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Abstract

Ethanol is one of the most widely used recreational substances in the world and due to its

ubiquitous use, ethanol abuse has been the cause of over 3.3 million deaths each year. In

addition to its effects, ethanol’s primary metabolite, acetaldehyde, is a carcinogen that can

cause symptoms of facial flushing, headaches, and nausea. How strongly ethanol or acetal-

dehyde affects an individual depends highly on the genetic polymorphisms of certain genes.

In particular, the genetic polymorphisms of mitochondrial aldehyde dehydrogenase, ALDH2,

play a large role in the metabolism of acetaldehyde. Thus, it is important to characterize how

genetic variations can lead to different exposures and responses to ethanol and acetalde-

hyde. While the pharmacokinetics of ethanol metabolism through alcohol dehydrogenase

have been thoroughly explored in previous studies, in this paper, we combined a base physi-

ologically-based pharmacokinetic (PBPK) model with a whole-body genome-scale model

(WBM) to gain further insight into the effect of other less explored processes and genetic vari-

ations on ethanol metabolism. This combined model was fit to clinical data and used to show

the effect of alcohol concentrations, organ damage, ALDH2 enzyme polymorphisms, and

ALDH2-inhibiting drug disulfiram on ethanol and acetaldehyde exposure. Through estimating

the reaction rates of auxiliary processes with dynamic Flux Balance Analysis, The PBPK-

WBM was able to navigate around a lack of kinetic constants traditionally associated with PK

modelling and demonstrate the compensatory effects of the body in response to decreased

liver enzyme expression. Additionally, the model demonstrated that acetaldehyde exposure

increased with higher dosages of disulfiram and decreased ALDH2 efficiency, and that mod-

erate consumption rates of ethanol could lead to unexpected accumulations in acetaldehyde.

This modelling framework combines the comprehensive steady-state analyses from

genome-scale models with the dynamics of traditional PK models to create a highly personal-

ized form of PBPK modelling that can push the boundaries of precision medicine.
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Author summary

Alcohol is a widely used recreational drug in many parts of the world and it is often

abused or misused, leading to the deaths of millions of people each year from driving

under the influence and overdose. Additionally, the body breaks down alcohol into acetal-

dehyde, a carcinogen that has its own effects ranging from headaches and nausea to liver

damage. The effects of ethanol and acetaldehyde vary due to genetic variations that create

different forms of the enzymes responsible for breaking them down. Due to these differ-

ences, it is important to characterize how these changes affect the metabolism of alcohol

and acetaldehyde. To capture these differences, we have created a new model that inte-

grates the traditional pharmacokinetic model with a whole-body genome-scale model that

can characterize different genetic variations. In addition, traditional models often require

experimentally measured data, yet with this new framework we avoid this tedious process

by mathematically solving the genome-scale model with the dynamic Flux Balance Analy-

sis technique, allowing for gap filling. Through this model, we show that the whole-body

genome-scale model demonstrates flexibility and robustness that has not been seen before

in pharmacokinetic models. Our model combines advantages from both pharmacokinetic

and genome-scale modelling and can be personalized to characterize individual reactions

to other drugs and further precision medicine.

Introduction

Ethanol is a drug that has been extensively studied and is widely used in the world today. Etha-

nol abuse can lead to dependence, liver cirrhosis, social withdrawal, and serious implications

when driving under the influence, leading to approximately 3.3 million deaths each year [1].

This alarming number has encouraged researchers to develop mathematical models to better

understand ethanol metabolism [2]. It is understood that ethanol is primarily metabolized by

liver alcohol dehydrogenase (ADH) into acetaldehyde, which is in turn eliminated by mito-

chondrial aldehyde dehydrogenase (ALDH2) into acetate [3,4]. This is the primary metabo-

lism pathway included in most ethanol metabolism models, however there are other processes

that are frequently omitted in modelling, including microsomal ethanol oxidizing systems

(namely cytochrome P450 enzyme 2E1), catalase, peroxisomes, and non-oxidative methods

such as conversion by fatty acid ethyl esters [3–6].

Acetaldehyde, the primary metabolite of ethanol, is toxic. Its build-up can cause facial flush-

ing, headaches, nausea, dizziness, and tachycardia [7]. The efficacy of its elimination by

ALDH2 is heavily influenced by genetic polymorphisms, and notably East Asian populations

with the ALDH2�2 genotypes have almost no ALDH2 activity when compared to the wild

type, allowing acetaldehyde to accumulate and cause “flushing” symptoms to occur [8–11].

Interestingly, Disulfiram (Antabuse), and other drugs aimed at reducing alcohol dependence,

purposefully inhibit ALDH2 to produce the same symptoms and cause oversensitivity to etha-

nol [12–15]. Acetaldehyde exposure has been implicated in increased risk for a variety of can-

cers [16–19] and may also be involved in alcohol hangovers [20–23]. Thus, it is important to

characterize how different populations’ genetic variations and drinking habits can lead to vari-

ous exposure and responses to ethanol and acetaldehyde.

The pharmacokinetics of ethanol through alcohol dehydrogenase have been well character-

ized in literature since Widmark’s research in 1933 assuming 0th order elimination [24]. This

work was expanded upon by Lundquist and Wolthers, who incorporated Michaelis-Menten
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Kinetics to describe the non-linearity of elimination curves below 0.2mg/mL [25]. Subse-

quently, further research on ethanol metabolism investigated the distribution of ethanol in the

blood proportional to total body water, the effect of first-pass metabolism by the stomach, and

extrahepatic pathways for ethanol clearance [26–31]. This work continues today in the form of

physiologically-based pharmacokinetic (PBPK) models, one of which we have previously

developed [32]. We used this model to capture the absorption, distribution, metabolism, and

elimination (ADME) of ethanol, different metabolic mechanisms, aging effects, biochemical

variation in enzyme activity, sex differences, and the “meal effect” on ethanol metabolism [32].

PBPK models are useful when enzyme kinetics and transport rates are known, however in

the absence of such data researchers often resort to fitting various parameters to clinical data,

leading to overfitting and model stiffness. However, genome-scale models (GEM) can remedy

this gap by predicting the flux of many reactions when subject to certain constraints [33]. In

this paper, we augment the previously developed PBPK model further by integrating a whole-

body, organ-resolved, sex-specific genome-scale model (WBM) to provide further insight into

traditionally ignored processes and how inter-individual differences can lead to variations in

the metabolism of ethanol and acetaldehyde, ultimately navigating towards precision

medicine.

Precision medicine seeks to create personalized computational models of the human body

to predict the impact of various therapeutic approaches [33]. Using the constraint-based

reconstruction and analysis approach (COBRA), the Harvey-Harvetta WBM developed by

Thiele et al expands upon the molecular networks in previous human GEMs [34–35] by inte-

grating organ anatomy and physiology [36–37]. Within the male Harvey reconstruction, the

biochemical reactions governed by genetics are represented in a stoichiometric matrix (81094

reactions and 56452 metabolites), and the Flux Balance Analysis (FBA) technique is applied to

solve for steady-state reaction fluxes given a specified objective function [38]. Here, we employ

dynamic FBA [39] on the Harvey WBM to perform unsteady-state characterization of ethanol

metabolism, pharmacokinetics, and pharmacodynamics. By combining the PBPK model,

which predicts the kinetics of ethanol distribution throughout the body, with the WBM, which

predicts steady-state ethanol metabolism through multiple pathways at the organ and molecu-

lar levels, we are able to harness the benefits of both model types to create a framework that

allows for personalized predictions of ethanol metabolism, and potentially other metabolites of

interest in the future.

Methods

Physiologically-Based Pharmacokinetic (PBPK) model development

The PBPK model used to track the distribution of ethanol concentrations expands on a previ-

ously published model [32] by having individual compartments for the stomach, small intes-

tines, and large intestines instead of a single gut compartment. This separation distinguishes

between those organs’ tissue and lumen for better predictions of absorption kinetics [32]. This

model breaks down the human body into 14 tissue compartments (consisting of the lung,

liver, stomach, small intestines, large intestines, pancreas, spleen, kidney, skin, muscle, adi-

pose, brain, heart, and blood) and 3 luminal compartments (consisting of the stomach, small

intestines, and large intestines) (Fig 1).

Within the model, an individual’s age, sex, height, weight, and body fat percentage are

taken as model inputs to estimate the mass of various tissue compartments as well as the blood

flow to each organ [40,41]. Based on the assumption that the partitioning of metabolites

between tissue and plasma is in equilibrium, the metabolite lipophilicity and the unbounded

metabolite fraction are used to calculate tissue-plasma partition coefficients based on tissue
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proportions of water, neutral lipids, and phospholipids [42,43]. For more information about

the physical properties please visit Table 1.

The model was formulated as a system of 34 ordinary differential equations (ODEs), which

represented both the transport of metabolites (ethanol, acetaldehyde) across the various com-

partments as well as enzyme activity via Michaelis-Menten kinetics. Eq 2.1-2.3 show the devel-

opment of the ODEs from mass balance. These ODEs characterize the concentration changes

in each organ and were solved simultaneously using numerical integration on MATLAB (Ver-

sion 9.6.0.1174912 R2019a) at each time step.

In these ODEs, organ blood flow (Qi) and organ volume (Vi) were physiological parameters

calculated by correlations with age, sex, height, weight, and body fat percentage [39]. The tissue

partition coefficient (Ki) represents the pharmacokinetic properties of metabolites in the vari-

ous compartments and was calculated based on the metabolite’s lipophilicity, fraction

unbound in the blood, and tissue composition [42]. The absorption rate constant (ki) refers to

the first-order absorption of metabolites from the organs and the transport rate constants (kij)

refer to the transport of Ethanol between organs. Ri refers to any reactions that may occur in

the tissue, characterized by either Michaelis-Menten kinetics or the genome-scale model.

Fig 1. Schematic of the PBPK model. The red, blue, and purple lines denote arterial, venous, and hepatic portal blood

flows, respectively. There are two mixing points in the model at the lung and at the liver to account for their respective

physiology. The model includes an input at the stomach, and outputs at the skin, kidney, lung, and large intestines.

https://doi.org/10.1371/journal.pcbi.1009110.g001

Table 1. Pharmacokinetic parameters for ethanol and acetaldehyde.

Parameter Ethanol Acetaldehyde Unit

Molecular Weight 46.07 44.05 g/mol

Lipophilicity -0.31 -0.34

Fraction Unbound 0.99 0.99

https://doi.org/10.1371/journal.pcbi.1009110.t001
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These variables are tabulated in Table 2. The generic equation for the compartments is shown

in Eq 2.3. For the complete set of tissue-specific equations, please refer to (S1 Text).

accumulation ¼ in � out þ generation � consumed ð1Þ

Dconcentration ¼ artery � vein � excretion � metabolized ð2Þ

dCi

dt
¼

Qi

Vi
Cblood �

Ci

Ki

� �

� kiCi � Ri; where  Ri ¼
VmaxC
Km þ C

� �

i

ð3Þ

Whole-body metabolic model development

The male WBM model, Harvey, consists of 81094 reactions and 56452 metabolites [37]. Here,

we focused on the exchange and metabolism of ethanol and acetaldehyde (Fig 2). To generate

this schematic, all ethanol and acetaldehyde species were identified in the model, and related

reactions were found with the function ‘findRxnsFromMets’ in COBRA Toolbox [36]. The full

list of reactions can be found in (S1 and S2 Tables).

PBPK-WBM integration

The PBPK model and WBM have slight differences in their metabolites inputs and outputs,

thus additional reactions were added using the COBRA Toolbox function ‘addReaction’ for

consistency. The list of ethanol-related reactions and their contributions to overall ethanol

metabolism can be found in Table 3. While ethanol had many ways of elimination, all the acet-

aldehyde species were eliminated by ALDH2 in the colon and liver (see S2 Table).

Traditionally FBA only solves for steady state fluxes, however the results of FBA can be used

in a dynamic model to better understand the kinetics of ethanol metabolism. Integration of the

two models employed dynamic FBA (see Eq 2.4), in which an objective function is maximized

subject to a set of constraints [38]. Here, the Michaelis-Menten parameters in the PBPK model

were used to set boundaries for the WBM liver alcohol dehydrogenase (ADH) and aldehyde

dehydrogenase (ALDH2) reactions [47]. The objective was to maximize the amount of ethanol

removed by the liver alcohol dehydrogenase (‘Liver_ALCD2if’), and given that the liver accounts

for 90–95% of total ethanol metabolism, the boundaries for the other metabolic and excretion

reactions were calculated and constrained based on the liver ethanol metabolism rate [44–47].

To solve the WBM model, FBA was performed with the function ‘SolveCobraLPCPLEX’,

and the flux values from the FBA solution were used in a dynamic FBA fashion to update the

PBPK model for the next time step [39]. The FBA flux solutions were continuously used in the

solver until their values deviated from the Michaelis-Menten rate past an acceptable tolerance

Table 2. Parameters used for the model ODE development.

Parameter Definition Units Source

Ci Concentration of metabolite in organ i mM Experimental

Qi Blood flow rate to organ i L/min [40]

Vi Volume of organ i L [40]

Ki Partition coefficient between organ I and blood compartment mM/mM [42]

ki Absorption rate of metabolite in organ i 1/min Fitted

kij Transport rate of metabolite between organs i and j 1/min Fitted

Ri Metabolism of metabolite in organ i mM/min [37]

Vmax Vmax from Michaelis-Menten kinetics mM/min [11]

Km Michaelis-Menten constant mM [11]

https://doi.org/10.1371/journal.pcbi.1009110.t002
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range (typically 1–2.5%), shown by Eq 2.5, after which the WBM was solved again to update

the fluxes in the PBPK model. A schematic of this process can be found in S1 Fig.

max f Tvs:t:Sv ¼ 0lbi < vi < ubiwhere ubi ¼
VmaxCi

Km þ Ci
ð4Þ

j
rMM � rFBA

rMM
j < tol ð5Þ

Fig 2. WBM Schematics. (a) Schematic for ethanol metabolism into acetaldehyde (ACALD) in the male WBM model, Harvey. (b) Schematic for acetaldehyde

(ACALD) metabolism to acetate (AC) in Harvey. The orange lines denote model inputs and the green lines denote model outputs. The magenta and purple lines denote

metabolism, and the blue lines are reactions that were added to Harvey to ensure consistency with the PBPK model. The numbers accompanying the arrows are the

reaction number in the model. For a complete list of reactions please refer to the S1 and S2 Tables.

https://doi.org/10.1371/journal.pcbi.1009110.g002

Table 3. Reactions involved in ethanol metabolism and elimination in the whole-body genome-scale metabolic model (Harvey). �Values were implemented as the

lower and upper bounds of the corresponding reactions in the WBM.

Harvey reaction abbreviation PBPK model reaction name % of total metabolism� Notes

‘Diet_EX_etoh[d]’ Input Diet intake

‘EX_etoh_[br]’ kLungout 0.05% Lung/breath [31,44]

‘EX_etoh[u]’ kKid 3–10% Urine excretion [44]

‘EX_etoh[sw]’ kSkin 3–10% Sweat excretion [44]

‘Excretion_EX_etoh[fe]’ kLI 0 Feces excretion [44]

‘Liver_ALCD2if’ rliv 90–95% Liver alcohol dehydrogenase [27,44,45,46]

‘Colon_CAT2p‘ rLI 0–2% Colon catalase [6]

‘Colon_ALCD2if’

‘Adipocytes_ALCD2if’

‘Adipocytes_ALCD2yf’

0 0 Colon/adipose alcohol dehydrogenase [46]

https://doi.org/10.1371/journal.pcbi.1009110.t003
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Results

Predicting the effect of drink concentrations

As we had extended a previously published PBPK model [32] with more detailed gut compo-

nents (i.e., stomach, small intestines, large intestines, and luminal compartments), we fitted

this PBPK model to ethanol absorption data from Mitchell et al (n = 15) [47], thereby develop-

ing correlations between drink ethanol concentration (w/w), absorption rate, and transport

rate through the gastrointestinal tract (Fig 3). Ethanol is primarily absorbed by the stomach

and the small intestines, so we fitted the corresponding absorption rates, kStom and kSI, and the

transport rate from the stomach to the small intestines, kStomSI, to achieve this correlation

[31,44] (S2 Text). The Mean Absolute Error (MAE) for the fitted beer (5.1%), wine (12.5%),

and spirits (20%) simulations were 0.333, 0.6066, and 0.6858, respectively. Furthermore, the

model’s Areas Under the Curve (AUC0-1) were 1612, 1861, and 2024 mM�min compared to

Mitchell et al AUC0-1 of 1502, 1697, and 1871 mM�min.

Predicting acetaldehyde exposure

After fitting the PBPK model for ethanol absorption and clearance, we integrated the WBM to

create the PBPK-WBM model and investigated the ability of the model to also predict acetalde-

hyde exposure. Umulis et al. created a PK model to predict both ethanol and acetaldehyde con-

centrations based on the results to a clinical study by Jones et al (n = 10). [11,48]. To ensure

consistency, we used the Michaelis-Menten parameters taken from the Umulis et al. model

and determined the elimination profile of ADH and ALDH2 (Fig 4). The model produced

AUCs of 526.14 mM�min and 377.72 uM�min for ethanol and acetaldehyde, respectively,

while the experimental data from Jones et al. had AUCs of 538.5 mM�min and 353.25

uM�min. The MAE of the PBPK-WBM ethanol prediction was 0.4096 (compared to Umulis’

MAE of 0.291) and the MAE of the acetaldehyde prediction was 2.1230 (compared to Umulis’

Fig 3. Effect of ingested ethanol concentration on absorption kinetics. Our combined model fitted to data from

Mitchell et al [47]. We varied absorption (kStom, kSI) and transport (kStomSI) parameters in the PBPK model with a Vmax

of 1.5mM/min to fit the data for beverages with concentrations of 20%, 12.5%, and 5.1% by a group of men with an

average age of 37.8, mass of 82.66 kg, height of 177.1 cm and body fat of 20% drinking 0.5g ethanol/kg. The inset Fig

shows the AUC0-1 for the different ethanol percentages based on the model prediction.

https://doi.org/10.1371/journal.pcbi.1009110.g003
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MAE of 0.1255). Although the fit for the PBPK-WBM model is not as accurate as the Umulis

Model, it needs to be taken into consideration that the model used the same Michaelis-Menten

parameters as Umulis, while also having additional ethanol metabolism reactions which may

lead to discrepancies. A more in-depth analysis is provided in the discussion section.

Impact of enzyme expression on ethanol metabolism

Given that alcohol dehydrogenase and liver microsomal enzyme oxidation systems are induc-

ible, chronic alcoholics generally have higher levels of enzyme expression, which can lead to

decrease the exposure to both ethanol and acetaldehyde [3]. Interestingly, liver cirrhosis is also

associated with tissue degeneration and decreased functional mass which would have the

opposite effect. As the PBPK-WBM comprehensively captures liver metabolism, we could sim-

ulate the effect of the different levels of enzyme expression on elimination by changing the

upper bounds of both the liver alcohol metabolism reaction and acetaldehyde reactions. The

simulations showed that when liver ethanol elimination was decreased, other processes would

carry more flux to compensate. However, the total time to eliminate both ethanol and acetalde-

hyde increased with high levels of enzyme expression (Fig 5B and 5C). A more in depth analy-

sis of the model’s ability to compute the trade-off between enzyme expression and liver mass is

provided in the discussion.

Impact of ALDH isoform on acetaldehyde exposure

Acetaldehyde is primarily metabolized by ALDH2 into acetate, and Chen et al found signifi-

cant differences in the activity of various ALDH2 isoforms compared to the wildtype (WT)

Fig 4. Comparing the PBPK-WBM model with the data from Umulis et al [11] and Jones et al [48]. (a) Our gut-

absorption fitted model was modified with the Michaelis-Menten kinetics and physiological parameters to match those

of a previous developed ethanol metabolism model by Umulis et al. The simulation was performed on a group of men

with an average age of 25.6, mass of 74.5 kg, height of 180 cm and body fat of 20% drinking 0.25g ethanol/kg.

Simulations were performed with a tolerance of 0.1%. For more information about the effect of model tolerance on

prediction, please see Supplemental Information SI 6. (b) Predictions made with the fitted model for acetaldehyde

concentrations in a simulated male with the same average characteristics.

https://doi.org/10.1371/journal.pcbi.1009110.g004
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[49]. More information about the isoforms and their activity can be found in Table 4. Given

that the rate of acetaldehyde elimination via ALDH2 is highly dependent on individual genet-

ics, we performed simulations to characterize how the different isoforms could lead to differ-

ential exposure to acetaldehyde (Fig 6A).

Impact of disulfiram on acetaldehyde exposure

Disulfiram is a drug commonly administered to treat chronic alcoholism through inducing

the symptoms associated with acetaldehyde build up [50]. To gauge the effect of this treatment

on acetaldehyde exposure levels, we used in vitro data presented by Kitson et al (see S3 Text)

to identify a correlation between disulfiram concentration and ALDH function and to gauge

the effects of disulfiram on acetaldehyde exposure [50]. We used a clinically relevant constant

blood disulfiram level of 2-8mg/L to characterize its effect on acetaldehyde elimination [51].

The results show that as the concentration of disulfiram increased, the exposure to acetalde-

hyde (AUC) and the time for elimination also increased.

Multi-dosing regimen

Given that ethanol is often consumed in social settings and not in one large dose instantly, we

investigated the effects of taking multiple doses of ethanol within a period. We simulated a

Fig 5. Effect of enzyme expression on ethanol metabolism. (a) Total ethanol elimination through various pathways

as a result of changing liver enzyme expression. The simulation was performed with the PBPK-WBM model fitted to

both Umulis et al. and Mitchell et al. on a group of men with an average age of 25.6, mass of 74.5 kg, height of 180 cm

and body fat of 20% drinking 0.25g ethanol/kg for a total of 1000 minutes. See S1 and S2 for tabulated values. (b, c)

Time-concentration curves of ethanol and acetaldehyde metabolism made with the fitted PBPK-WBM model. The

AUC values in the legend have units of mMol�min and uMol�min, respectively.

https://doi.org/10.1371/journal.pcbi.1009110.g005

Table 4. Effect of ALDH2 mutations on enzyme activity. In vitro values taken from [48].

ALDH2 isoform Mutation Allelic frequency Major ethnicity % of WT activity

ALDH2.1 WT 100

ALDH2.2 E504K 26.6% East Asia 1.5

ALDH2.3 I41V 0.6% African 60

ALDH2.4 P92T 2.5% Latino 32.5

ALDH2.5 T244M 0.4% South Asian 36

ALDH2.6 V304M 2.7% Latino 12.5

ALDH2.7 R338W 1.2% Finnish 23

https://doi.org/10.1371/journal.pcbi.1009110.t004
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dose every 60 minutes (Fig 8A) and tracked the concentration of both ethanol and acetalde-

hyde in various tissue compartments (see S2 Fig). Once again, this simulation revealed that

exposure to ethanol increased with increasing ethanol concentration of the drink (Fig 8C).

Furthermore, because acetaldehyde production was based on ethanol elimination, there was

no decrease in acetaldehyde concentration in the 60-minute dosing regimen until the individ-

ual stopped drinking and the ethanol concentrations began to decrease (Fig 8B).

Discussion

Predicting the effect of drink concentrations

To add in the absorption kinetics in our new gut component, we initially fitted the PBPK

model with data from Mitchell et al to gauge the effect of ethanol concentration on absorption.

From Fig 3 we can see that the model predictions were able to accurately capture the move-

ment of ethanol through the body with low absolute error. The similarity in AUC0-1 also

shows that the model was consistent with clinical data in representing the overall systemic

exposure to ethanol.

This simulation showed that as the concentration of ethanol increased, speed of absorption

by the stomach and small intestine increased, which led to a higher maximum concentration

faster (Fig 3). This different in absorption rate and systemic distribution was shown by the

changes in the shape of the curve near the maximum concentration. After the ethanol was

absorbed and distributed, the time-concentration curves behaved similarly regardless of con-

centration because ADH was operating at Vmax. As the concentration of ethanol fell and the

ADH became subsaturated, the Michaelis-Menten kinetics became prominent as indicated by

curvilinear elimination below concentrations of 4 mM (Fig 3). Furthermore, drinks with

higher ethanol concentrations led to a higher exposure to ethanol as indicated by the increased

AUC (Fig 3B).

While the results do not show predictions for higher drink ethanol concentrations, the

model inputs could be adjusted to deliver a reasonable estimate. However, it is worth noting

that since the correlations were derived from drink ethanol concentrations between 5.1%-20%,

extrapolated results must be ultimately validated with clinical data. Nevertheless, the results of

this simulation show that our model will be able to accurately capture the ADME of ethanol

for a reasonable range of ethanol concentrations.

Fig 6. Effect of ALDH2 mutations on acetaldehyde exposure. (a) Time-concentration plots for the effect of various

ALDH2 mutations on acetaldehyde concentrations were created by changing the enzyme efficiency. The simulation

was performed with the fitted PBPK-WBM model on a group of men with an average age of 25.6, mass of 74.5 kg,

height of 180 cm and body fat of 20% drinking 0.25g ethanol/kg for a total of 500 minutes. (b) Predictions made with

the fitted PBPK-WBM model for the total systemic exposure (AUC0-500) by various genotypes.

https://doi.org/10.1371/journal.pcbi.1009110.g006
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Predicting acetaldehyde exposure

After ensuring that the gut-absorption component of the model was validated, we sought to

validate the acetaldehyde predictions as well. Jones et al. were one of the first groups provide

time-concentration data on both ethanol and acetaldehyde, and a previous PK model was built

by Umulis et al to capture the ADME of acetaldehyde as well.

One interesting phenomenon in the Jones et al. data was that the peak of acetaldehyde pre-

ceded that of ethanol (Fig 4B). Given that acetaldehyde is a metabolite of ethanol, this seems

unreasonable. In the original experiment, measurements of both ethanol and acetaldehyde

concentrations were taken by end-expired breath gas chromatography analysis [48], and prior

to the intake of ethanol the concentration of acetaldehyde was measured to be below the limits

of detection, which rules out the possibility of prior ethanol consumption. One possible expla-

nation for this in the Jones et al. paper was that there is the existence of upper-airway microbes

that produce acetaldehyde. However, given that the number of subjects in the experiment was

only 10 and the error for the early data point was to 41% of the actual data, there is the possibil-

ity of a skewed data as well.

Fig 8. Effect of multi-dosing on ethanol metabolism (a, b) Time-concentration plots of various alcoholic drinks on

ethanol and acetaldehyde concentrations were created with a dosing frequency of 60 minutes. The simulation was

performed with the fitted PBPK-WBM model on a group of men with an average age of 25.6, mass of 74.5 kg, height of

180 cm and body fat of 20% drinking 0.25g ethanol/kg for a total of 500 minutes. (c) Predictions made with the fitted

PBPK-WBM model for the total systemic exposure to ethanol based on drink concentration and dosing frequency.

https://doi.org/10.1371/journal.pcbi.1009110.g008

Fig 7. Effect of blood disulfiram concentrations on acetaldehyde exposure. (a) Time-concentration plots of the

effect of various blood disulfiram levels on acetaldehyde concentrations were created by using correlations generated

in vitro from Kitson et al [50]. The simulation was performed with the fitted PBPK-WBM model on a group of men

with an average age of 25.6, mass of 74.5 kg, height of 180 cm and body fat of 20% drinking 0.25g ethanol/kg for a total

of 500 minutes. (b) Predictions made with the fitted PBPK-WBM model for the total systemic exposure to

acetaldehyde.

https://doi.org/10.1371/journal.pcbi.1009110.g007
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Umulis et al. had difficulties characterizing the initial acetaldehyde concentrations, as

reflected by the inability of the model to reflect this initial spike in acetaldehyde concentrations

(MAE = 0.1255). Given that we used the same Michaelis-Menten kinetic parameters, it was

expected that our model would have a similar poor fit. Indeed, the MAE for our model was

2.1230, with the main cause relating to the problematic early data point. The poor fit could

indicate that there are other processes in the metabolism of acetaldehyde that have not been

explored and taken into consideration in the model as well, although given the comprehensive-

ness of the WBM this seems unlikely. Alternatively, the Umulis model exclusively focuses on

the ADH elimination of ethanol, whereas the integrated PBPK-WBM incorporates the effect

of side processes including sweat, urine, breath, and catalase, which will contribute to differ-

ences in prediction. Since more ethanol is excreted through non-metabolic pathways, this can

explain why our initial predictions were lower than that of Umulis’. In addition, while the

Umulis model does a better job of predicting the initial time point, the present model captures

the elimination and metabolism in the later time points more accurately.

Limitations of the integrated PBPK-WBM simulation includes utilizing the previously-

established Michaelis-Menten parameters which were fitted to data, and a possible solution

would be to re-fit the Michaelis-Menten parameters of the PBPK-WBM model to the raw data

from Jones et al. In addition, future studies with a larger sample size can be used to update the

predictions and draw further conclusions about the metabolism of acetaldehyde, as it is still

poorly understood. Furthermore, due to the iterative nature of the PBPK-WBM model, the

smoothness of both the acetaldehyde and ethanol curves generated by our model relied heavily

on the simulation tolerance, which was set to 0.1%, resulting in 1347 FBA iterations for the

1800 time steps. A smoother curve could be achieved with more iterations, demonstrating the

trade-off between accuracy and computational intensity (S3 Fig)

Overall, the results from this simulation show that despite adding additional reactions to

comprehensively capture the possible routes of ethanol elimination, the final results do not

deviate much from a previously developed model, thus successfully expanding the model for

further analysis of specific pathways regulated by gene expression and drugs.

Impact of enzyme expression on ethanol metabolism

The results of this simulation are interesting for better understanding the relationship between

enzyme expression and alcohol usage. As previously stated, chronic alcoholism leads to a higher

level of metabolizing enzyme expression, yet also leads to liver cirrhosis and decreased liver

mass (hence lower metabolism). In this model, this interesting trade off can be explored since

liver mass was calculated based on the individual’s physiological characteristics (and can be

modified with correlations to account for duration of chronic alcoholism) and expected gene

expression. Data on the rate of liver degeneration is not readily available, thus we simulated

only the expected effect of enzyme activity on the pathways involved in ethanol metabolism.

From these simulations we see that for a normal level of liver enzyme expression, the mols

of ethanol eliminated by the liver accounted for approximately 91% of total ethanol metabo-

lism. As the liver enzyme expression decreases, other processes in the body that eliminate alco-

hol carried more flux as compensation, shown by the increasing amount of ethanol eliminated

by sweat, urine, and breath (Fig 5). Catalase remained a negligible source of ethanol elimina-

tion. This trend is likely explained by the fact that at regular enzyme expression levels, sweat

and urine elimination would account for at least 3% of the total ethanol metabolism, as set as

lower bound in the model (Table 3). However, as the liver deteriorated, the sweat and urine

fluxes would increase until they reached the pre-defined upper bound of 10% of total ethanol

metabolism rate.
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Interestingly, simulations with lower levels of enzyme expression had higher levels of etha-

nol exposure and slightly lower levels of acetaldehyde exposure as shown by the AUC results

in Fig 5B and 5C. This is consistent with clinical observations made by Wicht et al [14], in that

a lower ethanol metabolism rate from the liver (and more excretion via breath, urine, and

sweat) leads to a lower level of acetaldehyde exposure.

Through this simulation, we demonstrate the capability of the PBPK-WBM model to pre-

dict the metabolism of ethanol through non-traditional pathways without needing the specific

rates of excretion. The traditional bottom-up development of PBPK models require a large

amount of data for each process, yet the WBM can fill the gaps in data that is not readily

acquired or cannot be clinically measured. With this novel method of approaching PBPK

modelling, more comprehensive models can be made without the need to isolate specific

kinetic parameters related to the systems of interest, allowing for a more efficient development

of predictive models. Once the specific parameters are eventually measured, the models can be

further refined to improve accuracy.

Impact of ALDH isoform on acetaldehyde exposure

Given that acetaldehyde is a carcinogenic compound, it is important to evaluate the relation-

ship between exposure risk and individuals’ genotypes. In the ALDH2.2 isoform, which has

been primarily found in the East Asian population, our model predicted a 17-fold increase in

exposure in the first 500 minutes when compared to the wildtype (Fig 6B). In other isoforms,

we also saw a similar trend that predicted an increase in AUC with decrease in ALDH2 activ-

ity. The results of this model agree with current literature, which states that individuals with

the ALDH2.2 isoform have a higher exposure to acetaldehyde and additional measures must

be taken to minimize potential harmful effects [10].

Limitations of this simulation include that the ALDH2 isoform activities were based on in

vitro data, and that the AUC calculated in Fig 6B were only based on the first 500 minutes of

data. AUC0-500 was used instead of AUC0-1 because the ALDH2.2 genotype takes over 2000

minutes to reach baseline acetaldehyde levels, which would lead to much larger differences in

AUC. Future studies could specifically measure the differences in ALDH activity in clinical

studies instead, and a more accurate portrayal of the exposure to acetaldehyde could be gener-

ated. Regardless, this simulation shows the advancement of the model to account for the vari-

ous genotypes in metabolic calculations and improve the personalization of PBPK models.

Impact of disulfiram on acetaldehyde exposure

Individuals using disulfiram (Antabuse) to treat alcohol dependency can experience higher

exposure to acetaldehyde, similar to individuals with the ALDH2.2 isoform. Specifically, the

symptoms associated with an increase in blood acetaldehyde concentrations are exactly what

drives the individual towards abstinence. In our simulation, we show that as the blood disulfi-

ram concentration increased, the accumulation of acetaldehyde lasted longer and ultimately

led to more exposure as shown by the increases in AUC0-1 (Fig 7B).

A limitation of this simulation includes that the disulfiram concentration was assumed to

be at constant steady state, where in reality it would peak after each administration and

decrease afterwards. Future iterations of this model can take the elimination kinetics of disulfi-

ram into account and provide a more representative prediction of the exposure to acetalde-

hyde. Nevertheless, this simulation shows that for individuals undergoing disulfiram

treatment for reducing alcohol dependency, they can be subjecting themselves to high levels of

acetaldehyde, necessitating a need for future monitoring of long-term carcinogenic effects.
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Multi-dosing regimen

The purpose of the multi-dosing regimen was to modify the model towards more realistic

drinking situations. The results from these simulations demonstrate that even when limiting

drinks to once every 60-minutes to avoid high ethanol concentrations, people could potentially

be exposed to higher levels of accumulated acetaldehyde than expected. As we see in Fig 8B,

even though blood ethanol concentrations decrease between drinks, the acetaldehyde contin-

ues to accumulate until there is no longer ethanol intake. In this model we included an addi-

tional 40% ethanol concentration to simulate stronger drinks that are often taken as shots. The

conclusions from the 40% simulation is limited by the fact that it is an extrapolation from the

absorption kinetics from Mitchell et al. of 5.1%-20% ethanol concentration [47].

Due to the ability of the PBPK-WBM model to investigate the concentration of metabolites

in other tissue compartments as well, the exposure to both ethanol and acetaldehyde in other

organs can also be examined for future studies (S2 Fig). It could be particularly interesting to

characterize how the exposure to acetaldehyde in various compartments lead to higher risks of

developing specific cancers in the future.

Model limitations

The main goal of this study was to demonstrate a method of PBPK modelling that incorpo-

rated a large-scale, organ-resolved WBM to navigate around the challenges associated with

acquiring kinetic data. While this model is fitted to clinical data and used to understand the

effects of ethanol and acetaldehyde as well as factors affecting their metabolism in the human

body, the value lies in the successful integration of a GEM that allows researchers to personal-

ize kinetic parameters without needing specific measurements. Some limitations of the model

simulations include the following:

On the PBPK side, the absorption kinetics for ethanol through the gut was fitted based on

clinical data ranging from 5.1%-20% drink ethanol concentration. However, given that stron-

ger alcoholic drinks exist, the same correlations can be used but it must be noted that it is an

extrapolation from lesser concentrations. Furthermore, the model draws upon the Michaelis-

Menten parameters from a previously published study, but also includes additional reactions

which cause slight changes in the predictions. A future step here would be to re-fit the Michae-

lis-Menten parameters based solely on the PBPK-WBM model.

On the WBM side, Since the male Harvey model has an irreversible alcohol dehydrogenase

reaction, there is no reverse reaction accounted for, which may have an impact in populations

who are not able to metabolize acetaldehyde efficiently [11]. With a build-up of acetaldehyde,

the reverse reaction may be involved in lowering the acetaldehyde exposure. However, in the

study by Jones et al [48], it was concluded that the reverse reaction does not make a significant

contribution.

For the data and parameters used, the fit for the disulfiram inhibition of ALDH2 was cre-

ated using data from sheep liver cells, which likely behave differently than human liver cells in

vivo. Further clinical studies and data could be used to improve the fitting. In the modelling of

genetic variations, all the simulated subjects were homozygous for the ALDH2 isoform. In

reality, some individuals are likely to be heterozygous, which may affect the effect enzyme

elimination rates. Furthermore, the activities of enzyme isoforms were measured in vitro,

which may not translate well to in vivo reaction rates.

Model significance

Traditional PBPK models require a myriad of pharmacokinetic parameters to properly charac-

terize the ADME of various metabolites. Here, we integrate a GEM that bypasses this challenge
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through incorporating the pseudo-steady state assumption and dynamic FBA to comprehen-

sively advise on a collection of side reactions. We demonstrate that the combined PBPK-WBM

provides reasonable estimates for the ADME of ethanol and acetaldehyde, and additionally

allows for the analysis of enzyme expression and genetic factors, an advance from standard PK

models. Furthermore, the model expands on previous work to include insight into the effect of

drink concentration on ethanol absorption, impact of drugs, multi-dosing regimen, and the

accumulation and exposure in various tissue compartments. The success of this framework

extends beyond the ethanol modelling space and this technique can be applied to study sys-

tems in which there is little kinetic information known, an advance towards better implement-

ing precision medicine.

Conclusion

In this study, we combined a PBPK model with a GEM to analyze the effects of ethanol and

acetaldehyde metabolism. To do so, we added missing transport and excretion reactions to the

WBM to achieve optimal overlap between the PBPK and WBM model. The uptake and

absorption rates in the model were varied to fit to clinical data based on alcohol concentration,

and predictions were made for the effect of drink concentration, organ damage, genetic varia-

tions, disulfiram concentration, and dosing regimen. In our simulations, we found that differ-

ent drink concentrations led to different shapes in the time-concentration curves, indicating

different absorption rates and changes in the overall systemic exposure. Furthermore, we

explored the effect of changing liver enzyme expression on the activities of other eliminating

processes. Through multi-dosing simulations, we find that even at moderate alcohol consump-

tion rates individuals are exposing themselves to resulted in the accumulation of acetaldehyde,

which could be explored in the future to gauge the correlation between acetaldehyde levels and

pathogenesis.

PBPK models allow for individual tissue-compartment tracking and are the industry stan-

dard for drug modelling. However, PBPK models generally only capture the metabolism of the

metabolite(s) of interest and require reliable knowledge of kinetic information. In contrast,

WBMs can provide a detailed and comprehensive description of human metabolism at the

genome scale. However, due to their underlying steady state assumption, they cannot predict

concentration changes over time, a key characteristic of PBPK models. Hence, WBMs are use-

ful for predicting steady state concentrations while PBPK models are useful for predicting the

dynamics given a set of parameters.

By combining the benefits of both models, we could gain further insight into how genetic

variation in one organ could lead to downstream effects in other tissue. In the absence of

human data, the combination of models can lead to a mix of approaches to fill in the gaps nec-

essary to fully characterize a metabolic process. While our PBPK-WBM model focused on eth-

anol and its metabolites, this approach could be applied to other commonly measured

metabolites or drugs, thereby enabling a more comprehensive understanding of how different

aspects of human metabolism are interconnected. By expanding this framework, it is possible

to envision a future where tests and drugs can be given to an individualized in silico metabolo-

mic “twin” to ensure safety and efficacy prior to actual administration, ultimately moving

towards precision medicine.

Supporting information

S1 Fig. Schematic for the dynamic Flux Balance Analysis process for integrating a WBM

with a PBPK model.

(TIF)
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S2 Fig. Time-Concentration curves for ethanol metabolism with a dose every 120 minutes.

Simulations were performed with 20% ethanol for 25.6 year old men weighing 74.5kg with

height = 180cm and 20% body fat drinking 0.25g/kg ethanol. (a) Multi-dosing curves for etha-

nol concentration in various tissue compartments. (b) Multi-dosing curves for acetaldehyde

concentration in various tissue compartments. (c) Area Under the Curve for both ethanol and

acetaldehyde in the liver.

(TIF)

S3 Fig. Effect of tolerance on smoothness of model. As tolerance decreases, the curve better

approximates the normal PBPK model. The predictions at 1% and 10% are at lower values

when compared to the PBPK model because the WBM model also predicts for methods of eth-

anol elimination beyond Alcohol Dehydrogenase.

(TIF)

S1 Table. List of ethanol-related reactions.

(DOCX)

S2 Table. List of acetaldehyde-related reactions.

(DOCX)

S1 Text. Organ-specific equations.

(DOCX)

S2 Text. Correlation between drink concentration and gut absorption.

(DOCX)

S3 Text. Correlation between Disulfiram concentration [uM] and ALDH2 activity.

(DOCX)
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