmin are the

maximum LLS and minimum LLS in HumanNet database; LLSn(ga, gb) represents the normal-

ized LLS.

Then, the gene functional similarity score can be calculated by the below equation:

FSðga; gbÞ ¼

1 if a ¼ b

LLSnðga; gbÞ if a 6¼ b \ eða; bÞ 2 SHumanNet
0 if a 6¼ b \ eða; bÞ=2SHumanNet

8
>><

>>:

ð2Þ

where SHumanNet represents the link set that contains whole links between genes in HumanNet

database; e(a,b) indicates the link between gene ga and gene gb.
Furthermore, the functional similarity score between gene g and gene set G is defined as fol-

lows:

SGðgÞ ¼ max
gb2G
FSðg; gbÞ ð3Þ

The SIDD [45] can be utilized to obtain disease-gene association data, which are involved

in calculating disease functional similarity SD1 by the following equation:

SD1ðdi; djÞ ¼

P
ga2Gi
SGiðgaÞ þ

P
gb2Gj
SGjðgbÞ

jGij � jGjj
ð4Þ

Disease semantic similarity

On the basis of previous study [46], the medical subject headings (Mesh) descriptors could be

implemented to calculate disease semantic similarity. Here, the Directed Acyclic Graph

(DAG) could be adopted to indicate the specific relationship of different diseases. Concretely,

the DAG(D) = (D,T(D),E(D)) represents the DAG of disease D, in which T(D) denotes the

node set containing D itself and its ancestor nodes, E(D) denotes the relevant edge set includ-

ing edges from parent nodes to their child nodes directly. Then the semantic value of disease D
can be calculated as below:

DV1ðDÞ ¼
X

d2TðDÞ

DD1ðdÞ ð5Þ

where the semantic contribution of disease d to D can be calculated as follows:

DD1ðdÞ ¼
1 if d ¼ D

maxfD � DD1ðd0Þjd0�children of dg if d 6¼ D

(

ð6Þ

here, Δ is the semantic contribution factor that is set to 0.5 based on previous literature [47].

On the basis of assumption that various diseases tend to be regarded as similar diseases if

the large parts of their DAGs are same. Therefore, the semantic similarity DS1(di, dj) between

disease di and disease dj can be defined as follows:

DS1ðdi; djÞ ¼

P
t2TðdiÞ\TðdjÞ

ðDdi1ðtÞ þ Ddj1ðtÞÞ

DV1ðdiÞ þ DV1ðdjÞ
ð7Þ

Based on the previous study [48], diseases appear in less DAGs may be more specific, these

diseases ought to gain a higher semantic contribution in DAGs. Therefore, different diseases

located in the same layer of one DAG, which may obtain the different contribution value. Spe-

cifically, the semantic contribution of disease d to D can be calculated in different way as
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below:

DD2ðdÞ ¼ � log
the number of DAGs including d

the number of diseases

� �

ð8Þ

Correspondingly, the semantic score of disease D and semantic similarity DS2(di, dj)
between disease di and disease dj can be calculated as follows:

DV2ðDÞ ¼
X

d2TðDÞ

DD2ðdÞ ð9Þ

DS2ðdi; djÞ ¼

P
t2TðdiÞ\TðdjÞ

ðDdi2ðtÞ þ Ddj2ðtÞÞ

DV2ðdiÞ þ DV2ðdjÞ
ð10Þ

Finally, we integrated DS1 and DS2 to calculate final disease semantic similarity SD2(di, dj)
between disease di and disease dj in following equation:

SD2ðdi; djÞ ¼
DS1ðdi; djÞ þ DS2ðdi; djÞ

2
ð11Þ

miRNA functional similarity

Based on the calculation method of miRNA functional similarity [49,50], assuming that func-

tionally similar miRNAs tend to be linked with phenotypically similar diseases and vice versa.

We downloaded miRNA functional similarity data from http://www.cuilab.cn/files/images/

cuilab/misim.zip. Here, we constructed the matrix SM1 with nm rows and nm columns for

storing the corresponding information. The element SM1(mi,mj) represents the relevant func-

tional similarity score between miRNAmi and miRNAmj.

miRNA sequence similarity

We utilized the Needleman-Wunsch Algorithm to calculate miRNA sequence similarity, and

corresponding miRNA sequence information can be obtained from miRBase database [51]. Be

similar to miRNA functional similarity, we also constructed a matrix SM22Rnm×nm to store

sequence similarity information, where SM2(mi,mj) was the relevant sequence similarity score

between miRNAmi and miRNAmj.

Gaussian interaction profile kernel similarity for diseases and miRNAs

On the basis of previous study [49,50], because miRNAs with similar function are likely to be

linked with diseases with similar phenotypes, the Gaussian interaction profile (GIP) kernel

similarity can be calculated and applied to stand for the miRNA similarity and disease similar-

ity. Concretely, the binary vector K(di) is constructed to indicate the interaction profile of dis-

ease di in accordance with whether di possesses known association with each miRNA or not.

Here, the GIP kernel similarity SD3(di, dj) between disease di and disease dj can be calculated

as below equations:

SD3ðdi; djÞ ¼ expð� rd jKðdiÞ � KðdjÞj
�
�

�
�2Þ ð12Þ

rd ¼ r
0

d=ð
1

nd

Xnd

i¼1

jKðdiÞj
�
�

�
�2Þ ð13Þ
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In the same light, the GIP kernel similarity SM3(mi,mj) between miRNAmi and miRNAmj
can be calculated by the following formulas:

SM3ðmi;mjÞ ¼ expð� rm jKðmiÞ � KðmjÞj
�
�

�
�2Þ ð14Þ

rm ¼ r
0

m=ð
1

nm

Xnm

i¼1

jKðmiÞj
�
�

�
�2Þ ð15Þ

where the binary vector K(mi) indicates the interaction profile of miRNAmi in accordance

with whethermi has known association with each disease or not, the parameter ρm is utilized

to control kernel bandwidth.

Methods

Overview

The SCMFMDA includes two major parts: similarity network fusion is applied to obtain inte-

grated disease similarity and integrated miRNA similarity; known miRNA-diseases associa-

tions and integrated similarities are adopted in similarity constrained matrix factorization to

infer unknown associations of miRNA-disease. The specific flow chart of SCMFMDA is

shown in Fig 1.

Fig 1. Flow chart of SCMFMDA.

https://doi.org/10.1371/journal.pcbi.1009165.g001
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Integrating similarity for diseases and miRNAs

The similarity between two diseases can use disease functional similarity, disease semantic

similarity and disease GIP kernel similarity to represent. Similarly, miRNA functional similar-

ity, miRNA sequence similarity and miRNA GIP kernel similarity can be utilized to indicate

similarity between different miRNAs. Here, the similarity network fusion (SNF) [52] method

is applied to integrate various similarities for disease and miRNA. According to previous

study, the process of SNF can be expressed as iterative update of similarity matrices. The main

steps of utilizing SNF to integrate different disease similarities SDn, n = 1,2,3 are introduced as

follows.

In the first step, we calculated normalized weight matrix Pn of each similarity network as

follows:

Pnðdi; djÞ ¼

SDnðdi; djÞ
2
P
k6¼iSDnðdi; dkÞ

j 6¼ i

1

2
j ¼ i

8
>>><

>>>:

ð16Þ

In the second step, we utilized k nearest neighbor (KNN) algorithm to measure the local

relationship of each similarity network. The specific process to obtain corresponding matrix

Kn is displayed as follows:

Knðdi; djÞ ¼

SDnðdi; djÞ
P

k2Ni
SDnðdi; dkÞ

j 2 Ni

0 otherwise

8
>><

>>:

ð17Þ

where the Ni indicates the number of neighbors in the disease.

In the third step, we applied SNF to integrate normalized weight matrix Pn and local rela-

tionship matrix Kn as follows:

Pn ¼ Kn

P
t 6¼nPt
m � 1

� �

ðKnÞ
Tn ¼ 1; 2; . . . ;m ð18Þ

Because we had three different disease similarity networks (disease functional similarity,

disease semantic similarity and disease GIP kernel similarity), the m was equal to 3. After itera-

tive update, the ultimate disease similarity matrix Sd could be obtained as follows:

Sd ¼
1

3

X3

n¼1

Pn ð19Þ

Similarly, we could apply SNF algorithm to obtain final miRNA similarity matrix Sm.

Similarity constrained matrix factorization

After obtaining processed disease similarity and miRNA similarity, similarity constrained

matrix factorization method is adopted to observe more unknown interactions of miRNA-dis-

ease, and Fig 2 shows concrete details of it. The SCMFMDA factorized the matrix A2Rnd×nm

into U2Rnd×γ and V2Rnm×γ, where γ denoted the dimension of disease feature and miRNA

feature in the low-rank spaces. To be specific, the association of miRNA-disease roughly equal

to the inner product between the disease feature vector and the miRNA feature vector:

aij � uivTj , where ui and vj represent the ith row of U and the jth row of V, respectively. The

PLOS COMPUTATIONAL BIOLOGY SCMFMDA

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009165 July 12, 2021 8 / 20

https://doi.org/10.1371/journal.pcbi.1009165


corresponding objective function is shown as follows:

min
1

2

X

ij

ðaij � uiv
T
j Þ

2

ð20Þ

Then, the L2 regularization terms of ui and vj are added to the Eq (20) for solving overfitting

problem.

min
1

2

X

ij

ðaij � uiv
T
j Þ

2

þ
s

2

X

i

jjuijj
2
þ
s

2

X

j

jjvjjj
2

ð21Þ

where σ is the regularization parameter for ui and vj.
On the basis of previous study [53,54], the geometric properties of data points may be kept

when they are mapped from high-rank space into low-rank space. Disease similarity Sd and

miRNA similarity Sm can indicate geometric structure of data points, so we present similarity

constraint terms SU and SV as follows:

SU ¼
1

2

X

ij

jjui � ujjj
2Sdij ð22Þ

Sv ¼
1

2

X

ij

jjvi � vjjj
2Smij ð23Þ

where Sdij represents the similarity between disease di and disease dj, Smij denotes the similarity

between miRNAmi and miRNAmj, respectively. Considering the similarity degree between

two data points is up to the distance of them, so SU will incur a heavy penalty if the distance of

di and dj are close in disease feature space. Therefore, we could keep the geometric structure of

disease data points by minimizing SU, which would cause that disease di and disease dj were

mapped closely in low dimensional space. For miRNA, it is the same situation. Hence, the

objective function of SCMFMDA are proposed by adding SU and SV to Eq (21) as follows:

min
U;V
L ¼

1

2

X

ij

ðaij � uiv
T
j Þ

2

þ
s

2

X

i

jjuijj
2
þ
s

2

X

j

jjvjjj
2
þ
ε
2

X

ij

jjui � ujjj
2Sdijþ

ε
2

X

ij

jjvi � vjjj
2Smij ð24Þ

where ε is regarded as hyper parameter which can availably control the smoothness of similar-

ity consistency.

Fig 2. The details of similarity constrained matrix factorization.

https://doi.org/10.1371/journal.pcbi.1009165.g002
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Optimization algorithm

In this section, we proposed an efficacious optimization algorithm to calculate the objective

function of SCMFMDA. First, the partial derivatives of L in regard to ui and vj are calculated

as follows:

ruiL ¼
X

j

ðuiv
T
j � aijÞvj þ sui þ ε

X

j

ðui � ujÞS
d
ij �

X

j

ðuj � uiÞS
d
ji

� �

¼ ui V
TV þ sI þ εð

X

j

Sdijþ
X

j

SdjiÞI
� �

� Aði; :ÞV � ε
X

j

ðSdij þ S
d
jiÞuj ð25Þ

where A(i,:) denotes the ith row of matrix A.

rvjL ¼
X

i

ðvju
T
i � aijÞui þ svj þ ε

X

i

ðvj � viÞS
m
ji �

X

i

ðvi � vjÞS
m
ij

� �

¼ vj U
TU þ sI þ εð

X

i

Smijþ
X

i

Smji ÞI
� �

� Að:; jÞTU � ε
X

i

ðSmij þ S
m
ji Þvi ð26Þ

where A(:,j) denotes the jth column of matrix A.

Then, the second derivatives of L in regard to ui and vj are calculated by the below equa-

tions:

r2

ui
L ¼ VTV þ sI þ ε

X

j

Sdij þ
X

j

Sdji
� �

I ð27Þ

r2

vj
L ¼ UTU þ sI þ ε

X

i

Smij þ
X

i

Smji
� �

I ð28Þ

According to Newton’s method, ui and vj can be executed iterative update as follows:

ui  ui � ruiLðr
2

ui
LÞ� 1

ð29Þ

vj  vj � rvjLðr
2

vj
LÞ� 1

ð30Þ

Hence, ui and vj can be updated by the following formulas:

ui ¼ Aði; :ÞV þ ε
X

j

ðSdij þ S
d
jiÞuj

� �
VTV þ sI þ ε

X

j

Sdijþ
X

j

Sdjiþ
� �

I
� �� 1

ð31Þ

vj ¼ Að:; jÞTU þ ε
X

i

ðSmij þ S
m
ji Þvi

� �
UTU þ sI þ ε

X

i

Smijþ
X

i

Smjiþ
� �

I
� �� 1

ð32Þ

When the convergence condition is met, the update of ui and vj will stop. The prediction

matrix can be obtained by updated ui and vj.

AP ¼ UVT ð33Þ

The value of APij denotes the association probability between disease di and miRNAmj. The

more likely the association is, if the score is higher.
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Results

Parameters optimization

In this section, parameters γ, σ and ε are quantitatively analyzed to research their effect on the

prediction performance. γ represents the dimension of diseases and miRNAs in low-rank

spaces, and γ<min (nd, nm) that can be considered as the percentage of min (nd, nm). Param-

eters σ and ε denote the regularization parameters. The AUC value of 5-CV is applied to evalu-

ate influence of the choice of parameters on the performance of model. And after generous test

experiments were conducted, we could get the conclusion that the value of γ would affect the

experiment individually. For this reason, we fixed σ and ε in a suitable combination to test the

most suitable value of γ2{0,10%,. . .,1} in SCMFMDA. In order to ensure the correctness of the

test, σ and ε are fixed in different combination. From Fig 3A, we could see that SCMFMDA

obtained the best performance when γ = 50%. In addition, the γ = 50% is fixed so that the effect

of regularization parameters σ and ε can be clearly evaluated. We utilized all combinations of

σ2{2−3,2−2,. . .,23} and ε2{2−3,2−2,. . .,23} to construct SCMFMDA. From Fig 3B, we could dis-

cover that SCMFMDA acquired best AUC value of 0.9447 when σ = 22 and ε = 20. In sum-

mary, γ, σ and ε are set to 50%, 22 and 20 in our model, respectively.

Model comparison

In order to evaluate the prediction ability of SCMFMDA, we compared several previous computa-

tional methods that were proposed to predict unknown miRNA-disease associations. We applied

same dataset (HMDD v2.0 database) to train these methods so that comparison results could be

considered as fairness. The specific information of these methods are shown as follows.

• MSCHLMDA [55] is a multi-similarity based combinative hypergraph learning model (pub-

lished in 2020).

• ICFMDA [56] is an improved collaborative filtering-based computational model (published

in 2018).

• SACMDA [57] is short acyclic connections-based computational model (published in 2018).

• GRNMF [58] is a graph regularized non-negative matrix factorization-based model (pub-

lished in 2018).

Fig 3. The influence of parameters on SCMFMDA: (A) the influence of γ; (B) the influence of σ and ε.

https://doi.org/10.1371/journal.pcbi.1009165.g003
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• GRL2,1−NMF [59] is a graph Laplacian regularized L2,1-nonnegative matrix factorization-

based computational model (published in 2020).

• NPCMF [60] is a nearest profile-based collaborative matrix factorization model (published

in 2019).

• KBMFMDA [61] is a kernelized Bayesian matrix factorization-based computational model

(published in 2020).

Based on the HMDD v2.0 database that included 5430 verified associations and 184155

unverified associations between 383 diseases and 495 miRNAs, global Leave-one-out cross val-

idation (global LOOCV) and five-fold cross validation (5-CV) were implemented to evaluate

the prediction performance of these methods. In the framework of global LOOCV, the test set

was held by each verified association of miRNA-disease in turn, the training set was composed

of other verified associations. The whole unknown miRNA-disease associations were consid-

ered as candidate samples. Similarly, in the framework of 5-CV, the whole verified miRNA-

disease associations were divided into five parts in a random way, where test set was held by

one part in turn, training set consisted of other four parts in turn. The whole unknown

miRNA-disease associations were considered as candidate samples. In addition, by either

the global LOOCV or the 5-CV, we applied SCMFMDA to obtain all predicted association

scores so that the ranking of test set relative to candidate samples could be calculated.

When the ranking of all test sample were higher than the certain threshold, SCMFMDA was

regarded as a valid model. Then we could utilize the Receiver operating characteristics (ROC)

curve that was obtained by plotting the true positive rate (TPR) against the false positive rate

(FPR) to effectively evaluate the performance of SCMFMDA. We could calculate the area

under the ROC curve (AUC) of SCMFMDA whose value was between 0 and 1. Similarly, we

could obtain AUCs of other computational methods by utilizing the information of HMDD

v2.0 database.

In this work, when global LOOCV method was conducted, SCMFMDA, MSCHLMDA,

ICFMDA and SACMDA acquired average AUC values of 0.9675, 0.9287, 0.9072 and

0.8777, respectively (Fig 4). For the purpose of reducing potential deviations resulted in ran-

dom sample segmentations, we applied 100 times repeated segmentations to verified associa-

tions of miRNA-disease in 5-CV method, and the average AUC values of SCMFMDA,

MSCHLMDA, ICFMDA and SACMDA reached 0.9447, 0.9263, 0.9046, and 0.8773, respec-

tively (Fig 5). Obviously, the prediction performance of SCMFMDA was better than other

methods.

In order to further reflect the performance of the SCMFMDA, it is also compared with

other state-of-the-art matrix factorization-based methods that include GRNMF, GRL2,1−NMF,

NPCMF, KBMFMDA. The 5-CV results of all model are demonstrated in Table 1, clearly

SCMFMDA possesses the best AUC. The advantages of SCMFMDA than other matrix factori-

zation-based models are as follows: first, the biological similarity data that are utilized in

SCMFMDA obviously more than other models; second, SCMFMDA utilizes SNF instead of

traditional linear combination method to integrate various similarity data, which greatly guar-

antee the completeness and effectiveness of experiment data; third, the L2 regularization and

similarity constraint terms are added to the NMF objective function, which benefit to correctly

discover more unknown miRNA-disease connections.

Case studies

For the purpose of demonstrating the effectiveness and accuracy of SCMFMDA, we applied an

evaluation experiment in this section. We implemented two types of human diseases, i.e.,
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colon neoplasms and lung neoplasms to validate the expression of our method. There is no

doubt that these diseases do great harm to human health. Colon neoplasms belongs to malig-

nancy in the field of Medicine, which has been confirmed to associate with several miRNAs

[62,63]. Lung neoplasms is one of the most dangerous malignancies with the fastest increase in

morbidity and mortality [12]. A growing number of evidence indicates that lung neoplasms

and a few of miRNAs have close relationship. For a specific disease, verified associations of

whole diseases in HMDD v2.0 database are considered as training samples, unverified associa-

tions with the specific disease in HMDD v2.0 database are treated a candidate samples. By

training this model, we could rank predicted association score of the candidate samples and

then the top 50 candidate associations with the specific disease are selected. In addition, we uti-

lized two types of databases that were miR2disease and dbDEMC v2.0 to check out miRNAs

that have been ranked. Moreover, Tables 2 and 3 indicated prediction results obtained via

SCMFMDA, respectively. The 94% and 92% of top 50 miRNAs that inferred by our model,

which were individually confirmed to associate with colon neoplasms and lung neoplasms

according to the miR2Disease and dbDEMC v2.0 databases. Only 3 and 4 of top 50 predicted

miRNAs that are related colon neoplasm and lung neoplasms could not find clues in the

databases.

Fig 4. AUC of global LOOCV compared with those of MSCHLMDA, ICFMDA and SACMDA.

https://doi.org/10.1371/journal.pcbi.1009165.g004
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Discussion and conclusion

In this paper, we introduced a new model named SCMFMDA that used similarity constrained

matrix factorization algorithm to predict possible associations of miRNA-disease. In order to

obtain plenty of disease similarity data and miRNA similarity data, similarity network fusion

algorithm is used to integrate various disease and miRNA biological information, respectively.

In addition, L2 regularization terms and similarity constraint terms are added to the standard

Fig 5. AUC of 5-CV compared with those of MSCHLMDA, ICFMDA and SACMDA.

https://doi.org/10.1371/journal.pcbi.1009165.g005

Table 1. Comparisons between SCMFMDA and other MF-based models.

Computational models AUC of 5-CV

GRNMF 0.869

GRL2,1−NMF 0.9276

NPCMF 0.9429

KBMFMDA 0.9008

SCMFMDA 0.9447

https://doi.org/10.1371/journal.pcbi.1009165.t001
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NMF for predicting more unobserved miRNA-disease associations. In the frameworks of

global LOOCV and 5-CV, the AUCs of SCMFMDA severally achieved 0.9675 and 0.9447 that

indicated the performance of our model had a significant improvement relative to previous

models. Furthermore, the predicted miRNAs that related to colon neoplasms and lung neo-

plasms were confirmed by the experiment literatures, so the prediction results of our model

were proved to be reliable.

What should be denoted is that the following factors may contribute to the reliable perfor-

mance of SCMFMDA. First, similarity network fusion algorithm was applied to integrate dif-

ferent disease and miRNA similarities, which can ensure the richness of biological data in the

experiment. Then, the function of L2 regularization terms is avoiding overfitting problem.

Moreover, the similarity constraint terms consist of disease feature-based similarity and

miRNA feature-based similarity, which can generate robustness to the data richness.

However, several limitations may influence the performance of SCMFMDA. First, the

model is applicable to the diseases and miRNAs must appear in the selected dataset, but can’t

make predictions for other diseases and miRNAs. In addition, for some important parameters

in SCMFMDA, we hadn’t appropriate way to select the most suitable parameters expect carry-

ing out all combinations. Therefore, we should continuously optimize our model to improve

its performance in later days.

Table 2. The top 50 potential miRNAs associated with colon neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-21 a; b hsa-mir-30a a; b

hsa-mir-20a a; b hsa-mir-10b a; b

hsa-mir-143 a; b hsa-mir-181b a; b

hsa-mir-155 a; b hsa-mir-106b a

hsa-mir-18a b hsa-mir-203 a; b

hsa-mir-92a b hsa-mir-9 a; b

hsa-mir-34a a; b hsa-mir-34c a

hsa-mir-19b a; b hsa-mir-196a a; b

hsa-mir-19a a; b hsa-mir-183 a; b

hsa-mir-125b a; b hsa-mir-142 unconfirmed

hsa-mir-146a b hsa-mir-24 a; b

hsa-mir-16 unconfirmed hsa-mir-222 b

hsa-mir-200c a hsa-mir-133b a; b

hsa-mir-223 a; b hsa-mir-34b a; b

hsa-mir-200b b hsa-mir-224 a; b

hsa-mir-221 a; b hsa-mir-93 a; b

hsa-mir-182 a; b hsa-mir-29a a; b

hsa-mir-31 a; b hsa-mir-29b a; b

hsa-mir-200a b hsa-mir-146b b

hsa-let-7a a; b hsa-mir-27a a; b

hsa-mir-205 b hsa-mir-210 b

hsa-mir-101 b hsa-mir-141 a; b

hsa-mir-218 b hsa-mir-148a b

hsa-mir-15a b hsa-mir-486 b

hsa-mir-181a a; b hsa-mir-199a unconfirmed

a: miR2Disease database; b: dbDEMC v2.0 database

https://doi.org/10.1371/journal.pcbi.1009165.t002
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Supporting information

S1 Table. Known human miRNA-disease associations obtained from HMDD v2.0 data-

base.

(XLSX)

S2 Table. Names of 383 diseases involved in known human miRNA-disease associations

obtained from HMDD v2.0 database.

(XLSX)

S3 Table. Names of 495 miRNAs involved in known human miRNA-disease associations

obtained from HMDD v2.0 database.

(XLSX)

S4 Table. The constructed disease functional similarity score matrix.

(XLSX)

S5 Table. The constructed disease semantic similarity score matrix.

(XLSX)

S6 Table. The constructed miRNA functional similarity score matrix.

(XLSX)

Table 3. The top 50 potential miRNAs associated with lung neoplasms.

miRNA Evidence miRNA Evidence

hsa-mir-16 a; b hsa-mir-378a unconfirmed

hsa-mir-195 a; b hsa-mir-92b b

hsa-mir-141 a; b hsa-mir-342 b

hsa-mir-106b B hsa-mir-367 b

hsa-mir-15a B hsa-mir-23b b

hsa-mir-429 a; b hsa-mir-139 a; b

hsa-mir-296 unconfirmed hsa-mir-373 b

hsa-mir-99a a; b hsa-mir-452 b

hsa-mir-122 B hsa-mir-148b b

hsa-mir-130a a; b hsa-mir-339 a; b

hsa-mir-151a unconfirmed hsa-mir-302c b

hsa-mir-625 B hsa-mir-302d b

hsa-mir-193b B hsa-mir-423 a

hsa-mir-152 B hsa-mir-208a unconfirmed

hsa-mir-20b B hsa-mir-328 b

hsa-mir-15b B hsa-mir-708 b

hsa-mir-451a B hsa-mir-211 b

hsa-mir-194 B hsa-mir-181d b

hsa-mir-196b B hsa-mir-215 b

hsa-mir-302b B hsa-mir-302a b

hsa-mir-129 B hsa-mir-28 b

hsa-mir-204 a; b hsa-mir-153 b

hsa-mir-149 B hsa-mir-130b b

hsa-mir-10a B hsa-mir-345 a; b

hsa-mir-320a B hsa-mir-144 b

a: miR2Disease database; b: dbDEMC v2.0 database

https://doi.org/10.1371/journal.pcbi.1009165.t003
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S7 Table. The constructed miRNA sequence similarity score matrix.
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